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Abstract

Using effective field theory approach one can describe localization of electromagnetic field on a non-topological soliton.
Pursuing this aim we consider the U(1) gauge theory with gauge kinetic coupling to a self-interacting complex neutral
Proca field. The model possesses single energy scale given by the vector boson mass. Considering spherically symmetric
stationary configurations, we study vibrational modes of the Proca field on the background of the soliton and discuss
their properties.
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1. Introduction

There has been significant progress in recent decades in
the analysis of spatially localized regular solutions of non-
linear equations, the solitons, for a review, see e.g. [1, 2].
The solitons exist in various space-time dimensions, they
represent static particle-like objects or miscellaneous trav-
eling waves. Such configurations appear in various con-
texts, for example, they play important roles in condensed
matter systems [3], classical and quantum field theory [4],
supersymmetric theories [5] and cosmology [6, 7]. Most
generally, in classical field theory the solitons fall into two
distinct classes: (i) topological and (ii) non-topological
solitons. While topological solitons are classified accord-
ing to the value of the topological charge that, in most
cases originates from the spontaneous symmetry breaking,
non-topological solitons carry a conserved Noether charge
which is related to a symmetry of the corresponding La-
grangian. A paradigmatic example are Q-balls, they are
localized configurations of a self-interacting complex scalar
field with a stationary oscillating phase [8, 9, 10, 11].

A suggestive idea in field theory is the possibility of
making a soliton that supports a localized electromagnetic
field. However, there is a number of obstacles to the lo-
calization of gauge fields that have been encountered in
studies in the approach with extra spatial dimensions (see
[12] for review and [13] for details).

Contrary to the massless electromagnetic field, complex
Proca field with the global Abelian symmetry [14] can form
non-topological solitons due to the self-interaction poten-
tial1. Moreover, it was pointed out that massive vector

1Ambiguities related to singularities of Proca field were consid-
ered in [15, 16]. To avoid these issues, we study solitons in a frame-
work of low-energy effective field theory (EFT).

particles and compact objects formed by a Proca field may
be considered as candidates for dark matter [17]. A usual
portal coupling the Maxwell electrodynamics to a hidden
Proca sector is the gauge kinetic coupling [18, 19]. This
mechanism provides an opportunity to localize electromag-
netic field on a vector soliton, as suggested recently [20].
In this model, electromagnetic field localization is obtained
on Proca balls, non-topological solitons with a harmonic
time-dependence of the massive complex vector field [14].
Peculiar feature of Proca balls is that they may exist for
a very small range of values of the angular frequencies2.

An interesting aspect of non-topological solitons is re-
lated with their perturbations, typically, apart some set of
zero modes, a few localized vibrational modes may appear
in the spectrum of second-order small fluctuation opera-
tor [22, 23, 24, 25]. Quite importantly, quasinormal modes
or resonant excitations (for a review see e.g. [26, 27]),
may also occur in the spectrum of excitations of a soliton3

[28, 29]. Excitations of the internal and/or quasinormal
modes in various processes of interactions of solitons lead
to many surprising results, like inelastic collisional dynam-
ics with a chaotic structure and formation of bound states
[30, 31], boundary collisions [32], the effect of negative ra-
diation pressure [33, 34], appearance of spectral walls [35]
and resonance scattering through the quasinormal modes
[36]. Linear perturbations were studied both for Proca
balls/stars [37, 38] and gauged solitons [39, 40, 41].

The aim of this Letter is to analyze the spectrum of lin-
earized perturbations of non-topological solitons in a the-
ory of complex neutral self-interacting Proca field with the

2Coupling to gravity may stabilize the soliton, this range becomes
extended [21].

3A vast literature is devoted to the quasinormal modes of self-
gravitating solitons and hairy black holes,which we will not discuss
here.
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global Ug(1) symmetry coupled to electromagnetic field.
In Sec.2, we discuss the model and vector solitons therein.
Sec.3 provides analysis of spherically symmetric perturba-
tions of solitons. We demonstrate localized mode of elec-
tromagnetic field and describe spectrum of perturbations
within the limits of applicability of EFT.

2. Background

The presence of matter fields may significantly affect
properties of electromagnetic waves. Celebrated exam-
ples are the scalar electrodynamics and the Abelian Higgs
model. The scalar electrodynamics provides a simplest
possible example of a renormalizable and gauge-invariant
theory. However, in EFT approach one can construct an
interaction that only has quadratic form in Fµν, so that the
gauge potential Aµ does not appear explicitly in the field
equations. Thus, electromagnetic field can be classically
integrated out using equations of motion.

Let us consider a (3+1)-dimensional theory of the com-
plex massive neutral field Vµ coupled to the electromag-
netic field tensor Fµν

L = −
1
4

FµνFµν −
1
2

V∗µνV
µν +

iγ
2

FµνWµν − U(Vν,V∗µ) , (1)

where Fµν = ∂µAν − ∂νAµ, Vµν = ∂µVν − ∂νVµ, and purely
imaginary combination Wµν = V∗µVν−V∗νVµ. Coupling γ is a
dimensionless constant, and U(Vν,V∗µ) is a U(1)-invariant
potential of self-interaction. Here we require the global
U(1) symmetry of this theory and the gauge-invariant cou-
pling of Vµ to Fµν along with P-parity. The third term
in (1) provides magnetic moment of a vector boson, γ/2M
(see [42]). Spherically symmetric solitons in this model
(with 4th-order self-interaction of vectors) were studied in
the paper [20].

A legitimate approach to model (1) is to consider it as
an effective theory describing an interaction of the electro-
magnetic field with certain (composite) bosons of non-zero
spin. Particularly, experiments with condensate of dipolar
bosonic gases [43, 44] may allow observation of electromag-
netic field localization. For this reason we will consider
self-interaction in (1) which is consistent in EFT approach
in the non-relativistic (NR) regime.

As mentioned above, the key property of the model (1)
is that at the classical level the electromagnetic field can
be integrated out completely. Indeed, in such a case the
Maxwell equations take the form

∂µFµν = iγ∂µWµν (2)

and, for configurations with trivial boundary conditions at
spatial infinity, we obtain:

Fµν = iγWµν . (3)

Classically, this relation significantly simplifies equations
of motion of the model (1). Certainly, situation is different

and more complicated in a consistent QFT, as the gauge
field Aµ should be quantized as a truly dynamical field
together with other degrees of freedom.

After discussing the model with arbitrary self-
interaction, we set U(Vν,V∗µ) to be the most general P-
even 4th order potential:

U = −M2V∗µVµ −
α

2
(V∗µVµ)2 −

β

2
(V∗µV∗µ)(VνVν) (4)

with α, β dimensionless constants. This theory has consis-
tent description in the zero limit of all dimensionless cou-
pling constants and the only scale parameter is the mass
of the free bosons M. This feature of (4) significantly sim-
plifies the analysis of the applicability of the EFT. Details
of UV-completion, i. e. presence of higher order terms of
interaction or additional fields (e. g. like in [14, 45]), do
not change our results for NR solitons in the limit of small
higher order EFT interactions.

Substituting (2) into (1), we arrive at the reduced La-
grangian containing the vector field only,

Ł = −
1
2

V∗µνV
µν − Ũ(Vν,V∗µ) ,

Ũ = −M2V∗µVµ −
α̃

2
(V∗µVµ)2 −

β̃

2
(V∗µV∗µ)(VνVν) ,

(5)

where α̃ = α − γ2 and β̃ = β + γ2. In this paper we restrict
ourselves to α̃ > 0 (see [20] for the discussion about cou-
pling constants). Contrary to the scalar case [22], one can
obtain stable solitons in a vector theory with only quartic
couplings.

It is convenient to rescale the model by introducing the
dimensionless units as follows,

Vν =
MṼν

√
α̃

, κ =
β̃

α̃
, xixi =

r2

M2 , t =
τ

M
. (6)

The action S of the theory becomes S = α̃−1S̃ where S̃
depends only on κ. We require α̃/4π ≪ 1 for the validity
of semiclassical approach.

After replacing variables the field equations become

∂µṼµν + Ṽν + (Ṽ∗µṼµ)Ṽν + κ(ṼµṼµ)Ṽ∗ν = 0 , (7)

There is also a constraint:

∂ν(Ṽν + (Ṽ∗µṼµ)Ṽν + κ(ṼµṼµ)Ṽ∗ν) = 0 , (8)

Note that the only parameter in these equations is κ, which
means that theories with different α̃ and the same κ are
classically equivalent.

To obtain spherically symmetric hedgehog-like solitons
we consider the following radial ansatz studied in many
papers (e. g. [14, 45, 20]):

Ṽ0 = iu(r)e−iwτ , Ṽ i =
x̃i

r
v(r)e−iwτ, (9)

where x̃i = Mxi, u(r), v(r) are profile functions of the vector
field, and w is the angular frequency in units of the field
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mass. For bound states the inequality w < 1 is fullfilled.
In terms of this ansatz, (7) becomes

u′′ +
2
r

u′ − w(v′ +
2
r

v)

− u − (u2 − v2)u − κ(u2 + v2)u = 0 ,

wu′ + (1 − w2)v

+ (u2 − v2)v − κ(u2 + v2)v = 0 ,

(10)

where prime means the derivative with respect to r. The
constraint (10) combined with the second equation from
(8) takes the form:

v′ =
w

1 + (u2 − v2) − κ(u2 + v2) − 2v2(1 + κ)

×

(
−

2
w

(1 − κ)uu′v +
2(u′ − wv)

r

− u − u(u2 − v2) − κu(u2 + v2)
)
.

(11)

If the denominator in (11) vanishes, the equations of mo-
tion become inconsistent. This property of vector theories
was studied in [46, 16]. However, in the non-relativistic
limit the problem with denominator does not occur be-
cause u2 and v2 are small comparing to 1. Moreover, for
solitons in the model we consider it was shown in [20] that
for −1 < κ ≲ 0.6 the denominator never vanishes and we
obtain full branches of solitons with thin-wall regime at
w → wmin. For solitons with −0.6 ≲ κ < 0, smoothness
of solution is lost at w → wmin and there are no thin-wall
solitons. For κ > 0 all the solitons are unstable.

The global U(1)g Noether charge and energy of a soliton,
found in ([20]), are of the form

Q =
8π
α̃

∫ ∞
0

v(wv − u′)r2 dr , (12)

E =
4πM
α̃

∫ ∞
0

(
(wv − u′)2+

+
(
u2 + v2) + 1

2
(u2 − v2)(3u2 + v2) (13)

+
κ

2
(u2 + v2)(3u2 − v2)

)
r2 dr .

We should stress that r.h.s of Eq.(2) provides additional
conserving current

jνT = i∂µWµν . (14)

It is worth noticing that the conservation law for jT is
of topological nature, since Wµν is antisymmetric and does
not rely on equations of motion. Current jT can be treated
as a source of electromagnetic field. Our choice of coupling
of vector field to Fµν ensures the absence of total electric
or magnetic charges for solitons.

Numerical solutions of the equations (7) were discussed
in [20]. The obtained solitons demonstrate the electromag-
netic field localization due to equation (3). Fields profiles
Vµ decrease exponentially at spatial infinity and so does

0.0×106 1.0×106 2.0×106 3.0×106

Q

-2.5×104

-2.0×104

-1.5×104

-1.0×104

-0.5×104

0.0×104

w wmin

w 1w = ws

E/M Q, numerical
E/M Q, NR approximation

10.0×104 15.0×104
-150

-50

50

w = ws

w = wc

Fig. 1: Integral characteristic (E/M − Q) plotted versus Q for vector
solitons (9) in the theory (5) with α̃ = 1 and κ = β̃/α̃ = −0.9. Marked
values of w: wmin ≈ 0.99, ws = 0.99806, wc = 0.99918. The upper
branch of solitons is partially calculated on the obtained numerical
solutions and partially with the formulae of non-relativistic scaling
of E and Q (see [14]).

the electric field. This is the property of the model which
provides electromagnetic field localization. In this paper
we will show that the electromagnetic field localization is
also observed for perturbation modes.

In the present paper we fix κ = −0.9 and study oscillat-
ing perturbations for solitons with different w. We obtain
soliton profiles with 4th order Runge-Kutta method, con-
trolling the precision with the analysis of step size and
box size dependence of results and also using the equality
∂E/∂w = w∂Q/∂w. Results for E, Q and critical points
(wc, ws on Fig.1) are accurate to the 5th significant digit.

For κ = −0.9, the thin wall regime of solitons is obtained
near wmin ≈ 0.99. The region of linear and kinematic sta-
bility of solitons is determined by their E(w) and Q(w)
dependency. The criterion of kinematic stability is ful-
filled if (E − MQ) < 0 which means that the energy of
the soliton is less than the energy of free particles with
the same Q. The function (E − MQ)(Q) is shown in Fig.1.
In the region w < ws, where ws = 0.99806 is the point
at which E − MQ = 0, the solitons are kinematically sta-
ble. The condition of linear stability is given by Vakhitov-
Kolokolov criterion (dQ/dw < 0). Indeed, using the same
arguments as in the scalar case [24] one can find decay
modes for the upper branch of solutions (w > wc in Fig.
1, wc = 0.99918). The similar results for boson stars were
numerically obtained in [38].

3. Spherically symmetric perturbations

After discussing the background, we move on to study-
ing the linear perturbations of the solitons. In terms of
background field and perturbations the fields can be writ-
ten as:

F̃µν = F̃µν
b + F̃µν

p , Ṽµ = Ṽµ
b + Ṽµ

p (15)
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where F̃µν = (
√
α̃/M2)Fµν; F̃µν

b , Ṽµ
b are background fields

and F̃µν
p , Ṽµ

p are perturbations.
First, we use the fact that the equality (3) is ful-

filled: both background and perturbation fields have trivial
boundary conditions at spatial infinity. In the linear order
it takes the form:

F̃µν
p =

iγ
√
α̃

(Ṽ∗µb Ṽν
p − Ṽ∗νp Ṽµ

p) +
iγ
√
α̃

(Ṽ∗µp Ṽν
b − Ṽ∗νp Ṽµ

b ) . (16)

F̃µν
p can be integrated out, so we can focus on studying

perturbations in the effective theory of self-interacting vec-
tor field, similarly to the approach applied to background
fields. As it is seen in (16), electromagnetic field pertur-
bations are determined by the linear perturbation of Ṽµ.

Let us consider following spherically symmetric ansatz
for oscillating perturbation modes:

Ṽ0
p = ie−iwτ(χ1(r)e−iλτ + χ2(r)eiλτ),

Ṽ i
p =

x̃i

r
e−iwτ(ϕ1(r)e−iλτ + ϕ2(r)eiλτ), (17)

where λ is a real frequency parameter of oscillations, and
χ1, χ2, ϕ1 and ϕ1 are real profile functions of oscillating
modes. This ansatz is similar to one usually used for scalar
Q-ball perturbations (see [22, 23, 24]). For vector theory
(Proca stars) it was studied in [38].

The equations for linear perturbations take the form:

χ′′1 +
2
r
χ′1 − (w + λ)(ϕ′1 +

2
r
ϕ1) − χ1−

− [(2u2 − v2)χ1 − uvϕ1 + u2χ2 − uvϕ2]−

− κ[(u2 + v2)χ2 + 2(u2χ1 + uvϕ1)] = 0 ,

χ′′2 +
2
r
χ′2 − (w − λ)(ϕ′2 +

2
r
ϕ2) − χ2−

− [(2u2 − v2)χ2 − uvϕ2 + u2χ1 − uvϕ1]−

− κ[(u2 + v2)χ1 + 2(u2χ2 + uvϕ2)] = 0 ,

(18)

(w + λ)χ′1 + (1 − (w + λ)2)ϕ1+

+ [(u2 − 2v2)ϕ1 + uvχ1 + uvχ2 − v2ϕ2]−

− κ[(u2 + v2)ϕ2 + 2(uvχ1 + v2ϕ1)] = 0 ,

(w − λ)χ′2 + (1 − (w − λ)2)ϕ2+

+ [(u2 − 2v2)ϕ2 + uvχ2 + uvχ1 − v2ϕ1]−

− κ[(u2 + v2)ϕ1 + 2(uvχ2 + v2ϕ2)] = 0 .

(19)

From the constraint (8) we get:

(w + λ)A1 +
2
r

B1 + ϕ
′
1C1 + ϕ

′
2C2 + D1 = 0

(w − λ)A2 +
2
r

B2 + ϕ
′
1C2 + ϕ

′
2C1 + D2 = 0 ,

(20)

where we introduced notations A1, A2, ...,D2 for conve-
nience. Their explicit forms are given in Appendix A.

We solve these equations numerically with the meth-
ods, described in Appendix B, to obtain localized pertur-
bations (exponentially decreasing at spatial infinity) and
corresponding values of λ. The results for λ(w)1 are shown
in Fig.2. Starting from the vicinity of the cusp (w → wc,
where dQ/dw→ 0 see Fig.1, Fig.2), we found one localized
oscillating mode. The form of this mode follows from the
expansion in λ near cusp, similarly as in scalar case (see
[24, 23]), and this fact was used to validate our numerical
results. This result is similar to the case of Proca stars, see
[38]. However, at w = 0.9986 the size of the mode rapidly
increases and localized state disappears. Indeed, one can
notice that delocalization occurs when λ(w) hits the border
of (1 − w), where the condition of exponential asymptotic
behavior for oscillating modes is violated.

0.992 0.994 0.996 0.998 1.000
0.0×10 3

2.0×10 3

4.0×10 3

6.0×10 3

8.0×10 3

a)

1 w
wc

0.9990 0.9995

0.5×10 3

1.0×10 3

0.992 0.994 0.996 0.998 1.000
w

0.0×10 6

3.0×10 6

b)

Q, numerical
Q, NR approximation

Fig. 2: a) Oscillation parameter λ as a function of w for spherically
symmetric perturbations (17) in the theory (5) with α̃ = 1 and κ =
β̃/α̃ = −0.9. The point of the cusp, where dQ/dw = 0, is at wc =

0.99918. b) Q as a function of w, with a minimum at wc.

At w = 0.9942 localized state revives back into the dis-
crete spectrum, see the left side of Fig.2. In the contrast
to the modes near the cusp, these localized states lie in
the kinematically stable region (E < MQ). Profile of the
perturbation mode at w = 0.9935 is shown in Fig.3.

Similar spectrum in scalar theory was studied analyti-
cally in [24] with more than one localized states. However,
in our theory may be more localized states in the thin-wall
limit (w < 0.99), numerical analysis of this study is highly
imprecise in this region.

The obtained oscillating modes of vector solitons pro-
vide the electric field localization, according to (16). The

1Results for λ are accurate to the 4th significant digit, see Ap-
pendix B.
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Fig. 3: a) Background vector field profile (9) at κ = −0.9 and w =
0.9935. b) Oscillating mode profile (17) at the same parameters,
λ = 0.005179.

magnetic field is equal to zero1 on these solitons and their
perturbations. The electric field of a spherically symmetric
soliton with spherically symmetric perturbations is

E⃗(xi, t) = n⃗Er, Er = Eb
r (r) + Ep

r (r, t), ni =
xi√
xixi

, (21)

where Eb
r (r) is a background radial electric field, found in

[20], and Ep
r (r, t) is a radial oscillating electric field of a

perturbation mode.

Eb
r (r) = −

2M2γ

α̃
×

x⃗√
xixi

u(r)v(r) (22)

Ep
r (r, t) = −

2M2γ

α̃

[
u(r)(ϕ1(r) + ϕ2(r))+

v(r)(χ1(r) + χ2(r))
]
cos(λMt) (23)

Both background and perturbation electric fields de-
crease exponentially at spatial infinity, which is quite un-
usual for massless fields. In Fig.4 one can see profiles of the

1If we do not restrict ourselves to P-even interactions, we can
modify the discussed model to obtain magnetic field localization (see
[20]) and corresponding perturbation modes. In this case, radial
magnetic field has similar profiles as shown in Fig.4 for electric field.

0 50 100 150
r

0.00

0.04

0.08

0.12

 w = 0.9935a)

 
M2 Eb

r (r)

0 50 100 150
r

2.0

1.5

1.0

0.5

0.0

0.5

 = 0.005179b)

 
M2 Ep

r (r, t = 0)

Fig. 4: a) Background radial electric field profile (22) at κ = −0.9 and
w = 0.9935. b) Oscillating mode radial electric field profile (23) at
the same parameters, λ = 0.005179.

radial electric field, both for the background and pertur-
bation mode, at w = 0.9935. Soliton consists of two shells,
the field in which is directed oppositely. Non-topological
solitons with shells were considered earlier in [47, 48]. Al-
though locally jT , 0, the total electric charge of a solution
is zero.

4. Outlook

In this paper, we consider a model describing interac-
tion of neutral vector bosons with electromagnetic field via
magnetic dipole moment. A special choice of interaction
term in Lagrangian (1) allows us to unambiguously link Fµν

and Wµν at classical level for field configurations with triv-
ial boundary conditions at spatial infinity, see Eq.(3). Be-
cause of this relation one can easily obtain localized bound
state of electromagnetic field on vector soliton. In the NR
limit, our consideration does not depend on the details of
UV-completion. Possible scenarios of UV-completion were
proposed in [14, 45].

The studied mechanism of electromagnetic field local-
ization can be naturally generalized to Proca stars. In
this case, the stability of vector solitons is ensured by the
gravitational attraction. Interestingly, recent progress in
studying Proca stars [37] have drawn attention to scenar-
ios of the non-spherical ground state. Being aware of this
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information it should be noted that a complete numerical
study of non-spherical vector solitons will bring valuable
knowledge about a variety of mechanisms of electromag-
netic field localization.

For Proca stars/balls, the search for quasinormal modes
is of major interest [26, 27]. As can be seen in Fig.2,
spherically symmetric perturbations serve as vibrational
modes with discontinuous spectrum. This finding raise a
question of following sort: what states lie in the region
of delocalization? The authors suggest that seeking for
quasinormal modes in this region might be promising in a
future research.

Being not limited by phenomenology of astrophysical
compact objects one may recall that theory (1) is an ef-
fective field theory and thus could be useful for describing
a system of non-relativistic ultra-cold atoms [44]. In light
of the results we present in this paper, the question arises
about the possibility of experimental observation of elec-
tromagnetic field localization in a condensed matter.
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Appendix A. Supplementary material for Sec.3

In this appendix, we provide an explicit form of mathe-
matical notations proposed in Eqs.(20)

A1 = (1 + (u2 − v2))χ1 + u2(χ1 + χ2) − uv(ϕ1 + ϕ2)+

+ κ(−(u2 − v2)χ2 + 2u2(χ1 + χ2) + 2uvϕ1) ,

A2 = (1 + (u2 − v2))χ2 + u2(χ1 + χ2) − uv(ϕ1 + ϕ2)+

+ κ(−(u2 − v2)χ1 + 2u2(χ1 + χ2) + 2uvϕ2) ,

B1 = (1 + (u2 − v2))ϕ1 + uv(χ1 + χ2) − v2(ϕ1 + ϕ2)−

− κ((u2 − v2)ϕ2 + 2v2(ϕ1 + ϕ2) + 2uvχ1) ,

B2 = (1 + (u2 − v2))ϕ2 + uv(χ1 + χ2) − v2(ϕ1 + ϕ2)−

− κ((u2 − v2)ϕ1 + 2v2(ϕ1 + ϕ2) + 2uvχ2) ,

C1 = 1 + u2 − 2(1 + κ)v2 ,

C2 = −(v2 + κ(u2 + v2)) ,
D1 = 2(uu′ − vv′)ϕ1 − 2vv′(ϕ2 + ϕ1) + (vu′ + uv′)×

× (χ2 + χ1) + uv(χ′2 + χ
′
1) − 2κ(vv′ϕ1 + uu′ϕ2+

+ (vu′ + uv′)χ1 + uvχ′1 + vv′(ϕ2 + ϕ1)) ,
D2 = 2(uu′ − vv′)ϕ2 − 2vv′(ϕ2 + ϕ1) + (vu′ + uv′)×

× (χ2 + χ1) + uv(χ′2 + χ
′
1) − 2κ(vv′ϕ2 + uu′ϕ1+

+ (vu′ + uv′)χ2 + uvχ′2 + vv′(ϕ2 + ϕ1)).

(A.1)

Appendix B. Numerical methods

In this appendix, we briefly discuss numerical methods
of our study. We perform numerical integration on dis-
cretized lattice of size L applying standard fourth-order
Runge-Kutta scheme. For calculations near r = 0, we use
fields asymptotic coefficients at r → 0.

In order to find oscillating modes we apply two dif-
ferent methods. First, to analyze the spectrum in gen-
eral, we use the modification of procedure, described in
[49]. We introduce a basis of two vector functions ψi(r) =
(χi

1, χ
i
2, χ
′i
1 , χ

′i
2 , ϕ

i
1, ϕ

i
2), i = {A, B} with following conditions at

r = L  ψA(L) = (1, 0, A+, 0, B+, 0)
ψB(L) = (0, 1, 0, A−, 0, B−),

(B.1)

where

A± =
w ± λ√

1 − (w ± λ)2
×

1 + 1

r
√

1 − (w ± λ)2


B± = −

√
1 − (w ± λ)2 ×

1 + 1

r
√

1 − (w ± λ)2
,

 (B.2)

These conditions allow for integrating equations of mo-
tion for linear perturbations basis functions from the right
end of lattice to the center of soliton. For spherically sym-
metric perturbations the conditions in r = 0 are ϕ1(0) = 0;

ϕ2(0) = 0.
(B.3)

These conditions immediately lead to χ′1, χ
′
2 = 0 in the

hedgehog background, see Eqs.(19).
Thus, we introduce a matrix ||Dp|| that satisfies relationϕA

1 (0) ϕB
1 (0)

ϕA
2 (0) ϕB

2 (0)


cA

cB

 = ||Dp||

cA

cB

 = 0. (B.4)

This algebraic system is solvable if det ||Dp|| = 0. This
feature makes it possible to find parameter λ of oscillating
mode by plotting ln det ||Dp|| as a function of λ, see Fig.B.5.
Using this method, we obtain values of λ accurate to the
third significant digit.

Then, to check the results and draw the profiles of per-
turbations, we use a specific method which includes shoot-
ing. It is faster and more precise than scanning in the
whole λ region, but depends on the analysis of spectrum
made with the previous method. Once again, we introduce
two basis vectors ψi(r) = (χi

1, χ
i
2, χ
′i
1 , χ

′i
2 , ϕ

i
1, ϕ

i
2), i = {A, B},

but now they have initial conditions at r = 0 ψA(0) = (1, 0, 0, 0, 0, 0)
ψB(0) = (0, 1, 0, 0, 0, 0),

(B.5)

To avoid singularities in the numerical scheme, these func-
tions can be calculated near zero point using asymptotic
polynomial solutions at r → 0.
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At spatial infinity, each of these basis functions con-
tains increasing exponents for two independent radial vec-
tor fields (χ1, ϕ1 and χ2, ϕ2). For λ = λloc we can construct a
function cAψ

A + cBψ
B, which is a localized solution, so that

increasing exponents compensate by the choice of coeffi-
cients. For λ , λloc we can compensate only one exponent,
and the value of the second exponent at r = L can be used
as a shooting criterion. Using this method, we find values
of λ accurate to the 4th significant digit, check the results
of previous method and plot resulting modes (see Fig.3).

0.006 0.004 0.002 0.000 0.002 0.004 0.006

52

56

60

64

ln
(D

p)

w 1 1 w

Fig. B.5: Plotting ln det ||Dp || as a function of λ, the cusps mark the
values of λ for localized states (λloc = ±0.00518).
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