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AN UNCOUNTABLE SUBRING OF R WITH HAUSDORFF DIMENSION ZERO

STEPHAN BAIER AND SHAMEEK PAUL

Abstract. We construct an uncountable subring of R with Hausdorff dimension zero (and hence of Lebesgue measure
zero).

We denote by N0 the set of non-negative integers, by N the set of positive integers and by Z the set of integers. Let

S := {0} ∪ {2n : n ∈ N0} = {0, 1, 2, 22, 23, . . .}.

For every n ∈ N by nS, we denote the nth sumset of S, i.e.,

nS := {s1 + · · ·+ sn : s1, . . . , sn ∈ S}.

For every n ∈ N we define

An :=

{

∑

k∈nS

xk

2k
: (xk)k∈nS is a bounded sequence of integers

}

.

Theorem 1. Let n ∈ N. The set An is an uncountable subgroup of R.

Proof. We first show that An is a subgroup of R. Trivially, 0 ∈ An and −x ∈ An whenever x ∈ An. Thus, it suffices to
show that An is closed under addition. Let x, y ∈ An. Therefore,

x =
∑

k∈nS

xk

2k
and y =

∑

k∈nS

yk
2k

where (xk)k∈nS and (yk)k∈nS are bounded sequences of integers. It follows that

x+ y =
∑

k∈nS

xk + yk
2k

is also an element of An.
Clearly, the set An is uncountable, because by the uniqueness of binary expansions which do not end with an infinite

string of 1’s, the set of real numbers of the form
∑

k∈nS

zk
2k

with zk ∈ {0, 1}

is an uncountable subset of An. �

We now proceed to show that the set An has Hausdorff dimension zero for every n ∈ N. For every n ∈ N write

An :=

∞
⋃

t=1

An,t

where for every t ∈ N we let

An,t :=

{

∑

k∈nS

xk

2k
∈ R : xk ∈ Z and |xk| ≤ t for all k ∈ nS

}

.

We will need the following result to show that the set An,t has Hausdorff dimension zero for every n, t ∈ N.

Lemma 1. For n ∈ N and z ≥ 1, define
gn(z) := #{k ∈ nS : k ≤ z}.

Then we have the bound

gn(z) ≤ (2 + log2 z)
n.

Proof. Clearly, for every z ≥ 1, we have

gn(z) ≤ g1(z)
n and g1(z) ≤ 2 + log2z.

The result follows. �
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Theorem 2. The set An,t has Hausdorff dimension zero for all n, t ∈ N.

Proof. Write nS = {km : m ∈ N} where (km)m∈N is an increasing sequence. Let x ∈ nS and write

x =

∞
∑

i=1

ai
2ki

with ai ∈ Z and |ai| ≤ t. Pick j ∈ N and split x into

x = mx + ex,

where

mx :=

j−1
∑

i=1

ai
2ki

and ex :=

∞
∑

i=j

ai
2ki

.

Then using the triangle inequality, we have the bound

|ex| ≤ t
∞
∑

i=j

1

2ki
≤ t

∞
∑

h=kj

1

2h
=

t

2kj−1
.

Let rj = t/2kj−1. It follows that

An,t ⊆
⋃

m∈X

Im,

where

X :=

{

j−1
∑

i=1

ai
2ki

: ai ∈ Z, |ai| ≤ t

}

and

Im := [m− rj ,m+ rj ].

Then #(X) ≤ (2t+ 1)j−1 and for every m ∈ X we see that µ(Im) = 2rj where µ(Im) is the length of the interval Im.
Let d > 0 be a real number, let δj := 4rj , and let Hd

δj
(An,t) be defined as in [2]. We see that

Hd
δj
(An,t) ≤

∑

m∈X

µ(Im)d = #(X)(2rj)
d ≤

(2t+ 1)j−1td

2(kj−2)d
.

We claim that

(1) lim
j→∞

(2t+ 1)j−1td

2(kj−2)d
= 0.

Since δj → 0 as j → ∞, this implies that Hd(An,t) = 0 where Hd(An,t) is the d-dimensional Hausdorff measure of
An,t. (For the definition of this measure and related terms, see [2].) Since this holds for all d > 0, we conclude that
the Hausdorff dimension of An,t is zero.

Equation (1) above is seen as follows. First, it is convenient to note that (1) holds if

lim
j→∞

(3t)j

2kjd
= 0.

By taking logarithms, we see that (1) holds if

lim
j→∞

(

kjd− j log2(3t)
)

= ∞.

As d > 0, we let c be the constant (1/d) log2(3t) and we see that (1) holds if

(2) lim
j→∞

(kj − cj) = ∞.

Now using Lemma 1, we have

j = gn(kj) ≤ (2 + log2 kj)
n,

which implies

kj ≥ 2
n
√
j−2.

Hence, (2) follows, which justifies our claim. �
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Let n ∈ N. From Theorems 1 and 2 it follows that the set An is an uncountable subgroup of R of Hausdorff dimension
zero. As 0 ∈ S, we have nS ⊆ (n+ 1)S, and hence An ⊆ An+1. Let

A :=

∞
⋃

n=1

An.

We deduce that the set A is an uncountable subgroup of R of Hausdorff dimension zero. We aim to establish that A is
in fact a subring. To this end, we need the following result.

Lemma 2. Let n ∈ N and let an(s) be the number of representations of an element s ∈ N as a sum s = t1+ t2+ · · ·+ tn
of n elements t1, t2, . . . , tn ∈ S. Then there exists cn ∈ R such that an(s) ≤ cn for every s ∈ N.

Proof. Clearly a1(s) ≤ 1 for every s ∈ N and hence, we may take c1 := 1. Now assume that n ≥ 2 and that there exists
cn−1 ∈ R such that an−1(s) ≤ cn−1 for every s ∈ N. Let s ∈ N and suppose

s = t1 + · · ·+ tn

is a representation of s as a sum of n elements of S. Then for at least one i ∈ {1, . . . , n}, we have ti ≥ s/n and hence
ti 6= 0. So there exists k ∈ N0 such that ti = 2k. As s/n ≤ ti ≤ s, we observe that log2 s− log2 n ≤ k ≤ log2 s. So if

Bn,s := [ log2 s− log2 n, log2 s ] ∩ N0,

then we see that

an(s) ≤ n
∑

k∈Bn,s

an−1(s− 2k) ≤ n(1 + log2 n)cn−1.

So we are done by taking cn := n(1 + log2 n)cn−1. �

Theorem 3. The set A is a a subring of R.

Proof. It suffices to show that 1 ∈ A and that A is closed under multiplication. We see that

1 =
1

20
+

∑

k∈S\{0}

0

2k
∈ A1.

To establish that A is closed under multiplication, we proceed as follows. Let x, y ∈ A. There exists m,n ∈ N such that
x ∈ Am and y ∈ An. Therefore,

x =
∑

k∈mS

xk

2k
and y =

∑

ℓ∈nS

yℓ
2ℓ

where (xk)k∈mS and (yℓ)ℓ∈nS are bounded sequences of integers. Now

xy =

(

∑

k∈mS

xk

2k

)(

∑

ℓ∈nS

yℓ
2ℓ

)

=
∑

(k,ℓ)∈mS×nS

xkyℓ
2k+ℓ

=
∑

r∈(m+n)S

zr
2r

where

zr :=
∑

(k,ℓ)∈mS×nS
k+ℓ=r

xkyℓ.

The number of representations of an element r ∈ (m+n)S as a sum r = k+ℓ of elements k ∈ mS and ℓ ∈ nS is bounded
by the number of representations of r which are of the form r = t1+t2+· · ·+tm+n where t1, t2, . . . , tm+n ∈ S. Hence, we
deduce that the sequence (zr)r∈(m+n)S is bounded as a consequence of Lemma 2 and the boundedness of the sequences
(xk)k∈mS and (yℓ)ℓ∈nS . It follows that xy ∈ Am+n. This establishes that A is closed under multiplication. �

We now proceed to show that the only rational numbers in A are the dyadic rationals. In particular, it will follow
that the ring A is not a field.

Lemma 3. Let r, n ∈ N. Write nS = {km : m ∈ N} where (km)m∈N is an increasing sequence. Then there exists

m ∈ N such that km+1 − km > r.

Proof. For every z ∈ N, let gn(z) := #{k ∈ nS : k ≤ z}. If the conclusion is false, then gn(z) ≥ z/r for every z ∈ N.
This contradicts Lemma 1. �

Proposition 1. Let x ∈ A and l ∈ N. Then there exists a binary expansion of x which contains either a string of

zeroes or a string of ones having length l.



4 STEPHAN BAIER AND SHAMEEK PAUL

Proof. Let x ∈ An,t. Then there exists a sequence of integers (xk)k∈nS with |xk| ≤ t for all k ∈ nS such that

x =
∑

k∈nS

xk

2k
=

∞
∑

i=1

xki

2ki
.

Let m ∈ N. We observe that
2kmx = qm + rm

where

qm :=
m
∑

i=0

2km−kixki
and rm :=

∞
∑

i=m+1

xki

2ki−km
.

Then qm ∈ Z and we have

|rm| ≤ t
∞
∑

j=km+1−km

1

2j
=

2t

2km+1−km
.

By Lemma 3, there exists m ∈ N such that 2km+1−km > 2l+1t and so |rm| < 1/2l. Hence,

frac
(

2kmx
)

=

{

rm, if rm ∈
[

0, 1
2l

)

;

1 + rm, if rm ∈
(

− 1
2l
, 0
)

;

and so
frac(2kmx) ∈

[

0, 1
2l

)

∪
(

1− 1
2l
, 1
)

,

where frac(z) := z − [z] is the fractional part of z ∈ R. It follows that the digits after the dot in a binary expansion of
x from the (km + 1)th position to the (km + l)th position are all equal. �

Corollary 1. A number x ∈ A is rational if and only if there exists a ∈ Z and k ∈ N0 such that x = a/2k.

Proof. From Proposition 1, we see that the ring A only contains those rational numbers which have a finite binary
expansion. The result follows. �

Remark 1. The above construction of an uncountable subring of R of Hausdorff dimension zero goes through if the
initial set S = {0, 1, 2, 22, 23, . . .} is replaced by a set T ∪{0} where T is a subset of N which has the following property:
There exists b ∈ R such that for every n ∈ N, the cardinality of the set {log t : t ∈ T } ∩ [n, n+ 1) is less than b.

Acknowledgment: We thank Prof. Shrikrishna G. Dani for sharing with us a preprint of [1] in which we see a different
construction of an uncountable subgroup of R having Hausdorff dimension zero.
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