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Abstract

This paper presents an innovative approach to Extreme Value Analysis (EVA)
by introducing the Extreme Value Dynamic Benchmarking Method (EVDBM).
EVDBM integrates extreme value theory to detect extreme events and is cou-
pled with the novel Dynamic Identification of Significant Correlation (DISC)-
Thresholding algorithm, which enhances the analysis of key variables under
extreme conditions. By integrating return values predicted through EVA
into the benchmarking scores, we are able to transform these scores to re-
flect anticipated conditions more accurately. This provides a more precise
picture of how each case is projected to unfold under extreme conditions. As
a result, the adjusted scores offer a forward-looking perspective, highlighting
potential vulnerabilities and resilience factors for each case in a way that
static historical data alone cannot capture. By incorporating both historical
and probabilistic elements, the EVDBM algorithm provides a comprehensive
benchmarking framework that is adaptable to a range of scenarios and con-
texts. The methodology is applied to real PV data, revealing critical low
- production scenarios and significant correlations between variables, which
aid in risk management, infrastructure design, and long-term planning, while
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also allowing for the comparison of different production plants. The flexibil-
ity of EVDBM suggests its potential for broader applications in other sectors
where decision-making sensitivity is crucial, offering valuable insights to im-
prove outcomes.

Keywords: Extreme Value analysis, Data analytics, Big Data, Decision
making, Risk Assessment, Predictive Modeling, Forecasting, Benchmarking

1. Introduction

Understanding and managing extreme events is crucial across multiple
domains, as these rare occurrences often carry significant risks and conse-
quences. In finance for example, extreme events such as market crashes or
rapid shifts in asset prices can lead to substantial financial losses, making the
prediction and mitigation of such extremes critical for portfolio management
and risk assessment. Consequently, extreme value theory (EVT) has been
widely applied to model financial market tail risks (e.g., [1, 2, 3]), helping
institutions prepare for catastrophic losses by better managing their capital
reserves.

In healthcare, extreme events like rare medical conditions, pandemics, or
extreme fluctuations in patient health metrics (e.g. in blood glucose levels)
require swift responses [4, 5, 6]. The ability to predict and mitigate these ex-
tremes improves patient care and health outcomes. Consequently, EVA has
been applied to predict rare but severe health crises, like extreme blood pres-
sure spikes in critically ill patients, which allows for more informed treatment
strategies.

In the energy sector, particularly with regard to renewable energy, un-
derstanding extreme events is equally important. Fluctuations in energy
production due to extreme weather conditions (e.g., prolonged cloudy peri-
ods or intense storms) can significantly affect the reliability of energy grids
[7, 8, 9]. Renewable sources, such as solar and wind, are inherently variable,
and extreme lows in production can lead to energy shortages. Therefore, ap-
plying EVA in this context enables energy providers to better predict, plan
for, and mitigate risks associated with extreme energy production events.

This paper introduces a novel methodology, the Extreme Value Dynamic
Benchmarking Method (EVDBM), which enhances the application of Ex-
treme Value Analysis (EVA) to detect and analyze rare, high-impact events
across various fields. EVDBM integrates extreme value theory with the inno-
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vative Dynamic Identification of Significant Correlation (DISC)-Thresholding
algorithm, allowing for a deeper examination of how key variables behave un-
der extreme conditions. This combination enables decision-makers in various
fields, including the aforementioned ones, to better understand the correla-
tions between critical factors during extreme scenarios, whether they involve
market crashes, medical emergencies, or energy production shortfalls and
project how the related conditions while adjust in the future.

The EVDBM Algorithm provides a robust quantitative mechanism for
comparing different use cases by generating a final benchmarking score based
on weighted performance during extreme events. This approach considers the
frequency of past extreme events and incorporates the predicted severity and
likelihood of future occurrences to project how related conditions to the EVA
dependent variable behave. By integrating both historical data and proba-
bilistic projections, the algorithm enables a more meaningful comparison of
cases under projected stress conditions, offering a forward-looking evaluation
of performance. This comprehensive framework is adaptable to a wide range
of scenarios and contexts, making it particularly valuable for applications
where understanding resilience to extreme conditions is critical.

This scoring system offers a valuable tool for assessing and comparing
similar situations, such as different financial portfolios during market down-
turns, patient responses during health crises, or energy systems under adverse
weather conditions. By extracting and quantifying correlations between vari-
ables, this methodology provides insights into the overall changes that drive
extreme conditions, helping sectors make informed decisions on risk manage-
ment, planning, and resource allocation.

2. Related Work

In [10], the authors used extreme value theory for the estimation of risk
in finite-time systems, especially for cases when data collection is either ex-
pensive and/or impossible. For the monitoring of rare and damaging con-
sequences of high blood glucose, EVA has been deployed using the block
maxima approach [11]. More examples of application of EVT can be found
in the recent literature, and here we only report those considered more rele-
vant to our research.

Extreme value analysis in energy production and consumption, particu-
larly in the context of renewable sources like solar and wind power, is essential
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for balancing energy demands. Various studies [12, 13] have focused on mod-
eling the production of solar and wind power using the Peaks over Threshold
(POT) method. These method approximate the frequency of peaks above a
certain threshold and determine the distribution of these peaks’ sizes. Differ-
ent clustering methods for analysis to determine optimal fit. Time and longer
data periods are usually necessary to account for seasonal effects fully. This
type of analysis is crucial for understanding and managing the variability
and unpredictability inherent in renewable energy sources.

In [14], estimators for the extreme value index and extreme quantiles in a
semi-supervised setting were developed, leveraging tail dependence between
a target variable and co-variates, with applications to rainfall data in France.
In [15], the authors review available software for statistical modeling of ex-
treme events related to climate change. In [16], a novel method is proposed
for estimating the probability of extreme events from independent observa-
tions, with improved accuracy by minimizing the variance of order-ranked
observations, eliminating the need for subjective user decisions.

Extreme value analysis (EVA) has been used in partial coverage inspec-
tion (PCI) to estimate the largest expected defect in incomplete datasets,
though uncertainties in return level estimations are often under-reported [17].

2.1. Theory of Extreme Value Analysis

In this section, the key characteristics of extreme value theory are high-
lighted. Extreme value analysis (EVA) can be approached from two different
angles. The first one refers to the block maxima (minima) series. According
to block maxima (minima), the annual maximum (minimum) of time series
data is extracted, generating an annual maxima or minima series, simply re-
ferred as AMS. The analysis of the AMS datasets are most frequently based
on the results of the Fisher–Tippett–Gnedenko theorem, which leads to the
fitting of the generalized extreme value distribution. A wide range of distri-
butions can also be applied. The limiting of distributions for the maximum
(minimum) of a collection of random variables from the same distribution is
the basis of the examined theorem [18].

The peak-over-threshold (POT) methodology is the second approach used
in EVA In POT, a sorted series is analyzed, first identifying the peak val-
ues that exceed a given threshold in a given set of records. The analysis
usually involves the fitting of two distributions. One concerns the number of
events covering the time period or space analyzed, and the other concerns the
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selected size of extracted peaks. As per the Pickands–Balkema–De Haan the-
orem, the POT extreme values asymptotically follow the generalized Pareto
distribution family, and a Poisson distribution is used for the total number
of events [19]. The return level (R.V.) of the extreme values can be approx-
imated from the fitted distribution. The value expected or return value is
equal to or exceeds the threshold on average once every interval T of time or
space with a probability of 1/T .

PDF refers to the probability density function of the continuous ran-
dom variable, which, at any given point in the examined space, can provide
the relative likelihood that the random variable is located near the sample
space [18].

Estimators based on asymptotic extreme value theory have been pro-
posed, and their performances were theoretically evaluated and verified via
Monte Carlo simulation as faster alternatives for estimation of the parameters
of alpha-stable impulsive interference in [20].

The shape of the probability distribution is calculated via the L-moments.
The L-moments represent linear combinations of order statistics (L-statistics)
similar to conventional moments. They are used to calculate quantities anal-
ogous to standard deviation, skewness and kurtosis, and can thus be termed
L-scale, L-skewness and L-kurtosis. Therefore, they summarize the shape of
the probability distribution:

L4 =
n∗Σni(Yi−Ỹ )4

(Σni(Yi–Ỹ )2)2
.

L4= L-kurtosis.
Yi: ith Variable of the distribution.
Ỹ : Mean of the distribution.
n: Number of Variables in the distribution.
µ̃3 =

ΣN
i (Xi−X̃)3

(N−1)∗σ3 .
µ̃3=L-skewness .
N= number of variables in the distribution.
Xi = random variables.
X̃=mean of the distribution.
σ = standard deviation. namely.

2.2. Pearson correlation

The Pearson correlation coefficient [21, 22, 23], often denoted as r, is
a measure of the linear relationship between two variables. The Pearson
correlation coefficient quantifies the degree to which two variables X and Y
are linearly related. It ranges from -1 to 1, where:
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r = 1 indicates a perfect positive linear relationship (as X increases, Y
increases proportionally)

r = -1 indicates a perfect negative linear relationship (as X increases, Y
decreases proportionally)

r = 0 indicates no linear relationship between X and Y
The Pearson correlation coefficient between two variables X and Y is

calculated as: r = Cov(X,Y )
σXσY

where:
Cov(X, Y ) is the covariance between X and Y ,
σX and σY are the standard deviations of X and Y, respectively.
The covariance measures how two variables move together and is defined

as: Cov(X, Y ) = 1
n

∑n
i=1 (Xi − µX) (Yi − µY ) where:

n is the number of data points,
Xi and Yi are the individual values of the variables X and Y ,
µX and µY are the means (averages) of X and Y , respectively.
Lastly, the standard deviation of a variableX is calculated as the measure

of how spread out the values of X are and is given by:

σX =
√

1
n

∑n
i=1 (Xi − µX)

2

L4 =
n∗Σni(Yi−Ỹ )4

(Σni(Yi–Ỹ )2)2
.

L4= L-kurtosis.
Yi: ith Variable of the distribution.
Ỹ : Mean of the distribution.
n: Number of Variables in the distribution.
µ̃3 =

ΣN
i (Xi−X̃)3

(N−1)∗σ3 .
µ̃3=L-skewness .
N= number of variables in the distribution.
Xi = random variables.
X̃=mean of the distribution.
σ = standard deviation.

2.3. Normalization

Normalization refers to the process of scaling variables so that they fit
within a common range (e.g., [0, 1] or mean 0 and standard deviation 1). In
many applications, normalization preserves the relative differences between
variables but still retains their units in some form (although scaled). It
is often used in data science, statistics, and machine learning, where the
goal is to make variables comparable by bringing them onto the same scale
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[24, 25, 26, 27]. Common approaches in normalization aimed at transforming
the variables into a comparable, dimensionless format are the following

• Min-Max Normalization (Feature Scaling): Min-max normalization is
a rescaling technique where variables are linearly scaled to a specific
range, often [0, 1]. The formula is: xnormalized = x−min(X)

max(X)−min(X)
. Where:

– x is the original value of the variable.

– min(X) and max(X) are the minimum and maximum values of
the variable X .

• Z-Score Normalization (Standardization): Z-score normalization trans-
forms each variable by subtracting the mean and dividing by the stan-
dard deviation. The formula is: xstandardized = x−µX

σX
Where:

– x is the original value

– µX is the mean of the variable X

– σX is the standard deviation of X

3. Materials and Methods

In this section we describe the different methods used and how they are
adapted into new a novel methodology.

As a basis to our approach we utilize Extreme Value Analysis (EVA)
to identify and understand rare event scenarios, thereby aiding in informed
decision-making and optimizing management strategies. Evaluating the cir-
cumstances [28] related to extreme values and looking for patterns to inform
on decisions and consists of an elaborated process and two algorithmic ap-
proaches aimed at identifying, explaining and expanding on extreme circum-
stances.
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3.1. Process

Figure 1: Extreme Value Dynamic Benchmarking Method (EVDBM)

In figure 1 we outline our proposed methodology named Extreme Value
Dynamic Benchmarking Method (EVDBM) where the dynamic identification
of significant correlation (DISC) changes is a component. It is a three (3)
step process of analytical milestones, presented as a process. In more detail:

1. Data Synthesis

• Evaluation: This step involves assessing the available data to de-
fine key parameters that will be used in the analysis. This might
include identifying which data points are relevant to the study and
determining the scope and nature of the data to be synthesized.

• Filter by timeframe: This process filters the data according to
specific time periods. The requirements for the timeframe are es-
tablished, which could involve selecting data from particular years,
months, or days that are relevant to the analysis objectives.

– Report: Assessment, Filtering Strategy, Dependent Variable
and Related Variables: This report synthesizes the findings
from the data synthesis and extreme value analysis, detail-
ing the assessment of the data, the strategy used to filter it,
and an analysis of the dependent variable in relation to other
relevant variables.
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2. Extreme Value Analysis

• EVA (Extreme Value Analysis): In this stage, the method for
conducting Extreme Value Analysis is selected, including the de-
termination of thresholds, types of extremes (such as maximum
or minimum values), and how the results will be visualized (e.g.,
through plots).

• Model Fit: This step involves fitting a statistical model to the
data, focusing on the distribution of extreme values. Diagnos-
tic checks are likely performed to ensure the model fits the data
appropriately and to validate the assumptions of the statistical
analysis.

– Report: Plots, Tables - Assessment and Outcomes: Visual
and tabular representations of the data are provided, which
support the assessment and help communicate the outcomes
of the analysis.

3. Circumstance Analysis

• Extremes: Analysis of the extreme values using descriptive statis-
tics and other analytical methods. This part of the process aims
to understand the behavior of the data at its extremes.

• Original: Similar analytical techniques are applied to the origi-
nal dataset (not just the extremes) to provide a comprehensive
understanding of the overall characteristics of the examined data.

– Report: Compare - Original vs Extremes and Correlations
- Original vs Extremes: This involves a comparative analysis
between the (a) datapoints in the normal scenario and the
extreme datapoints, as well as an (b) examination of the cor-
relations between them to identify patterns or relationships.
For (a) we assume that T represents any descriptive statistic
to be computed (e.g., mean, median, variance, standard devi-
ation). x1, x2, . . . , xn represent the values under the extreme
scenario and y1, y2, . . . , yn represent the values under the nor-
mal scenario. Then: ∆T = T (x) − T (y) such that mean can
be represented as ∆v̄ = v̄extreme− v̄normal and so on.
For the streamlining of (b) we have constructed a novel al-
gorithm as Dynamic Identification of Significant Correlation
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Changes Using Percentile Thresholding in Extreme Value Anal-
ysis explained in the following section.

Lastly, in the “Specify Optimization Strategies,” the outcome of the re-
ports should inform on strategies to optimize processes, systems, or models
based on the insights gained from the analysis. To further expand on this,
we have constructed two novel algorithms that expand on EVA, by (1) dy-
namically identifying significant correlation changes which attached to the
circumstance analysis (step 3) and (2) by using those extremes as a bench-
marking basis for different use cases.

3.2. Dynamic Identification of Significant Correlation Changes Using Per-
centile Thresholding in Extreme Value Analysis (DISC-Thresholding)

Below is the generalized mathematical formula that incorporates a dy-
namic threshold for identifying significant correlation changes, based on a
High Positive Correlation (HPC) and a High Negative Correlation (HNN).

Let:
∆ρij be the change in correlation between variables Xi and Xj, defined

as:
∆ρij = ρextreme

ij − ρij (1)
where:

• ρextreme
ij is the Pearson correlation coefficient between Xi and Xj in the

extreme dataset

• ρij is the Pearson correlation coefficient between Xi and Xj in the
general dataset

We define thresholds based on the 90th (or other) and 10th (or other)
percentiles of the distribution of ∆ρij :

• P90(∆ρ) The 90th percentile of all ∆ρij values, representing high posi-
tive changes in correlation (2)

• P10(∆ρ) The 10th percentile of all ∆ρij values, representing high neg-
ative changes in correlation (3)

Then, we define the classification of significant changes in correlation as fol-
lows:
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Classified(∆ρij) =


HPC (High Positive Correlation), if ∆ρij(1) > P90(∆ρ)(2)

HNC (High Negative Correlation), if ∆ρij(1) < P10(∆ρ)(3)

0, otherwise (Not Significant as 0)
In detail:

• ∆ρij (1) represents the change in the pairwise correlation between vari-
ables Xi and Xj when comparing extreme events to normal events.

• HPC (High Positive Correlation) occurs when the change ∆ρij exceeds
the 90th percentile, indicating a significant increase in correlation dur-
ing extreme events.

• HNC (High Negative Correlation) occurs when the change ∆ρij is be-
low the 10th percentile, indicating a significant decrease in correlation
during extreme events.

• Values between the 10th and 90th percentiles are considered not sig-
nificant.

Thus, the entire matrix of correlation differences is classified as HPC,
HNC, or Not Significant depending on the relative magnitude of ∆ρij com-
pared to the dynamically computed thresholds P90 and P10.

3.3. EVA-Driven Weighted Benchmarking Algorithm for Performance

This process is initialized by first describing related conditions under ex-
treme conditions and non-extreme circumstances, allowing for benchmarking
and guiding operational or strategic decisions.

V represents a set of key variables, related to the dependent variable
examined using EVA.

V = {V1, V2, . . . , Vn} (4)
Cextreme(Vi) and Cnormal(Vi) are the counts or statistics (e.g., average or

sum) of variable Vi under extreme low (or high) conditions and normal condi-
tions, respectively, for a given use case. C1

extreme(Vi) and C2
extreme(Vi) are the

values for two different use cases, let say Case 1 and Case 2, under extreme
(low or high) conditions. Moving forward, the benchmarking algorithm
process ensues.
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Benchmarking algorithm process:

• Step 1: Scaling factor, that incorporates historical occurrences and ac-
counts for future risk and adjusting for Stationarity using the projected
return values

For the historical occurrences we can compute a scaling factor S j for
each case (c) that adjusts its score based on the frequency and intensity
of extreme events by normalizing the number of extreme events:

Ec =
N∑m

k=1 Nk
(5)

Where:

– N is the number of extreme events for a case (c)

–
∑m

k=1 Nk is the total number of extreme events across all cases

The EVA distributions provides a return level or exceedance proba-
bility, which informs on the likelihood that a given threshold will be
exceeded in a specific time period. The probability of exceeding a
threshold P (X > x 0) accounts for the future risk and can be esti-
mated as follows:

Pj(X > x) = 1/Treturn × x(T )CI (6)

Where:

– T return is the return period, which is the average time between
extreme events that exceed the threshold x .

∗ Such that if T return =5 (years), then the probability of an
extreme event happening in any given year is 1/5 = 0.2

– and x is the Return Value per T depending on the associated
confidence intervals - CI[lower, upper]. Using the projected
return values add a more dynamic approach to the stationary
(normalized) related circumstances

To account both for historical occurrences and the associated probabil-
ities the final scaling factor is: Sj = Ec × P (X > x) (7)

Thus for the final calculation we also consider the upper and lower
limits and as such the final scaling factor is formulated in a way to
include all scenarios, thus:
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– Return Value: Pj(X > x0) (a)

– Lower CI: P (X > xlower) (b)

– Upper CI: P (X > xupper) (c)

• Step 2: Weighting Factor and Normalization if required

If variables used are of different measuring unit, normalization is ap-
plied. To account for the fact that different variables may have vary-
ing degrees of influence, we introduce weights for each variable. The
weights reflect the importance of each variable under extreme condi-
tions so that:

b(Vi) = wi × Cextreme(Vi) (7)

Where: wi is the weight associated with the mean of the variable Vi

and Vi. The weights allow for prioritization on the more influential
variables in the benchmarking process.

• Step 3: Benchmarking Score (B)

The Benchmarking Score enumerates the final score per examined use
case and the highest (or lowest score) suggests that there are better
conditions associated to that case. We calculate the benchmarking
score per projected year(s) as reported by the EVA, using the associated
scaling factor. Calculations are considered for return value and the
associated confidence intervals. This allows for visual representation of
process to inform on more accurate judgments and comparisons. Thus
considering (6), (7) and (8): Bi = Sj ×

∑n
i=1 b(Vi) (9) for (a), (b) and

(c).

• Step 4: Visualization of Benchmarking Scores as a time series

For the visualization of the Step 3 we use a logarithmic scale for the
x-axis representing return periods to improve the clarity and inter-
pretability of the benchmarking plots. Given that the return periods
span several orders of magnitude (e.g., 1 to 1000 years), a logarithmic
scale allows for a more even distribution of points across the axis, mak-
ing it easier to observe trends over time. This approach ensures that
smaller periods (e.g., 1, 2, 5 years) and larger periods (e.g., 100, 500,
1000 years) are both visible in the same plot without compressing the
data, which would occur on a linear scale.
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4. Application of methods

In this section we apply the EVDBM methodology on Photovoltaic (PV)
data taken from two different PV Plants [29, 30]. We follow the three step
process outlined, without strictly proposing an optimization strategy but
rather outlining a few as an example of applicability. We ill also first intro-
duce some “dummy” weights in order to conclude with a final benchmarking
score.

In our analysis we considered total production in kwh of the PV produc-
tion farms. We considered as time range of interest the peak hours which
occur during midday, thus a time range of 3 hours from 13:00 to 16:00 was
examined. The data were taken from [31, 32] and are take from 2 PV plants
situated in various regions of Portugal as provided from the non-profit orga-
nization, Coopérnico. More descriptive statistics per plant examined to be
provided in the following sections. We analyze and apply EVA on the pro-
duction below the 25th percentile. The variables related to the production
to be analyzed are shown in table 1, for context the Produzida-Production
row, which refers to the Dependent variable for the EVA, is provided. We
also attach the main analytical manually pre-set constants for reference, as
Time-Range and Percentile, to be applied in both use Cases.

# Variables Non-Null Count & Dtype
1 Humidity v1 non-null float64
2 Temperature v2 non-null float64
3 cloudcover v3 non-null float64
4 windspeedKmph v4 non-null float64
5 Solar w/m2 v5 non-null float64
6 Diffuse Solar w/m2 v6 non-null float64
7 Produzida-Production v7 non-null float64

# Constant Value
- Time-Range 13:00-14:00
- Percentile 25%
- EVA-method POT (Peaks Over Threshold)
- Extremes type Low
- Negative Significance < 10%
- Positive Significance > 90%

Table 1: Data Columns and Pre-set Constants Overview
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4.1. EVDBM application Use Case 1: “Zarco” Data

4.1.1. Data Synthesis

Report: From a total of 21932 data, 3656 were related to peak time
production During the peak hours the ours the data to be analyzed are 3656
with a mean production of 23.5 kwh. As suggested the peak time hours are
analyzed, thus the timeframe is ranging between 13:00 to 16:00 where the
sun is the highest, below the 25th percentile of the production level. The
key parameters (variables to be examined and constants) are shown in table
1. The analysis of the examined data are described in detail in table 2. The
25th percentile corresponds to a production level below 18.25.

Statistic Value

Count 3656.00
Mean 29.22
Standard Deviation (std) 12.84
Minimum (min) 0
25th Percentile 18.25
Median (50%) 33.25
75th Percentile 40.25
Maximum (max) 48.50

Table 2: Descriptive Statistics for production - Zarco Use case 1

4.1.2. EVA

We filtered the data to include only these time-frames. EVA was then
applied using the Peaks Over Threshold method, focusing on data below
our defined threshold. This threshold was set to capture the lowest 25%
of production values, determined after statistical analysis of the data. To
analyze the extreme value distribution, we fitted the data to a Generalized
Pareto Distribution (GPD) model.

The histogram bars are not visible above the x-axis, which suggests that
the observed values are so well-matched to the predicted values that the bars
are hidden behind the PDF line. This would indicate an excellent fit if the
theoretical model’s PDF line accurately represents the observed histogram.

Return Periods (in years) can be seen in table 4.1.2.
(1, 2, 5, 10, 25, ..) These numbers represent how often an event of a

certain magnitude is expected to occur. For example, a 100-year return
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Figure 2: Peaks Under Threshold for ”zarco” Use Case 1

period event is something that, on average, we would expect to happen once
every 100 years.

The Return Values represent the estimated magnitude of the event (e.g.,
production level) for each return period. The fact that these values are
mostly negative suggests we’re dealing with a scenario where the focus is on
low production levels or deficits. As the return period increases, the return
values tend to become more negative, indicating that more extreme deficits
are less frequent.

Lower and Upper Confidence Intervals (CI): These values provide a range
around the return value, within which the true value is expected to lie with
a certain level of confidence. The confidence intervals get wider as the return
period increases, indicating more uncertainty in predicting more extreme
events.

1 year return period: The return value is 0.35 with a CI of [ 1.66, 0.11].
This means that in any given year, we can expect an extreme-low production
level of around 0.35 during Peak hours, with a reasonable range of uncertainty
between 1.66 and 0.11, and based on our analysis approximating 0 after 5
years.

As can be seen in the return value plot 3 the data are well fitted within
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Return Period Return Value Lower CI Upper CI

1.00 0.35 1.66 0.11
2.00 0.15 1.31 0.04
5.00 0.05 0.75 0.00
10.00 0.02 0.58 -0.20
25.00 0.01 0.52 -0.36

Table 3: Return Periods and Confidence Intervals - Zarco Use Case 1

the distribution, thus the model is more reliable in predicting low production
levels, allowing for more confidence on model’s predictive capabilities.

The R2 value of 0.997 and p-value of 0.000 confirm the model’s reliability
in predicting the cumulative probabilities of low production events, and as
shown in the plots shown in 3 suggesting a good fit .
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Figure 3: Return Plots and distributions for “zarco”-Use Case 1

4.1.3. Circumstance Analysis

The differences between the two scenarios are shown in table 4.2.3, when
deducting the extremes

Applying the DISC-thresholding we extract the significant differences in
correlations between the extreme low production and the normal production
in the analyzed sample of peak time ranges (table 1). As can be seen in
table 6 significant differences are identified, for example between between
Humidity and Diffuse Solar w/m2 (HNN), humidity and temperature (HPC),
for ∆ρij = ρextreme

ij − ρij and so on.
Following, the relevant information to the extremes are extracted to be
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[table-1] v1 v2 v3 v4 v5 v6 v7

Count -3586.00 -3586.00 -3586.00 -3586.00 -3586.00 -3586.00 -3586.00
Mean 10.02 -1.55 27.84 0.78 -204.85 73.64 -19.82
Min 23.00 5.00 0.00 3.00 32.30 20.64 0.00
25% 9.00 1.00 22.00 1.00 -147.80 63.51 -12.75
50% 6.00 -1.00 50.50 1.00 -237.93 113.13 -23.50
75% 14.00 -3.00 38.75 0.00 -339.21 104.32 -26.25
Max -4.00 -15.00 0.00 -15.00 -106.84 -11.46 -30.50
Std -0.81 -2.18 1.71 -0.52 -57.07 8.25 -7.55

Table 4: Statistical Summary of Weather and Production Data “zarco” Use Case 1

used for benchmarking and comparison with a second Use Case to be ana-
lyzed in the next section.

4.2. EVDBM application Use Case 2: “joao” Data

4.2.1. Data Synthesis

Report: From a total of 21908 data, 3656 were related to peak time
production During the peak hours the ours the data to be analyzed are 3652
with a mean production of 23.5 kwh. As suggested the peak time hours are
analyzed, thus the timeframe is ranging between 13:00 to 16:00 where the
sun is the highest, below the 25th percentile of the production level. The
key parameters (variables to be examined and constants) are shown in table
1. The analysis of the examined data are described in detail in table 2. The
25th percentile corresponds to a production level below 13.43.

Statistic Value

Count 3652.00
Mean 23.80
Standard Deviation (std) 11.51
Minimum (min) 0.25
25th Percentile 13.43
Median (50%) 28.75
75th Percentile 33.75
Maximum (max) 40.00

Table 5: Descriptive Statistics for production - “joao” Use case 2 ‘
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4.2.2. EVA

Following the previous approach we filter the data as per the time range
under the chosen percentile and apply EVA.

As can be seen in the return value plot 4 the data are well fitted within
the distribution, thus the model is more reliable in predicting low production
levels, allowing for more confidence on model’s predictive capabilities.

Figure 4: Peaks Under Threshold for “joao” Use Case 2

Return Periods (in years) can be seen in table 4.2.2. 1 year return period:
The return value is 1.05 with a CI of [ 1.96, 0.49]. This means that in
any given year, we can expect an extreme-low production level of around
1.05 during Peak hours, with a reasonable range of uncertainty, significantly
higher than the observed production of Use Case 1.
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Return Period Return Value Lower CI Upper CI

1.00 1.05 1.96 0.49
2.00 0.66 1.34 0.35
5.00 0.39 0.91 0.18
10.00 0.28 0.81 -0.06
25.00 0.20 0.72 -0.23

Table 6: Return Periods and Confidence Intervals - Joao Use Case 2

Figure 5: Return Plots and distributions for Joao - Use Case 2
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4.2.3. Circumstance Analysis

The differences between the two scenarios are shown in table 4.2.3

[table-1] v1 v2 v3 v4 v5 v6 v7

Count -3583.00 -3583.00 -3583.00 -3583.00 -3583.00 -3583.00 -3583.00
Mean 11.32 -1.81 30.48 0.48 -194.70 50.41 -16.33
Min 23.00 5.00 0.00 4.00 1.19 3.59 0.00
25% 11.00 0.00 27.00 1.00 -100.30 52.25 -8.44
50% 9.00 -1.00 57.00 1.00 -239.32 79.61 -21.25
75% 12.00 -3.00 38.00 -1.00 -342.23 65.87 -23.50
Max -1.00 -16.00 0.00 -3.00 -86.26 -26.15 -26.75
Std -1.83 -2.28 0.04 0.35 -52.86 0.52 -7.94

Table 7: Statistical Summary of Weather and Production Data - Use Case 2

Applying the DISC-thresholding we extract the significant differences in
correlations between the extreme low production and the normal production
in the analyzed sample of peak time ranges (table 1). As can be seen in
table 6 significant differences are identified, for example between Humidity
and Diffuse Solar w/m2 (HNN), temperature and diffuse solar (HPC), for
∆ρij = ρextreme

ij − ρij. (1)

4.3. Benchmarking

In this section we extract the benchmarking score applying the method-
ology described in the previous section and plot the results to highlight the
differences between the two examined scenarios. Figure 7 shows that for
about similar cases, distribution per year and time is about the same. How-
ever using the EVA-Driven Weighted Benchmarking Algorithm.
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Figure 6: Significant Correlation differences between extreme and normal production levels
for Peak times for Zarco and Joao Use Case 1 and 2 using the DISC Thresholding algorithm
with a 90% threshold

Figure 7: Extreme events grouped by year and time per Case
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Variable Suggested Weight wi

Humidity (v1) w1 = 0.05
Temperature (v2) w2 = 0.1
Cloud Cover (v3) w3 = 0.2
Windspeed (v4) w4 = 0.05
Solar (Radiation) (v5) w5 = 0.4
Diffuse Solar (v6) w6 = 0.2

Table 8: Suggested Weights for Each Variable

Considering how each variable may impact the production for testing pur-
poses we have defined some weights, presented in table 4.3. Solar radiation
is given the highest weight because of its dominant influence on PV perfor-
mance. Cloud cover and diffuse solar radiation are also heavily weighted,
reflecting their significant roles, especially during low production periods.
Temperature, windspeed, and humidity have lower weights, as their impacts
are secondary but still important to consider. The normalized, weighted and
scaled results following the methods described are plotted in figure 8

The benchmarking score reflects how strongly the conditions (like humid-
ity, sunlight, wind speed) contribute to low production events (extreme low
production values identified by EVA), as low production was the basis of
this analysis. A high benchmarking score suggests that the combination of
environmental conditions has a greater impact on driving the system toward
extreme low production. In other words, when these conditions align in spe-
cific ways, they correlate strongly with low production events. A high score
implies that the system (PV plant) is more sensitive or vulnerable to these
environmental factors under extreme conditions. The higher score indicates
that extreme low production is likely to occur when these specific conditions
are met, showing a greater dependency on or sensitivity to adverse conditions.
Thus, a higher score indicates less resilience to environmental variations.

Since B2 has the highest EVDBM score it is clear that B2 (joao plant)
is more sensitive to adverse conditions and is less resilient to fluctuations in
related circumstances.

5. Discussion of Results

In this paper, we expanded Extreme Value Analysis (EVA) by incorpo-
rating additional tools to create a more streamlined and adaptable analyt-
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Figure 8: Extreme Value Dynamic Benchmarking Method (EVDBM) applied on photo-
voltaic energy production for analysis of related circumstances

ical approach. We introduced the Extreme Value Dynamic Benchmarking
Method (EVDBM), a novel framework for analyzing extreme events across
multiple domains. By leveraging both the Peaks Over Threshold (POT) and
Block Maxima (Minima) methods, this approach enables flexible event detec-
tion. In addition, the integration of the Dynamic Identification of Significant
Correlation (DISC)-Thresholding algorithm provides a more refined analy-
sis of how key variables behave under extreme conditions. The EVA-Driven
Weighted Benchmarking Algorithm further enhances performance compari-
son by weighting variables based on their influence during extreme events.
This comprehensive framework deepens the understanding of extreme occur-
rences and their impacts on system performance, while also enabling contin-
uous monitoring through extracted overall scores. By tracking these scores
over time, the methodology allows for the ongoing evaluation of extreme
events, informing decision-making and facilitating adaptation as conditions
change.

By integrating return values predicted through Extreme Value Analysis
(EVA) into the benchmarking scores, we are able to transform these scores
to reflect anticipated conditions more accurately. This approach provides a
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more precise picture of how each case is projected to unfold under extreme
conditions. The use of EVA-based return values allows us to model the
expected intensity and likelihood of extreme events over different timeframes,
which in turn reveals how each related circumstance is likely to develop. As
a result, the adjusted scores offer a forward-looking perspective, highlighting
potential vulnerabilities and resilience factors for each case in a way that
static historical data alone cannot capture.

In the photovoltaic (PV) energy use case, the method successfully cap-
tured critical low-production events and identified significant correlations
between variables, illustrating its practical application for managing opera-
tional risks in renewable energy. Furthermore, it enabled the comparison of
different use cases through the generation of an overall score. This flexibility
highlights the potential of the methodology for broader applications in other
fields where extreme value assessment and benchmarking under uncertain
conditions are required.

In the case of PV energy production for example this approach could aid
in decision making in a variety of ways like:

• Predicting Low Energy Events: EVA estimates energy production
for various return periods, identifying rare, low-output events for pho-
tovoltaic plants [33, 34].

• Risk Management: Knowledge of low-production frequencies aids
in planning and mitigating risks through diversification, storage, and
demand response [35, 36, 37].

• Infrastructure and Investment: Low-output scenarios inform PV
design, backup needs, and financial planning [38, 39, 40, 41].

• Confidence Intervals: Confidence intervals highlight uncertainty ranges,
aiding scenario planning for risk management [42, 43].

• Climate Change Adaptation: EVA helps in assessing impacts of
climate patterns on solar production, supporting adaptation strategies
[44, 45, 46, 47].

• Policy and Compliance: EVA data informs policies on reserve ca-
pacity and renewable credits.
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• Benchmarking PV Plants: EVDBM scores and compares PV plants
based on climate factors, aiding in performance optimization and in-
vestment decisions.

5.1. Limitations and future work

The main limitations of this work to be addressed are the following:

• Sensitivity to Data Quality and Availability: EVDBM relies heavily on
robust historical data, particularly for extreme events, to make accu-
rate predictions. In cases where data on past extremes is limited or
unavailable, predictions and benchmarking scores may lack accuracy

• Assumption of Stationarity partially addressed: External changes could
alter the probability and severity of future extremes, impacting the
reliability of benchmarks based on historical data.

• Subjectivity in Weighting Variables: If weighting isn’t carefully cali-
brated, it can introduce bias, making some cases appear more or less
resilient than they might be in practice. This can particularly impact
comparisons across cases with differing sensitivity to certain variables

In our future work we intend to apply this methodology in other use
cases where increased specificity in decision making can lead to optimized
and beneficial outcomes, such as in health care and in finance. We also
work on integrating EVDBM algorithm for scenario-based analysis, what-if
scenarios and other risk-management applications while attaching a more
dynamic approach to related circumstances prediction.
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Appendix

The following abbreviations are used in this paper:

EVA Extreme Value Analysis
EVT Extreme Value Theory
PV PhotoVoltaic

EVDBM Extreme Value Dynamic Benchmarking Method
DISC Dynamic Identification of Significant Correlation
POT peak-over-threshold
R.V return level
PDF Probability Density Function
HPC High Positive Correlation
HNN and a High Negative Correlation
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