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We report a comprehensive numerical study of the renormalization group flow of marginal cou-
plings in (3+1)-dimensional projectable Hořava gravity. First, we classify all fixed points of the flow
and analyze their stability matrices. We find that some of the stability matrices possess complex
eigenvalues and discuss why this does not contradict unitarity. Next, we scan over the renormaliza-
tion group trajectories emanating from all asymptotically free fixed points. We identify a unique
fixed point giving rise to a set of trajectories spanning the whole range of the kinetic coupling λ
compatible with unitarity. This includes the region 0 < λ− 1 ≪ 1 assumed in previous phenomeno-
logical applications. The respective trajectories closely follow a single universal trajectory, differing
only by the running of the gravitational coupling. The latter exhibits non-monotonic behavior along
the flow, vanishing both in the ultraviolet and the infrared limits. The requirement that the theory
remains weakly coupled along the renormalization group trajectory implies a natural hierarchy be-
tween the scale of Lorentz invariance violation and a much larger value of the Planck mass inferred
from low-energy interactions.
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I. INTRODUCTION

Hořava gravity (HG) [1] (see [2–5] for reviews), is an
approach to building unitary, local and renormalizable
theory of quantum gravity in four spacetime dimensions.
It considers metric theories with an action classically in-
variant at high energies under anisotropic (Lifshitz) scal-
ing of time and space,

t 7→ b−dt , xi 7→ b−1xi , i = 1, . . . , d , (1)

where d is the number of spatial dimensions and b is an
arbitrary scaling parameter. This allows one to include
in the action terms with higher spatial derivatives which
lead to a faster decay of propagators at high momenta
and thereby improve convergence of the loop integrals.
On the other hand, the theory remains quadratic in time
derivatives and avoids Ostrogradsky instabilities arising
in covariant higher-derivative gravity [6, 7].
For d > 1 the scaling (1) is incompatible with the full

diffeomorphism invariances which needs to be restricted
to foliation preserving transformations (FDiff):

t 7→ t′(t) , xi 7→ x′i(t,x) , (2)

where t′(t) is a monotonic function. A consequence of this
property is explicit breaking of the Lorentz invariance
which can emerge only as an approximate symmetry at
low energies. While satisfying the stringent experimental
constraints on deviations from Lorentz invariance [8, 9]
is challenging, there are several mechanisms that could
achieve this goal [10–16].
HG appears in two main versions differring by their

field content. In the non-projectable version [1, 17] the
lapse function (the time-time component of the metric)
is taken to be fully dynamical, with both time and space
dependence. Whereas in the projectable HG the lapse
is restricted to depend only on time. Low-energy phe-
nomenology of the non-projectable HG in a certain re-
gion of parameter space can be sufficiently close to that
of general relativity (GR) to pass the observational tests
[18, 19]. However, its complicated structure in the ul-
traviolet (UV) has so far precluded a rigorous proof of
perturbative renormalizability, even though a remarkable
cancellation of non-local divergences found in Ref. [20]
suggests that such proof is plausible.
In this paper we focus on the simpler projectable

model. This has been proven to be perturbatively renor-
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malizable in any number of spacetime dimensions [21, 22]
and the one-loop beta-functions for its full set of marginal
operators with respect to the scaling (1) were computed
in d = 2 [23] and d = 3 [24, 25]. In both cases the theory
possesses asymptotically free UV fixed points.

The global structure of the renormalization group
(RG) flow for projectable HG in d = 2 is rather sim-
ple and was completely characterized in Ref. [23]. The
situation is significantly more involved in the case d = 3.
Here the flow occurs in a multi-dimensional parameter
space and even finding all its fixed points presents a non-
trivial task. A first step towards elucidating the global
properties of the RG flow of the three-dimensional pro-
jectable HG was made in Ref. [26]. It found a family of
RG trajectories flowing from one of the asymptotically
free fixed points in the UV towards an infrared (IR) re-
gion in the parameter space where the kinetic term in the
Lagrangian of the theory approaches the same form as in
GR. This IR limit was assumed in most phenomenolog-
ical applications [27–31] and corresponds to the regime
where projectable HG behaves (at least at the classical
level) similarly to GR supplemented with a dust-like mat-
ter.

In the present work we complete the study of the RG
flow in several ways. We focus on the marginal oper-
ators with respect to the scaling (1) since they form a
closed set under renormalization and dominate the flow
in an infinite span of energies above the Lorentz violating
scale. First, we numerically find all fixed points of the
flow and classify their properties. Second, we character-
ize the local properies of the flow around the fixed points
by computing the repsective stability matrices. Third,
we study the global structure of the RG trajectories em-
anating from asymptoically free fixed points. We find
that, apart from the family found in [26], all trajectories
quickly run into strong coupling, without reaching any
GR-like regime. In other words, the family of Ref. [26]
exhausts all RG trajectories connecting consistent UV
asymptotics with phenomenologically interesting IR be-
havior.

It is worth noting that the RG flow reaching a proper
IR domain is necessary but not sufficient condition for
phenomenological viability. Indeed, the full IR limit of
projectable HG including the relevant operators with re-
spect to the scaling (1) features an instability which can
be suppressed only at the expense of introducing strong
coupling [32, 33]. In this paper we do not attempt to
address this issue and consider the projectable HG as a
toy model for possible RG structure of more complicated
versions of the theory with stable IR dynamics, such as
e.g. the non-projectable model.

The paper is organized as follows. In Sec. II we review
the action of the projectable HG and its one-loop beta-
functions. In Sec. III we describe our algorithm for the
numerical search of fixed points and give their complete
list. Section IV analyzes the stability matrices of the
fixed points. In Sec. V we turn to the global properties
of the RG flow and study the trajectories emanating from

asymptotically free fixed points. Scanning over their pos-
sible initial conditions, we identify the unique family of
trajectories which exhibits interesting IR behavior. Sec-
tion VI further explores the RG running of the gravita-
tional coupling along the family and points out a natural
hierarchy arising between the Planck mass and the scale
of Lorentz violation, the former being much larger than
the latter. Section VII is devoted to conclusions. Some
technical details are relegated to Appendices.

II. PROJECTABLE HOŘAVA GRAVITY

HG is defined using the Arnowitt–Deser–Misner
(ADM) decomposition of the metric

ds2 = N2dt2 − γij(dx
i +N idt)(dxj +N jdt) , (3)

where N is the lapse function, N i is the shift vector and
γij is the spatial metric. These fields are assigned the
following scaling dimensions with respect to (1):1

[N ] = [γij ] = 0 , [N i] = d− 1 , (4)

and transformation under FDiff (2) as,

N 7→ N
dt

dt′
, N i 7→

(
N j ∂x

′i

∂xj
− ∂x′i

∂t

) dt

dt′
, (5a)

γij 7→ γkl
∂xk

∂x′i
∂xl

∂x′j
. (5b)

The action invariant under FDiff and containing only
relevant and marginal operators with respect to the
anisotropic scaling reads,

S =
1

2G

∫
dtddxN

√
γ
(
KijK

ij − λK2 − V
)
, (6)

where G and λ are marginal coupling constants,

Kij =
1

2N (∂tγij −∇iNj −∇jNi) (7)

is the extrinsic curvature of the foliation, K ≡ Kijγ
ij

and ∇i is the covariant derivative with respect to the
spatial metric γij . The potential part V does not contain
any time derivatives. It depends on the d-dimensional
metric γij and its spatial derivatives. In what follows we
specify to d = 3. Note that in the case of GR written
in the ADM form the four-dimensional diffeomorphism
invariance forces the parameter λ in the kinetic term for
the metric to be equal to one, λ = 1.
In the case of non-projectable model where the lapse is

a full-fledged function of time and space, V also depends
on the acceleration vector ai = ∂iN/N . The low-energy
limit of the theory corresponds to a scalar-tensor gravity,

1 One says that a field Φ has scaling dimension [Φ] if under (1) it
transforms as Φ 7→ b[Φ]Φ.
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with the scalar describing a preferred foliation of space-
time by space-like surfaces [33–36]. The dynamics of the
scalar is stable and weakly coupled, its interaction with
visible matter and gravity can be suppressed by an appro-
priate choice of parameters. This includes, in particular,
a constraint 0 < λ− 1 ≪ 1. Thus, the model can repro-
duce the phenomenology of GR at the scales where the
latter has been tested [18]. The strongest constraints on
the model come from tests of the Lorentz invariance in
the matter sector [8, 9] and gravity [37], but still leave a
viable parameter space [19].

In the non-projectable model the total number of terms
in the potential is very large (order O(100)) [38].2 This
complicates the analysis of the UV properties of the the-
ory. Another complication comes from the fact that the
propagator of the lapse contains certain irregular terms
that can potentially give rise to divergences with non-
local space dependence and thus spoil renormalizability
[21]. An important step towards overcoming the latter
problem was made in [20] which showed that the danger-
ous divergences cancel if one defines the path integral of
the theory using a proper integration measure. However,
the results of [20] are obtained within the canonical ap-
proach which is inconvenient for carrying out renormal-
ization. Their reformulation in the Lagrangian language
is pending.

Projectable HG is a simpler verson of the theory, in
which the lapse is assumed to be a function of time only.
Using the time reparameteraization symmetry, its value
can be set to an arbitrary constant, thereby eliminat-
ing it from the action. Upon setting N = 1, using the
Bianchi identities, integration by parts and Ricci decom-
position the most general expression for the potential
term in Eq. (6) reads [39],

V = 2Λ− ηR+ µ1R
2 + µ2RijR

ij + ν1R
3 + ν2RRijR

ij

+ ν3R
i
jR

j
kR

k
i + ν4∇iR∇iR+ ν5∇iRjk∇iRjk , (8)

where Rij , R are the Ricci tensor and scalar of the metric
γij , and Λ, η, µa, νb are the couplings.

It is straightforward to see that the operators multi-
plying the couplings

G , λ , νa , a = 1, . . . , 5 (9)

have scaling dimension 6. This matches (with the oppo-
site sign) the scaling dimension of the integration mea-
sure in the action (6), so these operators are marginal.
They control the UV properties of the theory. For uni-
tarity and perturbative stability in UV G and ν5 must
be positive, whereas λ and ν4 must satisfy [25, 33]:

λ < 1/3 or λ > 1 , (10a)

ν4 > −3ν5/8 . (10b)

2 Most of these terms are irrelevant at low energies and get impor-
tant only in the UV.

On the other hand, the operators multiplying Λ, η and
µa, a = 1, 2 have lower scaling dimensions and represent
relevant (in the RG sense) deformations of the UV action.
If Λ = 0, the theory possesses a flat background solu-

tion. Its spectrum of perturbations contains a transverse-
traceless (tt) graviton and a scalar mode with the disper-
sion relations,

ω2
tt = ηk2 + µ2k

4 + ν5k
6 , (11a)

ω2
s =

1− λ

1− 3λ

(
− ηk2 + (8µ1 + 3µ2)k

4
)
+ u2sν5k

6 , (11b)

where

us =

√
1− λ

1− 3λ

(
8ν4
ν5

+ 3

)
. (12)

Note that the conditions (10a) ensure that u2s is positive.
We see that the dispersion relation for the tt-graviton
(11a) exhibits a transition between the Lifshitz behavior
ωtt ∝ k3 at large k and the relativistic scaling ωtt ∝ k
at small momenta. If we adjust the space and time units
to set η = 1, the transition between these regimes will
happen at the momentum3

k =MLV ∼ ν
−1/4
5 . (13)

From the perspective of the low-energy theory, this mo-
mentum corresponds to the scale where violation of the
Lorentz invariance becomes manifest. We will refer to it
as the Lorentz violation scale.
The negative sign in front of the ηk2 term in (11b)

signals an instability of the flat background with respect
to the long scalar modes. In principle, the instability
could be suppressed by either sending λ→ 1+ or η → 0.
The first case is assumed in the works [27–31] and corre-
sponds to the limit in which projectable HG classically
behaves as GR supplemented with a dust-like matter.
Quantum mechanically, however, a too close approach of
λ to unity is problematic since it corresponds to strong
coupling [32, 33]. On the other hand, for η → 0 the fre-
quency of the tt-graviton scales quadratically with mo-
mentum, ωtt ∝ k2, even at low energies, so the relativis-
tic dispersion relation is never recovered. Addressing this
low-energy instability is beyond the scope of the present
work. Instead, we focus on the high-energy regime of the
model and keep only the last five marginal terms in the
potential (8).
Projectable HG is renormalizable [21, 22], with the

marginal couplings (9) forming a closed set under renor-
malization. Their RG flow equations were derived in
[24, 25]. They are formulated in terms of the one-loop
beta-functions for the essential couplings whose running
is independent of the gauge choice. Indeed, it is known

3 For simplicity, we assume µ2
2 ∼ ν5 on dimensional grounds.
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that a change of gauge can add to the one-loop effec-
tive action a term vanishing on the tree-level equations
of motion [40, 41]. In the model at hand this induces the
following shift of the renormalized couplings [25],

G 7→ G− 2G2ϵ, λ 7→ λ, νa 7→ νa − 4Gνaϵ, (14)

where ϵ is an infinitesimal parameter. Since G and νa
are not invariant under this shift, their individual beta-

functions are gauge-dependent. However, it is easy to
construct six combinations of couplings left invariant by
(14). We choose them to be

G ≡ G/
√
ν5, λ, us, va ≡ νa/ν5, a = 1, 2, 3. (15)

The coupling G plays a special role since it controls the
overall strength of the gravitational interaction in the
model. We will refer to it simply as ‘gravitational cou-
pling’. The respective beta-functions read [24, 25],

βλ = G 27(1−λ)2 + 3us(11−3λ)(1−λ)− 2u2s(1−3λ)2

120π2us(1 + us)(1−λ)
, (16a)

βG = G2 1

26880π2(1− λ)2(1− 3λ)2(1 + us)3u3s

7∑
n=0

uns PG
n [λ, v1, v2, v3] , (16b)

βχ = G Aχ

26880π2(1− λ)3(1− 3λ)3(1 + us)3u5s

9∑
n=0

uns Pχ
n [λ, v1, v2, v3] , (16c)

where we have collectively denoted χ = {us, v1, v2, v3}
and the coefficients Aχ are equal to Aus

= us(1 − λ),
Av1 = 1, Av2 = Av3

= 2. Note that the coupling G
factorizes. The functions PG

n , Pχ
n multiplying various

powers of us in the sums are themselves polynomials in
λ and va with integer coefficients. PG

n , Pus
n and Pva

n are
up to the fourth, fifth and sixth order in λ, respectively.
Their overall order in the couplings va is up to two for
PG
n , Pus

n and up to three for Pva
n . Explicit expressions for

these polynomials are lengthy and can be found in [25].

III. FIXED POINTS OF THE RG FLOW

We start the investigation of the RG flow by search-
ing for its fixed points. Of particular interest are the
asymptotically free fixed points corresponding to vanish-
ing gravitational coupling G. The coupling λ at a fixed
point can be either finite or infinite. The latter case
λ = ∞ was shown to represent a regular weakly cou-
pled limit of the theory [42, 43]. The only restriction
we impose on the values of λ is that they lie inside the
unitary domain (10a). The other couplings us, va are
required to take finite values at the fixed point.

Beta-functions (16) are defined as derivatives of the
couplings with respect to log k⋆, the logarithm of the
sliding momentum scale.4 It is convenient to change the
parameterization of the RG trajectories by introducing

4 Note that the logarithm of momentum is different from the log-
arithm of energy by a factor 1/3 due to the Lifshitz scaling,
d log k⋆ = 1

3
d logE⋆.

new independent variable τ through

dτ = G d log k⋆ , (17)

and redefine the beta-functions,

dgi
dτ

= β̃gi , gi = {λ, us, v1, v2, v3}. (18)

Then the RG flow in the subspace of the couplings gi
separates from the running of the gravitational coupling
G. Thus, the search for fixed points reduce to finding the
roots of the system of equations

β̃gi = 0 (19)

for the five variables gi.
The functions β̃gi are, up to some non-vanishing fac-

tors, polynomial in the couplings gi. Thus, in principle,
all roots of the system (19) can be found with the Buch-
berger algorithm [44]. In practice, however, this is un-
feasible. Indeed, according to the Bézout’s theorem [45]
the number of (complex) roots of a system of polynomial
equations is in general equal to the product of the degrees
of the polynomials. The degree of the polynomial in β̃λ is
4, whereas an inspection of the expressions for Pχ

n given

in [25] yields the degrees of β̃us
and β̃va

, a = 1, 2, 3, to be
15 and 17, respectively. This gives 4 · 15 · 173 = 294 780
as the possible number of roots. While the actual num-
ber of roots can be lower due to the special structure of
the polynomials in β̃gi , it is still likely to be forbiddingly
large.
Fortunately, we need only real roots of the system (19).

These can be found by means of a scanning algorithm
which we presently describe. We separately discuss the
cases of finite and infinite λ.
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A. Fixed points at finite λ

First, we search for the roots of the system (19) lying

at finite values of all couplings. We note that β̃λ depends
only on us and λ. The solution of the equation β̃λ = 0
relates these variables5

λ(us) =
9 + 7us − 2u2s + 2us

√
10(1 + us)

3(3 + us − 2u2s)
, (20)

or

us(λ) = 3

[
11− 14λ+ 3λ2

4(1− 3λ)2

+

√
5(1− λ)2(29− 42λ+ 45λ2)

4(1− 3λ)2

]
.

(21)

In what follows we use (20) and (21) to eliminate either
λ or us in the system (19).

We start by excluding the variable λ from the system
(19) with the help of relation (20). To avoid appearance
of the square roots and maintain the polynomial struc-
ture of the equations, we introduce a new variable

ut ≡
√

10(1 + us) , us =
1

10
u2t − 1 , ut ∈ (

√
10,∞) .

(22)
The resulting system of four equations is still too compli-
cated for standard root finder algorithms. To overcome
this obstacle, we fix the value ut = u∗t and remove one of

the equations, say β̃v1 . This leaves us with a system of
three equations for three variables va:

β̃us
(u∗t , va) = 0 ,

β̃v2(u
∗
t , va) = 0 ,

β̃v3(u
∗
t , va) = 0 .

(23)

The order of this system is greatly reduced — recall that
the polynomials in β̃us

and β̃va are only quadratic or
cubic in va. In more detail, the product of degrees of the
polynomials in the system (23) is 2 · 3 · 3 = 18, which, by
the Bézout’s theorem, gives the maximal possible number
of its complex roots. All these roots are easily found by
the NSolve command on Wolfram Mathematica [46]. We
call them ‘partial roots’ of the system (19).

We pick up purely real partial roots — let us denote

them by v
(n)
a — and evaluate β̃v1

(
u∗t , v

(n)
a

)
. The differ-

ence of this quantity from zero characterizes the failure of
the partial root to be the solution of the full system (19).
We identify the partial root v∗a with the lowest absolute
value of this residual,

| β̃v1(u∗t , v∗a) |= min
n

| β̃v1

(
u∗t , v

(n)
a

)
| , (24)

5 We choose the positive value of the square root in (20). The
opposite choice would result in λ lying in the non-unitary region
[1/3, 1]. Similarly, the positive square root in (21) ensures that
us is positive.

and define

δβ̃(u∗t ) ≡ β̃v1(u
∗
t , v

∗
a) . (25)

Then we scan over values of u∗t and find where δβ̃(u∗t )
crosses zero. This point corresponds to a root of the full
system (19).

We have scanned the interval u∗t ∈ (
√
10, 108] (see Ap-

pendix A for details) and found five fixed points. They
are listed in Table I in terms of the original variables
{λ, us, va}. The fixed points F1–F4 were already re-
ported in [25]. Here we add the fixed point F5. To make
sure that no other fixed points exist, we repeated the
above procedure with different choices of the removed
equation. We removed, in turn, β̃v2 , β̃v3 and β̃us

and in
all cases obtained the identical set of fixed points. We
also verified absence of fixed points at higher values of
us by eliminating it in favor of λ using Eq. (21). Then
the limit us → ∞ corresponds to λ → 1/3−. A scan
over λ in the vicinity of λ = 1/3 does not yield any new
fixed points compared to those listed in Table I (see Ap-
pendix A).
In the last column of Table I we show the value of the

beta-function for the gravitational coupling G, divided
by G2 and evaluated at each fixed point. We see that all
these values are negative implying that the gravitational
coupling vanishes when the RG flow approaches the fixed
point in the UV. In other words, all found fixed points
are asymptotically free.
We also observe that all fixed points lie in the interval

λ ∈ (0, 1/3). The latter property is in contrast to the
projectable HG in (2 + 1) dimensions, which possesses a
fixed point with finite λ > 1 [23].6 Since the RG flow
cannot cross non-unitary region, none of the trajectories
starting from any of the fixed points at finite λ in UV
can reach the IR domain λ → 1+ assumed in the phe-
nomenological studies.

The last three fixed points in Table I are located at
very large values of couplings us and v1. For the point
F5 the value of v2 is also huge. On the other hand, the
value of v3 is always order-one. We point out that this
vast hierarchy of couplings appears in a theory without
any large input parameters and is a consequence of the
complicated non-linear structure of the beta-functions.
Presence of very large couplings puts in question the
validity of the one-loop approximation for the analysis
of the RG trajectories emanating from the points F3–
F5. Thus, we are not going to consider such trajectories
when studying the global properties of the RG flow. It
should be noted, however, that the existence and loca-
tion of all fixed points is robust because all of them are
asymptotically free. Hence the higher-loop contributions
suppressed by G will not affect the values of couplings in
the Table I.

6 More precisely, (2 + 1)-dimensional projectable HG has fixed
point with λ = 15

14
.
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Fixed point
label

λ us v1 v2 v3 βG/G2

F1 0.1787 60.57 -928.4 -6.206 -1.711 -0.1416

F2 0.2773 390.6 -19.88 -12.45 2.341 -0.2180

F3 0.3288 5.453×104 3.798×108 -48.66 4.736 -0.8484

F4 0.3289 5.732×104 -4.125×108 -49.17 4.734 -0.8784

F5 0.333332 3.528×1011 -6.595×1023 -1.950×108 4.667 -3.989×106

TABLE I. Solutions of the system (19) corresponding to the fixed points of the RG flow at finite values of λ. The last column
shows the coefficient in front of G2 in the beta-function of the gravitational coupling G, evaluated at the fixed point. Its negative
values imply that the fixed points are asymptotically free.

B. Fixed points at λ = ∞

In [42] it was argued that a natural candidate for the
UV point of the renormalization group flow of projectable
Hořava gravity is the limit λ→ ∞. This limit was proved
to be regular and independent on the direction λ→ ±∞,
at least in perturbation theory [43]. To analyze this limit,
it is convenient to introduce a new variable

ϱ ≡ 3(1− λ)

1− 3λ
⇔ λ =

3− ϱ

3(1− ϱ)
. (26)

The coupling ϱ is positive in the unitary domain (10a).
The limit λ = ∞ corresponds to finite ϱ = 1. The interval
λ ∈ (1,+∞) maps to ϱ ∈ (0, 1), whereas λ ∈ (−∞, 1/3)
maps to ϱ ∈ (1,+∞). Beta function of the new variable
ϱ, divided by G, reads

β̃ϱ = 3(1− ϱ)
2u2s + usϱ(4− 5ϱ)− 3ϱ2

40π2us(1 + us)ϱ
. (27)

It vanishes for ϱ = 1. All other beta-functions (16b),
(16c) are regular in the neighborhood of the hyperplane
ϱ = 1, implying regularity of the RG flow in the param-
eterization (ϱ, us, va).

The hyperplane ϱ = 1 is an invariant manifold of the
RG flow and we look for fixed points inside it. These
correspond to solutions of the system of four equations
in four variables,

β̃χ(χ)
∣∣∣
ϱ=1

= 0 , χ = {us, va} . (28)

We find all solutions of this system by a similar scanning
procedure, as in the case of finite λ. The scan is per-
formed over the variable us in the interval 0 < us < 1015,
the details are given in Appendix A. The search yields
eight solutions listed in Table II. These solutions were
found in [25, 26]; here we have shown that there are no
more solutions beyond this list.

We note that the hierarchy between the values of dif-
ferent couplings for the fixed points in Table II is milder
than for the fixed points at finite λ (cf. Table I). The
strongest hierarchy occurs at the fixed point 6, which
has the value of v1 a few thousands times larger than the
values of v2 and v3.

In the sixth column of Table II we list the values of
the beta-function of the gravitational coupling, divided
by G2. These values are negative for the points 1 to 5
and 7, implying that these points are asymptotically free.
The point 5 will be the most important one for our later
analysis and we give it a special notation as ‘point A’.
The two remaining points 6 and 8 are not asymptotically
free and thus cannot serve as consistent UV limits of the
RG flow. Nevertheless, we are going to see that the point
6 plays a pivotal role in the structure of the RG flow. For
his reason, we give it a special name ‘point B’.
The last column of Table II shows the sign of the

derivative ∂β̃ϱ/∂ϱ. As will be discussed in the next sec-
tion, this sign determines whether RG trajectories can
(−) or cannot (+) flow out of the hyperplane ϱ = 1.
We see that the latter case is realized for the first three
fixed points, so no RG trajectories starting from them can
reach the IR domain ϱ → 0+ (λ → 1+). On the other
hand, this possibility remains open for the fixed points
4,5 and 7. Below we will see that this indeed happens for
trajectories starting at the point 5. Moreover, the RG
trajectories emanating from this point cover the whole
unitary domain (10a) (corresponding to ϱ ∈ (0,∞)).

IV. LOCAL ANALYSIS. STABILITY MATRIX

In the vicinity of a fixed point, the linearized RG flow
is controlled by the stability matrix B j

i ,

β̃gi
∼=
∑
j

B j
i (gj − g⋆j ), B j

i ≡

(
∂β̃gi
∂gj

)∣∣∣∣∣
gi=g⋆

i

, (29)

where g⋆i are fixed point values of the coupling constants.
The eigenvalues θJ of the stability matrix determine
whether the RG flow is repelled from (Re θJ < 0) or
attracted to (Re θJ > 0) the fixed point along the corre-
sponding eigendirection when the energy scale is lowered
from UV to IR.7 We now discuss the eigenvalues of the
stability matrices for the fixed points found in the previ-
ous section.

7 Note that the situation is opposite when the energy increases:
the flow is attracted to the fixed point if Re θJ < 0 and repelled
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Fixed point
label

us v1 v2 v3 βG/G2 Asymptotically
free?

Sign of

∂β̃ϱ/∂ϱ

1 0.0195 0.4994 -2.498 2.999 -0.2004 yes +

2 0.0418 -0.01237 -0.4204 1.321 -1.144 yes +

3 0.0553 -0.2266 0.4136 0.7177 -1.079 yes +

4 12.28 -215.1 -6.007 -2.210 -0.1267 yes −
5 (A) 21.60 -17.22 -11.43 1.855 -0.1936 yes −
6 (B) 440.4 -13566 -2.467 2.967 0.05822 no −
7 571.9 -9.401 13.50 -18.25 -0.0745 yes −
8 950.6 -61.35 11.86 3.064 0.4237 no −

TABLE II. Solutions of the system (28) corresponding to fixed points of the RG flow at λ = ∞ (ϱ = 1). The sixth column shows
the value of the beta-function for the gravitational coupling G at the fixed point, divided by G2. The seventh column classifies
whether the fixed point is asymptotically free or not. The last column gives the sign of the derivative of the beta-function for
the coupling ϱ at the fixed point. The points 5 and 6 are of particular importance and are also labeled as A and B.

A. Fixed points at finite λ

Eigenvalues of the stability matrices for the fixed
points F1–F5 are provided in Table III. Note that some
fixed points have complex conjugate eigenvalues. This
is surprising since the eigenvalues of the stability matrix
are typically related to the scaling dimensions ∆J of the
operators driving the RG flow. In our case the putative
relation would have the form ∆J = 6 + G θJ . Here 6 is
the classical scaling dimension of the operator and the
second term is its anomalous dimension. In relativistic
unitary theories, where scale invariance at the fixed point
is embedded in the full conformal symmetry [47, 48], the
dimensions of the operators are known to be real and pos-
itive [49]. This property is commonly assumed to hold
in unitary field theories even without the Lorentz invari-
ance, though we are not aware of any general proof for
theories with the Lifshitz scaling.8 Thus, it is logically
possible that the presence of complex anomalous dimen-
sions is compatible with unitarity in HG due to the lack
of the Lorentz symmetry.

We believe, however, that a more plausible explana-
tion has to do with the gauge invariance of HG. At the
asymptotically free fixed point the full FDiff transforma-
tions (5) get replaced by their linearized version. On the
other hand, everywhere outside the fixed point the theory
enjoys the full nonlinear FDiff invariance. Thus, the op-
erators that deform the theory away from the fixed point
are not gauge invariant under the linearized FDiffs and
do not need to obey unitarity constraints of the (free)
theory at the fixed point. In particular, their scaling di-
mensions need not be real. It would be interesting to
explore this possibility further and look for other exam-

from it if Re θJ > 0. When discussing repulsion or attraction we
stick to the Wilsonian perspective of the RG flow starting in UV
and running towards IR.

8 See [50, 51] for the proof in the special case of nonrelativistic
conformal theories with Lifshitz exponent z = 2.

ples of unitary gauge theories featuring stability matrices
with complex eigenvalues. This task is, however, outside
the scope of this paper.
All fixed points in Table III have at least one repulsive

eigendirection with Re θJ < 0. That means that every
fixed point can serve as UV completion of the theory.
As already mentioned, however, all fixed points F1–F5
lie in the left part of the unitary domain at λ < 1/3.
Since the RG trajectories cannot cross the non-unitary
region λ ∈ [1/3, 1], they cannot flow from these fixed
points to λ→ 1+, i.e. the GR form of the kinetic term is
unattainable in the IR domain. We describe trajectories
flowing out of the first two fixed points F1, F2 in Sec. VA.

B. Fixed points at λ = ∞

Here we switch to the variables gi = {ϱ, us, va}. The
fixed points we are interested in lie in the hyperplane
ϱ = 1. Since the beta-function for the coupling ϱ is pro-
portional to (1 − ϱ), see Eq. (27), all elements in the
ϱ-row of the stability matrices Bϱ

j vanish, except for the
diagonal element

Bϱ
ϱ = −3(us − 3/2)

20π2us

∣∣∣∣
us=u⋆

s

. (30)

The eigenvalue equation Bi
jwj = θwi then for i = ϱ

becomes Bϱ
ϱwϱ = θwϱ. This implies existence of a sin-

gle eigenvector w1 with non-zero ϱ-component and the
corresponding eigenvalue θ1 = Bϱ

ϱ. The eigenvectors
corresponding to all other eigenvalues lie entirely in the
ϱ = 1 hyperplane. We list the eigenvalues of the stability
matrices for fixed points №1–8 in Table IV. We again ob-
serve that some eigenvalues come in complex conjugate
pairs.
The tangent vector to an RG trajectory emanating

from the fixed point can be decomposed in the basis of
eigenvectors wJ . In order to escape from the hyperplane
ϱ = 1, it must contain a contribution of the vector w1.
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Fixed point
label

θ1 θ2 θ3 θ4 θ5

F1 -0.3416 -0.06495 0.002639 0.1902 ± 0.1760 i

F2 -0.06504 0.001944 0.02859 0.2647 0.2751

F3 -1.970 -0.1448 -1.142 -0.1142 0.1289

F4 -1.976 -1.202 -0.2046 0.01148 ± 0.1006 i

F5 -7.979×106 -7.979×106 -3.040×106 -0.3161 0.3159

TABLE III. Eigenvalues θJ of the stability matrix for the fixed points with finite λ, ordered by the values of their real parts.
Eigenvalues θ1, θ2 for the point F5 coincide up to four significant digits but we checked that they differ at higher orders.

Fixed point
label

θ1 θ2 θ3 θ4 θ5

1 1.154 -1.235 -0.2734 ± 0.2828 i 0.9825

2 0.5302 -71.95 ± 5.134 i -0.3207 12.35

3 0.3970 -64.72 ± 0.6149 i 0.3012 10.77

4 -0.01334 -0.3436 -0.09353 0.2200 ± 0.1806 i

5 (A) -0.01414 -0.06998 0.06569 0.2565 0.3204

6 (B) -0.01515 0.0924 ± 0.2890 i 0.3079 0.6032

7 -0.01516 -1.722 -0.3324 ± 0.3289 i 0.1328

8 -0.01517 -0.3657 0.4340 ± 0.4849 i 1.326

TABLE IV. Eigenvalues θJ of the stability matrix for the fixed points at λ = ∞ (ϱ = 1). At each fixed point, the eigenvalue θ1

corresponds to the unique eigenvector with non-zero ϱ-component. The remaining eigenvalues are listed in the ascending order
of their real parts.

However, this is not sufficient — the direction w1 must
also be repulsive, i.e. θ1 must be negative. We see from
Table IV that this condition is not fulfilled for the first
three fixed points, so the trajectories starting from them
always stay in the ϱ = 1 plane. Such trajectories will not
be of interest to us. The fixed points 6 and 8 are not
asymptotically free. Thus, only the fixed points 4, 5 and
7 can give rise to consistent RG trajectories connecting
regions with infinite and finite λ.

V. RG TRAJECTORIES

Now we can construct RG trajectories emanating from
asymptotically free UV fixed points at finite λ and at
λ = ∞. We numerically solve the RG equations (18)
from τ = 0 towards τ = −∞ with the initial conditions
slightly offset from the fixed point g⋆i in the repulsive
direction,

gi(0) = g⋆i + ε cJ w
J
i , (31)

where ε is a small positive parameter, cJ are constants
satisfying

∑
J(cJ)

2 = 1, and wJ
i are eigenvectors enu-

merated by the index J , corresponding to the eigenvalues
with negative real parts, Re θJ < 0. We normalize them
as
∑

i(w
J
i )

2 = 1. The parameter ε is chosen sufficiently
small, so that the trajectory approaches the fixed point
g⋆i for τ → +∞. We typically take ε = 10−5.

A. RG flow from fixed points at finite λ

There are five fixed points at finite values of λ, see Ta-
ble I. We focus on the first two of them since the remain-
ing ones lie at very large values of the couplings us, v1
and it is unclear if one-loop approximation is sufficient for
the construction of the RG trajectories emanating from
them.

1. Flow from fixed point F1

According to Table III the first fixed point has two neg-
ative eigenvalues θ1 and θ2. The components of the cor-
responding eigenvectors w1, w2 are presented in the first
two rows of Table V (labeled FP1w1 and FP1w2). Note
that these eigenvectors are almost collinear and aligned
along the with v1-direction.
In the initial conditions for the RG equation (31) we

choose constants cJ on the unit circle,

c1w
1 + c2w

2 = cosφw1 + sinφw2 , (32)

and construct many trajectories scanning the interval
φ ∈ [0, 2π) with a small step. One expects to see a
one-parameter family of RG trajectories parametrized by
the angle φ. However, since the absolute value of θ1 is
substantially larger than that of θ2 (see Table V), all tra-
jectories are quickly attracted to the direction set by the
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Eigenvector
label

θJ wJ
λ wJ

us
wJ

v1 wJ
v2 wJ

v3

F1w1 -0.3416 7.159×10−9 3.411×10−4 -0.9999 -2.323×10−3 4.48×10−5

F1w2 -0.06495 8.536×10−6 0.08206 -0.9909 0.09028 -0.05745

F2w1 -0.06504 2.511×10−6 0.9999 1.339×10−3 7.199×10−3 -3.395×10−4

TABLE V. Components of the repulsive eigenvectors wJ
i for fixed points F1, F2 located at finite λ. We also list the corresponding

eigenvalues θJ .

eigenvector w1 and practically coincide. The only differ-
ence arises depending on the sign of the coefficient cosφ
in front of w1.

When cosφ ≤ 0 we obtain a trajectory whose two-
dimensional projections on various coordinate planes in
the five-dimensional space of couplings are shown in
Fig. 1. We observe that the trajectory exhibits an intri-
cate behavior, with us and v1 growing rapidly (in abso-
lute magnitude). This growth leads to the loss of numer-
ical precision, so that the trajectory cannot be continued
further. We interpret this as evidence that the couplings
us and v1 diverge at a finite RG scale τ , signaling ap-
pearance of strong coupling. The coupling λ increases
towards the boundary of the unitary domain λ = 1/3
but does not reach it.

When cosφ is strictly positive the coupling v1 grows
and diverges even faster. The corresponding plots are
not instructive and we do not present them.

2. Flow from fixed point F2

According to Table III, the second fixed point has only
one repulsive direction. The components of the corre-
sponding eigenvector w1 are given in the third row of
Table V (labeled FP2w1). Note that, as in the case of the
first fixed point, this eigenvector nearly aligns along one
of the coordinate axes — us-direction in this case. There
are only two RG trajectories corresponding to c1 = ±1 in
Eq. (31). The projections of the trajectory with c1 = 1
are shown in Fig. 2. The trajectory in this case is rather
monotonous. Still, as in the case of trajectories emanat-
ing from F1, the couplings us and v1 become very large
and numerical integration breaks down. We again inter-
pret this as divergence of the couplings at finite τ . Note
that the coupling λ almost does not change along the
trajectory.

For c1 = −1 we have a similar loss of numerical
precision due to divergence of couplings, without any
appreciable change in λ. We do not show the corre-
sponding plots since they are not illuminating.

To sum up, the RG trajectories emanating from the
fixed points F1, F2 do not make any significant excur-
sions in λ, quickly running into the strong coupling due
to divergence of us and v1.
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FIG. 1. RG flow from fixed point F1 (red dot) depicting tra-
jectories with cosφ ≤ 0 in the initial conditions (32). The
trajectories practically coincide for all φ ∈ [π/2, 3π/2]. Ar-
rows indicate the flow direction from UV to IR.

B. RG flow from fixed points at λ = ∞ (ϱ = 1)

We turn to fixed points at infinite λ. As discussed
above, there are only three fixed points (4, 5 and 7 in
Table II) that are asymptotically free and can give rise
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FIG. 2. RG flow from fixed point F2 (red dot) initiated along
the positive direction of the repulsive vector. Arrows indicate
the direction from UV to IR. The trajectories cannot be con-
tinued further due to loss of numerical precision.

to trajectories flowing out of the plane λ = ∞ (ϱ = 1).
As shown in Appendix B, the situation for the points
4 and 7 is very similar to what we encountered for the
fixed points F1 and F2. Namely, the trajectories starting
from them run into strong coupling at finite ‘RG time’ τ
without any appreciable change in ϱ. This leaves only the
point 5 as a possible origin of RG trajectories connecting
λ = ∞ to the region where λ is of order 1. We presently
show that such trajectories indeed exist. In what follows
we conveniently refer to point 5 as point A.

1. Flow between fixed points A and B

The fixed point A has two negative eigenvalues, see
Table IV. The components of the corresponding repulsive

eigenvectors are listed in the first two rows of Table VI
(labeled wA1 and wA2).9 The initial conditions for the
RG trajectories are set according to Eq. (31) with

cA1w
A1 + cA2w

A2 = cosφAw
A1 + sinφAw

A2 , (33)

where φA ∈ [0, 2π). It is instructive to first set φA =
π/2 and consider the trajectory flowing out of A along
the eigenvector wA2. Though this trajectory stays in
the hyperplane ϱ = 1 because the vector wA2 has zero
ϱ-component, it plays an important role. We show its
projections in Fig. 3. Remarkably, it arrives in IR at the
fixed point 6 from Table II, which we call point B for
convenience.

A

B
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2.5

3

v2

v3

FIG. 3. RG trajectory connecting fixed points A and B. The
trajectory lies entirely in the hyperplane ϱ = 1. Panels show
its projections on the (us, v1) and (v2, v3) planes. Arrows
indicate the flow from UV to IR.

The fact that we found an RG trajectory interpolat-
ing between two fixed points may at first seem surpris-
ing. However, as one can see from Table IV, all eigen-
values of the stability matrix at the point B, except θ1,
have positive real parts. Since θ2, . . . , θ5 correspond to
the eigenvectors lying in the hyperplane ϱ = 1, we con-
clude that the point B is absolutely attractive within this
plane. It just happens that the fixed point A belongs to
(the boundary of) the basin of attraction of B, and the

9 Note that we define these eigenvectors with the opposite sign
compared to [26].
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Eigenvector
label

θJ wJ
ϱ wJ

us
wJ

v1 wJ
v2 wJ

v3

wA1 -0.01414 -0.04229 -0.9983 0.03985 -5.247×10−3 -5.566×10−3

wA2 -0.06998 0 0.9666 0.1150 0.2239 -0.04799

wB1 -0.01515 2.190×10−5 0.01622 -0.9999 1.874×10−5 5.691×10−6

TABLE VI. Components of the repulsive eigenvectors wJ
i for fixed points A and B located at λ = ∞ (ϱ = 1). The corresponding

eigenvalues θJ are also shown.

direction wA2 points inside this basin.10

It is now clear that if φA in Eq. (33) slightly deviates
from π/2, i.e. the initial conditions for the RG trajectory
have a small admixture of the vector wA1 with non-zero
ϱ-component, the flow will approach the point B but will
not terminate there. Instead, it will pick up the repul-
sive direction wB1 and will run along it away from the
ϱ = 1 plane. This motivates us to look closely at the RG
trajectories starting from the point B.

2. Flow from point B to λ → 1+

The fixed point B is not asymptotically free. Thus, it
cannot serve as a UV fixed point of the RG flow. How-
ever, as we saw above, it can play the role of an attractor
at intermediate RG scales. The flow leaves the attractor
along the unique repulsive eigenvector wB1 whose compo-
nents are listed in the third row of Table VI. This vector
points away from the ϱ = 1 plane. Depending on the
choice cB1 = ±1 in the initial condition (31) we obtain
two RG trajectories.

-v1
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v3
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-10

0
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20

ρ

FIG. 4. Couplings {us, v1, v2, v3} as functions of ϱ along the
RG trajectory from the fixed point B to ϱ → 0 (λ → 1+).
Arrows indicate the flow from UV to IR.

On the trajectory with cB1 = −1, the coupling ϱmono-
tonically decreases and at τ → −∞ reaches the bound-

10 It is worth mentioning that the trajectory with φA = 3π/2 in the
initial displacement (33), i.e. initialized in the opposite direction
of vector wA2, does not reach the point B. Instead, it exhibits a
singularity corresponding to divergence of couplings at finite τ .

ary of the unitary domain (10a) ϱ → 0 (λ → 1+). The
behavior of other couplings is shown in Fig. 4. The cou-
plings va approach some finite values of order O(1) or
O(10) before they start rapidly growing in a small vicin-
ity of ϱ = 0 (not shown in the plot). This divergence
can be attributed to the presence of large inverse powers
of (1 − λ) in the beta functions (16c). The coupling us
tends to zero when ϱ → 0. More details about the be-
havior of the couplings at ϱ → 0 (λ → 1+) are given in
Appendix C.

3. Flow from point B to λ → 1/3−

On the trajectory with cB1 = 1 the coupling ϱ mono-
tonically increases and at τ → −∞ reaches another
boundary of the unitarity domain (10a) ϱ → ∞ (λ →
1/3−). The couplings us, v1 grow rapidly in absolute
value along the trajectory, while v2, v3 are of order 1
until the trajectory reaches vicinity of λ = 1/3. Despite
large values of us and v1, we have not encounters any
numerical difficulties with integration of this trajectory
until it gets quite close to λ = 1/3. The dependence of
the coupling on ϱ is shown in Fig. 5. Note that ϱ = 15
corresponds to λ = 0.286.
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FIG. 5. Couplings {us, v1, v2, v3} as functions of ϱ along the
RG trajectory from the fixed point B to ϱ → ∞ (λ → 1/3−).
Arrows indicate the flow from UV to IR.

Thus, the RG trajectories starting from B are regular
and span the whole unitary domain (10a). This allows
us to construct a flow from the asymptotically free fixed
point A which covers all admissible values of λ.
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4. Flow from fixed point A to λ = O(1)

We now consider a general linear combination of vec-
tors wA1 and wA2 in the initial condition (33) at the
point A. For different values of φA we obtain the follow-
ing global behavior of the RG trajectories schematically
illustrated in Fig. 6:

• φA ∈ [δ, π2 ), where δ ≪ 1:11 the trajectory passes
in the neighborhood of the point B and gets at-
tracted to the trajectory shown in Fig. 4. This
gives a family of RG trajectories starting from the
asymptotically free UV fixed point A and running
into the region ϱ = 0 (λ → 1+) in IR. A complete
trajectory for φA = π/4 is shown in Fig. 7.

• φA = π
2 : the trajectory connects fixed points A and

B. It is shown in Fig. 3.

• φA ∈ (π2 , π− δ]: the trajectory passes in the neigh-
borhood of the point B and gets attracted to the
trajectory shown in Fig. 5. This gives a fam-
ily of trajectories starting from the asymptotically
free UV fixed point A and running into the region
ϱ = ∞ (λ = 1/3−) in IR. They cover the left part
of the unitary domain (10a) λ ∈ (−∞, 1/3). Fig. 8
shows such a trajectory with φA = 3π/4. Absolute
values of the coupling us and v1 grow very rapidly
on this trajectories, while v2 and v3 stay of order
one in magnitude.

• φA ∈ (π − δ, 2π + δ): the trajectory runs into a
singularity with v1 diverging to negative infinity at
finite value of RG parameter τ .

to singularity

to λ → 1/3- to λ → 1+

φA

δ δ

B

A

FIG. 6. A chart illustrating global properties of the RG trajec-
tories flowing from the fixed point A along different directions
parametrized by the angle φA, see (33).

11 Precise value of δ depends on the choice of ε in Eq. (31). We
find δ ≃ 2× 10−8 for ε = 10−5.

To sum up, the results of this subsection, together with
Appendix B, complete the investigation of RG trajecto-
ries which start from asymptotically free fixed points at
λ = ∞ and can flow to finite λ. We found that only one
fixed point — point A — gives rise to long RG trajec-
tories reaching the region λ = O(1). These trajectories
cover the whole admissible range (10a) of the coupling λ
and are remarkably universal. After bypassing another
(not asymptotically free) fixed point B they are attracted
to one of the trajectories emanating from this point. The
universal behavior of the couplings {us, v1, v2, v3} along
these two trajectories is shown in Figs. 4 and 5 as function
of the variable ϱ related to λ by Eq. (26). The trajectory
shown in Fig. 4 approaches in IR the phenomenologically
interesting region λ → 1+ where the kinetic term of HG
coincides with that of GR.

VI. RUNNING OF THE GRAVITATIONAL
COUPLING

A. Non-monotonic flow of G

Until now we considered the RG flow (18) in the space
of couplings gi = {λ, us, va} which separates from the
behavior of the overall gravitational coupling G. We
presently discuss the running of G itself. Its RG equation
has the form

dG
dτ

= Gβ̂G , (34)

where τ is defined in (17) and β̂G depends only on gi. For
a given RG trajectory gi(τ) this equation can be easily
integrated:

G(τ) = G0 exp

[ ∫ τ

0

dτ ′ β̂G
(
gi(τ

′)
)]
. (35)

Thus, the behavior of G along a trajectory is determined
up to an overall normalization G0. We are primarily in-
terested in the trajectories running from the point A to-
wards λ → 1+ or λ → 1/3−. Along these trajectories
λ changes monotonically, so τ and hence G can be ex-
pressed as functions of λ.

In Fig. 9 we plot G(λ) on the RG trajectory from Fig. 7
which belongs to the flow from A to λ → 1+. A strik-
ing feature of this flow is non-monotonic behavior of G.
This has a transparent explanation. When the trajectory
leaves the asymptotically free fixed point A (λ decreases
from infinity) G grows. The trajectory is then attracted
to the point B which is not asymptotically free. Some-
where in between the points A and B the beta-function

β̂G changes sign and G reaches a maximum. The trajec-
tory spends a long ‘RG time’ in the vicinity of B where

β̂G is positive, so the gravitational coupling decreases.12

12 Recall that τ → −∞ along the flow.
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FIG. 7. RG trajectory from fixed point A to ϱ → 0 (λ → 1+). Arrows indicate the flow from UV to IR. After the trajectory
bypasses the neighborhood of the point B it gets attracted to the trajectory shown in Fig. 4.

FIG. 8. RG trajectory from fixed point A to ϱ → ∞ (λ → 1/3−). Arrows indicate the flow from UV to IR. After the trajectory
bypasses the neighborhood of the point B it gets attracted to the trajectory shown in Fig. 5. Note the logarithmic scale of us

and v1 in the left plot.

Eventually, the trajectory escapes from the points B and
gets into the region λ = O(1).

IIIII I
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FIG. 9. Behavior of G as a function of (λ − 1) along an RG
trajectory connecting the point A to λ → 1+. In regions I,
II and III the dependence is well described by the power law
G ∝ (λ− 1)κ with κI = −13.69, κII = 3.84, κIII ≈ 0.37.

The dependence of G on λ in regions I and II on the
plot is dominated by the points A and B, respectively. It
is well described by the power law

G ∝ λκ , (36)

where the exponent κ can be found as follows. Consider

dG
dλ

=
βG
βλ

=
G
λ
· β̂G
β̂λ

, (37)

where both β̂G and β̂λ ≡ βλ/λ are finite at λ → ∞ (see

Eqs. (16a), (16b)). The ratio β̂G/β̂λ is approximately
constant in the vicinity of each fixed point, giving rise to
the power law (36) with

κI = (β̂G/β̂λ)
∣∣
A
= −13.69 , (38a)

κII = (β̂G/β̂λ)
∣∣
B
= 3.84 . (38b)

The steep dependence of G on λ in the region II has
an important consequence. For the validity of the pertur-
bative expansion, G must be less than unity everywhere
along the flow. In particular, G < 1 must be satisfied
when the trajectory bypasses the fixed point B. Let us
denote the corresponding value of λ by λB . Since the
point B lies at λ = ∞, we have λB ≫ 1. Then the value
of he gravitational coupling at λ ∼ 1 is G < λ−κII

B ≪ 1.
In other words, the IR value of G is necessarily very small.
This is indeed observed in Fig. 9. We will discuss this
property in more detail below.
At (λ − 1) ≪ 1 the dependence G(λ) flattens out.

We find numerically that at 0.01 ≲ (λ − 1) ≲ 1 it
also approximately follows a power law, now of the form
G ∝ (λ−1)0.37. Finally, in the region (λ−1) ≪ 10−3 (not
shown in Fig. 9) the curves flattens further and asymp-
totically approaches the form

G
∣∣
λ→1

∝ (λ− 1)17/448 . (39)
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Derivation of this asymptotics is given in Appendix C.
The fact that G decreases towards IR may suggest that

in the IR limit λ → 1+ the theory becomes free. This
is unlikely. The inverse powers of (λ − 1) in the beta-
functions (16) lead to growth of other couplings which
jeopardizes the perturbative expansion. In Appendix C
we derive the behavior of us and va in deep IR,

us
∣∣
λ→1

∝ (λ−1)241/448 , va
∣∣
λ→1

∝ (λ−1)−1 . (40)

The rapid growth of va is not compensated by the slow
decrease of G (39) in the physical observables, such as
e.g. differential scattering cross section of tt-gravitons
[43]. This indicates that the theory gets strongly coupled
if the RG reaches too close to λ = 1.
It is worth noting in this connection that the proper-

ties of the RG flow in deep IR will be altered by the rele-
vant operators in the HG action, which we have neglected
in our analysis. Depending on the scale of these opera-
tors, the change can happen before the theory reaches
into strong coupling. While studying the RG flow in
the presence of relevant operators is beyond the scope
of this paper, we note that they are expected to sta-
bilize the strength of the gravitational interaction from
increasing towards IR since HG at low energies is equiv-
alent to GR coupled to a scalar field with derivative self-
interactions [33].

For completeness, we show in Fig. 10 the running of
G along the RG trajectory from Fig. 8 interpolating be-
tween the fixed point A and the region λ → 1/3−. In
regions I and II of the plot the trajectory is again dom-
inated by the fixed points A and B, respectively, leading
to non-monotonic variation of G. The dependence G(λ) in
these regions is captured by the power law (36) with the
exponents (38). When λ gets close to 1/3 the coupling G
decreases abruptly. We do not know if this implies weak
coupling along this trajectory in IR since other couplings
{us, va} rapidly grow, see Sec. VB3.

I II
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

FIG. 10. Behavior of G as a function of (λ−1/3) along an RG
trajectory connecting the point A to λ → 1/3−. In regions
I and II the dependence is well described by the power law
G ∝ |λ|κ with κI = −13.69, κII = 3.84.

B. Hierarchy between Planck mass and Lorentz
violating scale

In this subsection we focus on the RG trajectories in-
terpolating between the asymptotically free fixed point A

and the phenomenologically interesting region λ → 1+.
We have seen that the applicability of the perurbaation
theory along the trajectory implies a very small IR value
of the gravitational coupling. Here we explore this prop-
erty and its consequences in more detail.
We define the IR gravitational coupling as the running

coupling G evaluated at a fixed value of λ close to λ = 1,

GIR = GIR(λ)
∣∣
λ=1.01

. (41)

Let us analyze how GIR depends on the initial direction
of the RG trajectory at the point A. This direction is
controlled by the angle φA in the linear combination (33)
of the repulsive vectors wA1, wA2. The projection of
the trajectory on the subspace of couplings {us, va} is
practically independent of the angle, as long as it lies in
the interval φA ∈ (δ, π/2), see Sec. VB4. However, this
angle determines how closely the trajectory bypasses the
fixed point B, which has a major effect on GIR.
If φA ∼ π/2, the flow initially runs very close to the

plane ϱ = 1 (λ = ∞) and almost hits the point B, be-
fore being deflected towards λ → 1+. The trajectory
spends a long ‘RG time’ in the vicinity of the point B,
during which the gravitational coupling decreases from
its maximal value Gmax down to GIR. Consistency of the
perturbation theory requires13 Gmax < 1 which leads to
GIR being very small.
By tuning φA close to δ — the boundary of the flow

attracted to B — we can decrease the amount of the ‘RG
time’ spent by the trajectory in the neighborhood of B.
This increases the value of GIR. In Appendix D we derive
its scaling at small (φA − δ),

GIR = G(0)
IR (φA − δ)α, α = −κII ·

θ1

θ2
= −0.776 , (42)

where κII is defined in Eq. (38b), and θ1, θ2 are the
eigenvalues corresponding to the repulsive vectors wA1,

wA2 at the point A, see Table VI. The coefficient G(0)
IR

depends on the maximal value of G along the flow.
Fig. 11 shows the dependence of GIR on (φA−δ) found

numerically14 with Gmax = 0.25. We observe that even
extreme fine-tuning at the level (φA − δ) ∼ 10−17 gives
at most GIR ∼ 10−5, whereas typical values (φA − δ) ∼
1 correspond to GIR ∼ 10−20. The dependence indeed

obeys the scaling (42) with G(0)
IR ≃ 1.5 · 10−19.

The smallness of GIR has an important implication.
Imagine that the RG flow is cut off by the relevant op-
erators at some scale where λ ≃ 1. At this scale all cou-
plings must be matched to their values in the low-energy
theory. Recall that the dimensionless gravitational cou-
pling is defined as the ratio G = G/

√
ν5. As discussed in

13 This can be achieved by adjusting the initial value G0 near the
asymptotically free point A.

14 To explore very small deviations (φA − δ) ∼ 10−17 we have
determined the critical angle δ with the accuracy 10−19.
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FIG. 11. Dependence of the IR value of the gravitational cou-
pling on the initial direction of the trajectory at the point A.
Dots show the result of numerical integration of RG equations
while dashed line is the fit by Eq. (42).

Sec. II, the parameter ν
−1/4
5 is identified within the low-

energy theory with the Lorentz breaking scale MLV , see
Eq. (13). On the other hand, the dimensionful couplingG
becomes essentially the Newton’s constant.15 Expressing
it conventionally through the Planck mass, G = M−2

Pl ,
we obtain a vast hierarchy between the latter and the
Lorentz violation scale,

MLV

MPl
=
√
GIR ≪ 1 . (43)

It is remarkable that this hierarchy is not only techni-
cally natural, but actually enforced by the consistency of
the RG flow. It would be interesting to see if a similar
hierarchy (43) naturally arises in other versions of HG,
in particular, the non-projectable model. In that case
it could lead to strong suppression of Lorentz violating
effects in gravity at low energies [18, 19, 33].

VII. SUMMARY

We performed a comprehensive study of the RG flow of
marginal couplings in (3+1)-dimensional projectable HG.
We first identified all fixed points of the flow: five points
at finite value of the kinetic coupling λ and eight points
at λ = ∞. We presented strong numerical evidence that
no other fixed points exist. All fixed points at finite λ
are asymptotically free. However, unlike the case of HG
in (2 + 1)-dimensions [23], they all lie at λ < 1/3, in
the left part of the domain (10a) allowed by unitarity.
Thus, they cannot be connected by RG trajectories to the
phenomenologically interesting region λ → 1+. Three
fixed points out of five are very close to the boundary of
the unitary domain λ = 1/3 and feature very large values
of couplings {us, v1}. Out of the eight fixed points at

15 Barring the issues related to the Minkowski space instability.

infinity only three points are asymptotically free and can
give rise to trajectories flowing towards λ→ 1+.

We next analyzed the local properties of the RG flow
around the fixed points by studying eigenvalues and
eigenvectors of their stability matrices. This allowed us
to identify the attractive and repulsive directions of the
fixed points. Quite unexpectedly, we found that some
fixed points are characterized by complex conjugate pairs
of eigenvalues. This appears at clash with the intuition
that the eigenvalues of the stability matrix are associated
with the anomalous dimensions of the operators generat-
ing the RG flow. While complex anomalous dimensions
are quite common in non-unitary theories (see e.g. [52–
55]), they are believed to be incompatible with unitarity.

Still, we do not think that the presence of complex
eigenvalues of the stability matrix signals violation of uni-
tarity in HG. Rather, the relation between properties of
the fixed points and unitarity can be subtle because HG is
a gauge theory. In non-Abelian theories the gauge group
degenerates into its linearized version at asymptotically
free fixed points. The operators describing interactions
and generating the RG flow are not invariant under this
linearized gauge group. In other words, they do not be-
long to the spectrum of gauge invariant operators at the
(free) fixed point and unitarity constraints do not apply
to them.

Besides, it should be reminded that in the case of HG
the dimensions of operators are defined with respect to
the anisotropic (Lifshitz) scaling. We are not aware of
any rigorous reality conditions in general Lifshitz theo-
ries. Exploring unitarity constraints on the dimensions of
operators and RG flows in such theories will be an inter-
esting task. To the best of our knowledge, HG is the first
example of a unitary theory with complex eigenvalues of
the stability matrix. It would be interesting to search for
more theories with this property.

With the insight from the local analysis we moved to
the global properties of RG trajectories emanating from
asymptotically free fixed points. We considered two fixed
points at finite λ and moderate {us, v1}, initiating a fam-
ily of trajectories along their repulsive directions. We
found that all such trajectories run into singularity, with
some couplings diverging in a finite ‘RG time’. Similar
behavior is exhibited by trajectories starting from two
of the three fixed points at λ = ∞ which we previously
identified as potentially interesting. The parameter λ
along these trajectories remains very large all the way
from the fixed point to the singularity. In particular, the
trajectories from these points never reach into the phe-
nomenologically interesting region λ→ 1+.

However, one fixed point at λ = ∞, which we called
point A, does give rise to long trajectories interpolating
to λ → 1+ or λ → 1/3−, depending on the initial con-
ditions. The RG flow emanating from the point A thus
covers the whole range (10a) allowed by unitarity. The
RG trajectories have a peculiar structure: upon leaving
the point A they get attracted to another, not asymptot-
ically free, fixed point B also at λ = ∞. Coming close
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to the point B, they ‘scatter’ on it and continue along
its single repulsive direction towards λ = O(1). The tra-
jectories from a family with one of the two asymptotics
(λ → 1+ or λ → 1/3−) are very close to each other in
the space of couplings {λ, us, v1, v2, v3}. What distin-
guishes them is the running of the overall gravitational
coupling G. Remarkably, this running is not monotonic,
with G becoming very small both in UV and IR.

We argued that, despite vanishing of G, the theory be-
comes strongly coupled in IR if the RG flow gets too
close to the boundary of the unitary domain λ = 1. This
running into strong coupling can be prevented by the rel-
evant operators which will cut the flow at some finite IR
values λIR and GIR. We showed that if λIR is order-
one, the value GIR is naturally tiny. This implies that
the Planck mass inferred from the strength of gravita-
tional interactions in the low-energy theory is hierarchi-
cally larger — by as many as 10 orders of magnitude
— than the scale of Lorentz symmetry breaking. If such
natural strong hierarchy arises also in the non-projectable
HG, it can strongly suppress its deviations from GR at
low energies [18, 19, 33], as well as leakage of Lorentz
violating effects from gravity to the matter sector [11].
The study of this intriguing possibility is left for future.
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Appendix A: Numerical search for fixed points

1. Finite λ

As described in Sec. III A, we eliminate λ from the
system of equations for the fixed points using Eq. (20)
and introduce the variable ut according to Eq. (22). We

scan over the values u∗t in the interval from
√
10 to 108

with different steps ϵ in different intervals:

• u∗t ∈ (
√
10, 5]: step ϵ = 10−5;

• u∗t ∈ [5, 100]: step ϵ = 10−4;

• u∗t ∈ [100, 1000]: step ϵ = 10−3;

• u∗t ∈ [10m+3, 10m+4], m = 0, . . . , 4: step ϵ = 10m.
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FIG. 12. Dependence of the residual δβ̃ defined in Eq. (25) on

u∗
t in the intervals where δβ̃ crosses zero. For other u∗

t values
δβ̃ is strictly positive or negative. The discontinuities in δβ̃
occur when the partial root minimizing the residual switches
to a different branch.

For each value of u∗t we construct the residual δβ̃ as

described in Sec. IIIA. Figure 12 shows the plots δβ̃(u∗t )
in several intervals where they cross zero. We observe
five crossings which correspond to five solutions of the
system (19). Discontinuities of δβ̃(u∗t ) occur when the
partial root minimizing the residual switches from one
branch of roots to another.

The fixed points listed in Table I accumulate towards
λ = 1/3, so one may wonder if there are more fixed points
with λ even closer to 1/3. These would correspond to
yet larger values of us (and ut) than used in the ut-scan.
We rule out this possibility by eliminating us from the
fixed-point equations in favor of λ and performing the
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search for roots by scanning over λ∗. We focus on the
region 0 < 1/3 − λ∗ ≪ 1, with a step ϵ = 10−9. We

again remove the equation β̃v1 = 0 from the system. The
remaining equations are solved explicitly and their solu-
tions are used to derive the residual δβ̃(λ∗). The result
is shown in Fig. 13. We observe that the residual grows
monotonically at λ∗ → 1/3− implying absence of any
further solutions in this limit.

0.33333320 0.333333300.33333325 1/3

90

100

110

120

logδβ
˜

λ*

FIG. 13. Behavior of the residual δβ̃(λ∗) in the small
neighborhood of the point λ∗ = 1/3. Scanning step in λ∗

is ϵ = 10−9.

2. Infinite λ

Beta-functions for the variables χ = {us, va} in the
limit λ→ ∞ (ϱ = 1) have the form,

β̃χ

∣∣∣
ϱ=1

=
Āχ

26880π2(1 + us)3u5s

9∑
n=0

unsSχ
n [va] ,

Āus = us , Āv1 = 1 , Āv2 = Āv3 = 2 ,

(A1)

where the polynomials Sχ
n [va] are obtained from the poly-

nomials Pχ
n [λ, va] in Eq. (16c) as

Sχ
n [va] = lim

λ→∞

BχPχ
n [λ, va]

(1− λ)3(1− 3λ)3
,

Bus = (1− λ) , Bva = 1 ,

(A2)

To solve the system (28), we fix the value us = u∗s and

remove the equation β̃v1
∣∣
ϱ=1

= 0. Then we solve the

system of three remaining equations for the variables va
using the NSolve Mathematica routine. We make sure
that we recover all complex solutions predicted by the
Bézout’s theorem and pick the real roots. After that we
compute the residual of the first equation and scan over
the values of u∗s. We take the following scanning steps in
different u∗s-intervals:

• u∗s ∈ (0, 1]: step ϵ = 10−5;

• u∗s ∈ [1, 100]: step ϵ = 10−3;

• u∗s ∈ [100, 1000]: step ϵ = 10−2;

• u∗s ∈ [10m+3, 10m+4], m = 0, . . . , 11: step ϵ = 10m.

The points where the residual vanishes are identified as
the roots of the full system (28). The obtained solutions
are listed in Table II.
We have run the numerical scan till large but finite u∗s.

The following argument shows that there are no more
solutions at a higher value of us. The beta-functions (A1)
at large us are dominated by the terms with the highest
powers of this variable. The coefficient Sus

9 happens to
be a pure non-zero number, so restricting to the terms
with u9s in the fixed-point equations does not give any
solutions. Keeping the first subleading terms we have,
up to non-zero factors:

β̃χ

∣∣∣
ϱ=1
us→∞

∝ us Sχ
9 [va] + Sχ

8 [va] . (A3)

The system

usSχ
9 [va] + Sχ

8 [va] = 0 , (A4)

is easily solved and has two real solutions which approx-
imate the fixed points 7 and 8 from the Table II. We
conclude that there are no more solutions of (28) with us
bigger than its value at the point 8.
Finally, we have solved the system (28) directly with

the NSolve command of Mathematica and obtained ex-
actly the same real roots at us > 0 as with the scanning
procedure. This provides an additional verification that
the list of fixed points in Table II is complete.

Appendix B: RG flows from fixed points №4 and №7

This Appendix complements the analysis of Sec. VB
and studies the RG flows starting from asymptotically
free fixed points 4 and 7 at λ = ∞, see Table II. We
work with the coordinate ϱ defined in (26) and mapping
the hyperplane λ = ∞ to ϱ = 1.

1. Flow from point №4

Stability matrix at the point 4 has three negative eigen-
values θJ . The components of the corresponding eigen-
vectors wJ are collected in three upper rows of Table VII
(labeled w4|1, w4|2, w4|3). Note that the eigenvectors are
almost collinear and nearly coincide with v1-direction.
In the initial conditions of RG equation (31), we choose
constants cJ on the unit sphere

c1w
4|1 + c2w

4|2 + c3w
4|3

= sinϑ cosφw4|1 + cosϑw4|2 + sinϑ sinφw4|3 ,
(B1)

where ϑ ∈ [0, π] and φ ∈ [0, 2π).
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Eigenvector
label

θJ wJ
ϱ wJ

us
wJ

v1 wJ
v2 wJ

v3

w4|1 -0.01334 2.53×10−3 0.0807 -0.997 -6.24×10−4 5.16×10−3

w4|2 -0.3436 0 1.22×10−3 -0.999 -0.0117 1.07×10−3

w4|3 -0.09353 0 -9.25×10−3 -0.941 -0.279 0.190

w7|1 -0.01516 5.92×10−4 0.999 -7.77×10−3 5.51×10−3 -7.43×10−3

w7|2 -1.722 0 0.509 -0.127 0.625 0.578

w7|3
-0.3324 ± 0.3289i

0 -0.999 0.0218 -0.0310 0.0213

w7|4 0 0 -6.11×10−3 0.0178 -5.07×10−3

TABLE VII. Components of the repulsive vectors wJ
i for fixed points 4 and 7 located at λ = ∞ (ϱ = 1) with their corresponding

eigenvalues θJ . Vectors w7|3, w7|4 are real and imaginary parts of a pair of complex eigenvectors corresponding to two complex

conjugate eigenvalues. We set w
7|4
us = 0 using the freedom to rotate the phase of a complex vector and impose the normalization∑

i

[(
w

7|3
i

)2
+

(
w

7|4
i

)2]
= 1.

We construct a two-parameter family of trajectories
scanning the space (ϑ, φ) with steps ∼ 0.1 in each di-
rection. We find that all trajectories practically coin-
cide with one of the two trajectories corresponding to
c2 = ±1. This is explained by the dominance of the
eigenvalue θ2 (see Table VII) which implies that all tra-
jectories are quickly attracted to the direction set by the
vector w4|2. More in detail, we have:

1. ϑ ∈ [0, π/2), φ-any: the projections of the trajec-
tory on different planes are shown by black dashed
curves in Fig. 14;

2. ϑ ∈ [π/2, π], φ-any: the trajectory is shown by the
blue solid curves in Fig. 14.

The trajectories cannot be continued any further be-
cause of the loss of numerical precision due to a rapid
growth of v1. In other words, the trajectories run into
singularity in a finite ‘RG time’ τ . Note that at the same
time us, v2, v3 remain relatively small. The coupling ϱ
increases if c1 > 0 in Eq. (B1) or decreases if c1 < 0. In
both cases ϱ changes very little over the whole span of
the trajectory, see middle and lower panels in Fig. 14, so
the flow effectively stays in the plane ϱ = 1.

2. Flow from point №7

Fixed point 7 has four negative eigenvalues θJ . Two of
them (θ1, θ2) are real and two (θ3, θ4) are complex con-
jugate. The repulsive vectors are listed in the four lower
rows of Table VII (labeled w7|1 through w7|4). The vec-
tors w7|1 and w7|2 are eigenvectors corresponding to θ1,
θ2, whereas the vectors w7|3, w7|4 are real and imaginary
parts of the complex eigenvectors corresponding to θ3, θ4.
Using the freedom in the choice of the phase of a com-

plex eigenvector, we set the component w
7|4
us to zero. Note

that w7|1 and w7|3 happen to be almost (anti-)collinear
and aligned along the us-direction. On the other hand,
the vectors w7|2, w7|4 have comparable components along
other directions.

In the initial conditions of RG equation (31), we choose
constants cJ on the unit 3-sphere, parametrized by angles
ϑ, ψ and φ,

c1w
7|1 + c2w

7|2 + c3w
7|3 + c4w

7|4

= sinϑ cosψw7|1 + cosϑw7|2

+ sinϑ sinψ cosφw7|3 + sinϑ sinψ sinφw7|4 .

(B2)

As in the previous sections, we construct a family trajec-
tories by scanning the parameters ϑ ∈ [0, π], ψ ∈ [0, π],
φ ∈ [0, 2π) with a small step ∼ 0.1 in each direction. All
trajectories again practically coincide with one of two tra-
jectories whose projections on various coordinate planes
are shown in Fig. 15. This is again explained by the dom-
inance of the eigenvalue θ2 (see Table VII) which implies
that all trajectories are quickly attracted to the direction
set by the vector w7|2 and the only relevant characteris-
tics is the sign of the coefficient c2. More in detail, we
have:

1. ϑ ∈ [0, π/2), ψ-any, φ-any: the projections of the
trajectory on different planes are shown by black
dashed curves in Fig. 15;

2. ϑ ∈ [π/2, π], ψ-any, φ-any: the trajectory is shown
by the blue solid curves in Fig. 15.

The trajectories cannot be continued any further be-
cause of the loss of precision due to a rapid growth of the
couplings in absolute values. We conclude that the tra-
jectories run into singularity in a finite ‘RG time’. The
behavior of ϱ depends only on the sign of the coefficient
c1: the coupling increases when c1 > 0 and decreases
when c1 < 0. The change of ϱ on all trajectories is neg-
ligible and the flow effectively stays in the ϱ = 1 plane.

Appendix C: Asymptotics of RG flow at λ → 1+

In the main text we have obtained numerically the be-
havior of essential couplings as functions of (λ− 1) along
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FIG. 14. RG flow from fixed point 4 (red dot). Dashed black
(solid blue) curves show the projections of the trajectories
with c2 > 0 (c2 ≤ 0). In both cases sign c1 = −sign c2. The
opposite choice of the c1-sign will reflect the trajectory with
respect to the fixed point in ϱ-axis. The trajectories stay very
close to the initial value ϱ = 1. Arrows indicate the direction
from UV to IR. The break in the blue curve in the upper
panel signals the loss of numerical precision.

RG trajectories connecting the point A to the domain of
λ→ 1+, see Figs. 7 and 9. However, it is problematic to
continue the numerical solutions down to very small val-
ues of (λ−1) due to the accumulation of numerical errors.
In this Appendix we derive approximate analytic expres-
sions for the running couplings at λ→ 1+ exploiting the
simplification of beta-functions (16) in this region.

We are interested in the ratios of beta-functions βG/βλ
and βχ/βλ, χ = {us, va}, which determine the running
of all couplings with respect to λ. It is natural to assume
that at λ → 1+ these ratios will be dominated by the
leading terms in their Laurent series at λ = 1.16 Using
the expressions for the polynomials PG

n , Pχ
n from [25] we

16 This is not guaranteed, though, since a priori the subleading
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FIG. 15. RG flow from fixed point 7 (red dot). Dashed black
(solid blue) curves show the projections of the trajectories
with c2 > 0 (c2 ≤ 0). In both cases sign c1 = sign c2. The
opposite choice of the c1-sign will reflect the trajectory with
respect to the fixed point in ϱ-axis. The trajectories stay very
close to the initial value ϱ = 1. Arrows indicate the direction
from UV to IR. The breaks in the black dashed curves in the
middle and lower panels signal the loss of numerical precision.

obtain, (
βG
βλ

)
LO

= G 17

448

1 + us
λ− 1

, (C1a)(
βus

βλ

)
LO

=
us(241 + 17us)

448(λ− 1)
, (C1b)(

βva
βλ

)
LO

= −αva

1 + us
(λ− 1)2

, (C1c)

where αv1 = 1
224 , αv2 = 3

112 , αv3 = 1
28 . Figs. 16,

17 show comparison of these expressions with the ex-

terms in the series can be enhanced by the other couplings en-
tering the beta-functions.
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act beta-function ratios found numerically along a typi-
cal RG trajectory connecting the point A to λ→ 1+. We
see that the approximation works well at (λ− 1) ≲ 0.01.

β/βλ·
-1

(β/βλ·
-1)LO

0.001 0.003 0.01 0.03 0.1

5

10

20

50

100

λ - 1

FIG. 16. Beta-function of the coupling G as a function of
(λ − 1) on a typical RG trajectory from the fixed point A
to λ → 1+ (solid), compared to the analytic approximation
(C1a) (dashed). The initial angle of the trajectory at point
A is φA = π/4.

The system (C1) is easy to study analytically. First,
we solve the equation (C1b) for us,

us
us + 241/17

= Cus
(λ− 1)241/448 , (C2)

where Cus
is an integration constant. Numerically we

find Cus
≈ 2.98 for all trajectories from the fixed point

A to λ→ 1+. Expressing us through (λ−1) and keeping
only two terms of the expansion17 we obtain,

us ≃
241

17
Cus(λ− 1)241/448

(
1 + Cus(λ− 1)241/448

)
.

(C3)
Substituting this into (C1a) we obtains the asymptotic
behavior

G ≃ CG

(
(λ− 1)17/448 + Cus

(λ− 1)129/224
)
, (C4)

with a new integration constant CG . This depends on
the initial direction φA of the trajectory at the point
A. For φA = π/4 we find CG ≈ 1.95 × 10−20. Finally,
substituting (C3) into (C1c) we find,

va ≃ αva

λ− 1

(
1+

107968Cus

3519
(λ−1)241/448+Cva

)
, (C5)

where Cva are further constants. We observe that the
couplings va diverge at λ→ 1+. Expressions (C3), (C4),
(C5) yield the scalings (39), (40) used in the main text.

17 Retaining two terms, rather than one, significantly improves the
agreement with the numerical data.

Appendix D: Dependence of GIR on the initial flow
direction

Here we derive Eq. (42) describing the scaling of the
gravitational coupling in the IR region λ→ 1+ on the ini-
tial direction of the RG trajectory at the UV fixed point
A located at λ → ∞. We replace λ with the coupling ϱ
defined in Eq. (26), which brings the position of the fixed
point to the finite value ϱ = 1.
When the RG trajectory leaves the UV fixed point,

it first closely follows the trajectory χAB(τ) (here χ =
{us, va}) in the hyperplane ϱ = 1 which connects the
point A to the point B, see Sec. VB1. The gravitational

coupling then evolves according to Eq. (35), where β̂G
can be considered as function of χAB(τ). The coupling G
grows along the trajectory and reaches a maximum Gmax

at a point χmax where β̂G changes sign. Let us denote
the corresponding ‘RG time’ by τmax. The RG evolution
from τ = 0 to τmax corresponds to the region I in Fig. 9.
Though the deviation (1−ϱ)max of the trajectory from

the hyperplane ϱ = 1 at τmax is small, it is non-zero.
After the passage through τmax the trajectory scatters
on the point B and (1−ϱ) starts rapidly increasing. This
corresponds to the region II in Fig. 9. The power law
scaling (36) in this region implies

GIR ∝ Gmax

[
(1− ϱ)max

]κII
, (D1)

where κII is given in Eq. (38b). We see that for fixed
Gmax < 1, the IR coupling GIR scales as a power of the
distance between the trajectory and the hyperplane ϱ = 1
at the ‘RG time’ τmax. Thus, our task is to derive the
dependence of this distance on the initial angle φA at
τ = 0.
Let us show that when the angle φA is close to the

critical value δ the trajectory spends a long ‘RG time’
in the neighborhood of the point A. Indeed, the RG flow
in this neighborhood is controlled by the stability ma-
trix (29). Expanding the deviations of the couplings
from their fixed-point values in the eigenvector basis,
gi(τ)− g⋆i = aJ(τ)w

J , we have

aJ(τ) = aJ,0 e
θJτ . (D2)

The couplings χ evolve mostly along the dominant re-
pulsive direction wA2, see Table VI. The initial condition
for the coefficient of this eigenvector is small when φA is
close to its critical value δ,

a2,0 ∝ φA − δ , (D3)

thus the ‘RG time’ τ⋆ it takes the trajectory to escape
from A is logarithmically large,

τ⋆ ∝ − 1

θ2
log(φA − δ) . (D4)

On the other hand, since the ϱ-component of wA2 van-
ishes, the evolution of ϱ is determined by the subdomi-
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FIG. 17. Same as Fig. 16 but for the beta-functions of the couplings us, va.

nant eigenvalue θ1. Using the beta-function (27) we ob-
tain,

(1− ϱ)max = (1− ϱ)0 e
θ1τ⋆ exp

[ ∫ τmax

τ⋆

dτ ′ β̂ϱ
(
us(τ

′)

]
,

(D5)
where

β̂ϱ =
β̃ϱ

1− ϱ

∣∣∣∣
ϱ=1

. (D6)

The integral in the second exponent is finite in the limit
(φA − δ) → 0 since it is taken over a finite portion of the
trajectory χAB(τ) outside the neighborhoods of the fixed
points. The initial value (1 − ϱ)0 = ε cosφA w

A1
ϱ is also

finite when φA → δ. Thus, we get

(1− ϱ)max ∝ eθ
1τ⋆ . (D7)

Combining with Eq. (D4) we obtain

(1− ϱ)max ∝ (φA − δ)−θ1/θ2

. (D8)

Finally, inserting this into (D1) yields the scaling (42).

Note that in the opposite limit φA → π/2 the ‘es-
cape time’ τ⋆ remains finite, whereas the initial condi-
tion (1− ϱ)0 is proportional to (π/2−φA). Thus, the IR
gravitational coupling simply obeys the scaling

GIR ∝ (π/2− φA)
κII (D9)

and quickly vanishes when φA approaches π/2.
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[20] J. Belloŕın, C. Bórquez, and B. Droguett, Cancellation
of divergences in the nonprojectable hořava theory, Phys.
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