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THE RÉNYI OUTLIER TEST

RYAN CHRIST, IRA HALL, AND DAVID STEINSALTZ

Abstract. Cox and Kartsonaki proposed a simple outlier test for a vector of
p-values based on the Rényi transformation that is fast for large p and numeri-
cally stable for very small p-values – key properties for large data analysis. We
propose and implement a generalization of this procedure we call the Rényi
Outlier Test (ROT). This procedure maintains the key properties of the origi-
nal but is much more robust to uncertainty in the number of outliers expected
a priori among the p-values. The ROT can also account for two types of prior
information that are common in modern data analysis. The first is the prior
probability that a given p-value may be outlying. The second is an estimate of
how far of an outlier a p-value might be, conditional on it being an outlier; in
other words, an estimate of effect size. Using a series of pre-calculated spline
functions, we provide a fast and numerically stable implementation of the ROT
in our R package renyi.

Cox and Kartsonaki proposed an outlier test based on the Rényi transforma-

tion ρ : [0, 1]p → [0, ∞]p Cox and Kartsonaki (2019). For an ordered vector
u ∈ [0, 1]p, such that u1 ≤ u2 ≤ . . . ≤ up, ρ(u)j = j log

(
uj+1

/
uj

)
for all j < p

and ρ(u)p = −p log (up). Alfréd Rényi pointed out that when ρ is applied to a
vector U of ordered independent uniform random variables, the image ρ (U) has
entries that are independent exponential random variables Rényi (1953). Building
on this observation, for some user-specified number of potential outliers, k, Cox and
Kartsonaki proposed testing the null hypothesis H0 that an observed u is a vector

of ordered independent uniform random variables by comparing
k∑

j=1
ρ (u)j against

its null distribution: a Gamma distribution with shape k and rate 1. This simple
procedure allows for the rapid calculation of numerically precise p-values even when
p is very large and the p-value returned is in the lower ranges accessible to machine
precision. However, the power depends sensitively on the a priori specification of
the number of outliers k. A more robust method would maintain power in the more
common situation where the number k of outliers is unknown, but it is possible to
specify a rough upper bound K on the likely number of outliers.

We present a robust generalization of Cox and Kartsonaki’s proposal that only
requires an approximate upper bound K. Our generalization also admits two types
of prior information that is common in modern applications can be used to sharpen
the alternative hypothesis and thereby improve power. The first, π ∈ R

p
≥0, is taken

to be proportional to the prior probability that a given uniform random variable
is an outlier. The second, η ∈ R

p
≥0, is related to effect size: how far outlying uj

will be given that it is an outlier. In the common context where each element of
u can be thought of as a p-value for testing whether some coefficient β in a linear
regression model is zero, we take ηj ∝ E

[
β2

j

∣∣ βj 6= 0
]
. In the absence of prior
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information or expectations, we take the neutral defaults πj = 1 and ηj = 1 for all
j. Critically, our approach, which we call the Rényi Outlier Test (ROT), maintains
the computational speed and numerical precision of the original test proposed by
Cox and Kartsonaki. We also provide the renyi R package that implements our
procedure, making use of pre-calculated spline functions. The package is publicly
available at ryanchrist.r-universe.dev/renyi.

Compared to more commonly used “minimum”-based approaches, such as test-
ing the minimum p-value with Bonferroni correction or Holm’s method, Higher
Criticism and related tests in the General Goodness of Fit test family have more
power when, roughly speaking, there are a handful of modestly small p-values
Donoho and Jin (2004); Zhang et al. (2020); Zhang and Wu (2022). Computational
speed and numerical precision have been major obstacles to applying these outlier
tests in practice. Recently, Wang et al. proposed a fast implementation of higher
criticism that is numerically stable for even very small p-values Wang et al. (2024).
However, this approach does not admit prior information such as π and η.

Given an initial set of unordered uniform random variables U ∈ [0, 1]p, π, and η,

the ROT is a two step procedure to test the null hypothesis H0 : Uj
iid
∼ Unif(0, 1)

for j = 1, . . . , p. Note that if each Uj represents a p-value, they must be exactly
uniform under the global null hypothesis, not sub-uniform or super-uniform. First,
we perform a simple generalization of the Rényi transformation which accounts for
π and η to obtain a set of independent standard exponential random variables. We
then test the outliers based on those exponential random variables using a procedure
robustified to our choice of K.

Define

(1) Zj = ηj (− log (Uj) + log (πj)) = ηj (− log (Uj)) + ζj

where ζj = ηj log (πj), and let N : R → N be the corresponding point process:

(2) N(t) :=

p∑

j=1

1{Zj ≤ t}.

For −∞ ≤ t < ∞, define a filtration by letting Ft be the sigma algebra generated
by all events of the form

{
− log(Uj) ≤

s

ηj

− log πj

}

for s ≤ t and 1 ≤ j ≤ p. We understand ηj and πj to be measurable with respect
to Ft for all t (including t = −∞). N(t) is adapted with respect to this filtration,
and the compensator is

(3) Λ(t) :=

p∑

j=1

η−1
j

(
t ∧ Zj − t ∧ ζj).

Since Λ : R → [0, −
∑

log Uj ] is a continuous non-decreasing function, it has a right-
inverse Λ−1 : [0, −

∑
log Uj ] → [min ζj , max Zj ] defined by Λ−1(u) = sup{t : Λ(t) <

u}; that is, Λ◦Λ−1 is the identity map on [0, −
∑

log Uj ]. Then by Theorem 15.15 of
Kallenberg (2021) N ◦Λ−1 is a Poisson process with unit rate (up to the time of the
p-th event). The test will then be based on the statistics (X1, . . . , Xp), which are the
interarrival times of the process, in reverse order; under the global null hypothesis
these are i.i.d. unit exponential random variables. This is a generalization of the
original Rényi transformation.

ryanchrist.r-universe.dev/renyi
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Let Gx denote the CDF of the Gamma distribution with shape parameter x and
rate 1, and let Ix,y denote the CDF of the Beta distribution with mean x/(x + y).

If the number of outliers k were known, then the p-value 1 − Gk

(
k∑

j=1
Xj

)
would

provide a well-powered test of H0 against alternatives where k of the original values
Uj are sampled from a distribution that makes them substantially smaller than
uniform [0,1] random variables. If k is chosen too small then some potential power
is lost, while a too-large k would crush the power by mixing the true outliers with
non-outlying observations. To mitigate this weakness, then, we try to find an upper
bound K on k, and perform an omnibus test over different k up to K⋆ := 2⌈log

2
K⌉.

Let X̃j = Xj for all j < K⋆ and define

(4) X̃K⋆ = − log
(

1 − Ip−K⋆+1,K⋆

(
exp
(

−

p∑

j=K⋆

Xj

j

)))
.

Using Rényi’s representation for the order statistics of independent exponential ran-
dom variables, the sum in (4) is distributed (under the global null hypothesis) as
the K∗-th largest out of p independent unit exponential random variables Rényi
(1953). Exponentiating this as above yields the corresponding order statistic of
Uniform random variables, which can be transformed by the Beta cdf to a new Uni-

form random variable, leaving us at last with X̃K∗ being another unit exponential

random variable, independent of X̃1, . . . , X̃K∗−1.
We now define the ROT test statistic as

(5) ρK⋆ = max
i∈Ik

− log


1 − Gi




i∑

j=1

X̃j






where Ik = (1, 2, 4, 8, . . . , K⋆). The fact that each X̃j in (5) is an independent
exponential, makes simulating the null distribution of ρK⋆ straightforward. We
used Monte Carlo simulation to estimate the body of the null distribution of ρK⋆

for K⋆ taking values in (1, 2, 4, . . . , 128). We used those null simulations to fit
a line to the log-linear tail of each distribtion and fit a cubic spline function to
the body of the distribution. This yielded a compressed form of a lookup table
for each test statistic that allows rapid computation p-values for a wide range of
K⋆. It is available via our R package renyi. The package is publicly available at
ryanchrist.r-universe.dev/renyi.
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