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Oriented Trees in Digraphs without Oriented 4-cycles

Maya Stein∗ Ana Trujillo-Negrete†

Abstract

We prove that if D is a digraph of maximum outdegree and indegree at least k, and minimum
semidegree at least k/2 that contains no oriented 4-cycles, then D contains each oriented tree T
with k arcs. This can be slightly improved if T is either antidirected or an arborescence.

1 Introduction

Any undirected graph G of minimum degree δ(G) at least k contains each k-edge tree: Indeed, we
can just greedily embed the tree. Because of the k-edge stars, the bound on δ(G) cannot be made
lower than k, unless some extra condition on G is added. Clearly, one necessary condition is that G
has a vertex that can accommodate the highest degree vertex of T , in other words, G has maximum
degree ∆(G) ≥ ∆(T ). This alone is not enough, which can be seen for instance by considering
two copies of the clique on ⌊k/2⌋ − 1 vertices and adding a universal vertex. This graph does not
contain any k-edge tree having a vertex with three roughly equal-sized components attached to it.
Therefore, we should either change the bounds on ∆(G) and/or δ(G) (for a discussion of this option
see Section 6.2), or add more conditions on G apart from δ(G) ≥ k/2 and ∆(G) ≥ ∆(T ).

A natural candidate for such an additional condition is to ask for some kind of expansion of G. In
particular, assuming that G has large girth should be helpful for finding trees. Brandt and Dobson [3]
showed that every graph of girth at least five, with δ(G) ≥ k/2 and with ∆(G) ≥ ∆(T ) contains
each k-edge tree. Generalising this result, Saclé and Woźniak [14] proved1 the following: If T is a
tree with k edges, and G is a graph with δ(G) ≥ k/2 and ∆(G) > ∆(T ) (or ∆(G) ≥ k if T is a star)
such that G contains no 4-cycles, then T ⊆ G. Extending ideas from [14], we prove an analogous
result for digraphs.

The minimum semidegree δ0(D) of a digraph D is the minimum of the indegrees and outdegrees
of the vertices of D, and its maximum total degree ∆tot(D) is the maximum degree of the underlying
graph. We write ∆±(D) for the smallest m such that D has a vertex of outdegree at least m and a
vertex of indegree at least m (these vertices may coincide). Our main result is the following.

Theorem 1. Let T be an oriented tree with k arcs, and let D be a digraph with δ0(D) ≥ k/2 having
no oriented 4-cycles. If ∆±(D) > ∆tot(T ) then D contains T as a subgraph.

Observe that the host graph from the example mentioned in the first paragraph can be viewed as
a digraph in the standard way (each edge becoming a directed 2-cycle), and thus it is necessary to
forbid 4-cycles in Theorem 1. See Section 6.3 for a discussion on forbidding a smaller set of oriented
4-cycles, or a a different family of digraphs.

Further, note that ∆tot(T ) equals k only if T is a star, and in that case T embeds in D as long
as ∆±(D) ≥ k and δ0(D) ≥ k/2. Hence Theorem 1 has the following corollary, which is the result
mentioned in the abstract.

Corollary 2. Let D be a digraph with δ0(D) ≥ k/2 and ∆±(D) ≥ k having no oriented 4-cycles.
Then D contains each oriented tree on k arcs as a subgraph.

We provide two more results for trees that are antidirected or arborescences. If the tree we
are looking for is antidirected, we can replace the minimum semidegree with the minimum pseudo-
semidegree δ̄0(D) of D: this is 0 if D has no arcs, and otherwise is defined as the largest integer d
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1The main result of [14] is that every graph G that has more than k−1

2
|V (G)| edges and no C4-cycles contains each

k-edge tree. The result we are referring to here is alluded to in Section 4 of [14].
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such that no vertex v in D has positive indegree < d or positive outdegree < d. Moreover, we allow
the host D to have directed 4-cycles.

Theorem 3. Let T be an antidirected tree with k arcs, and let D be a digraph with δ̄0(D) ≥ k/2
such that all 4-cycles of D are directed. If ∆±(D) > ∆tot(T ) then D contains T as a subgraph.

In Section 6.1, we will deduce from Theorem 3 the following result: Each n-vertex digraph D
with more than (k − 1)n arcs whose 4-cycles are all directed contains each antidirected tree with k
arcs and ∆tot(T ) ≤ k/2. This is a special case of a conjecture on antidirected trees in digraphs of
high arc density from [1]. See Section 6.1 for all details.

If T is an out-arborescence we only need to bound the outdegree of D, and for oriented D, the
bound on the minimum semidegree can be lower than in Theorem 1.

Theorem 4. Let T be a k-arc out-arborescence rooted at a vertex of maximum total degree. Let D
be a digraph having no oriented 4-cycles with ∆+(D) > max{∆+(T ), k/2} and δ+(D) ≥ k/2 − λ,
where λ = 1 if D is an oriented graph and λ = 0 otherwise. Then D contains T as a subgraph.

A slightly more general statement is given as Proposition 5 in Section 5.
The remainder of this paper is organised as follows. After going through some notation in

Section 2, we give the proof of Theorem 1 in Section 3. In Sections 4 and 5 we show how the proof
of Theorem 1 can be modified to prove Theorems 3 and 4. Some open questions and the implication
of Theorem 3 for the conjecture from [1] are discussed in Section 6.

2 Notation

For a vertex a of a digraph D, the out-neighbourhood (in-neighbourhood ; total neighbourhood) of a, de-
noted by N+(a) (N−(a); N(a)) is the set of out-neighbours (in-neighbours; out- and in-neighbours)
of a. The outdegree, indegree and total degree of a are deg+(a) := |N+(a)|, deg−(a) := |N−(a)|
and deg(a) := |N(a)|. The minimum outdegree (minimum indegree; minimum total degree) of D is
δ+(D) := mina∈D{deg+(a)} (δ−(D) := mina∈D{deg−(a)}; δ(D) := mina∈D{deg(a)}). The maxi-
mum outdegree (maximum indegree; maximum total degree) of D are ∆+(D) := maxa∈D{deg+(a)}
(∆−(D) := maxa∈D{deg−(a)}; ∆(D) := maxa∈D{deg(a)}).

Call D antidirected if each of its vertices has indegree 0 or outdegree 0. A non-isolated vertex a
of a digraph D is an out-vertex (in-vertex) if deg−(a) = 0 (deg+(a) = 0). The distance dist(a, b) of
vertices a, b ∈ V (D) is the length of a shortest path of any orientation that joins them. The diameter
of D is the maximum distance between any pair of its vertices. If a and b are vertices of an oriented
tree, we denote by Pab the unique path joining them. An out-arborescence is an oriented rooted tree
in which all edges point away from the root. Given an oriented tree T , a vertex u ∈ V (T ) is called
a penultimate vertex if it is not a leaf of T and all its neighbours, except at most one, are leaves.

Given an oriented tree T and a digraph D, an embedding of T into D is an injective function
f : V (T ) → V (D) preserving adjacencies. If such an embedding exists, we say that T embeds in D,
or T is a subgraph of D. For a subset X ⊆ V (T ) and an embedding f from T to D, we write f(X)
to denote the image of X in D.

For convenience, let us define two classes of digraphs, C4-free and C∗
4 -free digraphs. A digraph

D is C4-free if it does not contain any orientation of a 4-cycle as a subgraph, and it is C∗
4 -free if any

4-cycle in D is a directed cycle.

3 Proof of Theorem 1

In order to be able to easily refer to this proof later, when we prove Theorem 3, we will frequently
use the weaker property that D is C∗

4 -free (instead of using the property that it is C4-free).
Let t be a vertex of maximum total degree of T . Without loss of generality we assume that

deg+(t) ≥ deg−(t) (the other case is analogous). Let T1 be a maximal subtree of T having diameter
at most four that contains t and N(t). We will show that

T1 embeds in D. (1)

For this, let t′ be a neighbour of t, and note that degtot(t′) ≤ ⌊(k + 1)/2⌋, with equality if T is a
double-star. We embed t in a vertex a ∈ V (D) with deg+(a) ≥ ∆+(D) > degtot(t). We then embed t′

and its neighbours, using the fact that δ0(D) ≥ k/2. Afterwards, we embed the remaining neighbours
of t into unused neighbours of a, which is possible by our condition on ∆+(D) and since D is C4-free.
If T = T1 is a double-star, then we are done. Otherwise, we proceed by successively embedding
N(u) for each non-leaf u ∈ V (T1) with an already embedded non-leaf neighbour w. Observe that
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any already embedded vertex in T1 has distance at most two to w, because T1 has diameter at most
four. So, if z ∈ V (T1) is such that f(z) ∈ N(f(u)), then either z = w or z is a neighbour of w.
Further, there is at most one such neighbour z of w, because D is C4-free. Thus, f(u) has at least
k/2 − 2 unused out-neighbours and at least k/2 − 2 unused in-neighbours, which means we are able
to embed N(u). This proves (1).

Let{Ti}
r
i=1 be such that Tr = T and each Ti is obtained from Ti+1 by deleting the leaf neighbours

of a penultimate vertex ui ∈ V (Ti+1) with minimum degree. Let i ∈ [r] be the maximum index such
that Ti embeds in D. For the sake of a contradiction suppose i < r. Since i ≥ 1 by (1), the definition
of T1 implies that Ti+1 has diameter at least five. Let f : V (Ti) → V (D) be an embedding. To
simplify our notation, for a vertex x ∈ V (Ti) or a subset X ⊆ V (Ti), we denote their image under f
by x̂ and X̂, respectively, i.e., x̂ = f(x) and X̂ = f(X).

Let u ∈ V (Ti) be the vertex with degTi
(u) < degTi+1

(u), and let v be denote its unique neighbour

in Ti. Let ⋄ ∈ {+,−} such that u ∈ N⋄(v). Let d+u and d−u be the number of leaves of Ti+1 in N+(u)
and N−(u), respectively, and let du := d+u + d−u = deg(u) − 1. By symmetry, we can assume that

d+u ≥ d−u . (2)

Let w ∈ V (Ti) be a penultimate vertex of Ti+1 with dist(v, w) maximised. Let W be the set of
leaves of Ti+1 in N(w) and let dw := |W |. By our choice of {Ti}

r
i=1, we have dw ≥ du ≥ 1, and

further, the path Pvw from v to w has length at least two because Ti has diameter at least four.
Observe that u /∈ V (Pvw) because u is a penultimate vertex of Ti+1. Let v1, v2, and w∗ denote the
second, third, and second-to-last vertices of Pvw. It may happen that {v1, v2} ∩ {w∗, w} 6= ∅. Define
T ′ := Ti \ {u}.

Set Q := N⋄(v̂) \ f(V (T ′)) and q := |Q|. Note that q ≥ 1 as û ∈ Q. Consider any a ∈ Q. If there
exist disjoint sets S+

a ⊆ N+(a)\f(V (T ′)) and S−
a ⊆ N−(a)\f(V (T ′)) with |S+

a | ≥ d+u and |S−
a | ≥ d−u ,

then it is straightforward to embed Ti+1, contradicting the maximality of i. Thus, such sets S+
a and

S−
a do not exist, and therefore at least one of |N+(a) \ f(V (T ′))| or |N−(a) \ f(V (T ′))| is smaller

than du. If |N+(a) \ f(V (T ′))| < du then set Na := N+(a). Otherwise, note that the embedding
of Ti+1 failed because Ti+1 has a leaf in N−(u), and set Na := N−(a). Observe that for distinct
a1, a2 ∈ Q, either Na1

and Na2
are both out-neighbourhoods or both in-neighbourhoods. This means

that for all a ∈ Q, we consistently consider either the out-neighbourhoods or the in-neighbourhoods.
In either case, we have

|Na ∩ f(V (T ′))| ≥ k/2 − du + 1 for each a ∈ Q. (3)

Setting
R := f(V (T ′) \ (W ∪ {v}),

we have
2 ≤ |R| ≤ k + 1 − du − 1 − dw − 1 = k − du − dw − 1. (4)

Let R′ ⊆ R ⊆ V (D) be the set of vertices that do not belong to Na for any a ∈ Q. Observe that
v̂2 ∈ R′, because D is C4-free, and so |R′| ≥ 1. Then,

q(k/2 − du + 1) ≤
∑

a∈Q

|Na ∩ f(V (T ′))| ≤ |R| − |R′| + min{q, dw} + q ≤ |R| − |R′| + 2q, (5)

where the second inequality holds because f(V (T ′)) = R ∪ Ŵ ∪ {v̂} and because

•

∑

a∈Q

|Na ∩R| ≤ |R| − |R′|, as each vertex b ∈ R −R′ belongs to exactly one set Na, and

•

∑

a∈Q

|Na ∩ Ŵ | ≤ min{dw, q} as each a ∈ Q has at most one neighbour b ∈ Ŵ and vice versa.

We also used the the fact that D is C∗
4 -free. Indeed, if there exist distinct a1, a2 ∈ Q and b ∈ R−R′

such that b ∈ Na1
∩Na2

, then the subset {a1, a2, v̂, b} would induce an oriented 4-cycle (in D) that
is not directed. Moreover, if the second inequality does not hold, then either there exist a1, a2 ∈ Q
and w ∈ W such that the set {v̂, a1, a2, ŵ} induces a 4-cycle in D that is not directed, or there
exist a ∈ Q and w1, w2 ∈ W such that the set {a, ŵ1, ŵ2, ŵ} induces a 4-cycle which is not directed,
leading to a contradiction in both cases.

Simplifying (5), and using (4) as well as the facts that |R′| ≥ 1 and dw ≥ du, we obtain

q(k/2 − du − 1) ≤ k − du − dw − 1 − |R′| ≤ k − 2du − 2 = 2(k/2 − du − 1). (6)

Thus, since du + 1 = deg(u) < k/2 (as deg(u) ≤ deg(t) and T has diameter at least five), we have

q ≤ 2. (7)
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Furthermore, if q = 2, all inequalities in (5) and (6) must hold with equality. Therefore, if q = 2,
then

(a1) q ≤ dw = du,

(a2) |Nû ∩ Ŵ | = 1,

(a3) for each neighbour h of u which is a leaf of Ti+1, there is an embedding g of the tree T ∗ = Ti+1−h
with g(t) = f(t) for each t ∈ Ti.

For (a3), observe that |Nû ∩ f(V (T ′))| = k/2 − du + 1 implies that

|N+(û) \ f(V (T ′))|, |N−(û) \ f(V (T ′))| ≥ du − 1.

Set Nv̂ := N⋄(v̂). Since δ0(D) ≥ k/2 and since D is C∗
4 -free, we have

|Nû ∩ Im f | ≥ k/2 − du + 1, |Nv̂ ∩ Im f | ≥ k/2 − q + 1 and |Nû ∩Nv̂ | ≤ 1. (8)

The remainder of the proof splits into two cases.

Case A: q = 2. By (a2), there exists w1 ∈ W with ŵ1 ∈ Nû. Assume w1 ∈ N+(w) (otherwise
change N+(ŵ) to N−(ŵ) in what follows). Set Nŵ := N+(ŵ). We have,

ŵ /∈ Nv̂ and v̂ /∈ Nŵ, (9)

since D is C∗
4 -free. We claim that

|Nŵ ∩ Im f | ≥ k/2. (10)

Indeed, if this inequality does not hold, consider the embedding of T ∗ from (a3), where h is chosen as
follows. If Nû = N+(u) we let h be an out-neighbour of u that is a leaf in Ti+1 (such a vertex h exists
because of (2)). If Nû = N−(u), then our choice of Nû guarantees the existence of an in-neighbour
h of u that is a leaf in Ti+1. Now, modify the embedding of T ∗ as follows: embed w1 in an unused
vertex of Nŵ , and embed h in ŵ1. This is an embedding of all of Ti+1, a contradiction, so (10) is
proved.

Since D is C∗
4 -free, we have |Nŵ ∩Nẑ| ≤ 1, for any z ∈ {u, v}. So, (8), (9) and (10) give

k − du + 1 ≥ | Im f | ≥ |{v, w}| + |Nv̂ ∩ Im f | + |Nŵ ∩ Im f | − 1 ≥ k (11)

where all inequalities must hold as equalities. Thus du = 1, a contradiction to (a1).

Case B: q = 1. Let Y ⊆ V (Ti) such that Ŷ = f(V (Ti))\(Nû∪Nv̂). Consider the subpath w∗, w,w1

of Ti. Suppose, for contradiction, that Y = ∅, so ŵ∗, ŵ, ŵ1 ∈ Nû ∪ Nv̂. Without loss of generality,
suppose ŵ∗ ∈ Nû. Since D is C∗

4 -free, we must have ŵ1 ∈ Nv̂ \Nû. Then, either ŵ ∈ Nû or ŵ ∈ Nv̂ .
In the former case, the set {v̂, û, ŵ, ŵ1} induces a 4-cycle that is not directed, whereas in the later
case, the set {v̂, û, ŵ, ŵ∗} induces a 4-cycle other than the directed one; both cases contradict that
D is C∗

4 -free. Therefore, we must have Y 6= ∅.
We have

k − du + 1 ≥ |V (Ti)| = | Im f | ≥ |Nû ∩ Im f | + |Nv̂ ∩ Im f | − 1 + |Ŷ | ≥ k − du + |Ŷ |. (12)

Thus
|Y | = 1. (13)

Let Y =: {y}. Then all inequalities in (8) and (12) hold as equalities. In particular, there is
exactly one vertex x ∈ V (Ti) with x̂ ∈ Nû ∩Nv̂ ∩ Im f and |V (Ti)| = k − du + 1, i.e.,

i = r − 1. (14)

Let J be the subgraph of Ti induced by V (Ti) \ {u, v, y}. We claim that

J contains no oriented path of length two, and x is an isolated vertex in J . (15)

Indeed, any oriented path z1z2z3 of length two in J either contains an arc zizi+1 such that ẑi ∈ Nû

and ẑi+1 ∈ Nv̂, or has the property that ẑ1, ẑ3 are either both in Nû or both in Nv̂. Either option
contradicts the fact that D is C∗

4 -free. Moreover, if x has a neighbour in J , we found a 4-cycle that
is not directed, again a contradiction. This proves (15).

Next, we claim that
dw = 1. (16)

Suppose otherwise. Then there exist distinct vertices w1, w2 ∈ W . Note that if y 6= w, then w
and any two vertices in {w1, w2, w

∗} \ {y} together induce an oriented path of length two in J ,
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contradicting (15). On the other hand, if y = w, then two of {ŵ1, ŵ2, ŵ
∗} must belong either to Nû

or to Nv̂ , a contradiction to D being C∗
4 -free. This proves (16).

By (16), the set W contains only one element, say w1. Then, by (15),

y ∈ {w∗, w,w1}. (17)

Moreover, by (16) and our choice of w, we know that du = 1. So, by (2), we have d+u = 1 and d−u = 0.
By our choice of Nû this means that Nû = N+(û).

We claim that
x ∈ N⋄(v). (18)

Suppose otherwise. Then the path Pvx from x to v has length at least 2. Given that D is C∗
4 -free

and x̂ ∈ Nû ∩Nv̂ , and by (15), we know Pvx cannot have length 2, so it must have length at least 3.
By (15), this implies that in Ti, the only neighbour of x is y. Thus, by (17), we have x = w1, y = w,
and then either w∗ ∈ Nû or w∗ ∈ Nv̂, implying the existence of an oriented 4-cycle in D that is not
directed. This contradicts the fact that D is C∗

4 -free, and thus proves (18).
By (15), x is isolated in J , so if x = v1 then y = v2 6= w1. Letting z be a neighbour of y in Ti,

we see that either {û, x̂, ŷ, ẑ} or {v̂, x̂, ŷ, ẑ} span a 4-cycle, contradicting that D is C∗
4 -free. Thus,

x 6= v1. (19)

So x /∈ V (Puw). Observe that if |N+(x̂) \ Im f | ≥ 1 = du, then we can embed Ti+1 by swapping the
images of u and x, and embedding u’s unembedded neighbour into an unused vertex in N+(x̂)\ Im f ,
a contradiction. Therefore, N+(x̂) ⊆ Im f , and hence |N+(x̂) ∩ Im f | ≥ k/2. Because du = 1 and
by (14), we have |V (Ti)| = k, and so, using the fact that D is C∗

4 -free, and the inequalities from (8),
we see that

k = | Im f | ≥ |Nû ∩ Im f | + |Nv̂ ∩ Im f | + |N+(x̂) ∩ Im f | − 3 ≥ 3k/2 − 3,

implying that |V (Ti)| = k ≤ 6. Thus, V (Ti) = {u, v, v1, w,w1, x}. As D is C4-free, we have
v̂1, ŵ /∈ Nû ∪ N+(x̂), and further, ŵ1 /∈ Nû ∩ N+(x̂), implying that either |Nû ∩ Im f | < 3 or
|N+(x̂) ∩ Im f | < 3 = k/2, a contradiction.

4 Proof of Theorem 3: Embedding Antidirected Trees

The proof of Theorem 3 follows along the lines of the proof of Theorem 1, and we will limit ourselves
to pointing out the differences and how we resolve them. Note that we now only have to embed
antidirected trees, but have to cope with the weaker condition that D is C∗

4 -free instead of C4-free,
which means that D is allowed to contain directed 4-cycles. Further, we only have the lower bound
of k/2 on the minimum pseudo-semidegree δ̄0(D), instead of the minimum semidegree δ0(D).

Let us first argue why allowing directed 4-cycles is not a problem when embedding antidirected
trees. For this, we check all places in the proof of Theorem 1 where we actually use the property
that the host digraph D is C4-free, and show that, when T is antidirected, replacing this condition
with D being C∗

4 -free allows the same argument to hold.

• When embedding N+(t) ∪N−(t′), we observe that |N+(t̂) ∩N−(t̂′)| ≤ 1 because D is C∗
4 -free.

By our condition on ∆+(D), it is feasible to first embed N−(t′)∪ {t′} so that t is mapped to a
vertex a with deg+(a) > deg+(t), followed by the remaining unembedded neighbours of t.

• When embedding N+(u) for a non-leaf vertex u of T1 with an already embedded neighbour
w, and assuming without loss of generality that u is an out-vertex, if z is a vertex of T1 with
ẑ ∈ N+(û), then, since D is C∗

4 -free, it follows that either z = w or z ∈ N−(w). Thus, at most
two vertices of N+(û) are already used, ensuring that N+(û) has enough unused vertices to
embed the unembedded out-neighbours of u.

• When considering the subset R′, we again have v2 ∈ R′ 6= ∅ as desired, because D is C∗
4 -free.

• In the last paragraph of the proof, when k = 6 and V (Ti) = {u, v, v1, w,w1, x}, given that
D is C∗

4 -free, we have v̂1, ŵ /∈ Nû ∪ N+(x̂) and ŵ1 /∈ Nû ∩ N+(x̂). This implies that either
|Nû ∩ Im f | < 3 or |N+(x̂) ∩ Im f | < 3 = k/2, a contradiction.

Next, we explain why δ0(D) can be replaced with δ̄0(D). Specifically, we will verify the following.

In the proof of Theorem 1, whenever the tree T is antidirected, it suffices to consider, for
every vertex v in D, either its out-neighbourhood (if d+(v) > 0) or its in-neighbourhood
(if d−(v) > 0).

(20)
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When embedding the subtree T1, we begin by embedding the double star with centers t and t′.
Without loss of generality, assume that t is an out-vertex; otherwise interchange + and − in the
following argument. Once the arc tt′ has been embedded into the arc t̂t̂′, where deg+(t̂) > deg+(t),
we consider only the sets N+(t̂) and N−(t̂), ensuring that (20) holds up to this step. Next, when
embedding the neighbours of a non-leaf vertex u of T1 that has an already embedded neighbour w, it
suffices to consider either N+(û) or N−(û), depending on whether u is an out-vertex or an in-vertex.
Moreover, the required neighbourhood exists: since u and w are already embedded, û has outdegree
or indegree at least k/2 because δ̄0(D) ≥ k/2. Thus, (20) holds for this step as well.

Let us now examine the structures that are considered in the subsequent argument. Without
loss of generality, assume that u is an out-vertex, and therefore v is an in-vertex. First, note that
the set Q = N−(v̂) \ f(V (T ′)) is well-defined and non-empty, as v is an already embedded in-vertex
and û ∈ Q. Moreover, we have Nv̂ = N−(v̂). Second, for each a ∈ Q, we have the set Na = N+(a),
that is non-empty because v̂ ∈ Na as u is an out-vertex, and further, deg+(a) ≥ k/2 because
a ∈ Q ⊆ N−(v̂). Next, in Case A, we have Nŵ = N+(ŵ), where deg+(ŵ) ≥ k/2 as w and its
out-neighbours are already embedded. Finally, in Case B, we additionally consider the set N+(x̂).
Since x is an already embedded in-neighbour of v, we have deg+(x̂) ≥ k/2. In conclusion, each of
the sets Nû, Nv̂, Nŵ and N+(x̂), which are considered in addition to the subgraph Im f of D, is
well-defined and has cardinality at least k/2 by the minimum pseudo-semidegree condition of D,
ensuring that (20) holds. This concludes the proof.

5 Proof of Theorem 4: Embedding Arborescences

We will prove the following result which implies Theorem 4.

Proposition 5. Let T be a k-arc out-arborescence rooted at a vertex of maximum total degree. Let
D be a digraph having no oriented 4-cycles with ∆+(D) > ∆+(T ). If

• δ+(D) ≥ k/2 − 1, ∆+(D) ≥ k/2 and D is an oriented graph, or

• δ+(D) ≥ k/2,

then D contains T as a subgraph.

The proof of Proposition 5 proceeds similarly to the proof of Theorem 1. Again, we just highlight
the key differences. The following notation will be useful: For an out-arborescence T and u ∈ V (T )
which is not its root, the parent pu of u is the unique in-neighbour of u.

Let us first establish that T1, rooted at t, embeds in D. We consider both cases at once: the case
when D is oriented and the case when D is an arbitrary digraph. We start by embedding the double
star with centers t and t′. After embedding the arc tt′ into the arc t̂t̂′, we consider only the sets N+(t̂)
and N+(t̂′) to embed the remaining out-neighbours of t and t′, respectively. This is feasible because
deg+(t̂) > deg+(t) and deg+(t̂′) ≥ deg+(t′). Additionally, if D is an oriented graph, we require that
deg+(t̂) ≥ k/2, which is ensured by our hypothesis. Next, when embedding the out-neighbours of a
non-leaf vertex u of T1 whose parent has already been embedded, we only consider the set N+(û).
This set contains at least k/2 − 2 unused vertices: if D is oriented, at most one vertex in N+(û) has
already been used, and otherwise, at most two vertices have been used. Thus, it is feasible to embed
the out-neighbours of u into unused vertices in N+(û), ensuring that T1 embeds in D.

Let i be the maximum index such that Ti embeds in D, with the additional requirement that if D
is oriented, then deg+(t̂) ≥ k/2. From the previous argument, we know that i ≥ 1. Now, suppose
for the sake of a contradiction that Ti 6= T .

First, suppose D is not an oriented graph. We proceed along the lines of the proof of Theorem 1.
Define Q = N+(v̂) \ f(V (T ′)), which is non-empty as both u and v are already embedded, with
û ∈ Q. We set Nv̂ = N+(v̂) and Na = N+(a) for each a ∈ Q. Each of these sets is well-defined
and contains at least k/2 vertices due to the minimum outdegree condition of D. Additionally, we
consider the sets Nŵ = N+(ŵ), and N+(x̂) for Case B. These sets are also well-defined, and each
contains at least k/2 vertices since δ+(D) ≥ k/2. It is straightforward to verify that the sets Nû, Nv̂ ,
Nŵ, N+(x̂) satisfy the conditions required in the proof of Theorem 1. This leads to a contradiction,
which completes the proof in the case when D is not an oriented graph.

Now, suppose D is an oriented graph. Roughly speaking, the reason why we can decrease the
out-degree requirement by one in this case is that, for any vertex z that has already been embedded,
p̂z does not belong to the out-neighbourhood N+(ẑ). This contrasts with the non-oriented case,
where it is possible that p̂z ∈ N+(ẑ), regardless that pz is, indeed, an in-neighbour of z.

Note that, among vertices in {u, v, w, x}, only w may be the root t of T . Define Q,Nv̂, Na, Nŵ

as in the case when D is non-oriented. Since Na ⊆ N+(v) and D is oriented, we have v̂ /∈ Na
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for any a ∈ Q. Given this distinction, and following the approach in the proof of Theorem 1, it is
straightforward to verify that q ≤ 2, and furthermore, if q = 2 then (a1)-(a3) remain valid.

Let us argue that q 6= 2. Indeed, otherwise by (a3) we have Nŵ ⊆ Im f , and so,

| Im f | ≥

{

|{v, w, pv, pw}| + |Nv̂ ∩ Im f | + |Nŵ ∩ Im f | − 1 ≥ k, if w 6= t,

|{v, w, pv}| + |Nv̂ ∩ Im f | + |Nŵ ∩ Im f | − 1 ≥ k, if w = t.

Since | Im f | ≤ k − du + 1, it follows that du = 1, which contradicts (a1).
So q = 1. Define Y := f(V (Ti)) \ (Nû ∪Nv̂ ∪ {p̂u, p̂v}), where pu = v. Similarly as in the proof

of Theorem 1, we see that |Y | = 1 and that there is a unique vertex x̂ ∈ (Nû ∪ {p̂u}) ∩ (Nv̂ ∪ {p̂v}).
Define J as in the proof of Theorem 1. It is straightforward to verify statements (15)–(19). Indeed,
these arguments rely solely on the structure of T and the property that D is C∗

4 -free, and thus also C4-
free; the minimum out-degree condition of D is not used. Additionally, we have Nx̂ = N+(x̂) ⊆ Im f .
Note that, since x̂ and û share v̂ as a common in-neighbour, it follows that Nx̂∩Nû = ∅. Furthermore,
if pv ∈ Nû ∪Nx̂, then Nx̂ ∩Nv̂ = ∅, or Nû ∩Nv̂ = ∅. Thus,

| Im f | ≥

{

|{v̂, p̂v}| + |Nû ∩ Im f | + |Nv̂ ∩ Im f | + |Nx̂ ∩ Im f | − 2 ≥ 3k/2 − 3, if pv /∈ Nû ∪Nx̂,

|{v̂}| + |Nû ∩ Im f | + |Nv̂ ∩ Im f | + |Nx̂ ∩ Im f | − 1 ≥ 3k/2 − 3, if pv ∈ Nû ∪Nx̂.

Since | Im f | ≤ k, we conclude that k = 6 and V (Ti) = {u, v, v1, w,w1, x}, which contradicts the fact
that T is an arborescence rooted at a vertex of maximum total degree. This completes the proof.

6 Final remarks

6.1 Implications for a conjecture on antidirected trees

In 2013, Addario-Berry, Havet, Linhares Sales, Reed and Thomassé [1] proposed the following con-
jecture, which by previous work of Burr [4] would be optimal.

Conjecture 6 (Addario-Berry et al. [1]). Every digraph D with more than (k − 1)|V (D)| arcs
contains each antidirected tree with k arcs.

This conjecture was confirmed in [1] for stars and double-stars, and an asymptotic version for
large bounded degree trees was proved in [20]. Very recently, the present authors established in [19]
two special cases of Conjecture 6. First, it holds whenever the antidirected tree is a caterpillar.
Second, it holds whenever the host digraph D does not contain any of three specific orientations of
K2,⌈k/12⌉, namely the ones where each of the two vertices in the partition class of size two has either
outdegree 0 or indegree 0.

Theorem 3 in the present paper has the following corollary (for a sketch of a proof see below),
which states that Conjecture 6 holds if all 4-cycles of D are directed (this includes the case that D
has no oriented 4-cycles at all) and ∆tot(T ) ≤ k/2:

Corollary 7. Every digraph D with more than (k − 1)|V (D)| arcs whose 4-cycles are all directed
contains each antidirected tree T with k arcs and ∆tot(T ) ≤ k/2.

Note that for k ≥ 13, this corollary also follows from the results of [19], as then each of the
forbidden orientations of K2,⌈k/12⌉ contains a 4-cycle that is not directed.

We deduce Corollary 7 from Theorem 3 as follows. Given an antidirected tree T with k arcs and a
digraph D with more than (k− 1)|V (D)| arcs and whose only 4-cycles are directed, we use Lemma 9
from [10], which says that every n-vertex digraph with more than (k− 1)n arcs has a subdigraph of
minimum pseudo-semidegree at least k/2. Applying this lemma to D, we obtain a subdigraph D′

of D with δ̄0(D′) ≥ k/2 whose only 4-cycles are directed. Then Theorem 3 provides an embedding
of T in D′, and thus in D.

6.2 No forbidden subgraphs

Let us now discuss alternatives to forbidding all oriented 4-cycles. We first describe the situation
for graphs. As we saw in the beginning of the introduction, a graph of minimum degree at least
k/2 and maximum degree at least k does not necessarily contain all trees on k edges. However, this
changes if we raise the bound on the minimum degree to almost k: In [7], it was shown that there
exists a γ > 0 such that every graph G with δ(G) ≥ (1 − γ)k and ∆(G) ≥ k contains all trees
on k edges. Havet, Reed, Stein and Wood [7] conjectured that the bound on the minimum degree
from the previous sentence can be lowered to ⌊2k/3⌋, and this conjecture is supported by evidence
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found in [2, 12, 13]. The bound ⌊2k/3⌋ would be tight, which can be seen by a small modification of
the example from the introduction: Take two copies of the clique on ⌊2k/3⌋ − 1 vertices and add a
universal vertex, and note that the resulting graph does not contain any k-edge tree having a vertex
with three equal-sized components attached to it.

In [18] the following digraph analogue was suggested:

Problem 6.1 ([18]). Determine the smallest f(k) such that for every natural k, every digraph of
minimum semidegree exceeding f(k) that has a vertex v with d+(v), d−(v) ≥ k contains each oriented
k-edge tree.

Since we can embed any oriented k-edge tree greedily in any digraph of minimum semidegree at
least k, we know that f(k) ≤ k. In the forthcoming paper [11], Kontogeorgiou, Santos and the first
author show that asymptotically, f(k) can be taken as 2k/3 if the tree is large and has bounded
degree. This value would be best possible because of the example from the first paragraph of this
section, where we view the host as a digraph and the tree as an oriented tree T .

Note that T does not need to have large degrees: it can be chosen to have total maximum degree 3,
and this does not affect the example. For oriented paths, however, the example fails to work. It is
possible that for oriented paths we can leave the minimum semidegree bound at k/2, and omit the
bound on the maximum degree. Indeed, a conjecture from [17] states that every digraph D with
δ0(D) > k/2 contains each k-edge oriented path. For progress on this conjecture, see [5, 10, 15].

6.3 Forbidding other classes of digraphs

We do not know whether in Theorem 1, it is necessary to forbid all orientations of the 4-cycle. In
our proof of Theorem 1, most of the arguments only require the host D to be C∗

4 -free (thus allowing
for the presence of directed 4-cycles). Perhaps the few places where we relied on forbidding directed
4-cycles can be handled differently, and then, directed 4-cycles can be allowed. Possibly also other
types of oriented 4-cycles can be allowed. We pose the following problem.

Problem 6.2. Determine a minimal family C′
4 of oriented 4-cycles such that each C′

4-free digraph D
of minimum semidegree at least k/2 and with ∆±(D) ≥ k contain each k-edge oriented tree.

Note that at least one type of oriented 4-cycles has to be forbidden, as the example from the
introduction showed. In the host digraph from this example all four different types of oriented
4-cycles appear. Interestingly, in the following example only two types of oriented 4-cycles appear:
Take a directed cycle of any length and substitute each vertex with an independent set of k/2 vertices.
Arcs are inherited from the original directed cycle. It is not hard to see that this oriented graph
O fails to contain any antidirected tree whose partition classes have different sizes. The oriented
4-cycles contained in O are exactly those that contain no directed path with 3 arcs. So, the family
C′
4 from Problem 6.2 needs to contain at least one of these two oriented cycles.

Another possibility of weakening the conditions on D may be to forbid complete bipartite graphs.
In the spirit of [19], the family K2,s of all orientations of K2,s seems a natural candidate.

Question 6.3. For which s ≥ 3 does each K2,s-free digraph D of minimum semidegree at least k/2
and with ∆±(D) ≥ k contain each k-edge oriented tree?

As mentioned in the introduction, Brandt and Dobson [3] showed that every graph of girth at least
five with δ(G) ≥ k/2 and ∆(G) ≥ ∆(T ) contains every k-edge tree. Dobson [6] further conjectured
that any graph of girth at least 2ℓ + 1 with δ(G) ≥ k/ℓ and δ(G) ≥ ∆(T ) contains each k-edge tree,
a result confirmed by Jiang [9] after prior work by Haxell and  Luczak [8]. Note that the condition
δ(G) ≥ ∆(T ) (instead of ∆(G) ≥ ∆(T )) is indeed necessary, which can be seen by considering a
balanced double star and a suitable host graph. Graphs with other kinds of expansion properties
have also been studied, see for instance [21].

In the digraph setting, the following question would be a natural analogue of Jiang’s result:

Question 6.4 ([16]). Is it true that every oriented graph D of girth at least 2ℓ + 1 with δ0(D) ≥
max{k/ℓ,∆tot(T )} contains every k-edge oriented tree?
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