
Investigating Graph Neural Networks and
Classical Feature-Extraction Techniques
in Activity-Cliff and Molecular Property

Prediction

Markus Ferdinand Dablander

Mansfield College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

October 2023

ar
X

iv
:2

41
1.

13
68

8v
1

 [
cs

.L
G

]
 2

0
N

ov
 2

02
4

Acknowledgements

First and foremost, I would like to say thank you to my scientific super-

visors Prof. Garrett M. Morris, Prof. Renaud Lambiotte, and Dr Thierry

Hanser, who always took the time to have deep discussions, who sup-

ported me in my years of doctoral research to explore novel ideas, and

who encouraged me in the right moments to push forward.

I would like to thank Garrett for sharing with me his vast knowledge of the

cheminformatics literature, teaching me important chemistry facts, pro-

viding exceptionally detailed and dedicated feedback on my work, helping

me to navigate all the formal milestones of my doctoral journey, and al-

ways making scientific meetings with me and his other doctoral students

a priority. Throughout the years, I have immensely benefitted from Gar-

rett’s knowledge and have more than once felt the genuine care he actively

shows for the well-being of his students.

I would like to thank Renaud for offering his profound and rigorous math-

ematical expertise, continually encouraging me throughout the ups and

downs of my research, reliably finding kind and motivational words for

me during the most intensive parts of my doctoral studies, and sharing

his insights with me about how to develop an effective and creative mind-

set for advanced research. One of the most impactful pieces of advice I

received from Renaud during my early days as a doctoral student was that

the best ideas often come when working on something concrete.

I would like to thank Thierry for consistently giving precise advice on

the deepest technical aspects of my work, supporting me to find the right

research direction whenever I was facing a difficult crossroad, cordially

welcoming me into his industrial research group when I visited him at my

partner company Lhasa, and always being interested in talking about new

and fascinating ideas from science and beyond. I will warmly remember

the long in-person conversations I had with Thierry that did not only

revolve around my scientific work but also around philosophy, cosmol-

ogy, consciousness, history, music, technological progress and the future

of artificial intelligence.

In addition to thanking my scientific supervisors, I would like to express

further gratitude to: The InFoMM CDT directors, Chris Breward and

Colin Please, for granting me the privilege to do research at the Math-

ematical Institute and for guiding me and many other students through

our formal doctoral path. The EPSRC (EP/L015803/1) as well as my

industrial partner Lhasa for their financial support. Mansfield College for

enriching my life at Oxford with a great community, engaging events and

a beautiful place to retreat. Stéphane Werner and Jean-Francois Marcha-

land from Lhasa for always being approachable and staying up to date

with my scientific work. My mother and my father for the sacrifices they

made without which I would have never been able to become a mathemati-

cian. My grandparents and my aunt for their continuous loving support.

My brother for always having my back and believing in me. My sister-

in-law and my little niece for brightening the mood after a long day. My

cousin who is also a mathematician for going on long walks with me in

the Austrian countryside to discuss science and life. My old friends from

UCL, who have since scattered around the world but have still managed

to preserve and foster the seed of our friendship. My new friends from

Oxford who have accompanied me along my path. All my other friends

from Austria, the UK, and elsewhere who have grown with me throughout

the years. And finally, my girlfriend who has deeply shared with me all

the highs and lows of my time as a doctoral student, and who has always

been there for me with her whole heart.

Abstract

Molecular featurisation refers to the process of transforming molecular

data into numerical feature vectors. It is one of the key research ar-

eas in molecular machine learning and computational drug discovery.

Recently, message-passing graph neural networks (GNNs) have emerged

as a novel method to learn differentiable features directly from molec-

ular graphs. While such graph-based techniques hold great theoretical

promise, further investigations are needed to clarify if and when they in-

deed manage to definitively outcompete classical molecular featurisations

such as extended-connectivity fingerprints (ECFPs) and physicochemical-

descriptor vectors (PDVs).

In this thesis, we systematically explore and further develop classical

as well as graph-based molecular featurisation methods for two impor-

tant tasks: the well-studied problem of molecular property prediction,

in particular, quantitative structure-activity relationship (QSAR) predic-

tion, and the largely unexplored challenge of activity-cliff (AC) prediction.

We first give a mathematical description and critical analysis of PDVs,

ECFPs and message-passing GNNs, with a focus on graph isomorphism

networks (GINs). We then conduct a rigorous computational study to

compare the performance of PDVs, ECFPs and GINs for QSAR and AC-

prediction. Following this, we mathematically describe a novel twin neu-

ral network model for AC-prediction and experimentally evaluate ECFP-

based and GIN-based versions of this dual architecture. In an additional

project, we introduce substructure pooling as a general mathematical op-

eration for the vectorisation of structural fingerprints that represents a

natural counterpart to graph pooling in GNN architectures. We propose

Sort & Slice as a simple substructure-pooling technique for ECFPs that

robustly outperforms hashing at molecular property prediction. Finally,

we outline two ideas for future research: (i) a graph-based self-supervised

learning strategy to make classical molecular featurisations trainable, and

(ii) trainable substructure-pooling via differentiable self-attention.

Contents

1 Introduction 1

1.1 Outline of Thesis and Research Contributions 4

2 Molecular Representations and Featurisations for Machine Learning 8

2.1 Overview . 8

2.2 Molecular Graphs . 9

2.3 SMILES Strings . 12

2.4 Physicochemical-Descriptor Vectors 14

2.4.1 Mathematical Description . 14

2.4.2 Critical View . 19

2.5 Extended-Connectivity Fingerprints 21

2.5.1 A Short Background on Structural Fingerprints 21

2.5.2 Mathematical Description . 22

2.5.3 Standard and Pharmacophoric Atom Features 26

2.5.4 Critical View . 27

2.6 Message-Passing Graph Neural Networks 29

2.6.1 Mathematical Description . 29

2.6.2 Graph Convolutional Networks 32

2.6.3 Graph Isomorphism Networks 35

2.6.4 Theoretical Expressivity of Graph Neural Networks 35

2.6.5 Critical View . 40

2.7 Molecular Featurisations: Critical Overview 44

3 Exploring Molecular Featurisations for QSAR and Activity-Cliff Pre-

diction: A Computational Study 46

3.1 Overview . 46

3.2 Introduction to Activity Cliffs and Activity-Cliff Prediction 49

3.3 Experimental Methodology . 52

3.3.1 Molecular Data Sets . 52

i

3.3.2 Definition of Binary Activity-Cliff Classification-Tasks 56

3.3.3 Developed Pair-Based Data Splitting Technique 58

3.3.4 Prediction Strategies . 61

3.3.5 Performance Metrics . 63

3.3.6 Model Training and Hyperparameter Optimisation 65

3.4 Results and Discussion . 67

3.4.1 QSAR-Prediction Performance 67

3.4.2 AC-Classification Performance 67

3.4.3 PD-Classification Performance 75

3.4.4 Linear Relationship between QSAR-MAE and AC-MCC . . . 75

3.5 Conclusions . 76

4 A Twin Neural Network Model for Activity-Cliff Prediction 79

4.1 Overview . 79

4.2 Twin Neural Network: Mathematical Description 81

4.2.1 Neural Architecture and Symmetry Properties 81

4.2.2 Loss Function and Model Training 88

4.2.3 Molecular Featurisations: Four Model Versions 91

4.3 Computational Experiments . 93

4.3.1 Experimental Methodology . 93

4.3.1.1 Molecular Data Set 93

4.3.1.2 Data Splitting Technique and Prediction Tasks . . . 93

4.3.1.3 Prediction Tasks and Prediction Strategies 94

4.3.1.4 Performance Measures 95

4.3.1.5 Evaluated Models 97

4.3.1.6 Model Training and Hyperparameter Settings 97

4.3.2 Results and Discussion . 100

4.3.2.1 AC-Classification Performance 100

4.3.2.2 PD-classification Performance 106

4.4 Conclusions . 108

5 Beyond Hashing: Substructure-Pooling Techniques to Robustly Im-

prove Extended-Connectivity Fingerprints 111

5.1 Introduction . 111

5.2 Methods and Experimental Methodology 116

5.2.1 Substructure Pooling: Mathematical Description 116

5.2.2 Investigated Substructure-Pooling Techniques 120

ii

5.2.2.1 Hashing . 122

5.2.2.2 Sort & Slice . 123

5.2.2.3 Filtering . 126

5.2.2.4 Mutual-Information Maximisation 129

5.2.3 Experimental Setup . 130

5.3 Results and Discussion . 134

5.4 Conclusions . 144

6 Future Directions 148

6.1 A Graph-Based Self-Supervised Learning Strategy to Make Classical

Molecular Featurisations Trainable 148

6.2 Trainable Substructure Pooling via Differentiable Self-Attention . . . 150

7 Conclusions and Further Thoughts 156

Summary of Research Contributions 160

Bibliography 163

iii

List of Figures

2.1 Generation of a SMILES string. 13

2.2 Circular chemical subgraphs of varying radii. 23

2.3 Molecular featurisation via message-passing GNN. 32

2.4 Non-isomorphic graphs that cannot be distinguished by the 1-WL test. 37

3.1 Example of an AC for factor Xa. 49

3.2 Protein structure of dopamine receptor D2. 53

3.3 Protein structure of factor Xa. 54

3.4 Protein structure of SARS-CoV-2 main protease. 55

3.5 Data splitting strategy for AC-prediction study. 60

3.6 Overview of investigated QSAR models for AC-prediction study. . . . 65

3.7 QSAR and AC-prediction results for dopamine receptor D2. 68

3.8 QSAR and AC-prediction results for factor Xa. 69

3.9 QSAR and AC-prediction results for SARS-CoV-2 main protease. . . 70

3.10 QSAR and PD-prediction results for for dopamine receptor D2. . . . 71

3.11 QSAR and PD-prediction results for factor Xa. 72

3.12 QSAR and PD-prediction results for SARS-CoV-2 main protease. . . 73

4.1 Twin neural network architecture for AC and PD-classification. . . . 83

4.2 AC-classification results for twin neural network models. 101

4.3 PD-classification results for twin neural network models. 102

5.1 Overview of investigated substructure-pooling methods. 121

5.2 Substructure-pooling experiments (lipophilicity). 135

5.3 Substructure-pooling experiments (aqueous solubility). 136

5.4 Substructure-pooling experiments (SARS-CoV-2 main protease). . . . 137

5.5 Substructure-pooling experiments (mutagenicity). 138

5.6 Substructure-pooling experiments (estrogen receptor alpha antagonism).139

5.7 Overview of results of all substructure-pooling experiments. 140

6.1 Self-supervised pre-training and fine-tuning strategy for GNNs. 149

iv

List of Tables

2.1 Atom and bond features for molecular graphs. 11

2.2 Physicochemical descriptors for PDVs. 18

2.3 Atom features for ECFPs. 27

2.4 Strengths and weaknesses of PDVs, ECFPs and message-passing GNNs. 44

3.1 Data sets for AC-prediction study. 57

4.1 Hyperparameters of twin neural networks and baseline QSAR models. 98

5.1 Data sets for substructure-pooling experiments. 131

5.2 RF and MLP hyperparameters for substructure-pooling experiments. 132

v

List of Abbreviations

• AC = Activity Cliff
• AUPRC = Area Under the Precision Recall Curve
• AUROC = Area Under the Receiver Operating Characteristic Curve
• ECFP = Extended-Connectivity Fingerprint
• GCN = Graph Convolutional Network
• GIN = Graph Isomorphism Network
• GNN = Graph Neural Network
• InChI = International Chemical Identifier
• kNN = k-Nearest Neighbour
• MAE = Mean Absolute Error
• MCC = Matthews Correlation Coefficient
• MIM = Mutual-Information Maximisation
• MLP = Multilayer Perceptron
• MMP = Matched Molecular Pair
• NFP = Neural Fingerprint
• PD = Potency Direction
• PDV = Physicochemical-Descriptor Vector
• QSAR = Quantitative Structure-Activity Relationship
• RF = Random Forest
• SAR = Structure-Activity Relationship
• SELFIE = Self-Referencing Embedded String
• SMILES = Simplified Molecular-Input Line-Entry System
• TPE = Tree-structured Parzen Estimator
• WL = Weisfeiler-Lehman

vi

Chapter 1

Introduction

How to best represent a chemical compound in computational form is one of the most

fundamental questions in cheminformatics and molecular machine learning. Molecules

are complex physical entities whose properties depend on a large number of inter-

twined factors such as the types of their involved atoms and bonds, their graph-

theoretic connectivity structure, their three-dimensional geometry, and the quantum-

mechanical behaviour of their associated electrons. Whether a given computational

molecular representation is useful intricately depends on the task one wants to solve,

on its required data format and on its level of abstraction.

In this thesis, we are interested in the representation of chemical compounds as

real-valued feature vectors for the purpose of molecular machine learning. We focus

on the process of molecular featurisation which describes the computational transfor-

mation of a non-vectorial molecular representation (often a detailed string of symbols

or mathematical graph that fully encodes the chemical composition and structure of

an input compound) into an abstract representation as a numerical vector than can

readily be processed by a machine-learning system. As we will see, the impact of the

chosen molecular featurisation on the predictive performance of a machine-learning

system is often profound.

In the field of computer vision, the advent of convolutional neural networks has

led to dramatic performance breakthroughs in the last decade [1, 2, 3, 4, 5]. These

breakthroughs were caused by the remarkable ability of convolutional architectures

to automatically extract relevant high-level features directly from raw visual data.

For machine-learning tasks on images, this has since led to an almost universal shift

from traditional expert-based feature engineering towards differentiable and auto-

matic feature learning. This can be seen in contrast to the area of molecular machine

learning, where trainable feature learning techniques that operate directly on molec-

ular graphs without intermediate feature-engineering steps have only emerged in the

1

last few years and have still not managed to conclusively outperform classical non-

trainable featurisation methods in a variety of studies [6, 7, 8, 9, 10, 11, 12, 13]. For

machine learning on molecular data, breakthroughs comparable to the ones caused

by the feature-extraction capabilities of convolutional neural networks in computer

vision remain elusive.

For chemical prediction tasks, molecules have classically been represented via

physicochemical-descriptor vectors (PDVs) [14] or via structural fingerprints such

as extended-connectivity fingerprints (ECFPs) [15, 16]. Both featurisation types rely

on non-trainable algorithms to compute specific properties of an input molecule. In

the case of physicochemical descriptors, these properties are typically high-level char-

acteristics of an input compound such as the predicted molecular partition coefficient

log(P) that quantifies lipophilicity; in the case of structural fingerprints, these prop-

erties are frequently binary features that indicate the presence or absence of certain

chemical substructures. The computed properties are collected in numerical fea-

ture vectors that can be subsequently used for a downstream machine-learning task.

While certain descriptors and fingerprints can lead to considerable predictive perfor-

mance [6, 7, 8, 10], they also have some serious drawbacks. The most significant of

these is that the algorithmic transformation of a detailed molecular representation

into a mere vector of selected structural or physicochemical properties can lead to a

loss of crucial chemical information. Classical descriptor and fingerprint-based fea-

turisations thus form an information bottleneck which separates detailed molecular

data on one side from its computationally processed form on the other side.

Recently, message-passing graph neural networks (GNNs) [17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28] have entered the field of cheminformatics as a potential solu-

tion for this limitation. GNNs are trainable deep-learning architectures that allow

the differentiable extraction of continuous features directly from molecular graphs.

These graphs can fully specify the connectivity structure and chemical composition

of a molecule; even simple stereochemical properties such as tetrahedral R-S chi-

rality and E-Z double-bond geometry can easily be encoded in the atom and bond

features of molecular graphs. Such graphs thus form highly explicit and detailed

molecular representations. Learning differentiable features directly from molecular

graph structures holds the promise of overcoming potential information bottlenecks

during molecular featurisation. Unfortunately, GNNs come with their own set of

technical challenges: Some popular GNN models lack theoretical expressivity and

thus cannot learn to distinguish certain simple graph structures [29]; many GNN ar-

chitectures cannot be made deep due to a tendency of successively convolved node

2

features to become indistinguishable [30]; GNNs have to learn a reasonable embedding

of chemical space from scratch every time they are trained on a novel task; almost

all current GNN models are based on a local neighbourhood-aggregation scheme [17]

which hinders information flow between distant graph nodes; and GNNs require a

global pooling step to eventually reduce the graph to a vector that can potentially

form a dangerous information bottleneck in and of itself [31]. A variety of stud-

ies have found GNNs to exhibit superior predictive performance compared to the

simpler and more computationally efficient fingerprint and descriptor-based featur-

isations [17, 20, 22, 32, 33, 34, 35, 36]; however, other experiments have pointed

towards the exact opposite [6, 7, 8, 9, 10, 11, 12, 13, 37]. The superiority of GNNs

over classical techniques thus remains questionable and requires more investigation.

In this work, we aim to explore and further develop classical as well as graph-based

molecular featurisation methods with a focus on two important challenges in com-

putational drug discovery: the canonical problem of molecular property prediction,

in particular quantitative structure-activity relationship (QSAR) prediction, and the

largely unexplored task of activity-cliff (AC) prediction. Molecular property pre-

diction encompasses a diverse number of tasks such as the prediction of lipophilic-

ity, aqueous solubility, toxicity, or mutagenicity of a chemical compound. QSAR-

prediction represents a special case of molecular property prediction and refers to the

problem of predicting the biological activity of a compound with respect to a given

pharmacological target from its chemical structure. QSAR modelling often takes

the form of predicting the binding affinity of a molecule for a specific protein target

such as an enzyme or a receptor. ACs refer to pairs of molecular compounds whose

chemical structures only differ by a small change at a specific site but which exhibit

an unexpectedly high difference in their binding affinity for a given pharmacological

target [38, 39, 40, 41, 42, 43, 44]. AC-prediction does not only refer to the classifica-

tion whether a given compound pair forms and AC or not but usually also implicitly

encompasses the prediction of the potency direction (PD) of the pair (i.e. which of

both compounds is more active). Molecular property prediction, QSAR-prediction,

and AC-prediction represent three important challenges of high relevance to the in

silico identification and optimisation of novel pharmacological compounds. In par-

ticular, our work aims to contribute to the development of computational tools that

can accurately predict important properties of novel compounds and whether they

will bind tightly to a biological target. This could help to tackle one of the central

questions in drug discovery: what should a medicinal chemist synthesise next?

3

1.1 Outline of Thesis and Research Contributions

The rest of thesis is organised as follows:

• In Chapter 2 we first introduce SMILES strings and molecular graphs which

both constitute detailed molecular representations that fully encode the chemi-

cal composition and structure of an input compound. We then give a technical

introduction to PDVs, ECFPs and GNNs as the three most frequently used

molecular featurisation methods in the current literature. We critically discuss

all three featurisations and contrast their respective strengths and weaknesses.

In the case of GNNs, we also shortly discuss the issue of theoretical expres-

sivity in mathematical terms and give a description of the graph isomorphism

network (GIN) as perhaps the simplest and most prototypical GNN in the 1-

Weisfeiler-Lehman class.

• In Chapter 3 we conduct a rigorous computational study to explore the relative

performance of PDVs, ECFPs and GINs for QSAR and AC-prediction. We

investigate nine separate QSAR models by integrating each of the three studied

featurisations with a random forest, a multilayer perceptron, and a k-nearest

neighbour regressor. We use each model to classify whether a compound pair

forms an AC, to classify which compound in the pair is more active, and to

predict the binding affinities of individual molecules for three pharmacological

targets: dopamine receptor D2, factor Xa, and SARS-CoV-2 main protease. We

further develop a novel pair-based data-splitting strategy for the evaluation of

distinct AC-prediction scenarios.

Our results strongly support the hypothesis that QSAR models frequently fail

to predict ACs. We observe low AC-sensitivity when the activities of both

compounds are unknown, but a substantial increase in AC-sensitivity when the

actual activity of one of the compounds is given. GIN features are found to

be competitive with or superior to classical molecular featurisations for AC-

classification. For general QSAR-prediction, however, ECFPs still consistently

deliver the best performance amongst the tested featurisations.

Our study represents the first work that investigates the capabilities of QSAR

models to classify between ACs and non-ACs. Moreover, it provides additional

evidence that standard message-passing GNNs may need to be improved further

to robustly outperform classical ECFPs. Our study results have been published

4

as a peer-reviewed research paper [45] in the Journal of Cheminformatics and

as a scientific poster [46] at the 10th International Congress on Industrial and

Applied Mathematics (ICIAM 2023, Tokyo).

• In Chapter 4 we design and evaluate a novel twin neural network model for

AC-prediction. We provide a mathematical description of our proposed dual

architecture along with proofs of its built-in symmetry properties. We then

conduct computational experiments to compare the AC-prediction performance

of the twin architecture and the strongest QSAR models from the previous

chapter on a data set of SARS-CoV-2 main protease inhibitors. We explore

four distinct molecular featurisations for the twin model, based on either ECFP,

GINs, or two transfer learning techniques we developed.

Our experiments suggest that the twin architecture outperforms standard QSAR

models at AC-prediction in a variety of scenarios. In particular, twin networks

appear to strike a superior balance between AC-sensitivity and AC-precision

which increases their practical utility.

To the best of our knowledge, this work represents the first application of

twin neural networks to AC-prediction and the first investigation of a novel

AC-prediction technique that includes important control experiments based on

standard QSAR models. We have presented our twin architecture as a scien-

tific poster [47] at the 4th RSC-BMCS / RSC-CICAG Artificial Intelligence in

Chemistry Symposium (2021, virtual) where we were subsequently awarded the

prize for the best scientific poster.

• In Chapter 5 we introduce a mathematical operation called substructure pool-

ing that formalises the transformation of sets of substructures (i.e. unordered

set representations of structural fingerprints) into numerical vectors. We draw

an analogy between substructure pooling for structural fingerprints and global

graph pooling for GNN architectures. However, unlike global graph pooling,

substructure pooling remains largely unexplored. We show that the standard

hashing procedure for the vectorisation of ECFPs is a form of substructure pool-

ing. We go on to describe a straightforward alternative to hashing for ECFP

vectorisation called Sort & Slice. This technique is simply based on first sorting

all detected circular substructures according to their frequency of appearance

in the training set and then only accepting the most frequent substructures into

the final vectorial fingerprint. This naturally leads to a higher interpretability

than hashing due to an absence of bit collisions in the final vector representation.

5

https://doi.org/10.1186/s13321-023-00708-w
http://dx.doi.org/10.13140/RG.2.2.35914.34241
http://dx.doi.org/10.13140/RG.2.2.18137.60000
http://dx.doi.org/10.13140/RG.2.2.18137.60000

Under reasonable theoretical assumptions that hold approximately true for real-

world data sets, we mathematically prove that Sort & Slice only selects the

most informative substructures from an entropic point of view. Furthermore,

we demonstrate via a set of strict computational experiments that Sort & Slice

robustly leads to higher predictive performance than hashing as well as two

advanced supervised substructure selection schemes for molecular property pre-

diction across a large number of settings. In particular, we observe a predictive

advantage of Sort & Slice over hashing across varying data sets, data splitting

techniques, machine-learning regressors, and ECFP hyperparameters. This ad-

vantage seems to increase with the expected number of bit collisions in the

hashed ECFP.

Based on our current knowledge, the work in this chapter constitutes the first

study that robustly demonstrates the existence of a technically simple and more

interpretable alternative to hashing for the vectorisation of ECFPs that leads to

higher predictive performance at supervised molecular property prediction. We

have only recently become aware of one other work [48] that has investigated a

technique similar to Sort & Slice which we acknowledge. We intend to submit

the results in this chapter for publication in the near future.

• In Chapter 6 we shortly present two potential ideas for future research in the

domain of molecular featurisation:

Firstly, we describe a self-supervised graph-based learning strategy that can in-

tuitively be interpreted as a method to make classical molecular featurisations

differentiable and trainable. Our central idea involves first pre-training a mod-

ern GNN to predict classical featurisations such as ECFPs or PDVs directly

from molecular graphs and then fine-tuning the GNN on a supervised task.

Secondly, we outline a trainable substructure-pooling method based on a differ-

entiable self-attention mechanism that might enable the learning of contextual

substructural features. This technique could for instance be combined with

MACCS fingerprints or ECFPs. It could potentially provide a useful inductive

bias for the learning of task-specific compound-level featurisations that depend

not only on individually present substructures but also on their interactions.

• In Chapter 7 we give some final conclusions and further thoughts on our work.

6

7

Chapter 2

Molecular Representations and
Featurisations for Machine Learning

2.1 Overview

In its most general interpretation, molecular representation refers to the problem of

describing a molecular compound in an abstract machine-readable format for the

purpose of computational processing. In this Chapter, we focus on three of the most

common types of molecular representation:

1. Graph-based representation methods that represent molecules as mathe-

matical graphs with numerical node and edge features.

2. String-based representation methods that represent molecules as linear

chains of symbols.

3. Feature-based representation methods that represent molecules as vectors

of real numbers.

There are other types of molecular representations, including image-based represen-

tations [49, 50, 51] and three-dimensional coordinate-based representations [52, 53].

However, the above three categories cover a large part of modern use cases in chem-

informatics and currently dominate the field of molecular machine learning.

The key advantage of most non-feature-based representations like graphs or strings

is that they allow for highly explicit representations of molecular compounds. Such

representations are generally designed to fully encode the chemical structure of real

molecules and as a result contain high levels of information. However, standard ma-

chine learning techniques such as random forests and k-nearest neighbours cannot

directly utilise this rich information content because they are only able to process

8

feature-based representations that consist of vectors of real numbers. One of the cen-

tral challenges for machine learning in chemistry is thus the developments of molecular

featurisation methods.

Definition 2.1 (Molecular Featurisation). A mathematical or algorithmic technique

that turns a non-feature-based molecular representation R (such as a graph or a

string) into a feature-based representation F ,

R 7→ F = (f1, ..., fl) ∈ Rl,

is called a molecular featurisation method.

The usual purpose of molecular featurisation is to encode useful predictive infor-

mation within the feature vector F for a downstream molecular machine learning

task such as activity prediction. The chosen molecular featurisation method is of-

ten the key ingredient that determines the relative success or failure of a predictive

algorithm. Current molecular featurisation methods can be subdivided into two dis-

tinct categories: trainable- and non-trainable. Non-trainable methods are based on

fixed non-differentiable algorithms that compute specific predefined properties of an

input molecule. The most widely-used examples in this category are physicochemical-

descriptor vectors and structural fingerprints. Trainable methods, on the other hand,

are based on recently developed deep-learning architectures that can learn to extract

molecular features in a differentiable and task-specific manner. At present, message-

passing GNNs that operate on top of molecular graphs are the most widely-used

method in this class.

We start off this chapter by describing molecular graphs as mathematical repre-

sentations of chemical compounds. We then go on to discuss SMILES strings which

are the prevalent string-based molecular representation in cheminformatics. Finally,

we give a technical description and critical discussion of the three most important

molecular featurisation methods in the current literature: physicochemical descrip-

tors [14], extended-connectivity fingerprints [16] and message-passing GNNs [17]. In

recent years, all three of these competing techniques have led to state-of-the-art re-

sults in a wide variety of molecular machine learning tasks [6, 7, 8, 9, 10, 11, 12, 13,

17, 19, 20, 22, 24, 28].

2.2 Molecular Graphs

The molecular graph of a chemical compound is a formal representation of its chemical

structure via the language of mathematical graph theory.

9

Definition 2.2 (Molecular Graph). Let M be a molecule composed of n atoms and

let

A = {a1, ..., an}

be a mathematical set of elements representing these atoms. Furthermore, let

B = {{a, ã} | a, ã ∈ A and there is a chemical bond between a and ã in M}

be a set of unordered pairs of elements of A which describe existing chemical bonds

between the atoms in M. Then the pair G = (A,B) is called the molecular graph

of M. If all hydrogen atoms are removed from A before constructing G, then G is

called hydrogen-depleted.

Those familiar with the field of graph theory will recognise a molecular graph as

a connected, undirected, unweighted graph without self-loops and without multiple

edges. The idea to view molecules as abstract networks of linked entitites has deep

historical roots and was already employed in the 19th century by the British math-

ematician Arthur Cayley [54]. Using the hydrogen-depleted version of a molecular

graph usually reduces the number of involved atoms significantly while preserving the

essential chemical connectivity pattern between the heavy atoms. Hydrogen-depleted

molecular graphs are therefore routinely preferred over their complete counterparts,

especially in settings where computational cost plays a role. In this work, we too

exclusively use hydrogen-depleted molecular graphs unless otherwise specified.

In almost all cases, the pure structural information contained in the molecular

graph is enriched via atom and bond feature vectors.

Definition 2.3 (Atom and Bond Feature Vectors). Let G = (A,B) be the molecular

graph of a molecule M and let

f : A→ Rk

be a function that assigns real-valued vectors in Rk to the atoms in A. Then f is

called an atom featurisation function. For each atom a ∈ A, the vector f(a) ∈ Rk is

called its atom feature vector. Similarly, let

g : B → Rj

be a function that assigns real-valued vectors in Rj to the chemical bonds in B. Then

g is called a bond featurisation function. For each chemical bond {a, ã} ∈ B the vector

g({a, ã}) ∈ Rj is called its bond feature vector.

10

Selected Atom and Bond Features for Molecular Graphs

Atom Feature Encoding Dimensions

element type one-hot encoding 43

number of heavy neighbours one-hot encoding 6

number of hydrogen neighbours one-hot encoding 6

formal charge one-hot encoding 8

hybridisation type one-hot encoding 7

R-S chirality type one-hot encoding 4

is part of a ring binary integer 1

is aromatic binary integer 1

atomic mass min-max scaled real number 1

van der Waals radius min-max scaled real number 1

covalent radius min-max scaled real number 1

Bond Feature - -

bond type one-hot encoding 4

E-Z double-bond geometry one-hot encoding 4

is part of a ring binary integer 1

is conjugated binary integer 1

Table 2.1: Overview of the chosen atom and bond features for the molecular graphs used in our
experiments.

The purpose of atom and bond feature vectors is to add extra physicochemical

information to the molecular graph. At the very least, the atom feature vectors should

allow for a distinction between different atomic numbers, i.e. element types

{C, N, O, S, F, Si, Cl, Br,...}

and the bond feature vectors should allow for a distinction between different bond

types

{single, double, triple, aromatic}.

However, the exact composition of atom and bond feature vectors beyond basic in-

dications of atom and bond types can vary substantially from author to author. For

example, Kearnes et al. [19] include tetrahedral R-S chirality in their atom feature

vectors while Gilmer et al. [17] do not. Such differences can make an objective com-

parison of results across studies challenging. Pocha et al. [55] have recently made a

11

systematic effort to compare the effects of differing atom feature vectors on the perfor-

mance of a popular GNN architecture, a graph convolutional network (GCN) [18], in

several molecular property prediction tasks. They found that the overall influence of

the chosen atom featurisation on downstream performance was modest. However, rep-

resentations that included more atomic features (and thus more information) tended

to deliver better results.

Motivated by this, we decided to extensively leverage the information-storing ca-

pacities of molecular graphs in our own work and employ 11 atom and four bond

features. An overview of the chosen features that were used throughout our exper-

iments is given in Table 2.1. In our atom featurisation, we considered 42 common

element types of heavy atoms, alond with a generic other-element type for atoms

whose element types were not on our predefined list. Element types were thus rep-

resented via 43-dimensional one-hot encoded vectors. Note that while we used the

usual hydrogen-depleted form of the molecular graph, we still implicitly considered

hydrogen-related information by including the number of hydrogen neighbours in the

list of atom features.

2.3 SMILES Strings

The most frequently used method to store molecules in digital form is via Simplified

Molecular-Input Line-Entry System (SMILES) strings [56]. A SMILES string is a

sequence of ASCII characters which is generated by a fixed set of rules in order to

specify the chemical identity of an input molecule. The most common version of the

SMILES string can be interpreted as a sequential encoding of a (hydrogen-depleted)

molecular graph that takes into account atom and bond types. The SMILES string

of a molecule is thus fully sufficient to construct a molecular graph equipped with

basic atom and bond features. On the other hand, every molecular graph with basic

atom and bond features can be used to generate a SMILES string.

Description 2.1 (SMILES String). A valid SMILES string can be obtained from a

molecular graph by turning the graph into a spanning tree via breaking all existing

cycles, and then printing out the (capitalised or lower case) atom symbols encountered

in a depth-first traversal of the spanning tree. Branches are specified via parentheses

while double and triple bonds are written using the symbols {=,#} respectively; the

existence of aromatic bonds is either inferred from the context or is expressed via

the use of lower case for the involved atoms. The SMILES algorithm for an example

12

Figure 2.1: Generation of a Simplified Molecular-Input Line-Entry System (SMILES) string from
the molecular graph of the antibiotic molecule Ciprofloxacin. First the molecular graph is reduced
to its hydrogen-depleted version. Then cycles are broken to turn the graph into a spanning tree.
Finally, a depth-first traversal of the spanning tree (here starting with the leftmost nitrogen atom as
a root) produces the SMILES string whereby branches are specified via parentheses. The integers
in the SMILES string indicate which ring bonds were broken to produce the spanning tree and the
equality signs indicate double bonds. Image source: [59].

molecule is illustrated in Figure 2.1. For the exact procedure we refer the reader to

the original paper series of Weininger et al. [56, 57, 58].

The SMILES string of a molecule depends on the bonds chosen to break rings, the

atom chosen as a starting point for the depth-first traversal of the spanning tree, and

the order in which encountered branches are listed. Thus, a molecule can have many

distinct and valid SMILES strings. However, canonicalisation algorithms exist that

13

make the mapping from compound to SMILES string unambiguous. Basic SMILES

strings do not contain explicit information about the three-dimensional positioning

of the atoms in a molecule, but extensions of the SMILES system such as isomeric

SMILES strings exist which are able to express tetrahedral R-S chirality and E-Z

double-bond geometry. Throughout our work, we exclusively use isomeric SMILES

strings that include specifications for these two important stereochemical features.

The SMILES notation has become the default molecular representation in chem-

informatics due to its relative simplicity, readability and expressivity. It also allows

for the computational storage of large numbers of molecular graphs in a highly com-

pressed and efficient format. However, the SMILES methodology does have some

technical drawbacks. For example, since the SMILES string of a molecule is not

unique, one has to arbitrarily commit to a fixed canonicalisation algorithms in order

to guarantee the consistency of the SMILES representation across applications. In

comparison, the international chemical identifier (InChI) [60] string which was ini-

tially developed by the International Union of Pure and Applied Chemistry (IUPAC)

is more expressive and is guaranteed to produce a unique string-label for every chem-

ical structure. These advantages, however, come at the cost of reduced simplicity and

readability.

Another weakness of the SMILES notation is that a slight perturbation of symbols

can easily lead to either a syntactically invalid expression or an impossible molec-

ular structure that violates the basic laws of chemistry. This fragility may cause

SMILES-based deep generative models trained for de novo molecular design to out-

put large fractions of broken and invalid SMILES strings; a challenge that can al-

ready be observed in the pioneering work of Gómez-Bombarelli et al. [61]. To address

this issue, more robust string representations such as the self-referencing embedded

string (SELFIE) notation [62] and the DeepSMILES notation [63] have recently been

developed. These string systems have been specifically designed to facilitate the gen-

eration of valid molecules by deep generative models and may thus be preferrable to

SMILES strings in this context.

2.4 Physicochemical-Descriptor Vectors

2.4.1 Mathematical Description

Physicochemical descriptors [14] are likely the oldest and most established molecular

featurisation method and play a fundamental role in classical cheminformatics. Such

descriptors are able quantify an abundant number of important characteristics of a

14

molecule such as lipophilicity, druglikeness, molecular refractivity, electrotopological

state, molecular graph structure, fragment-profile, molecular charge, and molecu-

lar surface properties. Descriptor-based molecular featurisations have been used in

QSAR-modelling [64], toxicity prediction [65], virtual screening [66], combinatorial

chemistry [66], the organisation of latent spaces of deep generative models [61] by

chemical properties of interest, and countless other areas of cheminformatics. In the

context of our work, we formally define physicochemical-descriptor vectors (PDVs)

as follows:

Definition 2.4 (Physicochemical-Descriptor Vector). Let R be a non-feature-based

molecular representation (such as a SMILES string or a molecular graph). A physico-

chemical-descriptor function is an algorithmic procedure fdesc that transforms R into

a real number fdesc(R) ∈ R that quantitatively describes a physicochemical prop-

erty of the input molecule. A vector F composed of the outputs of l ∈ N distinct

physicochemical-descriptor functions,

F := (fdesc
1 (R), ..., fdesc

l (R)) ∈ Rl,

is called a physicochemical-descriptor vector for the molecule represented by R.

Ideally physicochemical descriptors should be interpretable, conceptually simply,

and computationally efficient to generate. Moreover, they should preferably give dis-

tinct values for distinct input molecules, not require experimental measurements, and

vary continuously with continuous changes in molecular structure. Several thousand

physicochemical descriptors have been developed in the last decades [67] which ful-

fill these desired properties to varying degrees. Below we take a closer look at two

well-known descriptors that have been frequently used throughout the literature.

Example 2.1 (Predicted log(P)). The 1-octanol-water partition coefficient P of a

molecule M describes the ratio of its concentrations in an (immiscible) mixture of

1-octanol and water at equilibrium:

P :=
[M]1-octanol

[M]water
.

Since 1-octanol is a fatty alcohol, the decadic logarithm log(P) is used as a measure of

the lipophilicity of M. Lipophilicity in turn plays an important role in drug discovery

since orally active drugs cannot be too lipophilic; the famous Lipinski’s rule of five [68]

states that a log(P) over 5 is a risk factor for poor absorption or permeation of an

oral drug.

15

It is common to determine log(P) experimentally, but it can also be treated as a

physicochemical descriptor that can be approximately calculated in-silico. A simple

method for the computational estimation of log(P) has been given by Wildman and

Crippen [69] who employed a summation over the contributions of individual atoms:

log(P) =
∑
a∈A

c(f(a)).

Here A is a set containing symbolic representations of the atoms in M. The function

f : A→ {1, ..., 68}

assigns each atom to one of 68 developed classes according to properties related to

element type, neighbouring atoms and aromaticity. The function

c : {1, ..., 68} → R

then maps each atomic class to its additive contribution towards the overall log(P)

of M. The number of atomic classes as well as the functions f and c were constructed

and calibrated on the basis of a training set comprising of experimental log(P)-data.

While it might seem simplistic at first sight to try to predict the lipophilicity

of a compound merely via a sum over atomic contributions, this method has been

shown to provide reasonably accurate and computationally fast log(P)-estimations

for many compounds. The intuitive motivation behind the summation of atomic con-

tributions is that the log(P) may be approximately thought of as reflecting a balance

between hydrophobic and hydrophilic parts of a compound whose contributions can

be summed up. However, there are limitations to this strategy, and predictions might

be less accurate for molecules that significantly deviate from the training set. The

Wildmann-Crippen method has been implemented in the Python cheminformatics-

library RDKit [70]. This implementation performs a series of substructure searches on

an input compound (usually given via its SMILES string) to assign the appropriate

atom classes used for the calculation of the log(P) estimate.

Example 2.2 (Balaban Index). Let M be a molecule represented via an hydrogen-

depleted molecular graph G = (A,B) with |A| := n atoms and |B| := m bonds and

let g : B → R be a scalar bond featurisation function that maps single bonds to 1,

double bonds to 1/2, triple bonds to 1/3 and aromatic bonds to 2/3. For a, ã ∈ A let

dg(a, ã) := min

 ∑
{a1,a2}∈P

g({a1, a2}) | P is a shortest path between a and ã in B

16

be the minimal bond-order-weighted graph distance between a and ã in G and let

sa :=
∑
ā∈A

dg(a, ā).

Then the Balaban index [71] of M is defined via

Jbal(G, g) :=
m

m− n+ 2

∑
{a,ã}∈B

1
√
sasã

.

It may not be straightforward to interpret the quantity Jbal(G, g) in structural terms.

However, it can be shown to be extraordinary useful in detecting the existence of

structural differences: for two distinct molecular graphs G1 ̸= G2 it almost always

holds that

Jbal(G1, g) ̸= Jbal(G2, g).

The feature Jbal(G, g) may in some cases encode useful structural information for a

downstream prediction task and could then help machine-learning models to detect

relevant differences even between very similar input molecules. The Balaban index of

a compound can be calculated quickly from its SMILES string using RDKit [70].

For the machine-learning tasks in our work, we employed a 200-dimensional PDV

composed of a diverse selection of l = 200 descriptors that together give a robust

overall physicochemical profile of a molecule. Our chosen descriptors are identical

to the ones used in the study of Fabian et al. [72] who successfully used a self-

supervised transformer-architecture to learn a useful latent embedding of chemical

space via the prediction of physicochemical properties from SMILES strings of chem-

ical compounds. Each selected descriptor can be computed quickly from the com-

pound SMILES-string using the Python cheminformatics-package RDKit [70]. A full

list of our chosen descriptors, which includes the predicted log(P) from Example 2.1

and the Balaban index from Example 2.2, can be found in Table 2.2.

Before using the PDV for any prediction task, we canonically derived the cumu-

lative distribution function for each individual descriptor from the training set and

used it to normalise the associated descriptor-values. The final PDV F was thus

always contained in the hypercube [0, 1]200. This normalisation-step prevents certain

machine-learning algorithms such as multilayer perceptrons from putting dispropor-

tionate attention on large-range features while ignoring small-range features.

17

Selected RDKit Physicochemical Descriptors

BalabanJ, BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n, Chi2v, Chi3n, Chi3v,
Chi4n, Chi4v, EState VSA1, EState VSA10, EState VSA11, EState VSA2, EState VSA3,
EState VSA4, EState VSA5, EState VSA6, EState VSA7, EState VSA8, EState VSA9, Exact-
MolWt, FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3, FractionCSP3, HallKier-
Alpha, HeavyAtomCount, HeavyAtomMolWt, Ipc, Kappa1, Kappa2, Kappa3, LabuteASA,
MaxAbsEStateIndex, MaxAbsPartialCharge, MaxEStateIndex, MaxPartialCharge, MinAb-
sEStateIndex, MinAbsPartialCharge, MinEStateIndex, MinPartialCharge, MolLogP, MolMR,
MolWt, NHOHCount, NOCount, NumAliphaticCarbocycles, NumAliphaticHeterocycles, Nu-
mAliphaticRings, NumAromaticCarbocycles, NumAromaticHeterocycles, NumAromaticRings,
NumHAcceptors, NumHDonors, NumHeteroatoms, NumRadicalElectrons, NumRotatable-
Bonds, NumSaturatedCarbocycles, NumSaturatedHeterocycles, NumSaturatedRings, NumVa-
lenceElectrons, PEOE VSA1, PEOE VSA10, PEOE VSA11, PEOE VSA12, PEOE VSA13,
PEOE VSA14, PEOE VSA2, PEOE VSA3, PEOE VSA4, PEOE VSA5, PEOE VSA6,
PEOE VSA7, PEOE VSA8, PEOE VSA9, RingCount, SMR VSA1, SMR VSA10, SMR VSA2,
SMR VSA3, SMR VSA4, SMR VSA5, SMR VSA6, SMR VSA7, SMR VSA8, SMR VSA9,
SlogP VSA1, SlogP VSA10, SlogP VSA11, SlogP VSA12, SlogP VSA2, SlogP VSA3,
SlogP VSA4, SlogP VSA5, SlogP VSA6, SlogP VSA7, SlogP VSA8, SlogP VSA9, TPSA,
VSA EState1, VSA EState10, VSA EState2, VSA EState3, VSA EState4, VSA EState5,
VSA EState6, VSA EState7, VSA EState8, VSA EState9, fr Al COO, fr Al OH,
fr Al OH noTert, fr ArN, fr Ar COO, fr Ar N, fr Ar NH, fr Ar OH, fr COO, fr COO2,
fr C O, fr C O noCOO, fr C S, fr HOCCN, fr Imine, fr NH0, fr NH1, fr NH2, fr N O,
fr Ndealkylation1, fr Ndealkylation2, fr Nhpyrrole, fr SH, fr aldehyde, fr alkyl carbamate,
fr alkyl halide, fr allylic oxid, fr amide, fr amidine, fr aniline, fr aryl methyl, fr azide, fr azo,
fr barbitur, fr benzene, fr benzodiazepine, fr bicyclic, fr diazo, fr dihydropyridine, fr epoxide,
fr ester, fr ether, fr furan, fr guanido, fr halogen, fr hdrzine, fr hdrzone, fr imidazole,
fr imide, fr isocyan, fr isothiocyan, fr ketone, fr ketone Topliss, fr lactam, fr lactone,
fr methoxy, fr morpholine, fr nitrile, fr nitro, fr nitro arom, fr nitro arom nonortho, fr nitroso,
fr oxazole, fr oxime, fr para hydroxylation, fr phenol, fr phenol noOrthoHbond, fr phos acid,
fr phos ester, fr piperdine, fr piperzine, fr priamide, fr prisulfonamd, fr pyridine, fr quatN,
fr sulfide, fr sulfonamd, fr sulfone, fr term acetylene, fr tetrazole, fr thiazole, fr thiocyan,
fr thiophene, fr unbrch alkane, fr urea, qed

Table 2.2: Overview of the 200 distinct molecular descriptors selected for the 200-dimensional
physicochemical-descriptor vectors (PDVs) used in our experiments. Each descriptor is named af-
ter its associated command in RDKit [70]. The descriptors are identical to the ones used in the
work of Fabian et al. [72] and cover a broad spectrum of molecular properties related to lipophilic-
ity, druglikeness, electrotopological state, molecular refractivity, molecular surface, molecular-graph
structure, charge, and fragment count.

18

2.4.2 Critical View

Below we give a list of advantages (+) and disadvantages (−) of PDVs as a molecular

featurisation method.

(+) Low computational cost. PDVs can be computed quickly, even for large

molecular data sets.

(+) Interpretability (in some cases). Certain descriptors quantify straightfor-

ward physicochemical properties of a compound such as its molecular weight or

its heavy atom count. Such descriptors can be immediately understood and in-

terpreted by chemical experts. However, it is important to note that there also

exists a large number of potentially useful descriptors whose chemical interpre-

tation is not obvious at all, such as the Balaban index discussed in Example 2.2.

(+) Simplicity of implementation. PDVs are easy to use and can be automati-

cally generated without sophisticated technical knowledge via publicly available

cheminformatics libraries such as the Python-package RDKit [70].

(+) Chemically reasonable initial embedding of chemical space. PDVs tend

to automatically calculate basic physicochemical features of molecules and thus

immediately provide an a priori embedding of chemical space that is useful

across a wide range of cheminformatics tasks. In particular, this means that

basic chemical features that are relevant across many applications do not need

to be inferred statistically from a molecular representation from scratch every

time a model is trained on a new data set. This can be seen in contrast to

trainable methods like GNNs which continuously need to relearn a reasonable

embedding of chemical space at every new training cycle (unless they have been

combined with suitable self-supervised or transfer learning approaches).

(+) Low dimensionality. PDVs with a dimensionality l ≤ 200 often already

provide useful feature vectors for molecular machine learning tasks. This can

be seen in contrast to extended-connectivity fingerprints (ECFPs) which we

will introduce in Section 2.5 and which normally require a length of at least

l ≥ 1024 to reach acceptable performance. The relatively low dimensionality of

PDVs can decrease the risk of costly downstream-computations and overfitting.

(+) Global receptive field. While ECFPs and message-passing GNNs, which

we will both introduce in Section 2.5 and Section 2.6, are only able to extract

19

features from local circular substructures, PDVs can directly express global

high-level properties of a molecule such as its predicted log(P).

(−) Non-differentiability. PDVs are generally based on fixed algorithms that

cannot be trained in a differentiable manner to learn features from more explicit

molecular representations. In this particular sense we refer to PDVs as non-

trainable. It is worth noting though that computed PDVs can still be adapted

to a given data set to some extent via the application of additional downstream

methods such as data-dependent feature selection and normalisation procedures

(like the removal of low-variance or correlated descriptors). Strictly speaking

such common procedures can certainly also be considered forms of training

(i.e. forms or learning from input data). The non-differentiability of PDVs might

cause an information bottleneck through which important chemical information

cannot pass.

(−) Necessity for feature selection. Since PDVs are not differentiable and nor-

mally do not contain tunable hyperparameters, one of the few ways to adapt

them to a given prediction task is via the choice of physicochemical-descriptor

functions that compose the final PDV. However, the optimal descriptor-choice is

almost never obvious and usually requires the application of expert-knowledge

or technical feature selection algorithms.

(−) Finite number of descriptors. Trainable molecular featurisation methods

like message-passing GNNs are parametric families of functions that can rep-

resent an infinite number of potential feature mappings into a continuous real

vector space. The composition of a PDV on the other hand is restricted to a

finite number of a few thousand human-engineered non-trainable non-tunable

physicochemical-descriptor functions. As a result, PDVs can only represent

a finite number of distinct feature mappings defined by the initial descriptor-

choices. This finite family of feature mappings might not always be sufficient to

describe all of the relevant information for a chemical prediction task; a suitable

descriptor-function for the problem might simply not be available.

20

2.5 Extended-Connectivity Fingerprints

2.5.1 A Short Background on Structural Fingerprints

In this section, we will discuss the extended-connectivity fingerprint (ECFP) [16, 73],

which is part of a larger family of molecular featurisation methods called structural

fingerprints. The essential idea behind structural fingerprints is to algorithmically

detect and encode features that express parts of the chemical structure of a molecule.

Often, structural fingerprints can be represented as bit vectors that express the pres-

ence or absence of certain chemical substructures within the input compound.

Well-known structural fingerprints include the 166-bit MACCS fingerprint [74] and

the 881-bit PubChem fingerprint [75, 76]. Both of these examples belong to a family

of dictionary-based fingerprints that check the presence or absence of substructures

from a predefined dictionary. The dictionaries underlying MACCS and PubChem

fingerprints include 166 and 881 unique substructures respectively, which explains

the dimensionalities of these featurisations.

Another important family of structural fingerprints is given by enumeration-based

fingerprints. These fingerprints exhaustively enumerate all substructures of a molecule

that can be detected via a certain search strategy. An example are Daylight finger-

prints [77] which enumerate all substructures within an input compound that corre-

spond to groups of atoms and bonds that form paths up to a chosen length. As we will

see in this section, ECFPs too fall into the category of enumeration-based fingerprints

since they enumerate all circular substructures in a molecule up to a chosen radius.

Because enumeration-based fingerprints are not constrained by a fixed-sized dictio-

nary of substructures, they can often detect an extremely large number of distinct

fragments. It is thus not immediately obvious how the substructures found within a

particular compound should be transformed into a reasonably-sized bit-vector. The

standard technique to address this issue is by using a hash function to fold the de-

tected fragments into a bit-vector representation of feasible dimensionality and accept

the fact that colliding bits might lead to a certain level of ambiguity. In Chapter 5 and

in Section 6.2, we will explore some interesting alternatives to this hashing procedure

for the vectorisation of structural fingerprints.

In our work, we focus on ECFPs out of all available structural fingerprints. Our

reasons for this include that ECFPs have been used widely in the area of chemin-

formatics and molecular machine-learning and are well-known to perform well on a

diverse set of tasks [17, 20, 78, 79, 80, 81]. Moreover, as we will discover in Section 2.6,

21

ECFPs also exhibit some striking similarities with modern message-passing-GNN ar-

chitectures. In some sense, ECFPs can be interpreted as a non-differentiable version

of message-passing GNNs, which makes a comparison between these two approaches

interesting. We will use the rest of this section to give a mathematical description of

ECFPs along with a critical discussion of their strengths and weaknesses.

2.5.2 Mathematical Description

The ECFP algorithm is a molecular featurisation method that maps a SMILES string

(or its associated molecular graph) to a structural fingerprint that can be represented

as a bit vector. The fundamental ideas underlying ECFPs were originally introduced

by Morgan [73] in 1965; however, modern implementations of the ECFP are largely

based on a detailed technical description given by Rogers and Hahn [16] in 2010.

ECFPs provide a simple yet powerful technique to encode information about the

chemical structure of an input compound. The algorithm is dependent on two prede-

fined hyperparameters: the desired fingerprint length l ∈ N and the maximum radius

R ∈ N0 of the receptive field. An ECFP of length l takes the form of a binary vector

F = (f1, ..., fl) ∈ {0, 1}l.

Up to a certain level of ambiguity due to bit collisions which we will discuss below,

each component fi in F is associated with the presence or absence of a particular

circular subgraph, equipped with specific atom and bond features inherited from the

input molecule, centered around a given atom.

Definition 2.5 (Circular Subgraph). Let G = (A,B) be a molecular graph with atom

set A and bond set B and let a ∈ A. Denote with

N(a) := {ã ∈ A | {ã, a} ∈ B}

the set of neighbouring atoms of a and denote with

M(a) := {{a1, a2} ∈ B | a ∈ {a1, a2}}

the set of bonds that are attached to a. Now let (Aa
r , B

a
r) be a sequence of subgraphs

of (A,B) for r ∈ N0 constructed via the following iterative scheme:

(Aa
0, B

a
0) := ({a}, {}),

Aa
r = Aa

r−1 ∪
⋃

ã∈Aa
r−1

N(ã), Ba
r = Ba

r−1 ∪
⋃

ã∈Aa
r−1

M(ã).

22

Then (Aa
r , B

a
r) is called the circular subgraph of G with center atom a and radius r. If

G is equipped with atom and bond feature vectors, then these are inherited by (Aa
r , B

a
r).

Circular subgraphs with varying radii for an example compound are depicted in

Figure 2.2. The fingerprint hyperparameter R defines the maximum radius of any

Figure 2.2: Circular subgraphs of varying radii for a central nitrogen atom in an example molecule.

circular subgraph whose presence or absence is indicated in the fingerprint F . Circular

subgraphs that are structurally isomorphic are further distinguished according to their

inherited atom and bond features, i.e. two structurally isomorphic circular subgraphs

with distinct atom or bond features correspond to different components of F . For

chemical bonds, this distinction is made on the basis of simple bond types: single,

double, triple, or aromatic. To distinguish atoms, ECFPs usually either use standard

or pharmacophoric atom features and we discuss both variants below.

There also exists a non-binary version of the ECFP in which each component

of F does not simply indicate the presence or absence of a circular subgraph, but

the exact number of occurrences of the subgraph within the input compound. This

version is sometimes referred to as ECFP with counts as opposed to the binary version

mentioned above which is also called ECFP without counts. Throughout this thesis,

unless specifically stated otherwise, we focus on ECFPs without counts, as they are

used significantly more frequently in practice and allow for an easier algorithmic

description. However, it is straightforward to extend the methods described in this

section to ECFPs with counts.

23

We now give a technical description of the algorithm used for the generation of

ECFPs as specified in the article of Rogers and Hahn [16].

ECFP algorithm

List of inputs:

• A molecular compound M, usually represented via a SMILES string S.
Note that S contains the structural information of the molecular graph
G = (A,B).

• A function f specifying the atom feature vectors for A using either standard
or pharmacophoric features.

• A function g specifying the bond types for B using encodings for labels in
the set {single, double, triple, aromatic}.

• A fingerprint length l ∈ N, often chosen to be in {1024, 2048}.

• A fingerprint radius R ∈ N0, often chosen to be in {1, 2, 3}.

Initialisation: A deterministic hash function h is chosen which maps integer
vectors of arbitrary lengths into a large index set such as

{1, ..., 232}

in a pseudo-random and uniformly distributed manner. The map h is then used
to hash each atom feature vector f(a) to a single integer h(f(a)) ∈ {1, ..., 232}.
The integers in the set

I0 := {h(f(a)) | a ∈ A} ⊆ {1, ..., 232}

are called initial atom identifiers.

Iterative phase for substructure-enumeration: The initialisation step is
followed by R iterative steps, whereby at each step all atom identifiers are updated
and saved. At each step r ∈ {1, ..., R}, each atom a ∈ A first starts off equipped
with its respective atom identifier in Ir−1. The new integer atom identifier for a
is generated as follows:

1. A vector of integers Ja,r is created that contains the integer r in the first
position and the current atom identifier of a in the second position.

24

2. All neighbouring atoms that have a bond to a are ordered in lexicographic
order according to their bond types (single = 1, double = 2, triple = 3,
aromatic = 4) and then according to their current integer atom identifiers.

3. A loop is performed over all neighbouring atoms according to this estab-
lished order; for each neighbouring atom, first the bond type and then the
current atom identifier is appended to the end of the integer vector Ja,r.

4. The integer h(Ja,r) ∈ {1, ..., 232} is computed and interpreted as the new
atom identifier for a.

After the set of new atom identifiers

Ir := {h(Ja,r) | a ∈ A} ⊆ {1, ..., 232}

has been computed, the current atom identifiers are simultaneously updated to
correspond to the elements in Ir. Note that by construction each atom identifier
in Ir represents an integer label that can be mapped to a particular circular
subgraph with radius r and associated atom and bond features. Thus, if two
circular subgraphs receive the same integer label they can be assumed to be
isomorphic (ignoring rare ambiguities caused by possible hash collision that could
lead to two distinct circular subgraphs having the same integer label).

After the completion of R iterations, the atom identifiers from all iterative
stages are collected in one set:

I :=
R⋃

r=0

Ir ⊆ {1, ..., 232}.

Structural-duplicate removal: Note that it is possible for several distinct atom
identifiers in I to correspond to the same circular subgraph, for example when
an iteratively constructed circular subgraph can be traced back to two or more
possible center atoms. To eliminate this redundancy, all but one of the structural-
duplicate-identifiers are systematically removed from I using a method based on
sets of bond features. For sake of brevity, further details of this technical removal
process are omitted from this description, but full details can be found in the
article from Rogers and Hahn [16].

Creation of hashed vectorial fingerprint: After the elimination of all struc-
tural duplicates in I, yet another (arbitrary) standard hash function

h̃ : {1, ..., 232} → {1, ..., l}

is chosen to map the integers in I into the much smaller set

{1, ..., l}.

25

This folding procedure creates a fingerprint-set

F := {h̃(i) | i ∈ I} ⊆ {1, ..., l}.

Finally, F is transformed into a binary fingerprint-vector

F := (f1, ..., fl) ∈ {0, 1}l

by setting

fi :=

{
1 i ∈ F,
0 i /∈ F,

∀i ∈ {1, ..., l}.

The total number of detected substructures in a chemical data set naturally in-

creases with the fingerprint radius R. Note that the larger the fingerprint dimension

l gets compared to the number of detected substructures (as controlled by R), the

more likely it becomes that there are no bit collisions. In other words, the more likely

it becomes that each dimensional component fi of F informs about the presence or

absence of one particular atom identifier in I and thus about the presence or absence

of one unambiguous circular subgraph with atom and bond features within the input

compound (ignoring rare ambiguities where two distinct circular subgraphs end up

with the same atom identifier due to hash collisions). The bit fi is then set to 1 if

and only if the circular substructure is present anywhere in the molecule, otherwise fi

is set to 0. However, if l becomes small relative to the number of detected substruc-

tures then more and more hash collisions start to occur, which degrades the quality

of the fingerprint. Such hash collisions cause a fingerprint-component fi to become

ambiguous and correspond to one out of several possible atom identifiers and thus

to distinct circular substructures. Therefore, l must be chosen sufficiently large as to

guarantee the expressivity of the ECFP.

In the literature, ECFP featurisations with radius R are often written in the

form ECFP2R with 2R being the fingerprint diameter. For example, the frequently

used 1024-bit ECFP4-featurisation describes an ECFP with radius R = 2 and length

l = 1024. In our work, we used the Python cheminformatics-library RDKit [70] to

generate ECFPs from SMILES strings.

2.5.3 Standard and Pharmacophoric Atom Features

To distinguish atoms, ECFPs as implemented in RDKit [70] use six standard features.

Optionally, the algorithm also allows for the stereochemical distinction between atoms

with respect to tetrahedral R-S chirality. There also exist alternative binary atom

26

features that were designed to be more reflective of the abstract function that an

atom might play in pharmacological chemistry. When these pharmacophoric atom

features [16] are used instead of the standard features, then one speaks of functional-

connectivity fingerprints (FCFPs). The standard and pharmacophoric atom features

for the ECFP algorithm are listed in Table 2.3.

Standard Atom Features Pharmacophoric Atom Features

Atomic number Hydrogen-bond acceptor (yes/no)

Total degree Hydrogen-bond donor (yes/no)

Number of hydrogen neighbours Negatively ionisable (yes/no)

Formal charge Positively ionisable (yes/no)

Isotope Aromatic (yes/no)

Part of a ring (yes/no) Halogen (yes/no)

Optional: tetrahedral R-S chirality Optional: tetrahedral R-S chirality

Table 2.3: Standard and pharmacophoric atom features used for the two versions of the ECFP
algorithm.

As can be seen, there is an overlap between the standard atom features for ECFPs

and the atom features in our molecular graphs. In certain molecular machine learning

applications, replacing standard with pharmacophoric atom features might lead to in-

creased performance and decreased learning time since important high-level atomic

properties are presented to the learning model from the start and do not need to be

inferred statistically. However, standard atom features contain more detailed infor-

mation that could still be relevant for the prediction task and thus be leveraged by

the learning algorithm.

2.5.4 Critical View

Below we give a list of advantages (+) and disadvantages (−) of the ECFP algorithm

as a molecular featurisation method.

(+) Low computational cost. ECFPs can be computed rapidly, even for large

molecular data sets.

(+) Interpretability. Since ECFPs contain information about the presence or

absence of concrete chemical substructures (up to hash collisions) they can

often be understood and interpreted in a straightforward manner.

27

(+) Simplicity of implementation. ECFPs are easy to use and can be automati-

cally generated without sophisticated technical knowledge via publicly available

cheminformatics libraries such as the Python-package RDKit [70].

(+) Chemically reasonable initial embedding of chemical space. ECFPs

automatically express basic structural features of molecules and thus immedi-

ately provide an a priori embedding of chemical space that is useful across

a wide range of cheminformatics tasks. In particular, this implies that basic

structural features that are important across many applications do not need to

be relearned from a molecular representation from scratch every time a model

is trained on a new data set. This can be seen in contrast to trainable methods

like GNNs which continuously need to relearn a reasonable embedding of chem-

ical space at every new training cycle (unless they have been combined with

suitable self-supervised or transfer learning approaches).

(+) Arbitrary circular subgraphs. ECFPs do not simply check the existence

of substructures from a predefined finite list of chemical substructures (like

dictionary-based structural fingerprints do), but are able to distinguish between

an essentially infinite number of chemical subgraphs, albeit only circular ones.

(−) Non-differentiability. After its hyperparameters have been chosen, the ECFP

transformation becomes a fixed method that produces the same task-agnostic

features for a given compound across data sets. In particular, ECFPs cannot be

trained in a differentiable manner to learn features from more explicit molecular

representations. In this particular sense we refer to ECFPs as non-trainable. It

should be noted though that computed ECFPs can nevertheless be adapted to

a given data set to some degree via the application of additional downstream

methods such as data-dependent feature selection and normalisation procedures;

strictly speaking such procedures can certainly also be considered forms of train-

ing (i.e. forms or learning from input data) and we will explore some of these

techniques in Chapter 5. The non-differentiability of ECFPs might cause an

information bottleneck through which important chemical information cannot

pass.

(−) Trade-off between dimensionality and hash collisions. Decreasing the

fingerprint dimension l relative to the number of detected substructures in-

creases the number of hash collisions. These collisions cause a loss of information

28

and interpretability due to an increasing inability of the fingerprint to distin-

guish between non-identical circular substructures. Thus, lengths of l ≥ 1024

are often a necessity to reach an acceptable performance. In a machine learning

setting, this high dimensionality can lead to costly downstream-computations

and increased risk of overfitting.

(−) Locality of receptive field. ECFPs are based on a local neighbourhood-

aggregation scheme for atoms in a molecule. By design, they are thus only

capable of indicating the existence of local circular subgraphs. In particular,

they cannot directly express global properties of a molecule.

2.6 Message-Passing Graph Neural Networks

2.6.1 Mathematical Description

In 2015, Duvenaud et al. [20] published an influential article where they proposed

an adaptive counterpart to ECFPs. Their goal was to overcome some of the in-

herent limitations of the ECFP featurisation such as non-differentiability and high

dimensionality. Their work resulted in a trainable GNN architecture that could di-

rectly process molecular graphs of varying sizes as input; they reported competi-

tive performance of their method relative to classical ECFPs at several canonical

molecular prediction tasks. After this initial step, a multitude of other promising

GNN architectures appeared rapidly within the molecular machine-learning commu-

nity [18, 19, 21, 22, 23, 24, 25, 26, 27, 28]. In a seminal article from 2017, Gilmer et al.

[17] managed to subsume almost all modern GNN architectures under an overarching

mathematical framework which was further generalised and brought into its modern

form by Bronstein et al. [82, 83]. Below we give a brief technical description of this

framework known as message-passing.

Message-passing-GNN algorithm

List of inputs:

• A chemical compound M, represented via its molecular graph G = (A,B).

• An function f specifying the atom feature vectors for A.

29

• A function g specifying the bond feature vectors for B.

• A fingerprint length l ∈ N, often chosen to be in {50, ..., 500}.

• A fingerprint radius R ∈ N0, often chosen to be in {1, 2, 3, 4, 5}.

Message-passing phase: The first part of the algorithm consists of a message-
passing phase in which the atom feature vectors of G are iteratively updated over
r ∈ {1, ..., R} steps via a local neighbourhood-aggregation scheme. We denote
the set of neighbours of an atom a ∈ A as

N(a) := {ã ∈ A : {a, ã} ∈ B}.

At each step r, every atom a ∈ A updates its associated feature vector from
fr−1(a) to fr(a) according to the following recursive relations:

f0(a) := f(a),

mr(a) =
⊕

{wr(fr−1(a), fr−1(ã), g({a, ã})) | ã ∈ N(a)}mul ,

fr(a) = ur(fr−1(a),mr(a)).

(2.1)

The vector-valued functions (wr)
R
r=1 are called message-passing functions and the

vector-valued functions (ur)
R
r=1 are called atom-updating functions; both types

of maps frequently contain trainable neural networks. The vector mr(a) can be
interpreted as an aggregated message that the atom a receives at step r from
neighbouring atoms along its associated chemical bonds to update its current
feature vector.

Multisets, i.e. sets that can contain multiple instances of the same element, de-
noted via {}mul instead of {}, are required in the above recursion. This is because
two atom neighbours ã1, ã2 of a could in theory produce identical messages

wr(fr−1(a), fr−1(ã1), g({a, ã1})) = wr(fr−1(a), fr−1(ã2), g({a, ã2})),

but two such messages should still be counted as separate elements.
The ⊕-symbol represents a placeholder for a vector-valued and permutation-

invariant multiset-function. Note that permutation-invariance is a basic require-
ment that each multiset functions must possess in order to be a well-defined
function in the first place. The permutation-invariance is necessary to guarantee
that the aggregated message mr(a) is invariant under any (arbitrary) ordering
imposed on the neighbours of a. Possible operators for ⊕ include summation, av-
eraging, or the componentwise computation of maxima. In most cases, however,
the sum-operator is selected, ⊕

:=
∑

, (2.2)

30

and we assume this choice by default unless stated otherwise.
The multiset of atom feature vectors at a particular step r ∈ {0, ..., R},

fr(A)mul := {fr(a) | a ∈ A}mul,

is often imagined to be located at the r-th layer of a multilayer graph with R+ 1
layers. Note that the multiset of bond feature vectors

g(B)mul := {g({a, ã}) | {a, ã} ∈ B}mul

usually does not get updated, although this rule was successfully broken by Kearnes
et al. [19].

Global-pooling step: The message-passing phase is followed by a global-pooling
step at which the multisets of computed atom feature vectors (fr(A)mul)

R
r=0 are

summarised to a single l-dimensional vectorial representation of G. In the most
general case, this pooling operation is accomplished via the application of a se-
quence of vector-valued multiset-functions (⊕̃r)

R
r=0 along the sequence of graph

layers. The layerwise outputs can then be combined via another vector-valued
function q to a final graph-level fingerprint F of length l. In mathematical terms
the global pooling operation thus takes the following general form:

q(⊕̃0f0(A)mul, ..., ⊕̃RfR(A)mul) =: F ∈ Rl. (2.3)

Similar to before, the pooling maps (⊕̃r)
R
r=0 are chosen to be permutation-

invariant multiset functions as to guarantee their invariance under any (arbitrary)
atom ordering imposed on the input graph G and to guarantee that multiple in-
stances of identical atom feature vectors are treated as separate elements. Often
each ⊕̃r simply represents a summation or averaging operator, or the componen-
twise computation of maxima, although more powerful and expressive pooling
maps exist. An overview of the total molecular-featurisation process via message-
passing GNNs is depicted in Figure 2.3.

We can see that message-passing GNNs exhibit some striking similarities with

ECFPs. The fingerprint radius R of a GNN defines the maximum diameter of its cir-

cular receptive field and plays an analogous role to the hyperparameter R of the same

name for ECFPs. In both featurisation methods a local neighbourhood-aggregation

scheme is applied to iteratively update the atom feature vectors of the molecular

graph. Unlike ECFPs, however, message-passing GNNs can learn from graph-shaped

input data in a differentiable manner: the functions (wr)
R
r=1, (ur)

R
r=1 normally contain

a trainable deep-learning component. The graph-level feature vector F can be fed into

a neural prediction head (such as a multilayer perceptron) which enables the resulting

end-to-end architecture to train its weights on a supervised task via backpropagation

31

Figure 2.3: Schematic overview of the molecular-featurisation mechanism of a message-passing
graph neural network (GNN) with radius R = 2. All depicted functions may contain trainable
deep-learning components.

and standard gradient-based optimisation algorithms.

2.6.2 Graph Convolutional Networks

We now describe an early GNN model that has been used frequently in the literature

due to its relative simplicity and computational efficiency: the graph convolutional

network (GCN) introduced in 2016 by Kipf and Welling [18]. Let

• S ∈ {0, 1}n×n be the adjacency matrix of a molecular graph G = (A,B) with

atoms A = {a1, ..., an},

• S̄ := S+I be a modified version of the adjacency matrix with 1s on the diagonal

32

(here I is the n-dimensional identity-matrix which is added to guarantee self-

loops in the graph so that during the node-feature updating-process each node

does not only take into account the features of its neighbouring nodes but also

its own features),

• D̄ be the diagonal degree-matrix of S̄ defined via D̄i,i :=
∑n

j=1 S̄i,j and D̄i,j = 0

for i ̸= j,

• Fr ∈ Rn×k be a matrix whose rows contain the transposed atom feature vectors

(fr(ai)
T)ni=1 at step r,

• Wr ∈ Rk×l be a matrix of trainable weights associated with the r-th graph layer,

and

• ReLU(x) := max{0, x} be the well-known rectified linear unit (ReLU) activation-

function.

Then the atom feature vector updates in a GCN are governed by the following dy-

namics:

Fr := ReLU(D̄− 1
2 S̄D̄− 1

2Fr−1Wr−1). (2.4)

This updating rule can be motivated by a first-order approximation of localised spec-

tral filters on graphs. For details on this derivation, we refer the reader to the original

article [18]. We now show that GCNs are indeed message-passing GNNs.

Proposition 2.1 (Message-Passing for GCNs). The GCN model falls into the class of

message-passing GNNs, i.e. the atom feature vector updating process of GCNs can be

mathematically expressed via the message-passing scheme described in Equations 2.1.

Proof. Note that for each ai ∈ A the associated entry of the diagonal matrix D̄ takes

the form

D̄i,i =
n∑

j=1

S̄i,j = deg(ai) + 1

and we can thus write D̄i,i := D̄(ai). Now let ai, aj ∈ A be two neighbouring atoms

in G, i.e. aj ∈ N(ai). We choose

wr(fr−1(ai), fr−1(aj), g({ai, aj})) := D̄(ai)
−1/2D̄(aj)

−1/2fr−1(aj)

as our message-passing functions and

ur(fr−1(ai),mr(ai)) := ReLU(W T
r−1(D̄(ai)

−1fr−1(ai) +mr(ai)))

33

as our atom-updating functions. To guarantee that the functions wr and ur are indeed

well-defined, we assume without loss of generality that the node degree information

D̄(ai) is implicitly included in each initial atom feature vector f0(ai) and then simply

gets copied from fr−1(ai) to fr(ai) to assure its availability at each iterative feature

update. The aggregated message for ai is now given by

mr(ai) =
∑

{D̄(ai)
−1/2D̄(aj)

−1/2fr−1(aj) | aj ∈ N(ai)}mul

=
n∑

j=1

D̄(ai)
−1/2Si,jD̄(aj)

−1/2fr−1(aj).

As explained in 2.2 above, here the expression of the form
∑

{...}mul simply represents

the sum of all elements in the multiset {...}mul, which means that the summation-

operator is used as a permutation-invariant multiset-function.

If we denote the i-th row-vector of the matrix D̄− 1
2 S̄D̄− 1

2 with [D̄− 1
2 S̄D̄− 1

2][i,:] then

it follows that

fr(ai) = ReLU
(
W T

r−1(D̄(ai)
−1fr−1(ai) +mr(ai))

)
= ReLU

(
W T

r−1

n∑
j=1

D̄(ai)
−1/2S̄i,jD̄(aj)

−1/2fr−1(aj)

)
= ReLU

(
W T

r−1

(
[D̄− 1

2 S̄D̄− 1
2][i,:]Fr−1

)T)
= ReLU

(
W T

r−1F
T
r−1[D̄

− 1
2 S̄D̄− 1

2]T[i,:]

)
We can now finally conclude that

fr(ai)
T = ReLU

(
[D̄− 1

2 S̄D̄− 1
2][i,:]Fr−1Wr−1

)
and therefore

Fr = ReLU(D̄− 1
2 S̄D̄− 1

2Fr−1Wr−1).

We constructed our proof of Proposition 2.1 as a slightly adapted and more de-

tailed version of the original proof we found in the article of Gilmer et al. [17]. Note

that while GCNs are sensitive to the connectivity structure of their input graph,

like many GNNs they do not take into account bond feature vectors. GCNs have

been demonstrated to work reasonably well for a variety of graph-based prediction

tasks [9, 18, 30, 84, 85, 86].

34

2.6.3 Graph Isomorphism Networks

In 2018, Xu et al. [29] published an influential article in which they introduced the

graph isomorphism network (GIN) model. The GIN was developed to overcome

some of the theoretical shortcomings of GCNs and other popular GNN architectures

available at the time. We will discuss the highly relevant motivation of Xu et al. and

their theoretical insights in the next section, but will first give a brief description

of their proposed model. The message-passing mechanism of GINs expressed via

Equations 2.1 is defined in a straightforward manner via

wr(fr−1(a), fr−1(ã), g({a, ã})) = fr−1(ã)

and

ur(fr−1(a),mr(a)) = ϕr((1 + ϵr)fr−1(a) +mr(a)).

Here ϵr is a small (optionally trainable) parameter and ϕr is a trainable multilayer

perceptron with at least one hidden layer. Note that ϕr is specifically required to

be more powerful than the shallow neural network xT 7→ ReLU(xTW) used in the

definition of GCNs in Equation 2.4, which has no hidden layer and therefore does

not fulfill the requirements of the universal approximation theorem for feedforward

neural networks [87]. One can write the atom feature updating process for GINs in

the compact recursive form

fr(a) = ϕr

(
(1 + ϵr)fr−1(a) +

∑
fr−1(N(a))mul

)
.

Like GCNs, standard GINs also ignore bond feature vectors, although modifications of

the GIN architecture that do consider bond features have been used successfully [21].

GINs are easy to implement, work well in practice and are currently reaching state-

of-the-art performance in a variety of applications [9, 29, 84, 88].

2.6.4 Theoretical Expressivity of Graph Neural Networks

The relatively old GCNs are still popular GNN models. However, they come with a

significant caveat. This caveat was pointed out by Xu et al. [29] in their seminal 2018

paper and used as a motivation for the design of the GIN. They proved that GCNs

(as well as a plethora of other commonly-used GNN architectures) sometimes map

non-isomorphic graphs to identical vectorial representations and thus suffer from a

lack of theoretical expressivity. In other words, they discovered that GCNs and

many other popular GNN models cannot learn to distinguish certain simple graph

structures, to the point where in some instances they severely underfit the training

35

set. The GIN model was specifically developed to overcome this problematic lack

of expressivity. And indeed, Xu et al. [29] managed to prove that GINs are strictly

more expressive than GCNs and a number of other popular GNN models. They

specifically demonstrated that GINs can distinguish certain non-isomorphic graphs

that GCNs cannot. In addition they showed that GINs are as expressive as standard

message-passing GNNs can ever be; GINs are in the subclass of maximally expressive

message-passing GNNs and are exactly as powerful at distinguishing non-isomorphic

graphs as the canonical 1-Weisfeiler-Lehman (1-WL) graph isomorhism test [89].

Description 2.2 (1-Weisfeiler-Lehman Test). Let G = (A,B) be a finite graph with

a node featurisation function f : A → Rk. We now iteratively construct a sequence

of functions (cr)r∈N0 on the set of graph nodes A. Each value cr(a) is imagined to

be a momentary colouring of the node a ∈ A at step r. The colouring functions are

constructed via the following iterative scheme:

c0(a) := f(a),

cr(a) = h(cr−1(a), cr−1(N(a))mul).

Here a ∈ A is a node of G and h is an injective hash function that maps each vertex

colour along with its multiset of neighbouring colours cr−1(N(a))mul to a new unique

colour. This procedure terminates after a finite number of R steps when a stable

colouring cR is reached that cannot be changed by subsequent iterations. Let

cR(A)mul := {cR(a) | a ∈ A}mul

be called the multiset of final vertex colours. If the multisets of final vertex colours

of two input graphs G1,G2 are distinct, then the graphs are guaranteed not to be

isomorphic. However, if the multisets of final vertex colours are identical, then the

graphs are potentially but not necessarily isomorphic. If two non-isomorphic graphs

reach identical multisets of final vertex colours, we say that the 1-WL test cannot

distinguish these graphs.

A pair of non-isomorphic graphs that nevertheless cannot be distinguished by

the 1-WL test is depicted in Figure 2.4. However, in spite of the existence of such

counterexamples, the 1-WL test is still an elegant and classical method to tackle the

graph isomorphism problem that can efficiently tell apart a large number of non-

isomorphic graph structures. Moreover, the 1-WL test provides a natural benchmark

against which the theoretical expressivity of GNNs can be compared.

36

Figure 2.4: Example of two non-isomorphic graphs that cannot be distinguished by the 1-WL test
if all nodes are assumed to have identical initial colourings. Image source: [90].

Theorem 2.1 (GNN-Conditions for 1-WL Power). A message-passing GNN can be

shown to be maximally expressive and (equivalently) as powerful as the 1-WL test at

distinguishing non-isomorphic graphs if the following injectivity-conditions hold:

• Injective aggregation and update. For each graph layer r ∈ {1, ..., R} there

must exist an injective multiset-function ⊕r and an injective function ψr such

that the updating-procedure for atom features defined in Equations 2.1 can be

written in the form

fr(a) = ψr(fr−1(a),⊕rfr−1(N(a))mul).

This condition guarantees that distinct atom-neighbourhoods are always mapped

to distinct atom feature vector updates.

• Injective pooling. The multiset function ⊕̃R used in the pooling step 2.3 at

the R-th (i.e. last) graph layer must be injective and the final pooling function q

must be injective in the argument corresponding to the R-th graph layer. This

condition guarantees that graphs with distinct final multisets of updated atom

feature vectors are always mapped to distinct graph-level vectorial representa-

tions.

Proof. We will show that the GNN can distinguish every pair of graphs that the 1-

WL test can. Let G = (A,B) be a (finite) graph with a node featurisation function

f : A → Rk. We will prove that for each graph layer r there exists an injective map

αr such that

fr(a) = αr(cr(a)) ∀a ∈ A.

This means that the colour cr(a) of a node a ∈ A at step r (as computed by the WL

algorithm) uniquely determines the node feature vector fr(a) at step r (as computed

37

by the GNN). Furthermore, the injectivity condition on αr guarantees that nodes

with distinct colours have distinct feature vectors.

We show the existence of αr via induction over r. For r = 0, it holds for all a ∈ A

that f0(a) = α0(a) so we can simply choose the identity map for α0. If we now assume

for the induction step that αr−1 exists, then we can write

fr(a) = ψr(fr−1(a),⊕rfr−1(N(a))mul) = ψr(αr−1(cr−1(a)),⊕rαr−1(cr−1(N(a))mul)mul).

Since ψr, ⊕r and αr−1 are injective and the composition of injective functions is again

injective, it follows that there must be an injective function βr such that

fr(a) = βr(cr−1(a), cr−1(N(a))mul).

We now set αr := βr ◦h−1 whereby h−1 is the inverse of the hash function used in the

1-WL algorithm. Once again, αr is injective since βr and h−1 are injective. Moreover,

it now holds for all a ∈ A that

αr(cr(a)) = βr(h
−1(cr(a))) = βr(cr−1(a), cr−1(N(a))mul) = fr(a)

which concludes the proof that αr exists and has the desired properties.

Now let G = (A,B) and G̃ = (Ã, B̃) be two graphs that can be distinguished

with the 1-WL test. We want to show that G and G̃ are then mapped to different

graph-level feature vectors by the message-passing GNN. The fact that G and G̃ can

be distinguished by the 1-WL test means that at some graph layer R their respective

multisets of node colours must be different:

cR(A)mul ̸= c̃R(Ã)mul.

Due to the injectivity of αR this means that the multisets of updated atom feature

vectors at the R-th layer must also be different:

fR(A)mul = αR(cR(A)mul)mul ̸= αR(c̃R(A)mul)mul = fR(Ãmul).

Since the multiset-function ⊕̃R that is used in the pooling step is assumed to be

injective and since the final pooling function q is assumed to be injective in its R-th

argument as well, we can finally conclude that

Rl ∋ q(⊕̃0f0(A)mul, ..., ⊕̃RfR(A)mul) ̸= q(⊕̃0f0(Ã)mul, ..., ⊕̃RfR(Ã)mul) ∈ Rl

which proves that the final vectorial GNN embeddings for G and G̃ must be different.

38

We have shown that all graphs that can be distinguished by the 1-WL test can

also be distinguished by a message-passing GNN under suitable injectivity conditions

which means that such GNNs are at least as powerful as the 1-WL test. For the full

proof, including the converse that all graphs that can be distinguished by a message-

passing GNN can also be distinguished by the 1-WL test, we refer the reader to the

original article of Xu et al. [29].

For simplicity we have omitted bond feature vectors in Description 2.2 and Theo-

rem 2.1, but it is easy to formulate and prove equivalent versions of both statements

that take these into account. Unlike GCNs, GINs fulfill the injectivity conditions from

Theorem 2.1 and are thus in the class of maximally expressive message-passing GNNs

that are as powerful as the 1-WL test. Xu et al. [29] suggested that the technical rea-

sons why GCNs fail to meet the injectivity criteria of Theorem 2.1 is partly connected

with the fact that their atom-updating scheme described in 2.4 only involves a shallow

neural network of the form xT 7→ ReLU(xTW) that lacks hidden layers. We hypothe-

sise that the increased expressivitiy of GINs compared to theoretically weaker models

such as GCNs most strongly translates into superior performance when training data

is abundant. This idea is greatly supported by recent experiments in the realm of

self-supervised learning where GINs consistently beat GCNs by a large margin when

fine-tuned on supervised tasks after pre-training on millions of unlabelled molecular

graphs [9, 21].

Arguably the most important contribution of Xu et al. [29] was not the invention of

the GIN, but the formulation of a mathematical framework to analyse the expressivity

of GNNs that was based on well-known concepts from classical graph theory such as

the graph isomorphism problem and the 1-WL test. Notably, this breakthrough

was achieved in parallel with Morris et al. [91] who published similar insights and

proposed k-GNNs as a generalisation of traditional message-passing GNNs. The k-

GNN architecture was designed to break through the expressivity barrier posed by

the 1-WL test and move up the WL hierarchy.

Description 2.3 (WL Hierarchy). The WL hierarchy is constituted by the k-WL

tests for k ∈ N. The k-WL tests represent a family of polynomial-time graph isomor-

phism tests of strictly increasing expressivity (with the exception of the 2-WL test

that is as powerful as the 1-WL test). Each k-WL test represents an extension of the

1-WL test from Description 2.2 that operates on k-tuples of nodes.

One can prove that the k-GNN model is as expressive as the k-WL test; however,

the k-GNN architecture does not fall under the umbrella of local message-passing

39

GNNs since it involves higher-order operations on sets of graph nodes. This makes

k-GNNs prohibitively computationally expensive and normally impossible to use in

practice.

A potential way forward was recently proposed by Bouritsas et al. [90] in the

form of graph substructure networks (GSNs). GSNs are associated with the emerg-

ing field of geometric deep learning [82, 83] whose aim it is to effectively generalise

deep learning architectures to non-Euclidean domains such as graph structures. GSNs

were designed with the goal of being simultaneously practically applicable and more

expressive than the 1-WL test. The key idea of GSNs is to compute messages in a

manner that depends on the structural relationships between the considered nodes.

This can be achieved by adding precomputed atomic structural descriptors for both

nodes to the message-passing function (wr)
R
r=1 in the procedure outlined in Equa-

tions 2.1. Each node descriptor counts how often the node appears in a particular

topological role in all subgraphs of the input graph that are isomorphic to a particular

predefined (small) graph. The node descriptors do not get updated and remain static

across all graph layers. The a priori choice of basic subgraphs to look out for in the

input graphs allows for the establishment of a useful inductive bias tailored to the

prediction task at hand: for example, triangles might be relevant in social networks

while ring-structures might play an important role in molecular graphs. Since GSNs

only represent a slight generalisation of the standard local message-passing frame-

work, their application is computationally feasible; and since they still allow for the

inclusion of higher-order structural information in each message-passing step, they

can be made strictly more powerful than the 1-WL test (which then for example

enables them to distinguish the graphs from Figure 2.4). The expressivity of GSNs

cannot be easily formulated though within the larger WL hierarchy since suitably

designed GSNs can distinguish (for example) some graph pairs in the 3-WL or 4-WL

class but not all. GSNs have already shown encouraging performance on chemical

prediction tasks [90].

2.6.5 Critical View

Below we give a list of advantages (+) and disadvantages (−) of message-passing

GNNs as a molecular featurisation method.

(+) Differentiability. Message-passing GNNs are able to learn features directly

from highly explicit graph representations of molecules in a differentiable and

task-specific manner. In this particular sense we refer to GNNs as trainable.

40

From a mathematical perspective, the training process for GNNs takes the form

of a gradient-based continuous optimisation problem. The differentiability of

GNNs could potentially allow them to extract substantially larger amounts of

valuable chemical information from molecular graphs than non-differentiable

featurisation methods such as ECFPs and PDVs.

(+) Low dimensionality. Many message-passing GNNs still produce useful fea-

tures for downstream prediction tasks even if the fingerprint length is limited to

l ≤ 100. This can be seen in contrast to ECFPs where the minimum fingerprint

length to reach an acceptable level of performance is usually considered to be

l ≥ 1024. The relatively low dimensionality of GNN-based feature vectors can

decrease the risk of costly downstream-computations and overfitting.

(+) Ability to capture intricate patterns due to model complexity. GNN

architectures are often complex and involve large numbers of trainable parame-

ters. This may enable them to detect nuanced and intricate patterns, especially

when the training set is large.

(+) High expressivity of some models. The recent development of the GSN [90]

as discussed in Section 2.6.4 has shown that GNN models can be made both

practical and substantially more powerful than the 1-WL test (and thus also

more powerful than ECFPs) at distinguishing graph structures.

(−) Low expressivity of some models. As discussed in Section 2.6.4, many

common GNN models such as GCNs are substantially less powerful than the

1-WL test at distinguishing graph structures and in some cases severely underfit

the training set.

(−) Risk of overfitting due to model complexity. The complexity of GNN

architectures may lead them to require relatively large amounts of data and/or

careful regularisation in order to avoid overfitting and generalise effectively.

(−) Limited depth. The success of modern deep-learning architectures lies to a

large part in their ability to automatically extract abstract high-level features

directly from raw input data. This ability is crucially reliant on the sufficient

depth of the neural model since learned features tend to become more abstract

and task-specific as they are moving through consecutive network layers. GNNs

cannot yet leverage the power of deep architectures as the predictive utility of

learned node embeddings tends to decrease sharply after a few GNN layers.

41

The exact reasons and possible solutions for this pathology are still under re-

search [30, 92, 93, 94, 95]. A likely cause might lie in the phenomenon of

oversmoothing which refers to a tendency of successively updated node features

to eventually become indistinguishable.

(−) Difficulty of interpreting learned features. The graph-level featurisation

generated by the global pooling step of a GNN usually consists of a vector of

obscure real numbers that cannot be directly interpreted by human experts in

any straightforward manner.

(−) No chemically reasonable initial embedding of chemical space. The

molecular featurisations extracted by untrained GNNs essentially represent ex-

tremely noisy random projections of the information contained in the initial

molecular graph features. GNNs therefore need to relearn a reasonable embed-

ding from chemical space from scratch every time they are trained on a new

problem (unless they have been combined with a suitable self-supervised or

transfer learning approach). In particular, this might force GNNs to continu-

ously relearn basic chemical features that are useful across a wide set of tasks.

This can be seen in contrast to classical methods like ECFPs and PDVs which

automatically generate embeddings of chemical space that have a basic utility

for many applications.

(−) Difficulty of implementation. PDVs and ECFPs can be generated easily via

ready-to-use algorithms implemented in widely-used cheminformatics libraries

such as the Python-package RDKit [70]. The implementation of a tailored

message-passing-GNN model, on the other hand, usually requires familiarity

with technically advanced graph-based deep-learning libraries such as PyTorch

Geometric [96].

(−) High computational cost. Like most deep-learning models, GNNs involve

large numbers of trainable parameters and costly computations related to the

multiplication of large matrices. This can make GNN models much slower to

train than PDV or ECFP-based models, although this difference in speed can be

significantly mitigated if a suitable GPU can be leveraged during GNN training.

(−) Locality of receptive field. Just like ECFPs, message-passing GNNs are

based on a local neighbourhood-aggregation scheme for the nodes in a graph.

By design, they are thus only capable of learning node embeddings that contain

42

features from local circular subgraphs; this prevents information flow between

distant nodes during the atom feature updating process.

(−) Potential information loss during graph pooling. The global pooling step

in a GNN that combines the multisets of updated node embeddings to a final

graph-level feature vector can easily turn into a (non-injective) information bot-

tleneck if not designed carefully. Imagine for example two multisets of identical

node feature vectors {f, f}mul and {f, f, f}mul; if the popular averaging-operator

is used to pool these two multisets, they lead to the same output representation

f even though both multisets are different and should thus be mapped to dis-

tinct representations. A potential way to avoid such pitfalls may be to employ

differentiable graph pooling techniques that (at least in theory) can provably

approximate any sufficiently regular pooling function [31].

43

2.7 Molecular Featurisations: Critical Overview

We have summarised the critical analyses of PDVs (see Section 2.4.2), ECFPs (see

Section 2.5.4) and message-passing GNNs (see Section 2.6.5) in Table 2.4 to provide

a final overview before moving on to the systematic computational experiments in

Chapter 3.

Molecular Featurisation Methods: Critical Overview

Method Advantages (+) Disadvantages (−)

PDV

• Low computational cost

• Interpretability (in some cases)

• Simplicity of implementation

• Chemically reasonable initial em-
bedding of chemical space

• Low dimensionality

• Global receptive field

• Non-differentiability

• Necessity for feature selection

• Finite number of descriptors

ECFP

• Low computational cost

• Interpretability

• Simplicity of implementation

• Chemically reasonable initial em-
bedding of chemical space

• Arbitrary circular subgraphs

• Non-differentiablity

• Trade-off between dimensionality
and hash collisions

• Locality of receptive field

GNN

• Differentiability

• Low dimensionality

• Ability to capture intricate pat-
terns due to model complexity

• High expressivity of some models

• Low expressivity of some models

• Risk of overfitting due to model
complexity

• Limited depth

• Difficulty of interpreting learned
features

• No chemically reasonable initial
embedding of chemical space

• Difficulty of implementation

• High computational cost

• Locality of receptive field

• Potential information loss during
graph pooling

Table 2.4: Advantages and disadvantages of physicochemical-descriptor vectors (PDVs), extended-
connectivity fingerprints (ECFPs) and message-passing graph neural networks (GNNs) for molecular
featurisation.

44

45

Chapter 3

Exploring Molecular Featurisations for
QSAR and Activity-Cliff Prediction:
A Computational Study

We have published our findings from this chapter as a peer-reviewed research paper [45]

in the Journal of Cheminformatics. Most of the figures and tables, as well as major

parts of the text contained in this chapter are thus either identical or similar to the

content of our published article. We have also presented results from this chapter as

a scientific poster [46] at the 10th International Congress on Industrial and Applied

Mathematics (ICIAM 2023, Tokyo).

3.1 Overview

In Chapter 2 we have given a detailed technical description of state-of-the-art fea-

turisation methods in molecular machine learning along with a critical discussion

of their theoretical strengths and weaknesses. However, perhaps the most press-

ing question has not yet been addressed: which featurisation method actually leads

to the strongest performance at chemical prediction tasks? There is still disagree-

ment in the computational-chemistry community whether modern trainable message-

passing GNNs do in fact outperform classical non-trainable featurisation methods

such as ECFPs and PDVs at important molecular machine-learning tasks. A mul-

titude of studies have found that GNNs do indeed clearly outcompete ECFPs and

PDVs [17, 20, 22, 32, 33, 34, 35, 36]. However, a considerable number of other studies

have found evidence pointing towards the exact opposite [6, 7, 8, 9, 10, 11, 12, 13, 37].

In this chapter, we present a series of carefully designed computational experi-

ments to systematically investigate the predictive powers of PDVs, ECFPs and GINs

for two important tasks in computational drug discovery: the well-researched prob-

46

https://doi.org/10.1186/s13321-023-00708-w
http://dx.doi.org/10.13140/RG.2.2.35914.34241

lem of quantitative structure-activity relationship (QSAR) prediction and the largely

unexplored and difficult challenge of activity-cliff (AC) prediction. QSAR-prediction

refers to the problem of using experimental data to learn a mapping from a com-

putational representation R of a chemical compound to its biological activity value

against a given pharmacological target such as an enzyme or a receptor. A QSAR

model usually takes the form of a machine-learning model that can be decomposed

into a molecular featurisation method followed by a regression technique:

R
7−→

featurisation F = (f1, ..., fl) ∈ Rl
7−→

regression activity (pKi, pIC50, ...) ∈ R.

ACs are pairs of very similar compounds whose molecular structure only differs by a

small change at a specific site but which exhibit a very large difference in their ac-

tivity against a given pharmacological target. ACs explicitly encode small structural

changes that abruptly change a biological effect and are thus rich in pharmacological

information. AC-prediction primarily refers to the task of classifying whether a given

pair of structurally similar compounds forms an AC or not, but usually also implicitly

encompasses the classification of the potency direction (PD) of the pair (i.e. which of

both compounds is more active). Every QSAR model can be repurposed as an AC-

prediction model by using it to individually predict the activities of two structurally

similar compounds (which gives the PD-classification) and then thresholding the ab-

solute difference of the two predicted activities (which gives the AC-classification).

Accurate QSAR-prediction and AC-prediction models would represent valuable tools

in the computer-aided search for novel pharmacological compounds with desired prop-

erties.

In this chapter, we conduct a rigorous computational study to evaluate the QSAR

and AC-prediction performance of nine modern QSAR models on three curated phar-

macological data sets (dopamine receptor D2, factor Xa and SARS-CoV-2 main pro-

tease). Each QSAR model is generated by merging one of three molecular featurisa-

tion methods (PDVs, ECFPs, or GINs) with one of three canonically used regression

techniques (random forests (RFs), k-nearest neighbours (kNNs), or multilayer per-

ceptrons (MLPs)). Our experimental setup thus allows for a systematic comparison

of the three studied featurisations across three regression techniques, three pharma-

cological targets, and three distinct chemical prediction tasks (QSAR-prediction, AC-

classification, and PD-classification). Our experiments are thus organised according

to a robust combinatorial methodology of the form

|{featurisers}| × |{regressors}| × |{data sets}| × |{tasks}| = 3 × 3 × 3 × 3

47

that to the best of our knowledge has not been described before in the literature.

The QSAR-prediction, AC-classification and PD-classification performance of each

featuriser-regressor combination on each data set is measured using a strict data

splitting and evaluation strategy involving a full algorithmic hyperparameter opti-

misation. To evaluate AC and PD-classification performance, we develop a novel

pair-based data-splitting method that operates on top of data splits for individual

molecules in a natural and interpretable manner. Our proposed data split for sets of

molecular pairs is conceptually simple, yet allows one to make important distinctions

between several types of compound pairs with respect to their molecular overlap with

an underlying training set of individual compounds.

It has been hypothesised that ACs form one of the major sources of prediction error

in QSAR modelling [39, 41] but so far only a few studies have attempted to generate

empirical evidence for this claim [37, 40, 97]. However, these studies follow an indirect

approach by measuring QSAR performance on individual compounds involved in

ACs instead of pairs of similar compounds. Our published work [45] closes a gap

in the current QSAR and AC literature by providing the first computational study

to investigate the capabilities of state-of-the-art QSAR models to classify whether a

given pair of similar compounds forms an AC or not. The main aim of the work in

this chapter is to answer the following question:

• Which molecular featurisation method performs best for QSAR or AC-prediction

across different regression techniques and data sets? In particular, when (if at

all) do trainable GINs outperform non-trainable PDVs and ECFPs?

Besides this, we are also interested in the following questions:

• When (if at all) are common QSAR models capable of predicting the existence

of ACs?

• When (if at all) are common QSAR models capable of predicting which of two

similar compounds is more active?

• Which QSAR model shows the strongest AC-prediction performance, and should

thus be used as a baseline against which to compare tailored AC-prediction

models?

• What is the quantitative relationship between QSAR and AC-prediction per-

formance for QSAR models?

48

3.2 Introduction to Activity Cliffs and

Activity-Cliff Prediction

As mentioned above, activity cliffs (ACs) are pairs of small molecules that exhibit high

structural similarity but at the same time show an unexpectedly large difference in

their binding affinity against a given pharmacological target [38, 39, 40, 41, 42, 43, 44].

The existence of ACs directly defies the intuitive idea that chemical compounds with

similar structures should have similar activities, often referred to as the molecular

similarity principle. An example of an AC between two inhibitors of blood coagulation

factor Xa [98] is depicted in Figure 3.1; a small chemical modification involving the

addition of a hydroxyl group leads to an increase in binding affinity of almost three

orders of magnitude.

Figure 3.1: Example of an activity cliff (AC) for blood coagulation factor Xa. A small structural
change in the upper compound leads to an increase in binding affinity of almost three orders of
magnitude. Here binding affinity is quantified via the commonly-used pKi-value, which represents
the negative decadic logarithm of the dissociation constant Ki of the drug-target complex. Both
compounds can be found in the same ChEMBL assay with ID 658338.

For medicinal chemists, ACs can be puzzling and confound their understanding

of structure-activity relationships (SARs) [42, 99, 100]. ACs reveal small compound-

modifications with large biological impact and thus represent rich sources of phar-

macological information. Mechanisms by which a small structural change can give

rise to an AC include a drastic change in 3D-conformation and/or the switching to a

49

different binding mode or even binding site. Another mechanism that could poten-

tially induce ACs is the stabilisation of a single molecular conformation as a result

of a small structural change; such an effect could possibly increase the equilibrium

concentration of the binding conformation, thus leading to an AC without creating

any specific change in binding interaction. One can speculate that this might in fact

be the mechanism underlying the AC shown in Figure 3.1; it is imaginable that the

depicted addition of a hydroxyl group leads to a stabilising intramolecular N-H to O

interaction.

ACs form discontinuities in the SAR-landscape and can therefore have a crucial

impact on the success of lead-optimisation programmes. While knowledge of ACs

can be powerful when trying to escape from flat regions of the SAR-landscape, their

presence can be detrimental in later stages of the drug development process, when

multiple molecular properties beyond mere activity need to be balanced carefully to

arrive at a safe and effective compound [41, 42]. In the field of cheminformatics, ACs

are suspected to form one of the major roadblocks for successful QSAR modelling [39,

40, 41, 97]. In practice, abrupt changes in activity are expected to negatively influence

the abilities of QSAR methods to learn general SAR-trends. On the other hand, in

theory ACs can be seen as an opportunity for such methods to extract precious SAR-

knowledge. During the development of QSAR models, ACs are sometimes dismissed

as measurement errors [101], but simply removing ACs from a training data set can

result in a loss of large amounts of pharmacological information [102].

Golbraikh et al. [97] developed the simple MODI metric which quantifies the

smoothness of the SAR-landscape of a given binary molecular classification data set.

They subsequently showed that SAR-landscape smoothness is a strong determinant

for downstream QSAR-modelling performance across a large number of data sets. In

a conceptually related work, Sheridan et al. [40] found that the density of ACs in a

given molecular data set is strongly predictive for its overall modelability by classical

descriptor and fingerprint-based QSAR methods. Furthermore, they demonstrated

that such methods incur a significant drop in performance when the molecular test

set is restricted to only include “cliffy” compounds which form a large number of

ACs. In a recent and more extensive study, van Tilborg et al. [37] observed a sim-

ilar drop in performance when testing a large number of classical and graph-based

QSAR techniques on sets of compounds involved in ACs. Notably, in both studies this

performance drop was also observed for highly nonlinear and adaptive deep learning

models. Moreover, van Tilborg reports that descriptor-based QSAR methods do in

50

fact outperform more complex deep learning models on “cliffy” compounds associ-

ated with ACs. This runs counter to earlier hopes expressed in the literature that

the approximation powers of highly parametric deep networks might ameliorate the

problem of ACs [103].

While these works provide valuable insights into the detrimental effects of SAR

discontinuity on QSAR models, they consider ACs mainly indirectly by focussing

on individual compounds involved in ACs. Arguably, a distinct and more natural

approach would be to investigate ACs directly at the level of compound pairs. This

approach has been followed in the AC-prediction field which is concerned with the

development of techniques to classify the existence and direction of potential ACs.

An effective AC-prediction method would be of great value for drug development

with important applications in rational compound optimisation and automatic SAR-

knowledge acquisition.

The AC-prediction literature is still very thin compared to the QSAR-prediction

literature. An attempt to conduct an exhaustive literature review on AC-prediction

techniques revealed a total of 15 methods [47, 51, 104, 105, 106, 107, 108, 109, 110,

111, 112, 113, 114, 115, 116], all of which have been published since 2012. Current AC-

prediction methods are often based on creative ways to extract features from pairs of

molecular compounds in a manner suitable for standard machine learning pipelines.

For example, Horvath et al. [111] used condensed graphs of reactions [117, 118], a

representation technique originally introduced for modelling of chemical reactions, to

encode pairs of similar compounds and subsequently predict ACs. Another method

was recently described by Iqbal et al. [51] who investigated the abilities of convo-

lutional neural networks operating on 2D images of compound pairs to distinguish

between ACs and non-ACs. Interestingly, none of the AC-prediction methods we iden-

tified employ feature extraction techniques built on GNNs with the exception of Park

et al. [115] who recently applied graph convolutional methods to compound-pairs to

predict ACs.

In spite of the existence of various technically complex AC-prediction models there

are significant gaps left in the current AC-prediction literature. Note that any given

QSAR model can immediately be repurposed as an AC-prediction model by using it

to individually predict the activities of two structurally similar compounds and then

thresholding the difference of both predicted activities. Nevertheless, at the moment

there is no study that uses this straightforward technique to rigorously investigate

the potential of modern QSAR models to classify whether a given pair of compounds

forms an AC or not. Importantly, this also entails that the most salient AC-prediction

51

models [51, 104, 105, 106, 111] have not been compared to a simple QSAR-modelling

baseline. It is thus an open question to what extent (if at all) these tailored AC-

prediction techniques outcompete repurposed state-of-the-art QSAR methods at the

detection of ACs. This question is especially relevant in light of the fact that several

published AC-prediction models [51, 104, 106] are evaluated via compound-pair-based

data splits which incur a significant overlap between the training set and test set

at the level of individual molecules. This type of data split should strongly favour

standard QSAR models for AC-prediction, yet a comparison to such baseline methods

is lacking. We address these problems by providing the first computational study that

explores the capabilities of modern QSAR models to predict ACs. The results of our

study establish a natural baseline against which more advanced AC-prediction models

can be compared. Moreover, we disentangle the prevalent data-splitting issues in AC-

prediction settings by introducing a novel splitting technique. This method, which

we recommend as the standard for future publications, allows one to make important

distinctions between several types of compound-pair test-sets with respect to their

molecular overlaps with the underlying training set.

3.3 Experimental Methodology

3.3.1 Molecular Data Sets

We built three binding affinity data sets of small-molecule inhibitors of dopamine

receptor D2, factor Xa, and SARS-CoV-2 main protease. Dopamine receptor D2 is

the main site of action for classic antipsychotic drugs which act as antagonists of the

D2 receptor [119]. Factor Xa is an enzyme in the coagulation cascade and a canonical

target for blood-thinning drugs [98]. SARS-CoV-2 main protease is one of the key

enzymes in the viral replication cycle of the SARS coronavirus 2, that recently caused

the unprecedented COVID-19 pandemic; it is one of the most promising targets for

antiviral drugs against this coronavirus [120]. The protein structures of dopamine

receptor D2, factor Xa and SARS-CoV-2 main protease are visualised in Figures 3.2

to 3.4, respectively.

For dopamine receptor D2 and factor Xa, data was extracted from the ChEMBL

database [122] in the form of SMILES strings with associated Ki [nM] values. All

activity values extracted from ChEMBL were associated with the equality standard

relation “=”; qualified activity values associated with other relations such as “<” or

“>” were not used. In the case of SARS-CoV-2 main protease, data was obtained from

the COVID moonshot project [123] in the form of SMILES strings with associated

52

Figure 3.2: Protein structure of dopamine receptor D2. Extracted from the Research Collab-
oratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [121]. PDB ID: 6CM4.

53

Figure 3.3: Protein structure of factor Xa. Extracted from the Research Collaboratory for
Structural Bioinformatics Protein Data Bank (RCSB PDB) [121]. PDB ID: 2JKH.

54

Figure 3.4: Protein structure of SARS-CoV-2 main protease. Extracted from the Research
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [121]. PDB ID: 6LU7.

55

IC50 [µM] values. SMILES strings were standardised and desalted via the ChEMBL

structure pipeline [124]. This step also removed solvents and isotopic information.

Following this, SMILES strings that produced error messages when turned into an

RDKit mol object were deleted. Finally, a scan for duplicate molecules was performed:

If the activities in a set of duplicate molecules were within the same order of magnitude

then the set was unified via geometric averaging. Otherwise, the measurements were

considered unreliable and the corresponding set of duplicate molecules was removed.

This procedure reduced the data set for dopamine receptor D2 / factor Xa / SARS-

CoV-2 main protease from 8883 / 4116 / 1926 compounds to 6333 / 3605 / 1924

unique compounds whereby 174 / 21 / 0 sets of duplicate SMILES were removed and

the rest was unified.

3.3.2 Definition of Binary Activity-Cliff Classification-Tasks

The exact definition of an AC hinges on two concepts: structural similarity and

large activity difference. An elegant technique to measure structural similarity in the

context of AC analysis is given by the matched molecular pair (MMP) formalism [125,

126]. An MMP is a pair of compounds that share a common structural core but

differ by a small structural change at a specific site. Figure 3.1 depicts an example

of an MMP whose variable parts are formed by a hydrogen atom and a hydroxyl

group. To detect MMPs algorithmically, we used the mmpdb Python-package provided

by Dalke et al. [127]. We restricted ourselves to the commonly-used definition of

MMPs [104, 105, 111] which employs relatively generous size constraints: the MMP

core was required to contain at least twice as many heavy atoms as either of the

two variable parts; each variable part was required to contain no more than 13 heavy

atoms; the maximal size difference between both variable parts was set to eight heavy

atoms; and bond cutting was restricted to single exocyclic bonds. Note that the

decomposition of an MMP into a core part and two variable parts is not necessarily

unique as the size of the chosen core part can vary. To guarantee a well-defined

mapping from each MMP to a unique structural core, we canonically chose the core

that contained the largest number of heavy atoms whenever there was ambiguity.

Based on the ratio of the activity values of both MMP compounds, each MMP

was assigned to one of three classes: “AC”, “non-AC” or “half-AC”. In accordance

with the literature [99, 104, 109, 111, 128] we assigned an MMP to the “AC”-class

if both activity values differed by at least a factor of 100. If both activity values

differed by no more than a factor of 10, then the MMP was assigned to the “non-

AC”-class. In the residual case the MMP was assigned to the “half-AC”-class. To

56

arrive at a well-separated binary classification task, we labelled all ACs as positives

and all non-ACs as negatives. The half-ACs were removed and not considered further

in our experiments. It is also relevant to know the direction of a potential activity

cliff, i.e. which of the compounds in the pair is more active. We thus assigned a

binary label to each MMP indicating its potency direction (PD). PD-classification is

a balanced binary classification task. Table 3.1 gives an overview of all our curated

data sets.

Data Set Dopamine
Receptor D2

Factor Xa SARS-CoV-2
Main Protease

Compounds 6333 3605 1924

MMPs 35484 21292 12594

ACs 461 1896 521

Half-ACs 3804 4693 1762

Non-ACs 31219 14703 10311

ACs : Non-ACs ≈ 1 : 68 ≈ 1 : 8 ≈ 1 : 20

Measurement Ki [nM] Ki [nM] IC50 [µM]

Table 3.1: Sizes of our curated data sets and their respective numbers of matched molecular
pairs (MMPs), activity cliffs (ACs), half-activity-cliffs (half-ACs) and non-activity-cliffs (non-ACs).

It is worth emphasizing again that the definition of an AC hinges on the employed

measure of structural similarity. While the MMP formalism currently represents the

most widespread similarity criterion in the field of AC research, other techniques

have regularly been employed in the past. In particular, the Tanimoto similarity of

binary structural fingerprints (such as ECFPs or MACCS fingerprints) has originally

frequently been used to define ACs [43, 129]. One obvious advantage of this approach

is its computational simplicity. Another advantage may be that ACs can be defined

directly within the input feature space of a potential machine learning model. As

a result, ACs based on this definition might intuitively map very well to compound

pairs whose activity difference is indeed challenging to predict for fingerprint-based

QSAR models. However, using Tanimoto similarity in feature space to define ACs

also has a variety of serious drawbacks that have been effectively summarised by

Stumpfe et al. [43]: Tanimoto similarity varies continuously in the interval [0, 1]

and thus requires the choice of a subjective threshold value for the classification

of compound pairs as similar. Furthermore, different fingerprints generally lead to

57

different Tanimoto similarities; this makes the classification of compound pairs as

similar dependent on the employed fingerprint. Finally, Tanimoto similarity values

can sometimes be difficult to interpret from a chemical perspective and might not

always accurately reflect the intuitions of a chemical expert. In contrast, note that

MMPs do not require the choice of a similarity threshold, are not dependent on a

particular fingerprint featurisation, and have a clear chemical interpretation in terms

of structural cores and variable parts. These reasons might explain the shift away

from Tanimoto similarity towards the MMP formalism that could be observed in

recent years in the field of AC research.

3.3.3 Developed Pair-Based Data Splitting Technique

ACs consist of molecular pairs rather than single molecules; it is thus not obvious

how best to split up a chemical data set into non-overlapping training and test sets

for the fair evaluation of an AC-prediction method. There seems to be no consensus

about which data splitting strategy should be canonically used. Several authors [51,

104, 106] have employed a random split at the level of compound pairs. While this

technique is conceptually straightforward, it must be expected to incur a significant

overlap between training and test set at the level of individual molecules. For example,

randomly splitting up a set of three MMPs {(R1,R2), (R2,R3), (R1,R3)} into a

training and a test set may lead to (R1,R2) and (R1,R3) getting assigned to the

training set and (R2,R3) getting assigned to the test set. This corresponds to a

full inclusion of the test set in the training set at the level of individual molecules.

A molecular overlap of this kind is problematic for at least three reasons: Firstly,

it likely leads to overly optimistic performance estimates of AC-prediction methods

since they will have already encountered some of the test compounds during training.

Secondly, it does not model the natural situation encountered by medicinal chemists

who it is assumed do not know the activity value of at least one compound in a test-set

MMP. Thirdly, the mentioned molecular overlap should lead to strong AC-prediction

results for standard QSAR models, but to the best of our knowledge, no such control

experiments have been conducted in the literature.

Horvath et al. [111] and Tamura et al. [105] have made efforts to address the

shortcomings of a compound-pair-based random split. They proposed advanced data

splitting algorithms designed to mitigate the described molecular-overlap problem by

either managing distinct types of test sets according to compound membership in

the training set or by designing splitting techniques based on the structural cores

of MMPs. However, their data splitting schemes exhibit a relatively high degree of

58

technical complexity which can make their implementation and interpretation non-

straightforward.

For our study, we propose a novel data splitting method which may represent

a favourable trade-off between rigour, interpretability and simplicity. Our tech-

nique shares some of its concepts with the methods proposed by Horvath et al. [111]

and Tamura et al. [105] but might be simpler to implement and interpret. We first

split the data into a training and test set at the level of individual molecules and then

use this basic split to distinguish several types of test sets at the level of compound

pairs. Let

D = {R1,R2, ...}

be the given data set of individual compounds. One can for instance think of D as a

set of SMILES strings or molecular graphs. Furthermore, let

M ⊆ {(R, R̃) | R, R̃ ∈ D}

be the set of MMPs in D that are eligible for the AC-classification task. This means

that M represents the set of MMPs in D that have either been labelled as ACs or

as non-ACs. Then each MMP (R, R̃) ∈ M consists of two structurally similar com-

pounds R and R̃ that share a common structural core which we denote as core(R, R̃).

To avoid redundancy, we associate each MMP with an (arbitrary) ordering of its two

involved compounds and only contain one of both orderings in M, i.e. if (R, R̃) ∈ M

then (R̃,R) /∈ M.

We now use a uniform random split to partition D into a training set Dtrain and

a test set Dtest such that Dtrain ∩Dtest = ∅ and Dtrain ∪Dtest = D. On the basis of

this split, we define the following MMP sets:

Mtrain = {(R, R̃) ∈ M | R, R̃ ∈ Dtrain},

Mtest = {(R, R̃) ∈ M | R, R̃ ∈ Dtest},

Minter = M \ (Mtrain ∪Mtest),

Mcores = {(R, R̃) ∈ Mtest | core(R, R̃) /∈ Ctrain}.

Here

Ctrain = {core(R, R̃) | (R, R̃) ∈ Mtrain ∪Minter}

describes the set of structural MMP cores that appear in Dtrain.

Note that Mtrain ∪ Minter ∪ Mtest = M. The pair (Dtrain,Mtrain) describes the

training space at the level of individual molecules and MMPs, and can be used to

train a QSAR or AC-prediction method. MMPs in Mtest, Minter and Mcores can then

59

Figure 3.5: Illustration of our data splitting strategy for activity-cliff (AC) and potency-
direction (PD) classification. We distinguish between three sets of matched molecular pairs (MMPs),
Mtrain,Minter and Mtest, depending on whether both MMP compounds are in Dtrain, one MMP
compound is in Dtrain and the other one is in Dtest, or both MMP compounds are in Dtest. We
additionally consider a fourth MMP set, Mcores, consisting of the MMPs in Mtest whose structural
cores do not appear in Mtrain ∪Minter.

be classified via a trained AC-predictor. Mtest models an AC-prediction setting where

the activities of both MMP compounds are unknown. Mcores represents the subset

of MMPs in Mtest whose structural cores do not appear in Mtrain ∪ Minter; Mcores

thus models the difficult task of predicting ACs within MMPs that do not contain

near analogs to MMP compounds in the training set. Finally, Minter represents an

AC-prediction scenario where the activity of one MMP compound is given a priori ;

this can be interpreted as a compound-optimisation task where one strives to predict

small AC-inducing modifications of a query compound with known activity. Arguably

the scenario modelled by Minter is the one that is most representative of real-world

applications. An illustration of our data splitting strategy is given in 3.5.

We implemented our data splitting strategy within a k-fold cross validation scheme

repeated with m random seeds. This generated data splits of the form

Si,j = (Di,j
train,D

i,j
test,M

i,j
train,M

i,j
test,M

i,j
inter,M

i,j
cores)

for i ∈ {1, ...,m} and j ∈ {1, ..., k} whereby the pair (Di,j
train,D

i,j
test) represents the j-th

split with the i-th random seed of the underlying data set D in a k-fold cross validation

scheme repeated with m random seeds. The overall performance of each model for all

prediction tasks was recorded as the average over the mk training and test runs based

60

on all data splits S1,1, ...,Sm,k. We chose the configuration (m, k) = (3, 2) which gave

a good trade-off between computational cost and accuracy and reasonable numbers of

MMPs in the compound-pair-sets. In particular, random cross-validation with k = 2

gave expected relative sizes of:

|Mtrain| : |Minter| : |Mtest| = 1 : 2 : 1.

On average, 12.7%, 11.91%, and 6.84% of MMPs in Mtest were also in Mcores for

dopamine receptor D2, factor Xa, and SARS-CoV-2 main protease, respectively.

3.3.4 Prediction Strategies

In a data split of the form

S = (Dtrain,Dtest,Mtrain,Mtest,Minter,Mcores)

each MMP

(R, R̃) ∈ Mtrain ∪Minter ∪Mtest = M

comes with a binary label, AC(R, R̃) ∈ {Non-AC,AC}, indicating whether (R, R̃) is

an AC or not and another binary label, PD(R, R̃) ∈ {Right,Left}, indicating which

of both compounds is more active. Furthermore, each individual compound

R ∈ Dtrain ∪Dtest = D

can be associated with a numerical activity label act(R) ∈ R which we define as the

negative decadic logarithm of the experimentally measured activity of R. We stuck

with the original units used in the ChEMBL database and the COVID moonshot

project before applying the logarithm ([nM] for Ki and [µM] for IC50); each activity

label act(R) thus represents a standard pKi or pIC50 value with a slight additive shift

towards 0 caused by the use of [nM] or [µM]-units instead of the canonical [M]-units;

this shift towards 0 might slightly benefit prediction techniques initialised around the

origin.

We are interested in QSAR-prediction functions

Q : D → R

that map a given molecular representation R ∈ D to an estimate of its binding

affinity:

Q(R) ≈ act(R).

61

In our study, the molecular representation R is either a SMILES string or a molecular

graph. The mapping Q is found via an algorithmic training process on the labelled

data set

{(R, act(R)) | R ∈ Dtrain}

and can then either be used to predict the activity labels of compounds in Dtest,

or it can be repurposed to classify whether an MMP forms an activity cliff (AC-

classification) and what the potency direction of an MMP is (PD-classification).

If (R, R̃) ∈ Minter, then one can assume that the activity label of one of the

compounds, say act(R), is known. Q is then used to generate an AC-classification

for (R, R̃) via

(R, R̃) 7→

{
Non-AC if |act(R) −Q(R̃)| ≤ dcrit,

AC else.

Here dcrit ∈ R>0 is a critical threshold above which an MMP is classified as an AC.

Throughout this work we use dcrit = 1.5 (in pKi or pIC50 units) since this value rep-

resents the middle point between the intervals [0, 1] and [2,∞) which correspond to

absolute logarithmic activity differences associated with non-ACs and ACs respec-

tively. If (R, R̃) ∈ Mtest ∪ Mcores then R, R̃ ∈ Dtest and therefore the activities of

both compounds are unknown. We hence perform the AC-classification for (R, R̃)

via

(R, R̃) 7→

{
Non-AC if |Q(R) −Q(R̃)| ≤ dcrit,

AC else.

The PD-classification for an MMP (R, R̃) ∈ Minter with Q is performed in a straight-

forward manner by simply comparing the binding affinity prediction of the test com-

pound R̃ with the experimentally measured binding affinity of the training com-

pound R:

(R, R̃) 7→

{
Right if act(R) ≤ Q(R̃),

Left else.

Similarly, the PD-classification for an MMP (R, R̃) ∈ Mtest ∪Mcores with Q is per-

formed via:

(R, R̃) 7→

{
Right if Q(R) ≤ Q(R̃),

Left else.

62

3.3.5 Performance Metrics

The performance of Q when used as a standard QSAR method for the prediction

of the activity labels of individual molecules in Dtest was measured via the mean

absolute error (MAE):

1

|Dtest|
∑

R∈Dtest

|Q(R) − act(R)|.

For the balanced PD-classification problem we could rely on simple accuracy as a

suitable performance metric:

number of correct predictions

number of predictions
.

However, when using Q for the naturally highly imbalanced AC-classification task,

a more nuanced set of performance metrics had to be chosen. Denote with TP,

TN, FP, and FN the numbers respectively representing true positives, true negatives,

false positives and false negatives for the AC-classification task. We then used the

Matthews correlation coefficient (MCC) as a suitable overall performance metric:

TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

In addition, we tracked AC-sensitivity

TP

TP + FN

and AC-precision
TP

TP + FP
.

The MCC represents a summary statistic for the confusion matrix of a binary classi-

fication problem that is reasonably robust against imbalanced class labels. Sensitiv-

ity (also known as recall) can be interpreted as an approximation for the probability

of the classifier to classify an actually positive instance as a positive one. Finally,

precision (also known as positive predictive value) approximates the probability that

a positively classified instance is indeed positive.

For the relatively small SARS-CoV-2 main protease data set we sometimes encoun-

tered the edge case where TP + FP = 0, i.e. where there were no positive predictions.

In this situation we set MCC = 0 and ignored the ill-defined precision measurements

when averaging the performance metrics.

63

Molecular Featurisation Methods and Regression Techniques

We constructed nine QSAR models (i.e. nine versions of Q) via a robust combinato-

rial methodology that systematically combines three molecular featurisation methods

with three regression techniques. This setup allows one to systematically compare the

performance of molecular featurisations across regression techniques, data sets and

predictions tasks. For molecular featurisation, we used PDVs (2.4) and ECFPs (2.5),

both generated from SMILES strings (2.3), as well as GINs (2.6.3) on top of molecular

graphs (2.2). Both the ECFPs and the PDVs were computed via RDKit [70]. The

ECFPs used a radius of two, a length of 2048 bits, and standard atom features with

active tetrahedral R-S chirality flags. The PDVs had a dimensionality of 200, were

constructed using the list of descriptors specified in Table 2.2, and were normalised to

lie in the hypercube [0, 1]200 via their componentwise cumulative distribution functions

derived from the training set as explained in Section 2.4. The PDV descriptor-list

encompassed properties related to druglikeness, logP, molecular refractivity, electro-

topological state, molecular graph structure, fragment-profile, molecular charge, and

molecular surface. The GIN was implemented via PyTorch Geometric [96]. The

atom features of the underlying molecular graph objects can be found in Table 2.1.

For global graph pooling we chose the componentwise maximum over all atom feature

vectors in the final graph-layer.

Each molecular featurisation was used as an input featurisation for three regression

techniques: random forests (RFs), k-nearest neigbours (kNNs) and multilayer per-

ceptrons (MLPs). The RF and kNN models were implemented via scikit-learn [130]

and the MLP models via PyTorch [131]. The MLPs used ReLU activations and batch

normalisation at each hidden layer. The GIN was combined with the regression tech-

niques as follows: For MLP regression, the GIN was trained with the MLP as a

projection head after the pooling step in the usual end-to-end manner. For RF or

kNN regression, the GIN was first trained with a single linear layer added after the

global pooling step that directly mapped the graph-level representation to an activity

prediction. After this training phase the weights of the GIN were frozen and it was

used as a static feature extractor. The RF or kNN regressor was then trained on

top of the features extracted by the frozen GIN. Figure 3.6 depicts an overview of all

investigated QSAR models.

64

Figure 3.6: Schematic showing the combinatorial experimental methodology used for the study.
Each molecular featurisation method is systematically combined with each regression technique,
giving a total of nine quantitative structure-activity relationship (QSAR) models. Each QSAR
model is trained and evaluated for QSAR-prediction, activity-cliff (AC) classification and potency-
direction (PD) classification via 2-fold cross validation repeated with 3 random seeds. For each
of the 2 ∗ 3 = 6 trials, an extensive inner hyperparameter-optimisation loop on the training set is
performed for each QSAR model.

3.3.6 Model Training and Hyperparameter Optimisation

The three investigated regression techniques as well as the GIN feature-extractor come

with a multitude of training and model hyperparameters which need to be tuned

properly as to allow each QSAR model to unfold its maximum performance. Since

our presented study is comparative in nature, it was essential to include a systematic

hyperparameter-optimisation procedure within the training routine of each model.

While such a hyperparameter optimisation greatly increased the computational cost

and the difficulty of implementation for our numerical experiments, it formed an

indispensable part of a fair and objective model comparison.

As described previously, each QSAR model was evaluated within a k-fold cross

validation scheme repeated with m random seeds. This implies that an independent

version of each QSAR model was trained on each molecular training set Di,j
train for

i ∈ {1, ...,m} and j ∈ {1, ..., k} and the results were then averaged for each model

over all mk trials. At each of the mk training rounds, each model was first trained

via an inner hyperparameter-optimisation loop on Di,j
train. The determined set of

hyperparameters was then used to train a model with optimised architecture on Di,j
train

and this optimised model was used for evaluation. In the implementation of the

inner hyperparameter-optimisation loop we distinguished between the four classical

65

machine learning models (ECFPs or PDVs combined with either RFs or kNNs) and

the five models that contained a deep learning component (a GIN or an MLP) in

order to save computational resources.

In the classical case we used a five-fold inner cross validation split on Di,j
train; 10

models with distinct hyperparameter settings were then trained within this cross

validation scheme. The 10 hyperparameter configurations were sampled uniformly at

random from a predefined grid using the RandomizedSearchCV routine implemented

in scikit-learn [130]. The hyperparameters that minimised the MAE over the inner

cross validation loop were subsequently chosen to train the final model. For RF

regression, we chose a forest size of 500 trees and optimised the maximum tree depth,

the minimum number of samples required to split an internal node, the minimum

number of samples required to be at a leaf node, the number of features to consider

for the best split, and whether bootstrap samples should be used or not when building

trees. For the kNN algorithm, we optimised the number of considered neighbours,

the power parameter for the underlying Minkowski distance measure, and whether to

give uniform or inverse-distance weights to neighbours.

In the deep learning case, we employed a 4:1 split of Di,j
train into an inner training

set and an inner validation set. We then trained 20 models with distinct hyperpa-

rameter configurations on the inner training set. The 20 hyperparameter sets were

sampled from a predefined grid using the tree-structured Parzen estimator (TPE)

algorithm implemented in the Optuna hyperparameter-optimisation package [132].

The hyperparameters that minimised the MAE on the inner validation set were sub-

sequently chosen to train the final model. For the MLP architecture, we optimised the

number of hidden layers and the number of neurons per hidden layer. Additionally,

we chose ReLU as the hidden activation function and used batch normalisation [133]

throughout the neural network.

For the GINs (2.6.3) we optimised the total number of graph layers R and the

dimensional length of the updated atom feature vectors fr(a) at the r-th graph layer.

For each layerwise multilayer perceptron ϕr that formed part of the GIN we used

two internal hidden layers whereby the number of neurons in each hidden layer was

equivalent to the dimensionality of the atom feature vectors in the r-th layer. For the

two hidden layers of each ϕr we employed batch normalisation and again chose ReLU

as the hidden activation function. Each ϵr was set to 0. To reduce the molecular

graph to a single feature vector after the message-passing phase, we employed max-

pooling at the R-th graph layer which computes the componentwise maximum over

all final atom feature vectors. Since we optimised the atom feature dimensionality

66

in the final graph layer we also implicitly optimised the dimensionality l of the final

graph-level fingerprint.

All deep learning models were trained for 500 epochs on a single NVIDIA GeForce

RTX 3060 GPU using the mean squared error loss function and AdamW optimi-

sation [134]. During training we employed weight decay, learning rate decay and

dropout [135] at all hidden layers for regularisation. Batch size, learning rate, learning

rate decay rate, weight decay rate, and dropout rate were treated as hyperparameters

and subsequently optimised. Note that the training length (the number of gradient

updates) was implicitly optimised via tuning the batch size for the fixed number of

500 training epochs.

3.4 Results and Discussion

The QSAR-prediction, AC-classification and PD-classification results for all three

investigated data sets are depicted in Figures 3.7 to 3.12 below.

3.4.1 QSAR-Prediction Performance

When considering the results depicted in Figures 3.7 to 3.12 with respect to QSAR-

prediction performance, one can see that ECFPs tend to lead to better performance

(i.e. a lower QSAR-MAE) compared to GINs, which in turn tend to lead to better

performance compared to PDVs. In particular, the combination ECFP-MLP consis-

tently produced the lowest QSAR-MAE across all three targets. These observations

reinforce a growing corpus of literature that suggests that trainable GNNs have not

yet reached a level of technical maturity by which they consistently and definitively

outperform the much simpler task-agnostic ECFPs at important molecular property

prediction problems [6, 7, 8, 10, 11, 12, 13].

3.4.2 AC-Classification Performance

The AC-MCC plots in Figures 3.7 to 3.9 reveal surprisingly strong overall AC-

classification results on Minter. This type of MMP set models a compound-optimisation

scenario where a researcher strives to identify small structural modifications with a

large impact on the activity of query compounds with known activities. For this

task, a substantial number of our QSAR models exhibit an AC-MCC value greater

than 0.5 across targets, which appears impressive considering the simplicity of the

approach. Exchanging Minter with either Mtest or Mcores leads to a substantial drop

67

Figure 3.7: QSAR-prediction and activity-cliff (AC) classification results for dopamine recep-
tor D2. For each plot, the x-axis corresponds to a combination of MMP set and AC-classification
performance metric and the y-axis shows the QSAR-prediction performance on the molecular test
set Dtest. The total length of each error bar equals twice the standard deviation of the performance
metric measured over all mk = 3∗2 = 6 hyperparameter-optimised models. For each plot, the lower
right corner corresponds to strong performance at both prediction tasks.

68

Figure 3.8: QSAR-prediction and activity-cliff (AC) classification results for factor Xa. For each
plot, the x-axis corresponds to a combination of MMP set and AC-classification performance metric
and the y-axis shows the QSAR-prediction performance on the molecular test set Dtest. The total
length of each error bar equals twice the standard deviation of the performance metric measured
over all mk = 3 ∗ 2 = 6 hyperparameter-optimised models. For each plot, the lower right corner
corresponds to strong performance at both prediction tasks.

69

Figure 3.9: QSAR-prediction and activity-cliff (AC) classification results for SARS CoV-2 main
protease. For each plot, the x-axis corresponds to a combination of MMP set and AC-classification
performance metric and the y-axis shows the QSAR-prediction performance on the molecular test
set Dtest. The total length of each error bar equals twice the standard deviation of the performance
metric measured over all mk = 3 ∗ 2 = 6 hyperparameter-optimised models. The precision of the
AC-classification task is not shown for the ECFP + kNN technique on Mtest and Mcores since this
method produced only negative AC-classifications for all trials on this data set. For each plot, the
lower right corner corresponds to strong performance at both prediction tasks.

70

Figure 3.10: QSAR-prediction and potency-direction (PD) classification results for dopamine
receptor D2. Each column corresponds to an upper plot and a lower plot for one of the MMP sets
Minter, Mtest orMcores. The x-axis of each upper plot indicates the PD-classification accuracy on the
full MMP set; the x-axis of each lower plot indicates the PD-classification accuracy on a restricted
MMP set only consisting of MMP predicted to be ACs by the respective method. The y-axis of
each plot shows the QSAR-prediction performance on the molecular test set Dtest. The total length
of each error bar equals twice the standard deviation of the performance metrics measured over all
mk = 3 ∗ 2 = 6 hyperparameter-optimised models. For each plot, the lower right corner corresponds
to strong performance at both prediction tasks.

71

Figure 3.11: QSAR-prediction and potency-direction (PD) classification results for factor Xa.
Each column corresponds to an upper plot and a lower plot for one of the MMP sets Minter, Mtest

or Mcores. The x-axis of each upper plot indicates the PD-classification accuracy on the full MMP
set; the x-axis of each lower plot indicates the PD-classification accuracy on a restricted MMP
set only consisting of MMP predicted to be ACs by the respective method. The y-axis of each
plot shows the QSAR-prediction performance on the molecular test set Dtest. The total length of
each error bar equals twice the standard deviation of the performance metrics measured over all
mk = 3 ∗ 2 = 6 hyperparameter-optimised models. For each plot, the lower right corner corresponds
to strong performance at both prediction tasks.

72

Figure 3.12: QSAR-prediction and potency-direction (PD) classification results for SARS-CoV-2
main protease. Each column corresponds to an upper plot and a lower plot for one of the MMP
sets Minter, Mtest or Mcores. The x-axis of each upper plot indicates the PD-classification accuracy
on the full MMP set; the x-axis of each lower plot indicates the PD-classification accuracy on a
restricted MMP set only consisting of MMP predicted to be ACs by the respective method. The y-
axis of each plot shows the QSAR-prediction performance on the molecular test set Dtest. The total
length of each error bar equals twice the standard deviation of the performance metrics measured
over all mk = 3 ∗ 2 = 6 hyperparameter-optimised models. The accuracy of the PD-classification
task for predicted ACs is not shown for the ECFP + kNN technique on Mtest and Mcores since this
method produced only negative AC-classifications for all trials on this data set. For each plot, the
lower right corner corresponds to strong performance at both prediction tasks.

73

in the AC-MCC to approximately 0.3 that appears to be mediated by a large drop

in AC-sensitivity.

In most cases, GINs perform better than the other molecular featurisation meth-

ods with respect to the AC-MCC. Notably, the combination GIN-kNN consistently

performs considerably better for AC-classification than the combinations ECFP-kNN

and PDV-kNN. This supports the idea that GINs might have a heightened ability

to resolve ACs by learning an embedding of chemical space in which the distance

between two compounds is reflective of activity difference rather than structural dif-

ference. The combinations GIN-MLP, GIN-RF and ECFP-MLP exhibit particularly

high AC-MCC values relative to the other methods. We recommend using at least one

of these three models as a baseline against which to compare tailored AC-classification

models; the practical utility of any AC-classification technique that cannot outper-

form these three common QSAR methods is questionable.

Across all three targets, AC-sensitivity is moderately high on Minter but uni-

versally low on Mtest and Mcores. This is consistent with the hypothesis that ACs

form one of the major sources of prediction error for QSAR models. The weak AC-

sensitivity on Mtest and Mcores indicates that modern QSAR methods are largely

blind to ACs formed by two MMP compounds outside the training set and thus lack

essential chemical knowledge. GINs clearly outperform the other two more classical

molecular featurisations across regression techniques with respect to AC-sensitivity.

In particular, the GIN-MLP combination leads to the highest AC-sensitivity in all

examined cases and thus discovers the most ACs. The highly parametric nature of

GINs that makes them prone to overfitting could at the same time enable them to

better model jagged regions of the SAR-landscape that contain ACs than classical

task-agnostic representations.

There is a wide gap between distinct prediction techniques with respect to AC-

precision: some models achieve a considerable level of AC-precision such that over

50% of positively predicted MMPs in Mtest and Mcores are indeed actual ACs. Other

QSAR models, however, seem to fail almost entirely with respect to this metric on

Mtest and Mcores and only deliver modest performance on Minter. RFs tend to exhibit

the strongest AC-precision and the weakest AC-sensitivity. This might be as a result

of their ensemble nature which should intuitively lead to conservative but trustworthy

predictions of extreme effects such as ACs.

74

3.4.3 PD-Classification Performance

The abilities of the evaluated QSAR models to identify which compound in an MMP

is more active is universally weak, with PD-accuracies clustering around 0.7 on Minter

and around 0.6 on Mtest and Mcores, as can be seen in the top rows of Figures 3.10

to 3.12. Predicting the potency direction for two compounds with similar structures

and thus usually similar levels of activity must be considered a challenging task.

The combination ECFP-MLP reaches the strongest PD-accuracy in the majority of

cases and we recommend starting with this model as a baseline for more advanced

PD-classification methods.

One can argue that the activity direction of two similar compounds is of little

interest if the true activity difference is small, as is often the case. We therefore

also restricted PD-classification to predicted ACs. The three plots in the bottom

rows of Figures 3.10 to 3.12 depict the PD-accuracy of each QSAR model on the

subset of MMPs that were also predicted to be ACs by the same model. In this

practically more relevant scenario, PD-classification accuracy tends to exceed 0.9 on

Minter and 0.8 on Mtest and Mcores. The QSAR models investigated here are thus

able to identify the correct activity direction of MMPs if they also predict them to be

ACs. The relatively rare instances in which the PD of a predicted AC is misclassified,

however, reflect severe QSAR-prediction errors.

3.4.4 Linear Relationship between QSAR-MAE and
AC-MCC

Our experiments reveal a consistent linear functional relationship between the QSAR-

MAE and the AC-MCC as can be seen in the left columns of Figures 3.7 to 3.9. A

potential mechanism driving this effect could be as follows: As the overall QSAR-

MAE of a model improves, its accuracy at predicting activity differences between sim-

ilar molecules could be expected to improve as well. Previously misclassified MMPs

whose predicted absolute activity differences were already close to the critical value

dcrit = 1.5 might then gradually move to the correct side of the decision boundary

and increase the AC-MCC. These results suggest that for real-world QSAR models

the AC-MCC and the QSAR-MAE are strongly predictive of each other, i.e. there

appears to be a strong positive association between the general ability of a QSAR

model to predict activities of individual compounds and its capability to correctly

distinguish between ACs and non-ACs. While this observation only rests on nine

models, it is highly consistent across MMP sets and pharmacological targets. Since

75

AC-precision also appears to reliably increase as the QSAR-MAE decreases, one can

speculate that as the QSAR-prediction performance of a model gets better, it grad-

ually removes “false spikes” from its generated SAR-landscape that would otherwise

result in the prediction of false AC-positives.

3.5 Conclusions

To the best of our knowledge this is the first study to investigate the capabilities of

QSAR models to classify the existence and direction of ACs within pairs of similar

compounds. It is also the first work to explore the quantitative relationship between

QSAR-prediction at the level of individual molecules and AC-prediction at the level

of compound-pairs. As part of our methodology we have additionally introduced a

simple, interpretable, and rigorous data-splitting technique for pair-based prediction

problems.

When the activities of both MMP compounds are unknown (i.e. absent from the

training set) then common QSAR models exhibit low AC-sensitivity which limits

their utility for AC-classification. This strongly supports the hypothesis that QSAR

methods do indeed regularly fail to predict ACs which might thus form a major

source of prediction errors in QSAR modelling [39, 40, 41, 97]. However, in the

practically significantly more relevant scenario where the activity of one MMP com-

pound is known (i.e. present in the training set) AC-sensitivity increases substantially;

for query compounds with known activities, QSAR methods can therefore be used

as simple AC-classification, compound-optimisation and SAR-knowledge-acquisition

tools. Furthermore, based on the observed PD-classification results, we can expect

the predicted direction of predicted ACs to have a high degree of accuracy.

With respect to molecular featurisation, we have found PDVs to be consistently

inferior to ECFPs and GINs at both QSAR-prediction and AC-classification. It might

be the case that simply too much of the explicit structural information that is relevant

for both tasks is lost during the task-agnostic PDV transformation. Moreover, we

have found robust evidence that precomputed ECFPs do not only outcompete PDVs

but also differentiable GINs at general QSAR-prediction. This adds to a growing

awareness that standard message-passing GNNs might need to be improved further

to definitively beat classical molecular featurisations based on structural fingerprints

such as ECFPs [6, 7, 8, 10, 11, 12, 13]. One potential angle to achieve this could

be self-supervised GNN pre-training, which has recently shown promising results in

the molecular domain [9, 21]. However, while GINs appear to be inferior to ECFPs

76

at QSAR-prediction, they tend to be advantageous for AC-classification; their highly

parametric nature might simultaneously lead to increased overfitting but to a better

modelling of the more jagged regions of the SAR-landscape. We thus recommend

using GINs as an AC-classification baseline since such an agreed-upon benchmark is

currently lacking.

Finally, the low AC-sensitivity of the tested QSAR models when the activities

of both MMP compounds are unknown suggests that such methods are still lacking

essential SAR knowledge. On the flip side, one can speculate that it might be possible

to considerably boost the performance of common QSAR models in the future by fo-

cussing on the development of techniques to specifically increase their AC-sensitivity.

77

78

Chapter 4

A Twin Neural Network Model for
Activity-Cliff Prediction

We have presented an early version of our twin neural network model for activity-cliff

prediction described in this chapter at the 4th RSC-BMCS / RSC-CICAG Artifi-

cial Intelligence in Chemistry Symposium (2021, virtual) where we were subsequently

awarded the prize for the best scientific poster [47]. The material in this chapter is

built on the ideas outlined in our poster.

4.1 Overview

In Chapter 3 we have seen that the utility of standard QSAR models for the detection

of ACs is limited if the activites of both compounds are unknown and that ACs do

in fact form a major source of prediction error in such cases. However, a method to

predict ACs accurately in silico would still be of great value for computational drug

discovery due to its potential utility for tasks such as compound optimisation and

SAR-knowledge acquisition. A natural research question to ask is thus how to design

an AC-prediction model that provably outperforms the QSAR-modelling baselines

established in the previous chapter.

As mentioned in Section 3.2, the AC-prediction literature is still thin compared to

the QSAR-prediction literature. A generous and thorough literature search for com-

putational AC-prediction models revealed a total of 15 methods [51, 104, 105, 106,

107, 108, 109, 110, 111, 112, 113, 114, 115, 116], all of which were published since 2012.

The core difference between these tailored AC-prediction models is their respective

method to extract features from pairs of molecular compounds in a manner suitable

for standard machine learning pipelines. Pair-based feature extraction techniques that

have been employed for AC-prediction include condensed graphs of reactions [111],

convolutional neural networks operating on 2D images of compound pairs [51], and

79

http://dx.doi.org/10.13140/RG.2.2.18137.60000

newly designed kernel functions for support-vector-machine classification of com-

pound pairs [104]. One of the major flaws of the published work on AC-prediction

is that none of the most salient AC-prediction models [51, 104, 105, 106, 111] have

been compared to a simple QSAR model. It is thus unclear whether these technically

complex methods do in fact outcompete the simple QSAR-based AC-classification

baselines established in Chapter 3. This casts doubt on their practical utility. Run-

ning control experiments that compare the AC-prediction model to a straightforward

QSAR-modelling baseline is especially relevant in light of the fact that a variety of

published AC-prediction methods [51, 104, 106] are tested on compound-pair-based

data splits which incur a large overlap between training and test set at the level of

individual compounds. This less-than-rigorous data splitting technique should natu-

rally favour QSAR models for AC-prediction.

In this chapter, we introduce a novel deep learning model for the classification of

the existence and direction ACs in chemical space. Our key idea is to employ a twin

architecture [136, 137, 138, 139] that is specifically designed to process dual inputs in

a natural way. Twin networks are artificial neural network architectures that contain

two (or more) indistinguishable copies of the same subnetwork. All subnetworks are

required to share the same architecture and trainable parameters, and these parame-

ters are updated jointly for all subnetworks during training. Twin architectures have

been shown to be well-suited to learn similarity and distance metrics for pairs of com-

plex data structures [136]; such metric-learning approaches can be used for data-scarce

prediction tasks in a process called single-shot learning. Successful areas of applica-

tion for twin neural networks can for example be found in facial recognition [139],

signature verification [137] and single-shot image recognition [138]. Comparatively

little work has been done, however, to study twin neural networks in the context of

computational drug discovery. A small number of studies have investigated the poten-

tial of twin architectures for drug-drug interaction prediction [140, 141, 142], one-shot

drug-discovery [143, 144, 145], protein-protein interaction prediction [146], bioactiv-

ity prediction [147], drug-response similarity prediction [148], compound-structure

determination [149], protein-representation learning [150], and the identification of

drug-target interactions [151]. To the best of our knowledge, our work represents the

first application of twin neural networks to the problem of activity-cliff prediction.

Our proposed twin network is jointly trained on two distinct prediction tasks: a

ternary AC-classification task to predict whether an input MMP represents an AC, a

half-AC or a non-AC, and a binary PD-classification task to predict which compound

80

in the MMP is the more potent one. Important symmetry properties can be hard-

coded into the neural architecture of the twin network as a useful inductive bias for

pair-based prediction problems, and we give straightforward mathematical proofs that

illustrate these properties. The developed twin network can be seamlessly combined

with either modern GNNs or classical molecular featurisations such as ECFPs or

PDVs, or indeed with any representation of individual molecules. This removes the

need to develop complex feature-engineering procedures for compound-pairs, which

appears to have been the main technical hurdle in the development of previous AC-

prediction models [51, 104, 105, 111].

We experimentally evaluate an ECFP-based and a GIN-based version of the pro-

posed twin model using the SARS-CoV-2 main protease data set described in Sec-

tion 3.3.1 and our novel rigorous data splitting technique for pair-based data devel-

oped in Section 3.3.3. We additionally experiment with a transfer learning approach

to enrich the input features of each of the two model versions in an attempt to further

boost performance. We also run strict control experiments to compare the twin net-

work models to two QSAR models that have shown strong performance in Chapter 3

when repurposed for AC-classification, namely ECFP-MLP and GIN-MLP. However,

to guarantee comparability with the twin network, this time we will also repurpose

the QSAR models for ternary rather than binary AC-classification. As stated before,

such indispensable control experiments involving QSAR models are lacking in other

studies [51, 104, 105, 111].

We start off this chapter by giving a mathematical description and visual illustra-

tion of the proposed twin neural network model for AC and PD-classification, along

with the transfer learning technique to improve the information content of its input

features. We then present our computational experiments and discuss our empiri-

cal observations. Finally, we summarise our findings and draw conclusions for the

AC-prediction field.

4.2 Twin Neural Network: Mathematical

Description

4.2.1 Neural Architecture and Symmetry Properties

Let (R, R̃) be an ordered pair of two molecular representations forming an MMP.

An example for an MMP is depicted in the previous chapter in Figure 3.1. Just

81

like in Chapter 3, we assume that both compounds are associated with activity la-

bels act(R), act(R̃) ∈ R which quantify their biological activity with respect to the

same predefined pharmacological target. More specifically, we consider the expression

act(R) to be the negative decadic logarithm of the experimentally measured activity

value of R. This is equivalent to its pKi or pIC50-value (up to a minor additive shift

if one chooses to use units other than the canonical [M]-units). From act(R) and

act(R̃) we can derive a ternary label

AC(R, R̃) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} =: {AC, half-AC, non-AC}

indicating whether (R, R̃) is an AC, half-AC or non-AC, as well as a binary label

PD(R, R̃) ∈ {0, 1} =: {Right,Left}

indicating which of both compounds is more active. Note that

AC(R, R̃) = AC(R̃,R)

and

PD(R, R̃) = 1 − PD(R̃,R).

Our goal is to predict both AC(R, R̃) and PD(R, R̃) from the input MMP (R, R̃)

using a twin neural network model. Note that unlike in Chapter 3 we now also

explicitly consider “half-ACs” in our AC-classification task. As stated in Section 3.3.2,

half-ACs are defined as MMPs which exhibit a potency difference between one and

two orders of magnitude. Until now, half-ACs have been essentially ignored in the

AC-prediction literature [104, 105, 111]; however, extending our classification task to

also include half-ACs increases the amount of available training data and leads to a

more complete and practically relevant (albeit more challenging) ternary formulation

of the AC-classification problem.

A visual introduction to our developed twin neural network architecture is de-

picted in Figure 4.1. This illustration might serve as a useful point of reference to

facilitate the theoretical discussions in the rest of this section. From a mathematical

point of view, our twin network model can be expressed as the composition of two

distinct mappings. The first mapping corresponds to a featurisation step that creates

a vectorial embedding for each MMP compound:

(R, R̃) 7→

[
Tθ(R)

Tθ(R̃)

]
∈ Rl × Rl. (4.1)

82

Cl

F

Figure 4.1: Twin neural network model for activity-cliff (AC) and potency-direction (PD) clas-
sification. Changing the order of the input compounds leaves the predicted AC-classification label
invariant but reverses the predicted PD-classification label.

The second mapping corresponds to a classification step that uses both vectorial

embeddings to create probabilistic estimates for AC(R, R̃) and PD(R, R̃):

[
Tθ(R)

Tθ(R̃)

]
7→

[
Mγ(max{Tθ(R), Tθ(R̃)})

Oη(Tθ(R) − Tθ(R̃))

]
∈ ∆+

3 × (0, 1). (4.2)

The upper component on the right-hand side of Expression 4.2 corresponds to the

predicted AC-classification label,

AC(R, R̃) ≈Mγ(max{Tθ(R), Tθ(R̃)}) =: ÂCθ,γ(R, R̃) ∈ ∆+
3 ,

and the lower component corresponds to the predicted PD-classification label,

PD(R, R̃) ≈ Oη(Tθ(R) − Tθ(R̃)) =: P̂Dθ,η(R, R̃) ∈ (0, 1).

• Here Tθ is a trainable deep-learning-based molecular featurisation method and

θ is its associated vector of trainable parameters. Tθ is used to map a given

molecular representation R to a feature vector Tθ(R) ∈ Rl in a differentiable

manner. For example, if R is a molecular graph, then Tθ could take the form

of a GIN, and if R is an ECFP, then Tθ could take the form of a simple MLP.

Note that Tθ is applied twice in our model, once to each input compound. Tθ

can thus be seen as representing both branches of a twin neural network, as

visualised in Figure 4.1 below.

83

• The vector max{v1, v2} ∈ Rl describes their componentwise maximum of two

arbitrary vectors v1, v2 ∈ Rl. Note that max{·, ·} is thus a permutation-invariant

set function, i.e. max{v1, v2} = max{v2, v1}. In Remark 4.1 below, we will give

some reasons why we specifically chose the max-operator out of all possible

permutation-invariant set functions for our model.

• The symbol ∆+
3 := {(p1, p2, p3) ∈ R3 | p1, p2, p3 > 0 ∧ p1 +p2 +p3 = 1} denotes

the set of all positive three-dimensional probability vectors. ∆+
3 forms a flat

triangular surface in R3 and is sometimes also referred to as the unit 2-simplex.

• Mγ : Rl → ∆+
3 is an MLP and γ is its associated vector of trainable parameters.

Mγ is of the form

Mγ = softmax ◦ M̄γ

whereby M̄γ is an MLP with three output neurons in its final layer and

softmax(x1, x2, x3) :=
(ex1

ex1 + ex2 + ex3
,

ex2

ex1 + ex2 + ex3
,

ex3

ex1 + ex2 + ex3

)
∈ ∆+

3 .

Mγ thus outputs a three-dimensional vector whose components represent the

predicted probabilites that the MMP (R, R̃) is an AC, half-AC or non-AC

respectively.

• Oη : Rl → (0, 1) is an MLP and η is its associated vector of trainable parameters.

Oη outputs the predicted probability that act(R) ≥ act(R̃). We restrict Oη to

be of the functional form

Oη(v) = sig ◦ Ōη

with

Ōη := Wk ◦ arctan ◦Wk−1 ◦ ... ◦ arctan ◦W1 (4.3)

Here W1, ...,Wk are trainable weight matrices with no added bias vectors, with

W1 containing l columns and Wk containing 1 row. The expression arctan(·)
is the componentwise applied arctangent map used as a nonlinear activation

function. Finally,

sig(x) :=
ex

ex + 1
∈ [0, 1]

is the sigmoidal activation function applied to the single output neuron in the

final MLP layer of Ōη. We show below that the above choices make Ōη an odd

function, i.e. a function with the property that Ōη(−v) = −Ōη(v). We therefore

call Ōη(v) an odd MLP.

84

Note that the twin model consists of three neural network components: Tθ, Mγ

and Oη. The feature-extracting network component Tθ is separately applied to each

of the two input compounds, leading to a twin architecture which can be thought of as

containing two copies of Tθ. Both network copies are required to share the same weight

parameter vector θ which means that an update of θ during training changes both

copies of Tθ in the same manner. We refer to neural networks of this type that contain

two or more indistinguishable copies of the same subnetwork as twin neural networks.

Twin neural networks are natural tools in situations where two or more distinct inputs

must be processed by a machine learning system simultaneously [136, 137, 138, 139]

since they allow for important pair-based symmetry properties to be hard-coded into

the model architecture as an inductive bias. We first have a look at a symmetry

property relevant for AC-classification.

Proposition 4.1 (Order-Invariance of AC-classification). Changing the order of the

input compounds from (R, R̃) to (R̃,R) in the twin network model from Figure 4.1

leaves the predicted AC-classification label unchanged.

Proof. The mathematical definition of the twin network model in Expression 4.2

specifies that the predicted AC-classification label for a compound pair (R, R̃) is

given by

Mγ(max{Tθ(R), Tθ(R̃)}) ∈ ∆+
3 .

Since max{·, ·} is a permutation-invariant (i.e. order-independent) set function, one

can immediately see that

Mγ(max{Tθ(R), Tθ(R̃)}) = Mγ(max{Tθ(R̃), Tθ(R)})

which proves the claim.

Remark 4.1 (Choice of Max-Operator). The proof of Proposition 4.1 is based on

the fact that max{·, ·} is a permutation-invariant set function. Such functions are

also commonly used for global graph pooling in modern GNN architectures where

an unordered set of node features must eventually be reduced to a single feature

vector. Exchanging max{·, ·} with another permutation-invariant set function such

as a summation, averaging, sorting, absolute-difference or minimum operator would

preserve the order-invariance of the AC-classification. When designing our model

we thus experimented with a variety of such operators and ultimately converged on

the max{·, ·}-function as it showed the strongest performance in a set of preliminary

85

experiments. While this is an empirical finding, an intuitive (albeit speculative) expla-

nation for this might be that ACs are inherently rare outliers; featurisation methods

for MMPs that put an emphasis on extreme values such as the max{·, ·}-function

might therefore be more efficient than simple averaging or summation strategies at

catching extreme features relevant for outlier-detection.

We now turn our attention to a symmetry property built into our model for PD-

classification.

Definition 4.1 (Odd Function). A real function f : Rk → Rn is called odd if

∀x ∈ Rk : f(−x) = −f(x).

Examples of odd functions include the trigonometric function sin(x) and the family

of monomial functions x2k+1 for k ∈ N0.

Lemma 4.1 (Composition of Odd Functions is Odd). Let f : Rk → Rn and g : Rn →
Rs be two odd functions. Then the composition h := g ◦ f : Rk → Rs is also an odd

function.

Proof. Let x ∈ Rk. Then the oddity of f and g implies that

h(−x) = (g ◦ f)(−x) = g(f(−x)) = g(−f(x)) = −g(f(x)) = −(g ◦ f)(x) = −h(x)

which shows that h is odd as well.

Lemma 4.2 (Oddity of Odd MLP.). The multilayer perceptron Ōη : Rl → Rl̄ defined

in Equation 4.3 via

Ōη := Wk ◦ arctan ◦Wk−1 ◦ ... ◦ arctan ◦W1

is an odd function.

Proof. The neural network Ōη is a composition of matrix-multiplication functions

Wi : Rli−1 → Rli

without added bias vectors and the componentwise-applied trigonometric nonlinear

activation function

arctan : R → R.

Since Lemma 4.1 establishes that the composition of odd functions is again odd, it is

sufficient to show that both Wi and arctan are odd functions.

86

Since matrix-multiplication is a linear function, it holds in particular that

∀v ∈ Rli−1 ∀λ ∈ R : Wi(λv) = λWi(v).

Setting λ := −1 in the above equation immediately shows that Wi is odd. The oddity

of Wi is thus a trivial consequence of its linearity.

To show that arctan is odd, we first observe that its inverse function

tan : (−π/2, π/2) → R

is odd since

∀y ∈ (−π/2, π/2) : tan(−y) =
sin(−y)

cos(−y)
=

− sin(y)

cos(y)
= − tan(y).

This proof relies on the well-known facts that sin(−y) = − sin(y) and cos(−y) =

cos(y). Now let x ∈ R be an arbitrary real number. Since tan is a bijection, there

exists exactly one real number yx ∈ (−π/2, π/2) such that x = tan(yx) and thus

arctan(x) = yx. We can now exploit the oddity of tan to show that

arctan(−x) = arctan(− tan(yx)) = arctan(tan(−yx)) = −yx = − arctan(x)

which proves the oddity of arctan.

Proposition 4.2 (Order-Equivariance of PD-classification). Changing the order of

the input compounds from (R, R̃) to (R̃,R) in the twin network model from Figure 4.1

flips the predicted PD-classification label, i.e. transforms it according to the map

(0, 1) ∋ p 7→ 1 − p ∈ (0, 1).

Proof. The mathematical definition of the twin network model in Expression 4.2

specifies that the predicted PD-classification label for a compound pair (R, R̃) is

given by

Oη(Tθ(R) − Tθ(R̃)) = sig(Ōη(Tθ(R) − Tθ(R̃))) ∈ (0, 1).

We start by observing that the Sigmoid activation function fulfills the following func-

tional equation:

sig(x) =
ex

ex + 1
= 1 −

(
1 − ex

ex + 1

)
= 1 −

(1

ex + 1

)
= 1 −

(e−x

1 + e−x

)
= 1 − sig(−x).

Based on this relationship and the oddity of Ōη which we showed in Lemma 4.2, we

can write

87

sig(Ōη(Tθ(R) − Tθ(R̃))) = 1 − sig(−Ōη(Tθ(R) − Tθ(R̃)))

= 1 − sig(Ōη(−(Tθ(R) − Tθ(R̃))))

= 1 − sig(Ōη(Tθ(R̃) − Tθ(R)))

which proves the claim.

Propositions 4.1 and 4.2 assure that the twin neural network respects the natural

symmetry properties of AC and PD-classification: if we change the order of the input

compounds, then the predicted AC-classification label does not change while the

predicted PD-classification label flips in the expected manner. Since these properties

are hard-coded into the neural architecture of our model, they do not need to be

inferred statistically during training.

4.2.2 Loss Function and Model Training

Let

∆n := {(p1, ..., pn) ∈ Rn | p1, ..., pn ≥ 0 ∧ p1 + ...+ pn = 1}

denote the set of n-dimensional probability vectors and let

∆+
n := {(p1, ..., pn) ∈ Rn | p1, ..., pn > 0 ∧ p1 + ...+ pn = 1}.

denote the set of positive n-dimensional probability vectors. Then the cross-entropy

between two probability vectors is defined as

H : ∆n × ∆+
n → R, H(p, q) = −

n∑
k=1

pi log(qi).

For a fixed p0 ∈ ∆n, the map

q 7→ H(p0, q)

is minimised if q → p0; this is one of the reasons why H is canonically used as a loss

function for machine-learning-based classification problems. In the binary case with

n = 2, the definition of H can be simplified to

Hbin : [0, 1] × (0, 1) → R, Hbin(p, q) = −p log(q) − (1 − p) log(1 − q).

Our twin neural network from Figure 4.1 is trained via the following loss function:

L(R,R̃)(θ, γ, η) :=

wAC(AC(R, R̃))H(AC(R, R̃), ÂCθ,γ(R, R̃)) +

wPDHbin(PD(R, R̃), P̂Dθ,η(R, R̃)).

Here we used a variety of abbreviations:

88

• AC(R, R̃) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is the AC-classification label.

• PD(R, R̃) ∈ {0, 1} is the PD-classification label.

• ÂCθ,γ(R, R̃) := Mγ(max{Tθ(R), Tθ(R̃)}) ∈ ∆+
3 is the predicted AC-classification

label.

• P̂Dθ,η(R, R̃) := Oη(Tθ(R) − Tθ(R̃)) ∈ (0, 1) is the predicted PD-classification

label.

The function

wAC : {(1, 0, 0), (0, 1, 0), (0, 0, 1)} → [0,∞)

is used to place distinct weights on ACs, half-ACs and non-ACs during training. It

plays an important role in counteracting the class imbalance in the naturally highly

imbalanced task of AC-classification and is an essential part of our loss function. We

choose the values of wAC in proportion to the relative frequencies of ACs, half-ACs

and non-ACs in the training set to in total give equal weight to each class. This

means that if

nAC, nhalf-AC, nnon-AC ∈ N

are the respective numbers of MMPs in the training set that are ACs, half-ACs and

non-ACs, then we choose

wAC(1, 0, 0) =
nnon-AC

nAC

, wAC(0, 1, 0) =
nnon-AC

nhalf-AC

, wAC(0, 0, 1) = 1.

The constant wPD ∈ [0,∞) is chosen in relation to the function values of wAC to

guarantee that the AC-classification and the (well-balanced) PD-classification task

receive on average an equal amount of weight during training. We thus choose wPD

to be the expected weight of a training-MMP with respect to AC-classification:

wPD :=
nACwAC(1, 0, 0) + nhalf-ACwAC(0, 1, 0) + nnon-ACwAC(0, 0, 1)

nMMP

.

Here nMMP = nAC + nhalf-AC + nnon-AC ∈ N denotes the total number of MMPs in the

training set. Our choice of wPD guarantees that a randomly chosen training-MMP will

on average (i.e. in expectation) receive equal weights for AC and PD-classification.

Finally, we show how the symmetry properties of the twin neural network translate

into a symmetry property of the loss function L(R,R̃) that is highly useful during model

training.

89

Proposition 4.3 (Order-Invariance of Loss Function). Let (R, R̃) be an MMP and

(R̃,R) be the same MMP in reversed order. Then it holds for all neural network

training parameter configurations θ, γ, η that

L(R,R̃)(θ, γ, η) = L(R̃,R)(θ, γ, η).

Proof. Using the symmetry properties of the twin network with respect to AC and

PD-classification shown in Propositions 4.1 and 4.2 along with the identity

Hbin(p, q) = −p log(q) − (1 − p) log(1 − q)

= −(1 − p) log(1 − q) − (1 − (1 − p)) log(1 − (1 − q)) = Hbin(1 − p, 1 − q),

we can calculate

L(R,R̃)(θ, γ, η) =

wAC(AC(R, R̃))H(AC(R, R̃), ÂCθ,γ(R, R̃)) +

wPDHbin(PD(R, R̃), P̂Dθ,η(R, R̃)) =

wAC(AC(R̃,R))H(AC(R̃,R), ÂCθ,γ(R̃,R)) +

wPDHbin(1 − PD(R̃,R), 1 − P̂Dθ,η(R̃,R)) =

wAC(AC(R̃,R))H(AC(R̃,R), ÂCθ,γ(R̃,R)) +

wPDHbin(PD(R̃,R), P̂Dθ,η(R̃,R)) =

L(R̃,R)(θ, γ, η)

which completes the proof.

Proposition 4.3 guarantees that L(R,R̃) is symmetric with respect to the order of

the compounds in the input MMP (R, R̃). Since the gradients of L(R,R̃) with respect

to θ, γ and η automatically inherit this symmetry, they too remain unchanged if we

flip the order of the input compounds. This property has an important practical

consequence: it allows one to only train on one randomly chosen ordering of an input

MMP instead of both possible orderings without loss of information.

90

4.2.3 Molecular Featurisations: Four Model Versions

The exact architecture of Tθ in the twin network depicted in Figure 4.1 hinges upon

the molecular representation technique used for the input compounds (R, R̃) and the

subsequent molecular featurisation method applied to the input representations. We

imagine that initially we are given a training space of the form

(Dtrain,Mtrain)

where

Dtrain = {R1,R2, ...}

represents a data set of individual molecules represented via SMILES strings

{S1,S2, ...}

and

Mdouble
train = {(R, R̃) | (R, R̃) is MMP and R, R̃ ∈ Dtrain}

is the set of ordered MMPs that are fully contained in Dtrain. Note that by con-

struction Mdouble
train contains both orientations of each MMP. However, Proposition 4.3

guarantees that for our training purposes it is sufficient to only contain one arbitrarily

chosen ordering of each MMP. We thus define Mtrain as a proper subset of Mdouble
train of

exactly half the size that only contains one arbitrarily chosen ordering of each MMP,

i.e. we demand that if (R, R̃) ∈ Mtrain then (R̃,R) /∈ Mtrain.

The twin network is always trained only on Mtrain, ignoring compunds in Dtrain

that are not involved in MMPs, but we developed a transfer learning approach that

enables the twin network to nevertheless implicitly exploit extra information encap-

sulated in Dtrain. More specifically, we experimented with four different MMP repre-

sentations which subsequently led to four distinct version of our twin model.

• MMP representation 1: ECFPs. Each individual SMILES string in an

MMP (R, R̃) ∈ Mtrain is transformed into a 1024-bit ECFP4 2.5 with active

tetrahedral R-S chirality flags using RDKit [70]. The featuriser Tθ takes the

form of a deep MLP with input dimension 1024.

• MMP representation 2: GINs. Each individual SMILES string in an MMP

(R, R̃) ∈ Mtrain is transformed into a molecular graph using the atom and bond

features specified in Table 2.1. The featuriser Tθ takes the form of a GIN-MLP

model 2.6.3 with GIN-radius R = 2 and GIN-fingerprint-length l = 128. The

GIN part uses global max pooling in its final graph layer to produce neural

fingerprints that feed into the MLP part.

91

• MMP representation 3 (supervised): ECFP-NFPs. Each SMILES string

in Dtrain is transformed into a 1024-bit ECFP4 2.5 with active tetrahedral R-S

chirality flags using RDKit [70]. Then an ECFP-MLP model Q with hidden

width 1024 is trained on Dtrain as a supervised QSAR model to predict the

activities of individual compounds. After training, the final layer of Q that

maps vectors from a 1024-dimensional learned feature space onto scalar activ-

ity predictions is removed to obtain a feature extractor Qfeat. We refer to the

1024-dimensional feature vectors generated by Qfeat for individual compounds

as ECFP-neural-fingerprints (ECFP-NFPs). Qfeat is finally used to map MMPs

(R, R̃) ∈ Mtrain to pairs of ECFP-NFPs on which the twin network is subse-

quently trained. The featuriser Tθ then takes the form of a deep MLP with

input dimension 1024.

• MMP representation 4 (supervised): GIN-NFPs. Each SMILES string

in Dtrain is transformed into a molecular graph using the atom and bond features

specified in Table 2.1. Then a GIN-MLP model Q with GIN-radius R = 2, GIN-

fingerprint length l = 128, and hidden MLP width 256 is trained on Dtrain as a

supervised QSAR model to predict the activities of individual compounds. After

training, the final layer of Q that maps vectors from a 256-dimensional learned

feature space onto scalar activity predictions is removed to obtain a feature

extractor Qfeat. We refer to the 256-dimensional feature vectors generated by

Qfeat for individual compounds as GIN-neural-fingerprints (GIN-NFPs). Qfeat

is finally used to map MMPs (R, R̃) ∈ Mtrain to pairs of GIN-NFPs on which

the twin network is subsequently trained. The featuriser Tθ then takes the form

of a deep MLP with input dimension 256.

Consider the set of individual training compounds involved in MMPs:

DMMP
train := {R ∈ Dtrain | ∃ R̃ ∈ Dtrain : (R̃,R) ∈ Mtrain or (R, R̃) ∈ Mtrain}.

All four introduced MMP representations use the training signal encapsulated in

in DMMP
train . However, the transfer-learning-based representations ECFP-NFP and GIN-

NFP go further: they also allow us to implicitly leverage the information contained

in the set of isolated compounds Dtrain \DMMP
train since the feature extractor Qfeat must

have encountered these compounds during its own preliminary training process on the

full training space Dtrain. Knowledge about the isolated compounds in Dtrain \DMMP
train

and their experimentally measured activity labels is thus implicitly encoded in the

trained parameters of Qfeat and transferred to the features it extracts.

92

4.3 Computational Experiments

In this section, we present a series of computational experiments to investigate the

AC and PD-classification capabilities of the four versions of our twin neural network

model discussed in Section 4.2.3. We further compare the twin models to the two

strongest QSAR-modelling baselines for AC-classification found in our previous study

in Chapter 3: the combinations ECFP-MLP and GIN-MLP.

4.3.1 Experimental Methodology

4.3.1.1 Molecular Data Set

For our experiments we employed the SARS-CoV-2 main protease data set introduced

in Section 3.3.1 since it is composed of a single high-quality assay and has a high

density of MMPs. Note that this is the exact same data set that we used for our

computational study on QSAR models for AC-prediction in Chapter 3. The protein

structure of SARS-CoV-2 main protease is visualised in Figure 3.4.

The data was obtained and cleaned in the manner described in Section 3.3.1 and

takes the form of SMILES strings with associated IC50 [µM] values. An overview of

the numbers of compounds, MMPs, ACs, half-ACs and non-ACs in the data set is

given in Table 3.1. SARS-CoV-2 main protease is one of the key enzymes in the viral

replication cycle of the SARS coronavirus 2 which recently led to the global COVID-19

pandemic. It is a promising target for antiviral drugs against this coronavirus [120].

4.3.1.2 Data Splitting Technique and Prediction Tasks

For data splitting into training and test sets, we employed the novel technique for pair-

based data that we developed for our previous computational study in Section 3.3.3.

It is visualised in Figure 3.5 and delivers data splits of the form

Si,j = (Di,j
train,D

i,j
test,M

i,j
train,M

i,j
test,M

i,j
inter,M

i,j
cores)

for i ∈ {1, ...,m} and j ∈ {1, ..., k}. Here the pair (Di,j
train,D

i,j
test) represents the j-th

random split with the i-th random seed of the underlying SARS-CoV-2 main protease

data set D in a k-fold cross validation scheme repeated with m random seeds. The

MMP sets Mi,j
train,M

i,j
test,M

i,j
inter,M

i,j
cores differ via the relationship of their associated

MMPs with the individual compounds in Di,j
train and Di,j

test. These sets are rigorously

defined in Section 3.3.3 and visualised in Figure 3.5. We will shortly repeat their

definitions here in intuitive terms:

93

• Mi,j
train contains MMPs that are fully included in Di,j

train.

• Mi,j
inter contains MMPs with exactly one compound in Di,j

train and the other com-

pound in Di,j
test. It simulates a compound-optimisation scenario where one is

searching for small modifications of known compounds that would give rise to

ACs or half-ACs.

• Mi,j
test contains MMPs that are fully included in Di,j

test. It models a setting where

one tries to discover novel ACs and half-ACs in the same area of chemical space

that Di,j
train was sampled from.

• Finally, Mi,j
cores is a subset of Mi,j

test consisting of MMPs in Di,j
test that do not share

structural cores with MMPs in Mi,j
inter or Mi,j

train. It corresponds to the difficult

task of predicting ACs and half-ACs within structurally novel MMPs that do

not contain near analogs to MMP compounds involved in the training set.

As mentioned above, Proposition 4.3 assures us that it is possible without loss of

generality to always only consider one randomly chosen compound-ordering for each

MMP in all MMP sets. The overall AC and PD-classification performance of each

model is recorded via the average over mk training and test runs for all data splits

S1,1, ...,Sm,k. For our experiments we set (m, k) = (50, 2). The number of 50∗2 = 100

repetitions is substantial and considerably large for deep-learning experiments due to

their associated computational cost. This choice led to a runtime in the order of

approximately 10-20 hours per model; however, it significantly reduced the effects of

stochastic fluctations on our results and led to increased experimental quality and

reliability.

4.3.1.3 Prediction Tasks and Prediction Strategies

As specified in Section 4.2, each MMP

(R, R̃) ∈ Mi,j
train ∪Mi,j

test ∪Mi,j
inter ∪Mi,j

cores

comes with a ternary label

AC(R, R̃) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} =: {AC, half-AC, non-AC}

indicating whether (R, R̃) is an AC, half-AC or non-AC; and a binary label

PD(R, R̃) ∈ {0, 1} =: {Right,Left}

94

indicating which of both compounds is more active. The goal of each model is to

predict both AC(R, R̃) and PD(R, R̃) from the input MMP representation (R, R̃).

The four twin neural network models are designed to output explicit probabilistic

estimates of AC(R, R̃) in ∆3 and of PD(R, R̃) in (0, 1), and can therefore be directly

used for AC and PD-classification. The two QSAR-modelling baselines ECFP-MLP

and GIN-MLP, however, can only directly output estimates of the activity labels of

individual molecules. Thus, when dealing with a QSAR model Q, we thresholded the

predicted MMP activity-difference,

Q(R) −Q(R̃) ≈ act(R) − act(R̃),

to construct discrete predictions for AC(R, R̃) and PD(R, R̃). This was done in the

same straightforward manner as described in Section 3.3.4 for our previous computa-

tional study, with the only exception that we extended our AC-classification stategy

to now also include half-ACs. If (R, R̃) ∈ Mi,j
train ∪Mi,j

test ∪Mi,j
cores then we performed

AC-classification via

(R, R̃) 7→

(0, 0, 1) if |Q(R) −Q(R̃)| ≤ 1,

(0, 1, 0) if |Q(R) −Q(R̃)| ∈ (1, 2),

(1, 0, 0) if |Q(R) −Q(R̃)| ≥ 2

and PD-classification via

(R, R̃) 7→

{
1 if Q(R) ≥ Q(R̃),

0 else.

Similarly, if (R, R̃) ∈ Mi,j
inter and we were a priori given (say) the experimental activity

act(R̃), then we performed AC-classification via

(R, R̃) 7→

(0, 0, 1) if |Q(R) − act(R̃)| ≤ 1,

(0, 1, 0) if |Q(R) − act(R̃)| ∈ (1, 2),

(1, 0, 0) if |Q(R) − act(R̃)| ≥ 2

and PD-classification via

(R, R̃) 7→

{
1 if Q(R) ≥ act(R̃),

0 else.
.

4.3.1.4 Performance Measures

For the balanced PD-classification problem we employ the standard accuracy as a

suitable performance measure:

number of correct predictions

number of predictions
∈ [0, 1].

95

For each MMP set and each model, we measured PD-classification accuracy (1) on the

whole MMP set, (2) on the subset of MMPs predicted by the model to be half-ACs,

and (3) on the subset of MMPs predicted by the model to be ACs.

The ternary AC-classification task is naturally highly imbalanced and it is there-

fore necessary to choose a more nuanced set of performance measures in order to

paint an adequate and detailed picture of model performance. For each class

C ∈ {AC, half-AC, non-AC},

let nC be the number of MMPs in class C, pC be the number of MMPs predicted to

be in class C, and ptrueC be the number of MMPs correctly predicted to be in class C.

In our experiments, we recorded the sensitivity

ptrueC

nC

∈ [0, 1]

and the precision
ptrueC

pC
∈ [0, 1]

of each model for each class C. There is an implicit trade-off between sensitivity and

precision; improvement in one of both metrics usually leads to deterioration of the

other. A model that shows both higher precision and sensitivity than another model

for a class C can be seen as a better classifier for this particular class.

Finally, as a simple overall performance measure for ternary AC-classification

we employed the multi-class version of the Matthews correlation coefficient (MCC).

Let nMMP := nAC + nhalf-AC + nnon-AC be the total number of MMPs and ptrue =

ptrueAC + ptruehalf-AC + ptruenon-AC be the total number of correct predictions. Then the multi-

class MCC is given by

nMMPp
true −

∑
C∈{AC, half-AC, non-AC}

nCpC√(
n2
MMP −

∑
C∈{AC, half-AC, non-AC}

p2C

)(
n2
MMP −

∑
C∈{AC, half-AC, non-AC}

n2
C

) ∈ [−1, 1].

While the MCC can give a quick and rough assessement of AC-classification perfor-

mance, it should be used with caution: A lot of subtle differences are lost entirely

when boiling down the performance of a highly imbalanced multi-class prediction

model into a single scalar performance metric such as the MCC. For an AC-classifier,

one must therefore also take a close look at its individual sensitivity and precision

values for each class in order to get accurate insights into its true performance and

utility.

96

4.3.1.5 Evaluated Models

We included six distinct models in our computational experiments:

• ECFP + MLP Baseline: A standard ECFP-MLP model trained on indi-

vidual molecules for QSAR-prediction, as was used in the computational study

from Chapter 3.

• GIN + MLP Baseline: A standard GIN-MLP model trained on individual

molecules for QSAR-prediction, as was used in the computational study from

Chapter 3.

• ECFPs + Twin Network: A twin neural network as visualised in Figure 4.1

that uses ECFPs for the featurisation of individual MMP compounds.

• GINs + Twin Network: A twin neural network as visualised in Figure 4.1

that uses GINs for the featurisation of individual MMP compounds.

• ECFP-NFPs + Twin Network: A twin neural network as visualised in

Figure 4.1 that uses pre-trained ECFP-NFPs for the featurisation of individual

MMP compounds.

• GIN-NFPs + Twin Network: A twin neural network as visualised in Fig-

ure 4.1 that uses pre-trained GIN-NFPs for the featurisation of individual MMP

compounds.

Each of the four twin neural network models above corresponds to one of the four

MMP featurisations described in Section 4.2.3. ECFPs, MLPs and GINs were imple-

mented in RDKit [70], PyTorch [131], and PyTorch Geometric [96], respectively.

4.3.1.6 Model Training and Hyperparameter Settings

As mentioned, each model was evaluated within a k-fold cross validation scheme

repeated with m random seeds for (m, k) = (50, 2). This means that an inde-

pendent version of each model was trained on each training space (Di,j
train,M

i,j
train)

for i ∈ {1, ..., 50} and j ∈ {1, 2} and the results were then averaged over all

mk = 50 ∗ 2 = 100 trials. All models were trained on a single NVIDIA GeForce

RTX 3060 GPU using AdamW optimisation [134]. QSAR models were trained via

the mean squared error loss function and twin neural networks via the custom cross-

entropy-based loss function L(R,R̃) introduced in Section 4.2.2.

97

Table 4.1: Training and model hyperparameters of twin neural networks and baseline QSAR
methods.

ECFP + MLP

Architecture: arch(MLP) = (1024, 1, 1024, 5)
Training: batch size = 64, learning rate = 10−3, learning rate decay =
max{0.98epoch, 10−1}, weight decay = 0.1, dropout rate = 0.25, epochs = 500

ECFPs + Twin Network

Architecture: arch(Tθ) = (1024, 1024, 1024, 3), arch(Mγ) = (1024, 3, 1024, 1),
arch(Oη) = (1024, 1, 1024, 1)
Training: batch size = 2048, learning rate = 10−4, learning rate decay =
max{0.98epoch, 10−2}, weight decay = 0.1, dropout rate = 0.25, epochs = 500

ECFP-NFPs + Twin Network

Architecture: arch(Tθ) = (1024, 1024, 1024, 3), arch(Mγ) = (1024, 3, 1024, 1),
arch(Oη) = (1024, 1, 1024, 1)
Training: batch size = 2048, learning rate = 10−4, learning rate decay =
max{0.98epoch, 10−2}, weight decay = 0.1, dropout rate = 0.25, epochs = 500

GIN + MLP

Architecture: arch(GIN) = {R = 2, l = 128, arch(ϕ1) = (78, 128, 128, 2), arch(ϕ2) =
(128, 128, 128, 2)}, arch(MLP) = (128, 1, 256, 3)
Training: batch size = 256, learning rate = 10−2, learning rate decay =
max{0.98epoch, 10−1}, weight decay = 0.1, dropout rate = 0.25, epochs = 1000

GINs + Twin Network

Architecture: arch(TGIN-part
θ) = {R = 2, l = 128, arch(ϕ1) =

(78, 128, 128, 2), arch(ϕ2) = (128, 128, 128, 2)}, arch(TMLP-part
θ) = (128, 256, 256, 3),

arch(Mγ) = (256, 3, 256, 1), arch(Oη) = (256, 1, 256, 1)
Training: batch size = 2048, learning rate = 10−3, learning rate decay = none, weight
decay = 0.1, dropout rate = 0.25, epochs = 1500

GIN-NFPs + Twin Network

Architecture: arch(Tθ) = (256, 256, 256, 3), arch(Mγ) = (256, 3, 256, 1), arch(Oη) =
(256, 1, 256, 1)
Training: batch size = 2048, learning rate = 10−4, learning rate decay = none, weight
decay = 0.1, dropout rate = 0.25, epochs = 500

98

A detailed specification of the hyperparameter choices for the evaluated models

and their training loops can be found in Table 4.1. The architecture of MLPs is

specified via quadruples of integers in N4 which specify input dimension, output

dimension, hidden dimension and number of hidden layers; for example, the quadruple

(100, 1, 200, 5) describes an MLP with 100 neurons in its input layer, followed by 5

hidden layers with 200 neurons each, followed by an output layer with 1 neuron. The

architecture of GINs is specified by their radius R, their fingerprint length l and the

architectures of the MLPs ϕr at each graph layer r (see Section 2.6.3).

All neural networks consistently used ReLU(x) := max{0, x} as their hidden ac-

tivation function with the exception of Oη from Figure 4.1 which was equipped with

arctan-activations to preserve the desired symmetry-properties of the twin model (see

Proposition 4.2). Furthermore, all neural networks employed trainable additive bias

vectors after each weight-matrix multiplication. Batch normalisation [133] was used

in all models. The training and model hyperparameter settings of a QSAR method

Q for NFP generation (see Section 4.2.3) were chosen to be almost identical to the

hyperparameter settings of its corresponding baseline QSAR method specified in Ta-

ble 4.1, with one difference being that batch-normalisation was dropped between

the last hidden layer and the scalar output layer when using Q to learn NFPs via

QSAR-prediction. These architectural choices led to a dimensionality of 1024 for

ECFP-NFPs and of 256 for GIN-NFPs.

Due to time constraints and the complexity of the twin neural network archi-

tecture, a full hyperparameter optimisation of all models was not feasible in this

project. However, our hyperparameter choices for the baseline models ECFP-MLP

and GIN-MLP generated strong QSAR-prediction results that were on par with the

results achieved by the corresponding fully hyperparameter-optimised models from

Chapter 3. The ECFP-MLP model in this section reached a mean QSAR-MAE on

Dtest of 0.426 (in pIC50 units) and the GIN-MLP model reached a mean QSAR-MAE

of 0.442. These results are as strong as the ones depicted in Figure 3.9 which are

also based on a 2-fold cross validation scheme on the same SARS-CoV-2 data set, but

included extensive hyperparameter-optimisation routines for the ECFP-MLP and the

GIN-MLP model. We can thus conclude with a high degree of confidence that when-

ever a twin network beats a baseline QSAR model in the experiments in this chapter,

then the same twin network would beat the same QSAR model in a related exper-

iment involving full hyperparamter-optimisation of all models. This is because the

results in Figure 3.9 imply that hyperparameter optimisation would not improve the

performance of the QSAR-modelling baselines in the experiments in this section; it

99

could only possibly improve the performance of a twin network. Even without hy-

perparameter optimisation, our experiments are therefore still suitable to rigorously

answer the question whether a twin neural network can beat a (hyperparameter-

optimised) ECFP-MLP or GIN-MLP baseline at AC or PD-classification.

4.3.2 Results and Discussion

The results of our computational experiments are depicted in Figures 4.2 and 4.3.

Note that the empirical observations in this chapter are based exclusively on the

SARS-CoV-2 main protease binding affinity data set. This data set was suitable for

our experiments since it is composed of a single high-quality assay and has a high

density of MMPs. However, we acknowledge the necessity to repeat our analysis with

other data sets to obtain further evidence for the generalisability of our results.

Remark 4.2 (Error Bars). When considering the plots in Figures 4.2 and 4.3, it is

easy to overinterpret overlapping error bars when comparing models. The purpose

of an error bar in Figure 4.2 or Figure 4.3 is to communicate the standard deviation

associated with the performance of a particular model across multiple random data

splits to the reader. In this study, the length of each error bar was set to two standard

deviations. While this choice is not uncommon, it is essentially arbitrary. For exam-

ple, setting the error bar length to one standard deviation instead and pointing this

out to the reader would remove many overlaps between error bars while conveying

the same information about the stochastic fluctuations in model performance across

random data splits.

4.3.2.1 AC-Classification Performance

Looking at overall AC-classification performance as quantified by the MCC in the

last row of Figure 4.2 shows that twin networks that use standard ECFPs or GINs

as featurisers appear to exhibit slightly weaker overall MCC performance than their

related baseline QSAR models, with the exception of ECFP-based twin networks on

Mtest which clearly outperform ECFP-MLPs in this scenario. The reason might be

that these twin networks are exclusively trained on MMPs and ignore compounds

not associated with any MMP; unlike QSAR models, such twin networks can thus

not leverage the additional SAR-information in isolated compounds in Dtest. This

substantially decreases the size of their training set relative to QSAR models that

can train on all available compounds. A simple way to remove this data advantage

for QSAR models would be to also training them exclusively on compounds involved

100

Figure 4.2: Activity-cliff (AC) classification results on the SARS-CoV-2 main protease data set
for two baseline QSAR models and four newly developed twin neural network models with distinct
input featurisations. The red and violet bars correspond to ECFP-based and GIN-based models,
respectively. The total length of each error bar is set to be equal to twice the standard deviation of
the performance measured over all mk = 50 ∗ 2 = 100 models.

101

Figure 4.3: Potency-direction (PD) classification results on the SARS-CoV-2 main protease data
set for two baseline QSAR models and four newly developed twin neural network models with distinct
input featurisations. The red and violet bars correspond to ECFP-based and GIN-based models,
respectively. The total length of each error bar is set to be equal to twice the standard deviation of
the performance measured over all mk = 50 ∗ 2 = 100 models.

in MMPs; however, such experiments would not truly simulate a realistic scenario

where one uses all available data to produce the strongest possible model.

The overall picture changes when the input featurisations for the twin networks are

enriched via transfer learning. The strongest results on Minter are achieved by ECFP-

NFP-based and GIN-NFP-based twin networks. Similarly, the strongest results on

Mtest are achieved by GIN-NFP-based twin networks and the strongest results on

Mcores are achieved by ECFP-NFP-based twin networks. Our computational study in

Chapter 3 and the results in Figure 3.9 indicate that ECFP-MLPs and GIN-MLPs are

already amongst the strongest QSAR models for AC-classification. Our observations

nevertheless suggest that twin networks when combined with a suitable transfer-

learning approach for MMP featurisation (i.e. NFPs) outcompete even such strong

baseline QSAR models for the detection of AC across multiple distinct prediction

scenarios.

It is notable though that if the only examined metric is the overall MCC, then

the advantage of the NFP-based twin networks over the QSAR-modelling baselines

can in some cases appear modest. However, taking a closer look at the AC-sensitivity

102

and AC-precision of the QSAR-modelling baselines reveals a more nuanced picture.

ECFP-MLPs and GIN-MLPs exhibit a reasonably high MCC across MMP sets which

should in theory reflect good overall performance for AC-classification. However, the

AC-sensitivity of both QSAR models is exceedingly low, reaching around 0.04 on

Mtest; in other words, around 96% of ACs are not correctly classified by these two

techniques. This weakness is to some extent compensated by comparatively high AC-

precision values: for example, if an ECFP-MLP classifies an MMP in Mtest as an AC

then the probability that this MMP truly is an AC is after all approximately 40%.

However, the low AC-sensitivity of the tested QSAR models still casts doubt on their

practical utility as AC-classifiers, in spite of their moderately high MCCs. Tuning the

thresholds for AC-classification in the QSAR-modelling-based prediction strategies

outlined in Section 4.3.1.3 could mitigate this problem by increasing AC-sensitivity

at the cost of AC-precision, thus potentially leading to a more well-balanced and

useful classifier. However, the originally set classification thresholds in Section 4.3.1.3

precisely reflect the conceptual definitions of non-ACs, half-ACs and ACs used in the

literature and throughout this project. Changing these thresholds would thus invite

paradoxical situations where for example MMPs with a predicted absolute activity

difference of less than two orders of magnitude could be classified as ACs which

by definition are MMPs that exhibit an absolute activity difference of more than two

orders of magnitude. Therefore, tuning the classification thresholds for QSAR models

in an attempt to balance out their AC-sensitivity and AC-precision, while potentially

feasible in practice, would arguably be inconsistent and undesirable from a conceptual

point of view.

The problem of imbalanced AC-sensitivity and AC-precision can be circumvented

in an elegant manner by the twin neural network methodology. The function wAC

that forms part of the twin network loss function L(R,R̃) introduced in Section 4.2.2

allows one to directly control the class weights given to non-ACs, half-ACs and ACs

respectively during twin network training. Assigning a higher relative weight to one

class leads to a higher sensitivity (and usually lower precision) for this class in the

final trained model. In the twin network model it is thus possible to tune the trade-off

between sensitivity and precision for each class in a straightforward and conceptually

consistent manner by simply modifying the weight function wAC. In our experiments,

we automatically chose class weights that reflected the relative frequencies of non-

ACs, half-ACs and ACs in the SARS-CoV-2 data set (see Table 3.1). This generally

leads to a much less skewed trade-off between AC-sensitivity and AC-precision than

can be observed for the two baseline QSAR models. For instance, ECFP-NFP-based

103

twin networks show the strongest overall MCC performance of 0.461 out of all models

on Minter while exhibiting an AC-sensitivity of 0.465 and an AC-precision of 0.468. In

comparison, ECFP-MLPs on Minter reach a lower MCC of 0.430, a much lower AC-

sensitivity of 0.274 and a much higher AC-precision of 0.692. In summary, the twin

networks tend to achieve much higher AC-sensitivity and somewhat higher half-AC-

sensitivity compared to ECFP-MLPs or GIN-MLPs, at the cost of lower precision in

both classes, leading to more balanced classifiers. This important trend cannot be seen

from the MCC performance alone; it makes twin neural network models substantially

more well-rounded AC-classifiers than ECFP-MLPs or GIN-MLPs which skew heavily

in the direction of high AC-precision and very low AC-sensitivity.

Perhaps unsurprisingly, almost all of the evaluated models exhibit very high AC-

classification performance on Mtrain as they were trained on this set of MMPs. There

seems to be one salient exception to this though: GIN-MLPs exhibit comparatively

very low overall AC-classification performance on the set of training-MMPs, reaching

an MCC of only 0.637 and an AC-sensitivity of only 0.406. This effect might simply be

caused by insufficient overall QSAR-prediction performance and/or a lack of training

time on the QSAR task. However, there are two reasons that speak against this ex-

planation: Firstly, each GIN-MLP was trained for no less than 1000 epochs on Dtrain

which was sufficiently long for the training loss to converge to a stable plateau for

the last several hundred epochs in all instances. Secondly, GIN-MLPs reach a similar

QSAR-MAE for the prediction of individual molecular activities on Dtest as ECFP-

MLPs (0.442 for GIN-MLPs vs. 0.426 for ECFP-MLPs), yet ECFP-MLPs show much

higher AC-classification performance on Mtrain. In a future research project, it might

be interesting to experiment with techniques to increase the AC-classification perfor-

mance of GIN-MLP models on Mtrain and study the effects of this on the performance

on Minter, Mtest and Mcores. A straightforward avenue to explore would be to increase

the size of GIN-MLPs and train them for an unusually long time, potentially on the

order of 104 to 105 epochs; while this would almost certainly lead to overfitting on

the QSAR task and thus lower QSAR-prediction performance, one can hypothesise

that it might nevertheless increase AC-sensitivity on Mtrain.

When analysing the AC-classification results with respect to molecular featurisa-

tion, we see that GIN-based methods consistently match or outperform ECFP-based

methods according to MCCs on Minter and Mtest. These findings agree with the trends

observed in Figure 3.9 from our previous computational study and extend them to

the realm of twin neural networks. At first glance, our observations thus once again

suggest that graph-based GIN features tend to be equal or superior to ECFPs for the

104

detection of ACs, and this seems to be true both when the underlying predictor is an

MLP or when it is a twin neural network. There are three caveats to this conclusion

though.

Firstly, looking closely at sensitivity and precision values reveals that the MCC

might be a misleading performance measure in some cases. For example, GIN-based

twin networks reach an MCC of 0.199 on Mtest while ECFP-based twin networks

reach an essentially equivalent MCC of 0.200 on the same MMP set. This suggests

that both methods are equally good at ternary AC-classification. And indeed, the

precision values of both methods on Mtest closely resemble each other for all three

classes. However, the sensitivities of GIN-based twin networks for non-ACs/half-

ACs/ACs are 0.850 / 0.293 / 0.151 while the corresponding sensitivity of ECFP-based

twin networks are 0.735 / 0.385 / 0.297. Thus, since ACs and half-ACs are naturally

of greater interest than non-ACs in almost all cases, ECFP-based twin networks seem

to be strongly preferable to GIN-based twin networks, even though their respective

MCCs suggest that both methods are equivalent. One way to express this advantage

is that ECFP-based twin networks can generate a longer list of potential AC and

half-AC-candidates from a given test data set than GIN-based twin networks while

operating at an equal level of precision.

The second caveat to the idea that GIN-features are superior to ECFPs for AC-

classification comes from the fact that this trend, while true on Minter and Mtest,

appears to reverse on Mcores. The MCC performance of all GIN-based methods

drops in a predictable manner when moving from Mtest to the more difficult test

set Mcores. However, surprisingly, the same is not true for ECFP-based methods:

here the MCC performance of ECFP-MLPs and ECFP-NFP-based twin networks

does in fact increase. ECFPs therefore appear to cope better than GINs with the

distributional shift between Mtrain and Mcores; at first sight, this suggest that ECFP-

based methods might be able to extract more generalisable chemical knowledge that

is not merely based on memorisation. Once again the picture becomes more refined

though when looking at sensitivity and precision metrics on Mcores. The investigated

models can be grouped into two sets according to their respective AC-precision values:

ECFP-MLPs, GIN-MLPs and GIN-NFP-based twin networks share a similar level of

AC-precision; and the same is true for ECFP-based twin networks, ECFP-NFP-based

twin networks and GIN-based twin networks. The highest AC-sensitivity by far in

the first group is exhibited by GIN-NFP-based twin networks and the same is true in

the second group for ECFP-based twin networks. Thus, if the goal is to discover as

many AC-candidates as possible in a new data set while maintaining a certain level

105

of precision, then the best model is either a GIN-NFP-based or an ECFP-based twin

network, even though neither of these two methods exhibits a comparatively high

MCC.

4.3.2.2 PD-classification Performance

The overall accuracy-results for the balanced binary PD-classification task are de-

picted in the first row of Figure 4.3. We can see that the differences in performance

between distinct models on Minter, Mtest and Mcores are minor. All models correctly

classify the potency direction of approximately 75% of MMPs in Minter, 65% of MMPs

in Mtest and 60% of MMPs in Mcores. Interestingly, GIN-MLPs perform noticeably

worse than the other methods on Mtrain but this does not seem to harm their rel-

ative predictive abilities on Minter, Mtest or Mcores. This resembles the observation

already discussed in Section 4.3.2.1 that GIN-MLPs show much lower AC-sensitivity

on Mtrain than the other models while still exhibiting competitive AC-classification

performance on the other MMP sets. Our previous discussion on this effect thus also

applies to the analogous situation for PD-classification.

The accuracy-results for all models on the full MMP sets Minter, Mtest and Mcores

might appear modest at first; note however that MMPs are by definition pairs of

structurally similar molecules and that this similarity regularly goes hand-in-hand

with similar activities for a given pharmacological target. ACs and half-ACs are

relatively rare exceptions to this rule which is known by medicinal chemists as the

similarity principle. Classifying which of two compounds is more active thus becomes

a challenging prediction task in a setting where both compounds have almost identical

chemical structures and therefore also frequently exhibit almost identical activities. In

particular, the similarity principle along with the inherent noisiness of experimentally

measured binding affinity values suggests that the discrete PD-classification learning

signal derived from Mtrain for the four twin networks likely contains a considerable

amount of noise in the form of false binary labels. In light of these obstacles, the

capabilities of the investigated methods to detect the potency direction of MMPs is

nontrivial. The fact that all six distinct techniques reach almost equivalent levels of

accuracy on Minter, Mtest and Mcores might potentially be caused by a performance

ceiling that is rooted in the underlying data set itself and that is approached by all

models.

The second and third row of Figure 4.3 contain PD-classification accuracies in

a scenario where the sets of test-MMPs are restricted to only include MMPs that

were classified as half-ACs/ACs by a respective model. Arguably, these results are of

106

higher practical relevance than the overall PD-classification results on the full MMP

sets, since the predicted potency direction of an MMP is often of stronger interest if

the predicted activity difference is substantial. This is for instance true in the case

of compound optimisation. We overall see stronger PD-classification results on the

restricted MMP sets of predicted half-ACs/ACs than on the full MMPs-sets; perhaps

unsurprisingly, this suggests that it is easier to predict the potency direction of MMPs

whose underlying activity difference is large. When MMPs are restricted to predicted

half-ACs/ACs, we observe essentially perfect results for all models on Mtrain. We

further see a tendency for the two baseline QSAR models to slightly outperform

the four twin neural networks on the restricted versions of Minter, Mtest and Mcores.

For example, on Minter ECFP-MLPs predict close to 100% of potency directions of

predicted ACs correctly, while ECFP-based twin networks accurately predict only

slightly more than 80%.

Caution needs to be exercised though when directly comparing accuracy-results

like these, since the exact sets of predicted half-ACs/ACs differ from model to model.

Moreover, the lower the half-AC/AC-precision of a model, the more non-ACs infil-

trate its set of predicted half-ACs/ACs and the harder PD-classification subsequently

becomes on this set. And indeed, comparing Figures 4.2 and 4.3 reveals that models

that exhibit a comparatively high half-AC/AC-precision (such as the two baseline

QSAR models) also tend to exhibit a comparatively high PD-classification accuracy

on predicted half-ACs/ACs. As mentioned before, a likely underlying reason for this

is that the potency direction of half-ACs and ACs might be easier to predict than the

potency direction of non-ACs.

Some models also tend to have a substantially larger set of prediced half-ACs/ACs

than others. The number of (not necessarily correctly) predicted members of a class

C for a given model M1 can be estimated from the true number of occurrences of C

in the test set and the sensitivity and precision values of the model for C:

pC(M1) = nC
sensC(M1)

precC(M1)
.

Here we use the notation introduced in Section 4.3.1.4. If M2 is a second model, then

it follows that
pC(M1)

pC(M2)
=

sensC(M1)precC(M2)

precC(M1)sensC(M2)
.

With this formula, we can for instance conclude that the (average) ratio of the num-

bers of predicted ACs for M1 := ECFP-based twin networks and M2 := GIN-based

107

twin networks on Mtest is given by

pAC(M1)

pAC(M2)
=

sensAC(M1)precAC(M2)

precAC(M1)sensAC(M2)
=

0.297 ∗ 0.131

0.110 ∗ 0.151
≈ 2.342.

This implies that the list of predicted AC-candidates generated by ECFP-based twin

networks is more than twice as long as the equivalent list generated by GIN-based twin

networks, even though both models operate at a similar level of AC-precision (0.110

vs. 0.131). However, the PD-classification accuracies of ECFP-based and GIN-based

twin networks show a modest but noticeable difference on Mtest (0.683 vs. 0.737).

ECFP-based twin networks can thus detect a much larger volume of potential AC-

candidates in Mtest than GIN-based twin networks at an almost equivalent level of

precision, but this advantage comes at the apparent cost of a slightly reduced PD-

classification accuracy on predicted ACs.

4.4 Conclusions

In this chapter, we have introduced a novel twin neural network architecture for

activity-cliff (AC) and potency-direction (PD) classification. The general design of

this twin network enables it to seamlessly integrate with essentially any featurisation

method for individual molecules. We first mathematically investigated the built-in

symmetry properties of the twin architecture which were designed to serve as a useful

inductive bias for our application. We then conducted a series of computational

experiments on a data set of SARS-CoV-2 main protease inhibitors to compare the

AC and PD-classification performance of two QSAR models and four versions of our

twin model, based on either ECFPs or GINs, with or without pre-trained neural

fingerprints (NFPs) generated via supervised transfer learning. To the best of our

knowledge, this work represents the first application of twin neural networks to the

problems of AC and PD-classification and the first AC-prediction study that includes

appropriate QSAR-modelling baselines for comparison.

At PD-classification, the baseline QSAR models tend to be slightly more accurate

than the twin networks if the MMP sets are restricted to predicted half-ACs/ACs.

However, on the full MMP sets the differences in overall PD-classification accuracy

amongst the six investigated models are negligible. This stands in contrast to the

heterogeneous AC-classification results, where we have seen that the developed twin

architecture is able to outperform both baseline QSAR models in a variety of im-

portant ways. NFP-based twin networks tend to reach the strongest overall MCC

108

performance across distinct prediction scenarios. This demonstrates the positive ef-

fects of the transfer learning technique used to generate NFPs which enables the ex-

ploitation of additional chemical knowledge contained in compounds not involved in

MMPs. Our observations suggest that NFP-based twin networks are a well-balanced

choice for AC-classification that can outperform even strong baseline QSAR models.

Moreover, twin networks generally appear to strike a substantially better balance

between sensitivity and precision than the overly conservative QSAR methods. This

may make them more attractive than standard QSAR models for applications such

as compound optimisation and automatic SAR-knowledge acquisition. The improved

AC-classification balance for the twin network is rooted in the fact that class weights

can be assigned to non-ACs, half-ACs and ACs in its loss function.

Our observations have further demonstrate that a detailed look at sensitivity

and precision metrics in addition to overall performance measures such as the MCC

can lead to important insights in certain use cases. In particular, if the goal is to

generate a long list of potential half-AC/AC-candidates at a certain level of precision,

then sometimes one model can be preferable over another one even if both have

essentially the same MCC. For instance, ECFP-based twin networks and GIN-based

twin networks have very similar MCCs and AC-precisions on Mtest in our experiments;

however, the AC-sensitivity of ECFP-based twin networks on this MMP set is much

higher and they can thus generate a much longer list of AC-candidates at the same

level of precision.

A promising pathway for future research might be to explore ways to further

optimise the input-MMP featurisation for AC-classification, potentially by including

three-dimensional information that can smooth out two-dimensional MMP cliffs, or by

pre-training a neural feature extractor via a contrastive loss that explicitly incentivises

the resolution of ACs in the embedding space.

109

110

Chapter 5

Beyond Hashing: Substructure-Pooling
Techniques to Robustly Improve
Extended-Connectivity Fingerprints

5.1 Introduction

The use of extended-connectivity fingerprints (ECFPs) is omnipresent in current

cheminformatics. As described in Section 2.5, the ECFP algorithm transforms a

molecule (usually given in the form of a SMILES string) into a high-dimensional bi-

nary vector whose components indicate the presence or absence of particular circular

chemical substructures within the input compound.1 A modern and widely recog-

nised technical description of ECFPs was given in 2010 by Rogers and Hahn [16],

although the key ideas underlying ECFP generation were already introduced by Mor-

gan [73] in 1965. To name only a few applications, ECFPs have been used success-

fully for ligand-based virtual screening [78], the prediction of the aqueous solubility

of molecular compounds [20], the computational detection of cytotoxic substructures

of molecules [79], the prediction of the inhibitory activity of molecules against E. coli

enzymes [80], the identification of unknown binding targets of chemical compounds

via similarity searching [81], and the prediction of quantum-chemical properties of

small molecules [17].

Perhaps the most typical use case of ECFPs is as a featurisation method for su-

pervised molecular machine learning, i.e. as a method to transform molecules into

binary feature vectors for a given downstream molecular property prediction task.

For this purpose, ECFPs are popular tools due to their conceptual simplicity, high

1ECFPs with counts also exist, which do not simply take the form of binary vectors but integer
vectors that indicate the exact number of occurrences of each substructure. In this work, however,
unless specifically stated otherwise, we always focus on binary ECFPs without counts due to their
more widespread use and conceptual simplicity.

111

interpretability, and low computational cost. Moreover, a growing corpus of litera-

ture suggests that ECFPs still regularly match or even surpass the predictive per-

formance of trainable feature-extraction methods based on state-of-the-art message-

passing graph neural networks (GNNs) [6, 7, 10, 11, 13, 45]. These findings agree

with our own results presented in Chapter 3 where we demonstrated via a series of

rigorous computational experiments that ECFPs consistently beat modern GINs [29]

at binding affinity prediction for a given protein (i.e. QSAR-prediction).

From a bird’s eye view, the ECFP algorithm outlined in Section 2.5.3 can be

decomposed into two steps: a first step

S 7→ I ⊆ {1, ..., 232}

in which the SMILES string S of a compound is mapped to a set of integer identifiers

I which correspond to circular chemical subgraphs of varying radii r ∈ {0, ..., R}
with atomic centers in S (see Figure 2.2); and a second step

I 7→ F ∈ {0, 1}l

in which the set of integer identifiers (i.e. the set if circular subgraphs) is transformed

into a binary vector of predefined length l. We refer to the first step as substructure

enumeration and to the second step as substructure pooling. In this chapter, we focus

on substructure pooling and we will give a precise mathematical definition of it in the

context of supervised molecular machine learning.

Note that the technical parallels between ECFPs and message-passing GNNs (Sec-

tion 2.6) are striking: In both cases, a compound is first transformed into an unordered

set representation whereby different compounds can be transformed to sets of differ-

ent cardinalities. For ECFPs, this set representation is given by the set of initial and

updated integer atom identifiers in I (which correspond to circular substructures)

while for GNNs this set representation is given by the set of initial and updated atom

feature vectors.2 For both methods, the pooling operation then plays the crucial role

of reducing the given set representation to a single feature vector that describes the

entire compound and that can readily be fed into a standard machine learning model.

While considerable work has been done to develop and investigate a variety of

pooling methods for modern GNN architectures [31, 152, 153, 154, 155], almost no

2To be precise, one uses multisets (i.e. sets with counts) instead of standard sets in the case of
GNN architectures. This is to be able to distinguish identical atom feature vectors belonging to
distinct atoms. Similarly, one would use multisets instead of sets when dealing with ECFPs with
counts instead of binary ECFPs. However, as mentioned above, in this work we focus on binary
ECFPs without counts.

112

analogous research exists that describes and explores alternative substructure pooling

methods for ECFPs. The canonical way for substructure pooling [16] for ECFPs is

based on the use of a deterministic hash function as was already described in Sec-

tion 2.5 of this thesis. The hash function is used to map a set of integer identifiers I
into a set {1, ..., l} of much smaller range that can then be transformed into a binary

vectorial fingerprint F ∈ {0, 1}l of desired length l. This straightforward type of

hashing is the current default substructure-pooling technique for ECFPs and is used

almost universally in the molecular property prediction literature, although alterna-

tive hashing procedures for ECFPs and closely related circular fingerprints have been

explored by Probst and Reymond [156] for analog searches in big data settings. In

spite of its widespread use, the default hashing technique comes with a considerable

downside: It is well-known that standard hash-based substructure pooling for ECFPs

suffers from the technical problem of bit collisions, which occur when distinct inte-

ger identifiers (i.e. distinct substructures) are hashed to the same component of the

output vector F . Bit collisions necessarily occur when the fingerprint dimension l is

smaller than the number of detected circular substructures which is almost always

the case in standard settings; moreover, the smaller the fingerprint dimension l rel-

ative to the number of detected substructures, the more bit collisions emerge. The

ambiguities introduced by bit collisions into the fingerprint not only compromise its

interpretability but also its predictive performance in machine-learning applications.

Gütlein and Kramer [157] published a high-quality study which represents one of

the few existing works that systematically explores alternative substructure pooling

strategies for ECFPs to circumvent the problem of bit collisions. They explore an

advanced supervised substructure selection scheme (i.e. a feature selection scheme)

as a pooling method to construct what they referred to as filtered fingerprints. We

will discuss filtered fingerprints as introduced by Gütlein and Kramer [157] in more

detail below.

In this chapter, we describe an extremely simple and surprisingly effective al-

ternative to hashing for substructure-pooling of ECFP substructures which we call

Sort & Slice. In a nutshell, Sort & Slice is based on first sorting all unique circular

substructures in the training set according to their frequency of occurrence within

training compounds and then slicing away the least frequent substructures to arrive

at a fingerprint of desired length. From a formal point of view, Sort & Slice can be

seen as a very simple unsupervised feature selection scheme. In spite of this simplic-

ity, we are able to mathematically show a strong overlap between Sort & Slice and a

113

more complex unsupervised feature selection method based on the maximisation of

information entropy [158, 159].

Sort & Slice fully removes bit collisions at the level of integer identifiers; each

vectorial component in the final fingerprint corresponds to the presence or absence of

one and only one integer identifier in I. This implies that each fingerprint compo-

nent is associated with a unique circular substructure (if one ignores the slim chance

of hash collisions during the ECFP substructure enumeration that could lead to two

substructures being assigned the same integer identifier). As a result, vectorial ECFP

representations generated via Sort & Slice are more straightforward to interpret than

hashed ECFPs, which regularly contain components that correspond to multiple in-

teger identifiers due to colliding bits. Furthermore, note that the slicing procedure,

while massively reducing the dimension of the fingerprint, tends to preserve the vast

majority of the chemical information contained in the training set. This is because

in common real-world molecular data sets, the least frequent substructures usually

only appear in a few compounds (very often only in a single compound); removing

such substructures thus corresponds to the removal of almost-constant features with

little-to-no information that could be leveraged by a prediction algorithm.

We show via a series of rigorous ECFP-based computational experiments that

Sort & Slice regularly and sometimes substantially outperforms (i) standard hash-

based substructure pooling [16], (ii) filtered fingerprints as developed by Gütlein and

Kramer [157], and (iii) a popular supervised feature selection scheme based on mutual-

information maximisation (MIM) [158, 159]. In particular, we show that Sort & Slice

consistently leads to higher predictive performance than hashing, filtering, or MIM

• across a diverse set of supervised molecular property prediction tasks involving

regression as well as balanced and imbalanced classification,

• across distributional shifts caused by distinct data splitting strategies (random,

scaffold),

• across machine learning models (random forest, multilayer perceptron),

• across fingerprint radii (R ∈ {1, 2, 3}),

• across fingerprint lengths (l ∈ {512, 1024, 2048, 4096}), and

• across initial atomic invariants (standard, pharmacophoric).

114

We are thus able to demonstrate that the predictive advantage provided by Sort &

Slice over both hashing and two advanced supervised feature selection techniques is

highly robust and generalises across a large number of settings.

Note that we do not dare to claim that the Sort & Slice technique we investigate

in this chapter was necessarily first discovered and implemented by us; in fact, the

simplicity of the method makes it possible that versions of it have already been

applied by other researchers in the past in a variety of contexts. In particular, we

acknowledge the recent work of MacDougall [48] which we discovered during our

literature search: he proposed a procedure that is almost identical to Sort & Slice,

with the only technical difference to our method appearing to be associated with

the slicing procedure. While the slicing technique from MacDougall [48] only allows

limited control over the length of the fingerprint, our slicing scheme can generate

fingerprints of any predefined arbitrary length. We will discuss this difference in more

detail below when mathematically describing Sort & Slice. Our goal is to provide the

following novel contributions in this chapter:

1. We give a precise and very general mathematical definition of substructure

pooling and suggest it as a potential research avenue to boost the performance

of structural fingerprints in molecular machine learning.

2. We mathematically describe our version of Sort & Slice as a straightforward

alternative to hashing for substructure pooling that is very easy to implement,

allows full control over the fingerprint length and exhibits markedly higher in-

terpretability due to an absence of bit collisions.

3. We show via a series of strict computational experiments that for ECFPs Sort &

Slice consistently leads to higher predictive performance than hashing and two

relevant supervised feature selection schemes for molecular property prediction

across a large number of scenarios; and that frequently the performance gains

associated with Sort & Slice are surprisingly large.

4. We recommend that due to its technical simplicity, dimensional customisabil-

ity, improved interpretability and superior predictive performance, Sort & Slice

should canonically replace hashing as the default substructure pooling method

to vectorise ECFPs for supervised molecular machine learning.

115

5.2 Methods and Experimental Methodology

5.2.1 Substructure Pooling: Mathematical Description

Definition 5.1 (Substructure Pooling). Let

C = {C1, ..., Cm}

be a (potentially very large) set of chemical substructures. The substructures C1, ..., Cm
could take the form of SMILES strings, molecular graphs, or another computational

representation such as hashed integer identifiers. Now let the power set of C, i.e. the

set of all possible subsets of C, be denoted by

P (C) := {A | A ⊆ C}.

A substructure-pooling method of dimension l ∈ N for the chemical substructures in

C is an operator

Ψ : P (C) → Rl

that maps subsets of C to l-dimensional real-valued vectors.

Substructure pooling naturally appears in the context of supervised molecular

machine learning for the vectorisation of structural fingerprints for molecular featuri-

sation. To see this, consider a supervised molecular property prediction task specified

by a training set of n compounds

D = {R1, ...,Rn} ⊂ R

and an associated function

c : D → R

that assigns regression or classification labels to the training set. The training com-

pounds R1, ...,Rn form part of a larger chemical space R whose elements could for

example be represented via SMILES strings or molecular graphs. Analogous to Defi-

nition 5.1, let

C = {C1, ..., Cm}

be a set of m chemical substructures of interest and let

P (C) = {A | A ⊆ C}

be its power set. Now let

φ : R → P (C)

116

be a structural-fingerprinting algorithm that maps an input compound in R to the set

of substructures in C that appear in the input compound. Via φ one can transform

each training compound Ri into a set representation consisting of ri substructures:

φ(Ri) = {Ci,1, ..., Ci,ri} ⊆ C.

The elements Ci,1, ..., Ci,ri ∈ C corresponds to chemical substructures that belong to

the larger set of considered substructures C and that are present in Ri.

A straightforward example for φ is of course the ECFP algorithm described in

Section 2.5. In this case, C is the set of all circular chemical fragments up to a

predefined radius R represented via their respective integer identifiers in the hash

space {1, ..., 232}. Another option for φ that has been frequently used in the past is

the 166-bit MACCS fingerprint [74] for which C becomes a fixed set of 166 chemical

substructures represented via their respective SMARTS strings [160].

By composing a substructure-fingerprinting algorithm

φ : R → P (C)

with a substructure-pooling operator

Ψ : P (C) → Rl

one can finally transform each molecular set representation φ(Ri) into a real-valued

vector Ψ(φ(Ri)) ∈ Rl. The vectorised training data set

Ψ(φ(D)) ⊂ Rl

can then be fed into a standard machine learning model such as a random forest or

a multilayer perceptron that can be trained to predict the labels specified by c. Note

that the substructure-pooling operator Ψ can be constructed leveraging knowledge

from the training data; in other words, Ψ is allowed to depend on D and the labelling

function c. Furthermore, Ψ does not necessarily need to be a fixed function; it could

also be a trainable deep network. For instance, later in Section 6.2 we will introduce

a trainable substructure-pooling technique based on a differentiable self-attention

mechanism.

The problem of substructure pooling can be directly translated into a mathemati-

cal problem that closely resembles GNN pooling as described in Section 2.6. This can

be achieved if one employs a substructure-embedding function of some dimension w:

γ : C → Rw.

117

Using this embedding, one can straightforwardly transform sets of substructures into

sets of vectors via

Γγ : P (C) → {A ⊂ Rw | A is finite}, Γγ({C1, ..., Cr}) = {γ(C1), ..., γ(Cr)}.

Given a substructure-fingerprinting algorithm φ, the composite function

Γγ ◦ φ : R → {A ⊂ Rw | A is finite}

then maps a chemical compound to a set of real-valued vectors. This vectorial set

representation can be seen analogously to the outputs of an iteratively applied GNN

layer which computes a representation of the molecule in the form of layerwise sets

fi(A) of initial and updated atom feature vectors

f0(A), ..., fR(A) ⊂ {A ⊂ Rw | A is finite}.

Whether the vectors within a set representation generated by Γγ◦φ can also be associ-

ated with specific radii and central atoms within the input compound like the feature

vectors in f0(A), ..., fR(A) depends on the specifics of the fingerprinting-algorithm φ.

In the case of ECFPs, for example, such a layerwise and atomwise interpretation that

is equivalent to its GNN counterpart is possible and highly natural since each ECFP-

generated integer identifier is associated with a substructure of radius r ∈ {0, ..., R}
around a central atom. Note though that even if such an interpretation is not possi-

ble, both techniques still lead to a representation of the input compound in terms of

sets of vectors. We can thus see that all GNN pooling methods that correspond to

graph-topology-independent permutation-invariant set-functions⊕
: {A ⊂ Rw | A is finite} → Rl

can immediately be repurposed to vectorise the sets produced by Γγ◦φ for downstream

machine learning. Given a suitable embedding γ one can therefore reuse techniques

from the literature on GNN pooling for substructure pooling. As an example, consider

the sum operator that is frequently used for GNN pooling:∑
: {A ⊂ Rw | A is finite} → Rw,

∑
({v1, ..., vr}) =

r∑
i=1

vi.

By composing the sum operator Σ with a substructure embedding γ we immedi-

ately gain a substructure-pooling operator whose output dimension l is equal to the

embedding-dimension w:

Ψ : P (C) → Rw, Ψ({C1, ..., Cr}) =
(∑

◦ Γγ

)
({C1, ..., Cr}) =

r∑
i=1

γ(Ci).

118

From this example it becomes clear that a pair (⊕, γ) consisting of a permutation-

invariant set-function ⊕ and a substructure-embedding function γ is sufficient to fully

determine an associated substructure-pooling method Ψ = ⊕◦Γγ. Note that just like

in the case of GNN pooling, the operator ⊕ could correspond to simple summation

or averaging, or could be modelled by a more complex trainable deep network as is

the case for the differentiable graph pooling method proposed by Navarin et al. [31].

We now take a look at two natural example techniques for the embedding of

substructures.

Example 5.1 (One-Hot Embedding). Perhaps the simplest possible substructure

embedding is given via one-hot encoding. Denote with um,i ∈ Rm the m-dimensional

unit vector which is equal to 1 only in its i-th component and equal to 0 everywhere

else. Furthermore, let

s : C → {1, ...,m}

be a bijective function. Note that s imposes a linear order on C by assigning a

unique rank s(C) ∈ {1, ...,m} to each substructure C ∈ C. Then the one-hot encoded

substructure embedding associated with s is simply given by

γs : C → Rm, γs(C) = um,s(C).

We see that in the case of one-hot encoding, the embedding dimension w is equal to

the number of substructures |C| = m and can thus be extremely large.

Example 5.2 (Physicochemical Embedding). Another natural way to embed sub-

structures is given via physicochemical-descriptor vectors (PDVs) as described in

Section 2.4. For example, the 200 descriptors specified in Table 2.2 can be computed

for each substructure, leading to a meaningful embedding function

γPDV : C → R200.

Some advantages of this embedding over one-hot encoding are its high a priori con-

tent of interpretable and potentially useful chemical information and the fact that

similar substructures are likely to end up close in the embedding space. A potential

disadvantage of physicochemical embeddings over one-hot embeddings might be that

certain frequently-used permutation-invariant set functions such as the summation or

averaging operator potentially incur a considerable loss of information when applied

to sets of PDVs. In contrast, for sets of one-hot encoded vectors, summation and

averaging are invertible operations that do not incur any loss of information. To see

119

this, note that every positive entry in a vector that represents the sum or average of a

set of one-hot encoded vectors corresponds to exactly one particular one-hot encoded

vector in the original set.3

5.2.2 Investigated Substructure-Pooling Techniques

Note that substructure pooling as given in Definition 5.1 is a highly general opera-

tion that encompasses hashing, feature selection and more complex methods based on

combining substructure-embeddings γ with differentiable permutation-invariant set

functions ⊕. In spite of this, substructure-pooling beyond hashing remains largely

unexplored. Below we go on to describe four substructure-pooling methods for ECFPs

that we chose to experimentally investigate: the canonically used hashing procedure,

the Sort & Slice method which is the main focus of this study, and two technically ma-

ture supervised feature selection schemes. A high-level overview of the four evaluated

substructure-pooling techniques can be found in Figure 5.1.

The substructure-pooling methods we describe in this section can in principle be

used with any structural fingerprint; however, in this study we focus on ECFPs. We

therefore assume from now on that the set of chemical substructures under consider-

ation C consists of circular substructures up to a predefined radius R represented via

a set of integer identifiers in a large hash space:

C = {J1, ...,Jm} ⊆ {1, ..., 232}.

Remark 5.1 (Potential Hash Collisions during ECFP Substructure Enumeration).

Note that strictly speaking there is not always a perfect one-to-one correspondence be-

tween circular chemical substructures and integer ECFP identifiers in the hash space

{1, ..., 232}; theoretically hash collisions could occur during the ECFP substructure

enumeration process (within one compound or across distinct compounds) that could

lead to two circular fragments being assigned the same integer identifier Ji. However,

hash collisions of this type are very rare [16, 157]. For simplicity we therefore assume

that each integer identifier Ji ∈ C can indeed always be mapped to a unique circular

chemical fragment.

3In the case of ECFPs with counts, detected substructures in a compound would be encoded as
multisets of one-hot encoded vectors instead of sets. Summing a multiset of one-hot encoded vectors
is still invertible, but averaging is not. For instance, the multiset {(1, 0), (1, 0), (0, 1), (0, 1)}mul can
easily be uniquely reconstructed from its sum (2, 2), but not from its average (1/2, 1/2), since the
multiset {(1, 0), (0, 1)}mul corresponds to the same average.

120

Figure 5.1: Schematic overview of the four investigated substructure-pooling methods for the
vectorisation of ECFPs.

121

We imagine that the described substructure-pooling methods are used in the con-

text of a supervised molecular property-prediction task specified via a set of n training

compounds

D = {R1, ...,Rn} ⊂ R

that are elements of some larger chemical space R and that are given via their asso-

ciated SMILES strings. We also assume that we are given a labelling function

c : D → R

that assigns regression or classification labels to the training compounds. The ECFP

algorithm is denoted via

φ : R → P (C)

and turns SMILES strings R ∈ R into sets of integer identifiers

φ(R) = {J1, ...,Jr} ⊆ C

that correspond to circular chemical substructures that appear in the input com-

pound R. For each substructure J ∈ C, the set of all training compounds that

contain J is called the support of J and is denoted via

supp(J) := {R ∈ D | J ∈ φ(R)}.

The set

CD :=
⋃
R∈D

φ(R)

contains all integer identifiers in the entire training set, i.e. all circular substructures

that appear in any of the n training compounds.

5.2.2.1 Hashing

The canonical way for substructure pooling [16] is via a deterministic hash function

h̃ : {1, ..., 232} → {1, ..., l}

that compresses the set of integer identifiers in C into a much smaller set of inte-

gers {1, ..., l} whose cardinality corresponds to the desired fingerprint dimension l.

Formally, one can employ h to define a substructure-pooling method via

Ψ : P (C) → Rl, Ψ({J1, ...,Jr})i =

{
1 ∃ k ∈ {1, ..., r} : h(Jk) = i,
0 else.

122

This means that the map

Ψ ◦ φ : R → Rl

transforms a chemical compound R ∈ R into an l-dimensional binary vectors whose

i-th component is 1 if and only if (at least) one of the substructures in φ(R) =

{J1, ...,Jr} gets hashed to the integer i. If l gets small then hash collisions start

to occur that can for instance lead to distinct substructures in CD being mapped by

h to the same component of the fingerprint. This degrades its interpretability and

predictive performance. Note that hash-based substructure-pooling is independent of

the training set D and the labelling function c.

5.2.2.2 Sort & Slice

Let

f : C → {0, ..., n}, f(J) = |supp(J)| = |{R ∈ D | J ∈ φ(R)}|,

be a function that maps every substructure-identifier J ∈ C to the number of training

compounds in D = {R1, ...,Rn} which contain J (i.e. to its frequency in the training

set). We can use f to define a linear order ≺ on the set of all substructures C via

J ≺ J̃ ⇐⇒ f(J) < f(J̃) or [f(J) = f(J̃) and J < J̃].

We see that the order defined by ≺ considers a substructure larger than another

substructure if it appears in more training compounds. If two substructures appear

in the same number of training compounds, ties are broken using the (arbitrary)

ordering defined by the integer identifiers themselves. The relation ≺ defines a total

order on C which means that each substructure J ∈ C can be assigned a unique rank

with respect to ≺. Let

s : C → {1, ...,m}

be a bijective sorting function that assigns the ranks determined by ≺. Here rank

1 is assigned to the largest substructure with respect to ≺. If there are no ties

then s(J) = 1 implies that J appears in more training compounds than any other

substructure in C. Now let

γs : C → Rm, γs(J) = um,s(J)

be the one-hot embedding associated with s (note that one-hot embeddings are de-

scribed in Example 5.1). Furthermore, let mD := |CD| be the total number of sub-

structures that appear in the training set. Based on mD and the desired fingerprint

123

length l we define a slicing function

ηmD,l : Rm → Rl, ηmD,l(v1, ..., vm) =

{
(v1, ..., vl) mD ≥ l,
(v1, ..., vmD

, 0, ..., 0) mD < l.

Then the Sort & Slice substructure-pooling operator is defined via

Ψ : P (C) → Rl, Ψ({J1, ...,Jr}) = ηmD,l

(r∑
i=1

γs(Ji)
)
.

The sum expression
r∑

i=1

γs(Ji) ∈ {0, 1}m

is equal to a very long binary vector; each component of this vector indicates the

presence or absence of a particular circular substructure in C in the input compound.

The substructures appear according to the frequency by which they occur in the

training set such that substructures that occur in more training compounds appear

earlier in the vector.

If mD ≥ l, which is usually the case, then the function ηmD,l slices away the less

frequent substructures from the vector to produce a final representation with the

desired dimension l. In the unusual case where l is set to be larger than the total

number of substructures in the training set mD, then all training substructures are

contained in the fingerprint and it is simply padded with additional 0s at the end to

reach length l.

In simple terms, the map

Ψ ◦ φ : R → Rl

outputs binary fingerprints of length l that indicate the presence or absence of the l

substructures that appear most frequently in the training set D. In particular, note

that these fingerprints do not exhibit hash collisions; each vectorial component can

be assigned to a unique substructure. This clarity comes at the price of losing the

information contained in the less frequent substructures in CD that are sliced away.

Note however that in real-world chemical data sets a vast portion of substructures

that exist in the training set only occur in a few compounds. In a machine-learning

context, slicing away such highly infrequent substructures should thus lead to min-

imal loss of information since it corresponds to removing almost-constant features

(i.e. almost-constant columns the the training-set feature matrix). The Sort & Slice

operator Ψ is dependent on the training set D but not on the training labels c. It

can be interpreted as a simple unsupervised feature selection technique that selects

substructures according to the frequency with which they appear in the training set.

124

In our literature review we discovered that MacDougall [48] proposed a version

of the ECFP that closely resembles the ECFP generated via Sort & Slice. The

main difference between the substructure-pooling method proposed by MacDougall

and ours appears to be in the slicing operation. MacDougall proposes to arrange

substructures in discrete packages according to the level sets of f :

Cj,f := {J ∈ C | f(J) = j}.

It is clear that the sets Cn,f , ...,C0,f form a partition of C. MacDougall only absorbs

substructures in Cn,f , ...,Cn−k,f into the final fingerprint whereby k is a tunable slic-

ing parameter. In this setting, tuning k gives limited control over the fingerprint

dimension as going from k to k + 1 leads to a discrete jump in fingerprint length of

magnitude |Cn−(k+1),f |. This coarse-graining of the fingerprint length might be moti-

vated by an effort to avoid dealing with ties when sorting substructures according to

frequency. In contrast, our Sort & Slice technique solves the problem of ties by intro-

ducing a second (arbitrary) layer of ordering based on the magnitude of the integer

identifiers. This allows us to assign a unique rank to every substructure J ∈ C. As a

consequence, our framework easily allows full control over the fingerprint length l as

the substructures in C can be sorted in an unambiguous way. Subsequently, all but

the top l substructures can be sliced away for any desired l.

Remark 5.2 (Information-Theoretic Interpretation of Sort & Slice). Let us assume

that no substructure appears in more than half of the training compounds:

max
J∈CD

f(J) ≤ n

2
.

In other words, we assume that

∀J ∈ CD : p(J) :=
f(J)

n
≤ 1

2
.

Here p(J) ∈ (0, 1] is the probability to find substructure J ∈ CD in a training com-

pound that was chosen uniformly at random from D. It is also an empirical estimate

of the probability to find substructure J in a compound that was sampled in the

same way as the training compounds which are assumed to have been generated via

independent and identically distributed draws from the larger chemical space R. In

real-world data sets the assumption that p(J) ≤ 1/2 holds approximately true since

usually only a very small fraction of all circular substructures in CD actually appear in

the majority of compounds; in fact, in real-word data sets almost all substructures in

J ∈ CD tend to appear in only a few compounds. If indeed no substructure appears

125

in the majority of training compounds, the ordering imposed on CD by the frequency-

function f is equivalent to the ordering imposed by the empirical information entropy

H ◦ p of a substructure with respect to D. The binary information entropy function

H [158] is defined via

H : [0, 1] → [0, 1], H(p) = −p log2(p) − (1 − p) log2(1 − p)

with 0 ∗ log2(0) := 0. We naturally define the empirical information entropy of a

substructure in the training set D via

H ◦ p : CD → [0, 1], (H ◦ p)(J) = H(p(J)).

The quantity H(p(J)) peaks at p(J) = 1/2 and provides an empirical measure for

how informative the substructure J is when used as a binary feature in a fingerprint.

It represents a simple plug-in entropy estimator based on the empirical probability

estimate p(J) to find substructure J in a compound. H(p) is strictly increasing for

p ∈ [0, 1/2] and is strictly decreasing for p ∈ [1/2, 1]. To see that f and H ◦ p induce

the exact same ordering on CD note the following two facts:

∀J , J̃ ∈ CD : f(J) < f(J̃) ⇐⇒ p(J) < p(J̃) ⇐⇒ (H ◦ p)(J) < (H ◦ p)(J̃),

∀J , J̃ ∈ CD : f(J) = f(J̃) ⇐⇒ p(J) = p(J̃) ⇐⇒ (H ◦ p)(J) = (H ◦ p)(J̃).

Here in each of both rows the first equivalence is trivial and the second equivalence

holds due to our the strict monotonicity of H on [0, 1/2] and our current assumption

that p(J), p(J̃) ∈ [0, 1/2].

This argument shows that in realistic settings (i.e. in settings where almost all

substructures appear in no more than half of the training compounds) Sort & Slice

tends to automatically lead to a fingerprint that only contains the most informative

substructures from an entropic point of view, all while being much simpler to the-

oretically understand, implement and interpret than an approach explicitly built on

empirical information entropy.

5.2.2.3 Filtering

In this section we describe the substructure-pooling technique proposed by Gütlein

and Kramer [157] referred to as filtering. Their original method was published in Java;

we used the technical description from their article to create a reimplementation in

Python that integrates with the rest of our code base.

126

Let us first assume that we are given a binary molecular classification problem,

i.e. we assume that our labelling function is given by

c : D → {0, 1}.

If instead the initial labels specified by c correspond to a continuous regression prob-

lem with labels in R, then we set all labels below or above the label median to 0 or

1 respectively, to still arrive at a binary classification problem of the above form.

Now let R be a random compound that was drawn from R according to some

probability distribution. Moreover, we imagine that the given training set

D = {R1, ...,Rn}

represents a statistical sample of n independent and identically distributed draws of

R from R. Then the available training labels

ĉ := (c(R1), ..., c(Rn)) ∈ {0, 1}n

form a statistical sample of size n for the random labels of R. Furthermore, for each

substructure J ∈ C, the expression

gJ (R) =

{
1 J ∈ φ(R),
0 else,

forms a random variable that is equal to 1 if and only if substructure J is contained

in R. The binary sequence

ĝJ := (gJ (R1), ..., gJ (Rn)) ∈ {0, 1}n

represents a statistical sample of size n for gJ (R).

We now define a function

f : C → [0, 1], f(J) = pχ2(ĉ, ĝJ),

that assigns to each substructure J ∈ C its p-value in a statistical χ2 independence-

test [161] between ĉ and ĝJ . As is the case for Sort & Slice, this function allows one

to define a total order on C via

J ≺ J̃ ⇐⇒ f(J) > f(J̃) or [f(J) = f(J̃) and J > J̃].

The larger the p-value, the smaller the substructure according to ≺. We now reduce

the number of substructures we consider in our fingerprint to the desired dimension

l via the following scheme:

127

• Step 0: The set of selected substructures is initialised via Cl := C.

• Step 1:. A substructure J ∈ Cl that fulfills |supp(J)| ≤ 1 is randomly chosen

and removed from Cl. This is repeated until all substructures in Cl appear in

at least two training compounds or until |Cl| = l.

• Step 2: A substructure J ∈ Cl that is non-closed is randomly chosen and

removed from Cl. This is repeated until all remaining substructures in Cl are

closed or until |Cl| = l. Note that a substructure J ∈ Cl is called non-closed if

there exists another substructure J̃ ∈ Cl such that supp(J) = supp(J̃) and J
contains a proper subgraph that is isomorphic to J̃ .

• Step 3: The smallest element of Cl with respect to the linear order ≺ is chosen

and removed. This is repeated until |Cl| = l.

Step 1 is performed to remove almost-constant substructural features that contain

little information. Step 2 represents a graph-theoretic attempt to reduce feature

redundancy via the removal of substructures that contain smaller substructures that

match the exact same set of training compounds. Finally, Step 3 is performed to select

the l substructures that show the strongest statistical dependence on the training label

as quantified by a χ2-test. Using the selection of substructures Cl one can construct

a one-hot embedding (see Example 5.1)

γs : C → Rl, γs(J) =

{
ul,s(J) J ∈ Cl,
0 else,

whereby

s : Cl → {1, ..., l}

is some arbitrary bijective sorting function. Substructure pooling by means of filtered

fingerprints can now be described via:

Ψ : P (C) → Rl, Ψ({J1, ...,Jr}) =
r∑

i=1

γs(Ji).

The map

Ψ ◦ φ : R → Rl

transforms chemical compounds into hash collision-free binary fingerprints that only

indicate the presence or absence of substructures in Cl. Note again that Cl contains the

l substructures that exhibit the lowest p-values in a χ2-test with respect to the training

label; these substructures thus have a comparatively high statistical dependence with

128

the target variable and might therefore be useful features for a machine-learning

system. Ψ depends on both the training compounds in D and the training labels c.

Filtered fingerprints form a type of supervised feature selection scheme.

5.2.2.4 Mutual-Information Maximisation

In this section we continue to assume the same setting as in the previous section,

i.e. we assume that our labelling function is binary (or has been binarised),

c : D → {0, 1},

and we consider the binary sequences ĉ ∈ {0, 1}n and ĝJ ∈ {0, 1}n for J ∈ C to be

statistical samples of size n of two random variables that describe whether or not

the binary label of a randomly chosen compound is positive and whether or not the

compound contains substructure J . Based on these samples derived from our training

set, we compute the empirical mutual information I [158, 159] between substructure

J and the training label via

I(ĉ, ĝJ) = H(ĉ) +H(ĝJ) −H(ĉ, ĝJ).

Here H denotes an empirical estimate of the information entropy of a random variable

based on a statistical sample. H could be implemented using a variety of strategies

for entropy estimation; since we are dealing with the relatively easy case of discrete

binary variables, we implement H as the simple plug-in entropy estimator based on

the relative frequencies of binary outcomes that was already used in Remark 5.2.

I(ĉ, ĝJ) is a nonnegative, symmetric and nonlinear measure of the statistical depen-

dence between ĉ and ĝJ . The larger I(ĉ, ĝJ), the more information the presence of

substructure J in a compound conveys about the value of its training label and vice

versa.

We now define a function

f : C → [0,∞) , f(J) = I(ĉ, ĝJ),

that assigns to each substructure J ∈ C its empirical mutual information with the

training label. Once again this function allows one to define a total order on C via

J ≺ J̃ ⇐⇒ f(J) < f(J̃) or [f(J) = f(J̃) and J < J̃].

We go on to reduce the number of substructures we consider in our fingerprint to the

desired length l via the following scheme:

129

• Step 0: The set of substructures is initialised via Cl := C.

• Step 1: If two substructures J , J̃ ∈ Cl appear in the exact same set of training

compounds, i.e. if supp(J) = supp(J̃), then one of the substructures is cho-

sen uniformly at random and removed from Cl. This is repeated until no two

substructures have the same support or until |Cl| = l.

• Step 2: The smallest element of Cl with respect to the linear order ≺ is chosen

and removed. This is repeated until |Cl| = l.

Step 1 is performed in an attempt to reduce feature redundancy via the removal of

substructural features that are identical in the training set. Then, Step 2 is performed

to select only the l most informative substructures with respect to the training label.

Using the selection Cl one can construct a one-hot embedding (see Example 5.1)

γs : C → Rl, γs(J) =

{
ul,s(J) J ∈ Cl,
0 else,

whereby

s : Cl → {1, ..., l}

is some arbitrary bijective sorting function. Substructure pooling based on mutual-

information maximisation (MIM) can now be described with the following operator:

Ψ : P (C) → Rl, Ψ({J1, ...,Jr}) =
r∑

i=1

γs(Ji).

The map

Ψ ◦ φ : R → Rl

transforms chemical compounds into hash-collision-free binary fingerprints that ex-

clusively indicate the presence or absence of substructures in the tailored set Cl.

Remember that Cl contains the l substructures that exhibit the highest mutual infor-

mation with the training label and should thus be highly predictive in a supervised

machine-learning setting. Ψ depends on the training compounds in D and the training

labels c. It can be seen as a supervised feature selection scheme.

5.2.3 Experimental Setup

We computationally evaluated the predictive performance of the four substructure-

pooling techniques introduced in the previous section (Hash, Sort & Slice, Filter and

MIM) using five molecular property prediction data sets (see Table 5.1). The data sets

130

were chosen to cover a diverse set of chemical regression and binary classification tasks:

the prediction of lipophilicity, aqueous solubility, binding affinity, and mutagenicity.

We also included a LIT-PCBA virtual screening data set [162] that represents a highly

imbalanced binary classification problem. Also note that we once again experimented

with the same SARS-CoV-2 main protease binding affinity data set that we already

explored in Chapters 3 and 4.

All data sets were cleaned in the following manner: SMILES strings were algorith-

mically standardised and desalted using the ChEMBL structure pipeline [124]. This

step also removed solvents and isotopic information. Afterwards, SMILES strings

that generated error messages upon being turned into an RDKit mol object were

deleted. Furthermore, a scan for duplicate SMILES strings was performed; if two

SMILES strings were found to be identical, one of the SMILES strings was deleted

uniformly at random along with its training label. Finally, we also detected rare

instances where SMILES strings appeared to encode several disconnected fragments

instead of one connected compound; such SMILES strings were too deleted from the

data.

As a data splitting strategy, we implemented k-fold cross validation repeated with

m random seeds using (k,m) = (2, 3); thus each model was independently trained

and tested km = 6-times. Performance results were recorded as the average and

standard deviation over these 6 splits, using the mean absolute error (MAE) for the

three regression data sets and the area under the receiver operating characteristic

curve (AUROC) for the balanced mutagenicity classification data set. To measure

performance on the LIT-PCBA estrogen receptor alpha antagonism classification data

Prediction Task Task Type Compounds Source

Lipophilicity [logD] Regression 4200 MoleculeNet [163]

Aqueous Solubility [logS] Regression 9335 Sorkun et al. [164]

SARS-CoV-2 Main Protease
Binding Affinity [pIC50]

Regression 1924 COVID Moonshot
Project [123]

Ames Mutagenicity Classification 3496 positives
3009 negatives

Hansen et al. [165]

Estrogen Receptor Alpha
Antagonism

Classification 88 positives
3833 negatives

LIT-PCBA [162]

Table 5.1: Overview of the five cleaned molecular property prediction data sets used to experimen-
tally evaluate the predictive performance of distinct substructure-pooling techniques for ECFPs.

131

Machine-Learning Model Hyperparameters

Random Forest Multilayer Perceptron

NumberOfTrees = 100
MaxDepth = None
MinSamplesLeaf= 1
MinSamplesSplit = 2
Bootstrapping = True
MaxFeatures = Sqrt
Criterion (regression) = SquaredError
Criterion (classification) = Gini

NumberOfHiddenLayers = 5
NeuronsPerHiddenLayer = 512
HiddenActivation = ReLU
UseBiasVectors = True
DropoutRateHiddenLayers = 0.25
BatchNormHiddenLayers = True
BatchSize = 64
LearningRate = 1e-3
LRDecayFactor = max{0.98epoch, 1e-2}
WeightDecayFactor = 0.1
NumberOfEpochs = 250
Optimiser = AdamW [134]
OutputActivation (regression) = Identity
Loss (regression) = MeanSquaredError
OutputActivation (classification) = Sigmoid
Loss (classification) = BinaryCrossEntropy

Table 5.2: Selected hyperparameters for the two prediction models used in our substructure-pooling
experiments: random forests (RFs) and multilayer perceptrons (MLPs).

set, we used the area under the precision recall curve (AUPRC) which quantifies

the tradeoff between sensitivity (= recall) and precision; the AUPRC is a suitable

and commonly used metric for highly imbalanced problems in which positives are of

stronger natural interest than negatives. We experimented with two distinct splitting

techniques within our cross-validation framework: standard uniform random split-

ting and scaffold splitting [166]. For the LIT-PCBA classification data set we used

stratified random splitting instead of standard random splitting in order to stabilise

the small number of positives across training and test sets (we still refer to this split

simply as a random split). Unlike random splitting, scaffold splitting generates a

partition of a chemical data set in which the molecular scaffolds of all training-set

compounds are distinct from the molecular scaffolds of all test-set compounds. This

creates a distributional shift between training and test set which leads to a more

challenging prediction scenario where a model is trained in one structural area of

chemical space but tested in another.

As prediction algorithms we selected two standard machine-learning models: ran-

dom forests (RFs) and multilayer perceptrons (MLPs). The hyperparameter choices

for both models are listed in Table 5.2. All MLPs were trained on a single NVIDIA

GeForce RTX 3060 GPU. In the case of RFs, the chosen hyperparameters are iden-

tical to the default ones from scikit-learn [130] with the exception for MaxFeatures

132

which was set to “Sqrt” instead of 1.0 in the case of RF regressors in order to add

randomness.4

We conducted a thorough investigation of the ECFP hyperparameter space. For

each data set, for each data splitting technique (random vs. scaffold), and for each

prediction model (RF vs. MLP), we evaluated 24 different ECFPs based on a complete

exploration of the following grid:

• fingerprint dimension l ∈ {512, 1024, 2048, 4096},

• substructure diameter D ∈ {2, 4, 6},

• atomic invariants ∈ {standard (ECFP), pharmacophoric (FCFP)},

• active tetrahedral R-S chirality flags.

Each of the 24 ECFP versions was further combined with all four substructure-pooling

methods (Hash, Sort & Slice, Filter, MIM). This resulted in 96 distinct vectorial

ECFPs used for each combination of data set, splitting type and machine-learning

model. From a bird’s-eye view, the conducted experiments are organised according

to a robust combinatorial methodology of the following form:

|{Lipophilicity Data Set, ...,Estrogen Receptor Alpha Antagonism Data Set}|

×

|{Random Data Split, Scaffold Data Split}|

×

|{Random Forest, Multilayer Perceptron}|

×

|{512-Bit ECFP2, ..., 4096-Bit FCFP6}|

×

|{Hash, Filter, MIM, Sort & Slice}|

=

5 ∗ 2 ∗ 2 ∗ 24 ∗ 4 = 1920.

4The fact that the default scikit-learn setting of MaxFeatures = 1.0 for RF regressors actually
does not generate a classical random forest based on trees built via random subsets of features
but rather simply a set of bagged decision trees via bootstrap aggregation was pointed out in a
social media post by Greg Landrum on Twitter via @dr greg landrum on 1:57 PM, Feb 28, 2023: I
assume there’s a reason for it, but I really don’t think it’s a feature that the default parameters for
a scikit-learn RandomForestRegressor don’t actually build a random forest.

133

Each of the 1920 modelling scenarios resulting from this combinatorial setup was

evaluated on the chosen data set via 2-fold cross validation with 3 random seeds as

mentioned before. In total we therefore trained 1920∗6 = 11520 models, half of which

were deep-learning models.

5.3 Results and Discussion

The detailed experimental results for each data set can be found in Figures 5.2 to 5.6.

A comprehensive overview of all results is depicted in Figure 5.7 where it becomes

evident that Sort & Slice outperforms hashing in almost all scenarios and that fre-

quently the achieved performance gains are non-negligible. For example, a random

forest trained on a random split of the AqSolDB solubility data set [164] achieves

a median MAE of about 1.045 when combined with the hashed versions of the 24

investigated ECFPs but a median MAE of about 0.998 if the ECFPs are vectorised

via Sort & Slice instead. This corresponds to a relative improvement of the median

MAE of approximately 4.5%.

The fine-grained results in Figures 5.2 to 5.6 give more detailed insights into the

relative performance of substructure-pooling techniques for various ECFP hyperpa-

rameters. In particular, this allows us to track the performance of the highly popular

1024-bit ECFP4 which has been used as one of the common fingerprints in countless

applications. We see that the Sort & Slice version of the 1024-bit ECFP4 surpasses

the predictive performance of the hashed 1024-bit ECFP4 in all but a few cases. For

instance, Figure 5.2 shows that replacing hashing with Sort & Slice when using a

1024-bit ECFP4 with an MLP on a random split of the lipophilicity data set leads to

a rather remarkable relative MAE improvement of 11.37%.

The results in Figure 5.6 suggest that the advantage of Sort & Slice over hash-

ing remains robust even in a highly imbalanced classification scenario. The superior

AUPRC of Sort & Slice indicates a better trade-off between sensitivity and precision

in a setting with very few positives where standard algorithms tend to generate pre-

dictions that are heavily biased towards the negative class (i.e. heavily biased towards

extremely high precision and extremely low sensitivity). Our observations are con-

sistent with the hypothesis that Sort & Slice exerts a mitigating effect on this bias

relative to hashing by increasing sensitivity favourably at the cost of precision, lead-

ing to a more balanced classifier with stronger overall performance. The predictive

power of the RFs and MLPs trained on the imbalanced LIT-PCBA estrogen receptor

alpha antagonism data set could potentially be further increased by combining them

134

Figure 5.2: Predictive performance of the four substructure-pooling methods (indicated by colours)
for the lipophilicity regression data set using varying data splitting techniques, prediction models
and ECFP hyperparameters. Each coloured bar shows the average mean absolute error (MAE)
of the respective model across a k-fold cross validation scheme repeated with m random seeds for
(m, k) = (3, 2). The length of each error bar equals twice the standard deviation of the performance
measured over the mk = 6 trained models.

135

Figure 5.3: Predictive performance of the four substructure-pooling methods (indicated by colours)
for the solubility regression data set using varying data splitting techniques, prediction models
and ECFP hyperparameters. Each coloured bar shows the average mean absolute error (MAE)
of the respective model across a k-fold cross validation scheme repeated with m random seeds for
(m, k) = (3, 2). The length of each error bar equals twice the standard deviation of the performance
measured over the mk = 6 trained models.

136

Figure 5.4: Predictive performance of the four substructure-pooling methods (indicated by colours)
for the SARS-CoV-2 main protease binding affinity regression data set using varying data splitting
techniques, prediction models and ECFP hyperparameters. Each coloured bar shows the average
mean absolute error (MAE) of the respective model across a k-fold cross validation scheme repeated
with m random seeds for (m, k) = (3, 2). The length of each error bar equals twice the standard
deviation of the performance measured over the mk = 6 trained models.

137

Figure 5.5: Predictive performance of the four substructure-pooling methods (indicated by colours)
for the balanced mutagenicity classification data set using varying data splitting techniques, pre-
diction models and ECFP hyperparameters. Each coloured bar shows the average area under the
receiver operating characteristic curve (AUROC) of the respective model across a k-fold cross vali-
dation scheme repeated with m random seeds for (m, k) = (3, 2). The length of each error bar equals
twice the standard deviation of the performance measured over the mk = 6 trained models.

138

Figure 5.6: Predictive performance of the four substructure-pooling methods (indicated by colours)
for the imbalanced estrogen receptor alpha antagonism classification data set using varying data
splitting techniques, prediction models and ECFP hyperparameters. Each coloured bar shows the
average area under the precision recall curve (AUPRC) of the respective model across a k-fold cross
validation scheme repeated with m random seeds for (m, k) = (3, 2). The length of each error bar
equals twice the standard deviation of the performance measured over the mk = 6 trained models.

139

MoleculeNet Lipophilicity

AqSolDB Aqueous Solubility

COVID Moonshot SARS-COV-2 Main Protease Inhibition

Ames Mutagenicity

LIT-PCBA Estrogen Receptor Alpha Antagonism

Figure 5.7: Overview of the predictive performance of the four investigated substructure-
pooling methods (indicated by colours) across regression and classification data sets, data split-
ting techniques and prediction models. Each boxplot visualises the performance of a substructure-
pooling method on top of 24 distinct ECFP-types generated by combining fingerprint dimen-
sions l ∈ {512, 1024, 2048, 4096}, fingerprint diameters D ∈ {2, 4, 6} and initial atomic invari-
ants ∈ {standard, pharmacophoric}.

140

with computational techniques explicitly tailored to counteract class imbalance (over-

sampling, undersampling, tree-wise undersampling, weighted loss, balanced training

batches, ...). Note though that commonly used balancing techniques such as oversam-

pling or undersampling may interact with methods like Sort & Slice by changing the

relative frequencies of substructures in the training set. Since the primary goal of this

study was to evaluate the relative performance of substructure-pooling techniques in

a clear and technically straightforward setting, we thus decided not to add this ad-

ditional layer of complexity to our experiments. However, combining techniques to

counteract class imbalance with substructure-pooling methods like Sort & Slice might

reveal unknown synergies and could form an interesting project for future research.

Parts of Figures 5.2 to 5.6 seem to suggest that the improvements achieved via

Sort & Slice over hashing tend to become more pronounced as the fingerprint length

decreases, the fingerprint diameter increases and as standard atomic invariants are

used instead of pharmacophoric invariants. These observations strongly support the

idea that the predictive advantage of Sort & Slice over hashing stems at least par-

tially from an absence of bit collisions: unlike ECFPs generated via Sort & Slice,

hashed ECFPs exhibit more and more bit collisions as the dimension of the finger-

print descreases relative to the number of substructures identified in the data set.

The number of identified substructures in turn increases with the fingerprint diam-

eter and when switching from pharmacophoric to standard atomic invariants. An

increase in bit collisions then seems to degrade the predictive performance of hashed

ECFPs relative to those generated by Sort & Slice.

A question that remains, however, is whether the predictive advantage of Sort &

Slice is merely a product of the general avoidance of bit collisions via the selection

of a subset of substructures instead of the hashing of all substructures; or if and

to what extent the particular unsupervised substructure selection scheme underlying

Sort & Slice (i.e. sorting of substructures according to their frequency in the training

set and subsequent exclusion of rare substructures) independently contributes to the

performance gain. Surprisingly, Figure 5.7 shows that Sort & Slice not only beats

hashing, but it also consistently outperforms the two other investigated substructure-

pooling techniques (filtering and MIM), whose respective performance measurements

tend to fall between hashing and Sort & Slice. Note that just like Sort & Slice, both

of these techniques are based on substructure selection and lead to fingerprints that

are entirely free of bit collisions.

These observations reveal two points. Firstly, the performance gains provided by

Sort & Slice, filtering and MIM over standard hashing are not purely the result of

141

avoiding bit collisions via substructure selection; but the specific strategy by which

substructures are selected for the final fingerprint does indeed make an important

difference for downstream predictive performance. Secondly, and perhaps remarkably,

the extremely simple frequency-based substructure selection strategy implemented

by Sort & Slice outperforms the more technically advanced substructure selection

schemes underlying filtering and MIM. This is in spite of the fact that, unlike MIM

and filtering, Sort & Slice is an unsupervised technique that does not utilise any

information associated with the training label. It appears surprising that Sort &

Slice would beat technically sophisticated supervised feature selection methods such

as filtering or MIM that select substructures using task-specific information. While

the reasons for this are not obvious, it is generally conceivable that exploiting the

training label when selecting substructures could potentially harm the generalisation

abilities of a machine-learning system by contributing to its risk of overfitting to the

training data (just like any other aspect of supervised model training could).

A natural extension of our study for a future research project could be to include

additional substructure-selection techniques. One interesting approach would be to

only select substructures that maximise feature variance based on the training set.

If p(J) ∈ (0, 1] represents the fraction of training compounds in which a detected

substructure J is present, then its associated empirical feature variance in the context

of a binary fingerprint is given by p(J)(1 − p(J)). The maximisation of feature

variance would correspond to the removal of almost-constant columns of the feature

matrix and would reflect a common data preparation strategy from traditional QSAR

modelling. Both the empirical feature-variance p(J)(1 − p(J)) of a substructure J
and its empirical information entropy H(p(J)) as introduced in Remark 5.2 peak

when p(J) = 1/2, i.e. when J is present in exactly half of all training compounds.

It is easy to prove that, in the case of binary fingerprints, ranking substructures

according to p(J)(1 − p(J)) is equivalent to ranking them according to H(p(J)).

In this sense, feature-variance maximisation is equivalent to entropy maximisation

and both methods translate to the removal of high-frequency as well as low-frequency

substructures. At first glance, this approach might seem significantly different from

Sort & Slice which is based on the exclusion of only low-frequency substructures.

However, note that if there are no high-frequency substructures, then naturally Sort

& Slice, feature-variance maximisation and entropy maximisation all simply slice

away low-frequency substructures from the binary fingerprint and are thus all the

same. In Remark 5.2, we have given a mathematical proof that Sort & Slice, entropy

maximisation, and therefore also feature-variance maximisation are in fact strictly

142

equivalent under the assumption that no substructure appears in more than half of

all training compounds. Since in common chemical data sets it is usually true that

only very few substructures exist in more than half of all training compounds, Sort &

Slice should be expected to closely approximate feature-variance maximisation (and

entropy maximisation) in realistic settings while arguably being somewhat easier to

describe and implement. It would be interesting to computationally compare the

performance of substructure selection via feature-variance maximisation with Sort &

Slice, to check whether in practice the exclusion of a small number of high-frequency

substructures has a significant effect after all, or whether indeed both methods lead

to a very similar level of performance as suggested by the theoretical arguments in

Remark 5.2.

Another compelling feature selection technique that could be used for substruc-

ture pooling is given by conditional MIM as described by Fleuret [167]. Conditional

MIM can be seen as a more sophisticated version of MIM that iteratively selects

features that maximise the mutual information with the training label conditional

on the information contained in any feature already picked. While MIM and condi-

tional MIM both select features that are individually informative about the training

label, conditional MIM is additionally designed to reduce redundancy by selecting

features that also exhibit weak pairwise dependence and thus contain distinct pieces

of information about the target variable. Conditional MIM can be a stronger choice

than MIM in scenarios where there is a large informational overlap between features;

on the other hand, if all features are perfectly independent, then MIM and condi-

tional MIM become mathematically equivalent. A limitation of conditional MIM

in the context of substructure pooling for ECFPs is its computational cost when it

comes to the selection of large numbers of features; even the fast implementation of

conditional MIM provided by Fleuret [167] may be slow to select hundreds or even

thousands of substructures out of an even larger substructure pool. This might make

the generation of vectorial ECFPs with usual lengths such as 1024 or 2048 bits im-

practical or even intractable when conditional MIM is used for substructure pooling.

One way to address this problem is by instead using simple MIM as we did in our

study; MIM can be interpreted as a natural simplification of conditional MIM that

remains computationally feasible even in very high feature dimensions at the price

of potentially leading to more feature redundancy. In a future study, it might still

be worthwhile to explore the predictive abilities of low-dimensional vectorial ECFPs

generated via substructure-pooling operators based on conditional MIM; it is conceiv-

able that conditional MIM could generate a short yet effective and information-dense

143

ECFP vectorisation whose performance may match or possibly even surpass the one

of much longer hashed ECFPs.

Finally, note that the results for the SARS-CoV-2 main protease data set in Fig-

ure 5.4 that are based on a random data split are fully comparable to the QSAR-

prediction results of the nine models that we investigated in our computational study

in Chapter 3 (see Figure 3.9). In both studies, we used the same data set, the same

data splitting technique (random split), and the same evaluation scheme (2-fold cross

validation repeated with the same 3 random seeds across both studies). One difference

is that, in the previous study from Chapter 3, we fully optimised the kNN, RF and

MLP hyperparameters, but only experimented with a single type of ECFP (hashed

2048-bit ECFP4), while in the current study we kept the RF and MLP hyperparam-

eters constant but explored a large chunk of the ECFP hyperparameter space. We

can see that the strongest QSAR-predictor in Figure 3.9 is given by a hashed 2048-

bit ECFP4 combined with a hyperparameter-optimised MLP which reaches an MAE

slightly above 0.42. In contrast, Figure 5.4 shows that the same 2048-bit ECFP4

combined with an MLP based on our intuitively set hyperparameters from Table 5.2

reaches an MAE slightly below 0.42. This shows that in this setting our custom MLP

hyperparameter choice is essentially as performant as the computationally optimised

MLP hyperparameters from our previous study. We further see in Figure 5.4 that

Sort & Slice once again leads to slightly better performance than hashing for the

2048-bit ECFP4 combined with our custom MLP on a random split. This suggests

that the predictive performance of the best QSAR-predictor for SARS-CoV-2 main

protease binding affinity from our previous computational study from Chapter 3 could

still have been slightly improved by vectorising the used 2048-bit ECFP4s via Sort &

Slice instead of hashing.

5.4 Conclusions

We have introduced a general mathematical framework for the vectorisation of struc-

tural fingerprints via a formal operation we refer to as substructure pooling. For

structural fingerprints, substructure pooling is the natural analogue to node feature

vector pooling in modern GNN architectures. Unlike GNN pooling, substructure

pooling remains largely unexplored and is almost always performed via the hash-

ing of substructures into a vector of predefined length. Our proposed mathematical

framework encompasses hash-based substructure pooling, but also pooling operations

based on a diverse set of alternative techniques such as supervised and unsupervised

144

feature selection. Trainable permutation-invariant set functions operating on sets of

substructure embeddings also fit into the given framework, and the future exploration

of such advanced substructure-pooling methods might form an interesting opportu-

nity for novel research. For example, in Section 6.2 below we introduce our idea of a

novel trainable substructure-pooling technique based on a differentiable self-attention

mechanism.

As part of our work, we have mathematically described and experimentally evalu-

ated a method we refer to as Sort & Slice as an alternative to hashing for substructure

pooling of ECFP substructures. In a nutshell, Sort & Slice is based on first ranking all

identified substructures in the training set according to their frequency of occurrence

and then constructing a binary fingerprint that only indicates the presence or absence

of the most frequent substructures. Sort & Slice is easy to implement and interpret

and leads to increased predictive performance for supervised molecular machine learn-

ing tasks. Formally, Sort & Slice can be interpreted as a simple unsupervised feature

selection scheme. We have given a mathematical proof that, under reasonable theo-

retical assumptions that are approximately valid for realistic data sets, Sort & Slice

filters out all but the most informative substructures from an information-entropic

perspective.

Due to its natural simplicity, variations of Sort & Slice might have already been

used by other researchers in practical scenarios in the past. However, we are not

aware of any occurrence of our version of Sort & Slice in a formal research paper.

In particular, we are not aware of any rigorous experimental comparison of Sort &

Slice and standard hash-based substructure pooling outside of this work. To the best

of our knowledge, only one other version of Sort & Slice has been systematically

explored [48]; however, unlike our version of Sort & Slice, this slightly different tech-

nique only allows limited control over the dimension of the vectorial fingerprint and

was evaluated in a less general experimental setting.

In summary, our experiments show that Sort & Slice tends to generate higher (and

sometimes substantially higher) downstream predictive performance than hashing for

a variety of molecular property prediction tasks. This predictive advantage seems to

exist across regression and classification data sets, balanced and imbalanced tasks,

data splitting techniques, machine-learning models, and ECFP hyperparameters, and

appears to increase with the expected number of bit collisions in the hashed ECFP.

Perhaps surprisingly, Sort & Slice not only seems to outcompete hashing but also

two more technically sophisticated supervised substructure selection schemes. This

suggests that simply sorting substructures according to frequency of occurrence in the

145

training set and then discarding infrequent substructures is a relatively (and maybe

unexpectedly) strong feature selection strategy. Based on the predictive advantage

of Sort & Slice, its technical simplicity, and its ability to improve fingerprint inter-

pretability by avoiding bit collisions, we recommend that it should canonically replace

hashing as the standard substructure-pooling technique for supervised molecular ma-

chine learning.

146

147

Chapter 6

Future Directions

In this Chapter, we briefly describe two ideas we developed that could potentially

form the seeds for two future research projects.

6.1 A Graph-Based Self-Supervised Learning

Strategy to Make Classical Molecular

Featurisations Trainable

In our study from Chapter 3, we showed that classical ECFPs consistently outperform

trainable GINs at QSAR-prediction in a rigorous evaluation setting involving a robust

series of random data splits and full hyperparameter-optimisation loops. This runs

counter to the hopes that message-passing GNNs might be able to beat classical

featurisations at molecular property prediction via their abilities to extract chemical

knowledge directly from molecular graphs in a differentiable manner.

To enable graph-based featurisation methods to reach their full predictive poten-

tial and possibly break through the performance ceiling posed by ECFPs, we have

developed a novel self-supervised learning strategy for GNNs based on predicting

precomputed ECFPs from a potentially giant corpus of unlabelled molecular graphs.

The pre-trained GNN can then be seamlessly combined with an ECFP-MLP model

trained on a supervised molecular property prediction task such as QSAR-prediction.

Our suggested learning strategy is partially motivated by recent observations that

self-supervised pre-training followed by task-specific supervised fine-tuning can lead

to impressive results in the image domain [168].

Our proposed scheme is divided into three steps that are visualised in Figure 6.1.

Step 1 is based on pre-training a GNN to predict ECFPs from a large number of unla-

belled molecular graphs, Step 2 represents training of a standard ECFP-MLP model

148

Step 1: self-supervised GNN pre-training

Step 2: supervised MLP training

Step 3: model combination and supervised fine-tuning

Figure 6.1: Step 1: Self-supervised pre-training of a graph neural network (GNN) to predict
precomputed extended-connectivity fingerprints (ECFPs) from a large corpus of unlabelled molecular
graphs. Step 2: Supervised training of a standard ECFP-based multilayer perceptron (MLP) on
a given molecular property prediction task of interest. Step 3: Combination of both pre-trained
models and fine-tuning of the resulting end-to-end model on the supervised task from Step 2.

on a supervised molecular property prediction task, and Step 3 involves plugging to-

gether both models from the two previous steps to create a graph-based predictor.

The performance of this graph-based predictor must necessarily match the one of

the standard ECFP-MLP model if the GNN part has indeed managed to successfully

learn to generate ECFPs from molecular graphs. Notably, in Step 3 the combined

149

end-to-end model can be further fine-tuned on the supervised task whereby the train-

ing signal then flows directly from the molecular graph to the training label. This

final fine-tuning step might improve the performance of the combined model above

that of´ the standard ECFP-MLP model and in this manner beat the state of the

art. By using Sort & Slice ECFPs instead of hashed ECFPs, we can build on our

already improved baseline.

During the supervised fine-tuning process, the learnt ECFP representation gen-

erated by the GNN is expected to morph in a task-specific manner that benefits

the predictive performance of the larger model. From this perspective, the proposed

scheme can be interpreted as a way to make non-trainable classical precomputed

molecular featurisations such as ECFPs differentiable and trainable. Note that the

training strategy outlined in Figure 6.1 is not limited to ECFPs but can also be em-

ployed with PDVs, MACCS fingerprints or any other classical molecular featurisation

method, as long as it can easily be generated for a large number of compounds.

The features extracted by the early layers of the pre-trained GNN that are close

to the molecular graph can be seen as a novel type of neural fingerprint whose infor-

mation content and predictive power could be explored. Finally, attempting to use

message-passing GNNs to learn a differentiable mapping from molecular graphs to

ECFPs might reveal their practical (in)abilities to correctly decipher chemical sub-

structures; such insights could guide the way to further improvements of graph-based

molecular featurisation methods in drug discovery.

6.2 Trainable Substructure Pooling via

Differentiable Self-Attention

The four substructure-pooling methods investigated in our study in Chapter 5 are

all either based on hashing or on some type of supervised or unsupervised feature

selection strategy. However, it is also possible to devise more complex differentiable

substructure-pooling operators based on trainable deep networks. To the best of our

knowledge, this research avenue is currently unexplored.

We propose to investigate substructure pooling via self-attention. Self-attention

is the key deep learning component in the famous transformer model that was in-

troduced in the seminal paper from Vaswani et al. [169] and is still leading to state-

of-the-art results in natural language processing. Given a set of input vectors, self-

attention intuitively enables the updating of the representation of each input vector

in a learnable and context-sensitive manner, i.e. in a manner that not only depends

150

on the vector itself but also on the learnt interactions between the vector and all the

other vectors in the input set. In this sense, each element in the set of input vectors

metaphorically pays attention to all other elements that are present, or from another

perspective, the set of input vectors as a whole pays attention to itself by considering

the interactions between all of its elements (hence the name self -attention).

To explore self-attention in the context of substructure pooling we once again

consider the formal setting from Section 5.2.1. Let

C = {C1, ..., Cm}

be a (potentially very large) set of m chemical substructures and let

P (C) = {A | A ⊆ C}

be its power set. Furthermore, let

{C1, ..., Cr} ∈ P (C)

be a representation of some input compound R as a set of r substructures in C. We

imagine that R was transformed into {C1, ..., Cr} via some structural fingerprinting-

method such as the ECFP or the MACCS-algorithm. We can now use some (injective)

substructure embedding

γ : C → Rw

to generate a representation of R as a set of vectors:

{γ(C1), ..., γ(Cr)} ⊂ Rw.

The embedding γ could for instance be based on one-hot encoding of substructures

or on physicochemical substructure descriptors. Our goal is to update the represen-

tations of the vectors in {γ(C1), ..., γ(Cr)} in a trainable way using self-attention.

In its simplest form, a classical self-attention layer [169, 170] is defined via three

trainable weight matrices WQ,WK ∈ Rwq×w and W V ∈ Rwv×w. We now focus on

a specific substructure representation γ(Ci) ∈ Rw whose representation we want to

update using these weight matrices. We start by generating a query vector

qi := WQγ(Ci) ∈ Rwq ,

a key vector

ki := WKγ(Ci) ∈ Rwq ,

151

and a value vector

vi := W V γ(Ci) ∈ Rwv .

We proceed by computing weights

αi,1, ..., αi,r ∈ R

by calculating the dot product between the query vector qi and the key vectors

k1, ..., kr of all the other vectors in the input set:

∀j ∈ {1, ..., r} : αi,j := qTi kj ∈ R.

Each quantity αi,j can be intuitively interpreted as a measure for how much attention

the vector γ(Ci) pays to the vector γ(Cj) during its updating process. The attention

weights are usually further normalised via a nonlinear softmax activation function:

(ᾱi,1, ..., ᾱi,r) := softmax(αi,1, ..., αi,r),

such that

ᾱi,1, ..., ᾱi,r > 0 and
r∑

j=1

ᾱi,j = 1.

Finally, the updated representation of γ(Ci) is given by a weighted sum of all value

vectors:

γ(Ci)upt :=
r∑

j=1

ᾱi,jvj ∈ Rwv .

The transformation

Rw ⊃ {γ(C1), ..., γ(Cr)} 7→ {γ(C1)upt, ..., γ(Cr)upt} ⊂ Rwv

is interpreted as the application of one self-attention layer to the set of input vectors

{γ(C1), ..., γ(Cr)}. This layer can be trained like any other deep learning component

by adapting its defining weight matrices WQ,WK ,W V via some form of gradient

descent. Several self-attention layers can naturally be stacked on top of each other to

eventually generate a final vector-set representation of the input compound R in the

form of iteratively updated substructure representations that encode structural and

contextual information:

{γ(C1)final, ..., γ(Cr)final} ⊂ Rwfinal .

Using a standard pooling function⊕
: {A ⊂ Rwfinal | A is finite} → Rl,

152

i.e. a permutation-invariant set function
⊕

such as summation, averaging or compo-

nentwise maximum, one can finally represent R as a single vector⊕
{γ(C1)final, ..., γ(Cr)final} ∈ Rl

that can be fed into a standard multilayer perceptron for further processing. Note that

iteratively updating substructural embeddings via stacked self-attention layers and

then aggregating the final substructural representations via a permutation-invariant

set function formally defines a (trainable, differentiable) substructure-pooling method:

Ψ : P (C) → Rl, Ψ({C1, ..., Cr}) =
⊕

{γ(C1)final, ..., γ(Cr)final}.

The operator Ψ once again satisfies Definition 5.1 introduced in Chapter 5. This

underlines the generality of our definition of substructure pooling which encompasses

techniques such as hashing, unsupervised and supervised feature selection, and the

trainable updating of sets of substructural embeddings via modern deep learning

architectures.

Self-attention-based substructure pooling on top of structural fingerprints has sev-

eral properties that could potentially make it an interesting featurisation method for

chemical prediction tasks. The self-attention mechanism should provide a useful

inductive bias to learn substructural representations that are influenced by molec-

ular context, i.e. by the presence or absence of other substructures. As a result,

self-attention should explicitly support the learning of task-specific compound-level

featurisations that depend not only on individually present substructures but also on

their interactions. Note that this includes long-range interactions between substruc-

tures located at physically distant parts of the input compound. This might represent

an important advantage over molecular featurisation via message-passing GNNs: the

receptive field of GNNs is strictly local and thus does not allow for information flow

between physically distant parts of an input compound during message-passing.

We conducted a literature search and were only able to identify one other work that

has explored a technique similar to the one proposed in this section: Kim et al. [171]

investigate a dual architecture that combines a GNN branch operating on molecular

graphs and a self-attention branch operating on substructural embeddings. They pre-

train their architecture to predict precomputed physicochemical descriptors using a

large corpus of unlabelled compounds and obtain encouraging results when fine-tuning

their model on a range of supervised molecular property prediction tasks. Further

work of this kind could attempt to refine substructural self-attention mechanisms, for

example by developing more powerful pre-training schemes or by studying the effects

153

of different types of initial substructural embeddings (such as one-hot embeddings

versus physicochemical embeddings).

It might also be particularly interesting to explore the abilities of models involv-

ing self-attention-based substructure pooling to correctly predict non-additivity [172,

173]. In its most narrow form, non-additivity refers to a phenomenon observed in

protein-ligand binding where the change of two substructures in a ligand results in

much higher or lower binding affinity than would be expected from the respective

additive contributions of the single changes alone. From a theoretical point of view,

self-attention-based substructure pooling appears to be well-suited to detect such

non-additivity events via its ability to learn distinct representations for a given sub-

structure conditional on the presence or absence of other substructures.

154

155

Chapter 7

Conclusions and Further Thoughts

In this work, we have studied classical and graph-based molecular featurisation meth-

ods in a variety of important machine-learning scenarios for computational drug dis-

covery. We have put a particular focus on the under-researched challenge of activity-

cliff prediction which is of natural interest in compound optimisation and the elu-

cidation of structure-activity relationships. We have (i) systematically explored the

capabilities of physicochemical-descriptor vectors, extended-connectivity fingerprints

and graph isomorphism networks for the prediction of quantitative structure-activity

relationships, activity cliffs and potency directions, (ii) have designed a novel twin

neural network model that can naturally learn to featurise compound pairs for the

prediction of activity cliffs and potency directions, and (iii) have described an eas-

ily implementable method for the vectorisation of extended-connectivity fingerprints

that robustly outperforms hashing at supervised molecular property prediction. We

have also outlined two further research ideas in the area of molecular featurisation

that can be seen as two distinct attempts to bring together the strengths of classi-

cal non-trainable featurisers and trainable deep learning components such as graph

neural networks and self-attention.

Detailed conclusions from our main research projects can be found at the respec-

tive ends of Chapters 3 to 5. Overall, our investigations provide further evidence

for the vital role that molecular featurisation plays in the performance of molecular

machine learning tasks. In Chapter 3 we saw that switching from one featurisa-

tion technique to another can easily lead to substantial shifts in performance for

both quantitative structure-activity relationship and activity-cliff prediction. The

balanced activity-cliff classification performance of our twin neural network model

from Chapter 4, compared to the imbalanced performance of the evaluated baseline

quantitative structure-activity relationship predictors at the same task, supports the

idea that it might generally pay off to naturally adapt the featuriser to the given

156

problem rather than trying to adapt the problem to a pre-existing featuriser. Our

results from Chapter 5 show how even seemingly minor technical decisions such as the

procedure chosen to vectorise a set of identified substructures can have a surprisingly

large and consistent impact on the predictive accuracy of a structural fingerprint.

Extracting powerful features from arbitrary molecular structures is a difficult re-

search challenge. Recent work has shown that in some cases self-supervised pre-

training strategies on unlabelled molecular graphs can substantially boost the perfor-

mance of graph neural networks, and graph isomorphism networks in particular [9, 21].

Considering these results and the accessibility of large databases with millions of

unlabelled compounds, it may be worthwhile to continue exploring the limits of self-

supervised pre-training of graph neural networks in the molecular domain, for example

by investigating the pre-training strategy we propose in Section 6.1.

However, although in this work we have only experimented with graph isomor-

phism networks as prototypical examples of graph neural networks in the 1-WL class,

we still hypothesise that differentiable graph-based message-passing, while relatively

useful in certain contexts such as activity-cliff prediction, might not yet be the cor-

rect learning paradigm to truly and substantially outperform the technically related

and more traditional extended-connectivity fingerprints in the same way that con-

volutional neural networks have outperformed classical feature-engineering methods

in computer vision. A fruitful area for future research might be the development of

methods to overcome some of the technical shortcomings shared by both extended-

connectivity fingerprints and graph neural networks such as a strictly local circular

receptive field and limited theoretical expressivity. For example, a notable attempt

in this direction has recently been made by Bouritsas et al. [90] who managed to

increase the theoretical expressivity of message-passing graph neural networks via a

technique based on subgraph isomorphism counting. Another interesting avenue has

been explored by Ying et al. [174] who introduced a transformer-based graph fea-

turiser with a global receptive field that has achieved strong results across a variety

of benchmarks.

It is also worth noting that molecular graphs are not entirely general but rather

obey certain constraints dictated by the laws of chemistry; current message-passing

graph neural networks, on the other hand, are highly general architectures that can

essentially operate on any graph structure. One can speculate that it might be pos-

sible to somehow constrain the neural architecture of graph-based machine learning

methods in a way that more directly leverages the chemical rules that govern the

structure of molecules.

157

Finally, it might be useful to consider that one of the central limitations of current

molecular featurisation methods may not be in the technical details of the featuri-

sation itself, but in the information content of the original molecular representation

from which the features are extracted. In the vast majority of cases, molecular fea-

turisations for supervised prediction tasks are derived either from molecular string

representations such as SMILES strings or from molecular graphs. Both of these

representations usually fully encode the chemical composition and two-dimensional

connectivity structure of an input compound, along with simple 3D attributes such

as tetrahedral R-S chirality and E-Z double bond geometry. While this appears com-

prehensive, it is possible to imagine that a real molecule might have other relevant

physicochemical properties that cannot be easily derived from these pieces of infor-

mation alone, such as more complex stereochemical features based on its ensemble

of conformers or even quantum-chemical characteristics associated with its electronic

structure. Developing novel featurisation methods adapted to more realistic molec-

ular representations whose information content strictly surpasses that of molecular

graphs and SMILES strings may be a promising area for future research.

158

159

Summary of Research Contributions

Published Peer-Reviewed Research Papers

• Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Morris.

Exploring QSAR models for activity-cliff prediction. Journal of Cheminformat-

ics, 15(1), 47, 2023. Link to paper.

• Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving

parametric families of high-dimensional Kolmogorov partial differential equa-

tions via deep learning. Advances in Neural Information Processing Systems,

33, 16615-16627, 2020. Link to paper.

My friend and colleague Julius Berner and I wrote this NeurIPS paper as shared

first authors under the supervision of Prof. Philipp Grohs from the University

of Vienna. This independent research project was conducted by us in parallel

to my main doctoral studies.

Technical Reports from Industrial Study Groups

• Ann Smith, Markus Dablander, Constantin Octavian Puiu, Brady Metherall,

William Lee, Ruzanna Ab Razak, and Noriszura Ismail. Tourism Forecasting

and Environment. Mathematics in Industry Reports, 2023. Link to ESGI report.

• Simone Appella, Anvarbek Atayev, Oliver Bond, Ben Collins, Markus Dablan-

der, Nikolai Fadeev, Andrew Lacey, Piotr Morawiecki, Hilary Ockendon, Da-

vide Polvara, Ellen Powell, Lorenzo Quintavalle Laval, Eddie Wilson, and Yang

Zhou. Determining the conductance of networks created by randomly dispersed

cylinders. Mathematics in Industry Reports, 2021. Link to ESGI report.

160

https://doi.org/10.1186/s13321-023-00708-w
https://arxiv.org/pdf/2011.04602
https://doi.org/10.33774/miir-2024-rqvbr
https://doi.org/10.33774/miir-2021-3pqt1-v2

Conference Presentations

• Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Mor-

ris. Exploring molecular machine learning models for activity-cliff prediction.

Poster presentation at the 10th International Congress on Industrial and Ap-

plied Mathematics (ICIAM). In-person, Tokyo, 2023. Link to poster.

• Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Morris.

Siamese neural networks work for activity cliff prediction. Poster presentation

at the 4th RSC-BMCS / RSC-CICAG Artificial Intelligence in Chemistry Sym-

posium. Virtual, 2021. Link to poster.

• Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving

parametric families of high-dimensional Kolmogorov partial differential equa-

tions via deep learning. Poster presentation at the Thirty-fourth Conference

on Neural Information Processing Systems (NeurIPS). Virtual, 2020. Link to

poster.

Visited Industrial Study Groups

• ESGI 171 in Edinburgh, UK, in-person (2023).

• ESGI 156 in Ålesund, Norway, in-person (2022).

• ESGI 165 in Durham, UK, virtual (2021).

• ESGI 162 in Leeds, UK, virtual (2020).

Awards and Prizes

• Winner of InFoMM Doctoral Prize Scheme. Associated with InFoMM-funded

post-doctoral research position at the Mathematical Institute, University of

Oxford.

• Second Prize at the 2021 Smith Institute’s TakeAIM Competition for showcasing

the potential impact of my computational research on activity cliffs via a short

text accessible to non-experts.

161

http://dx.doi.org/10.13140/RG.2.2.35914.34241
http://dx.doi.org/10.13140/RG.2.2.18137.60000
http://dx.doi.org/10.13140/RG.2.2.20514.85443
http://dx.doi.org/10.13140/RG.2.2.20514.85443

• Winner of the Royal Society of Chemistry Prize for the Best Scientific Poster

at the 4th RSC-BMCS / RSC-CICAG Artificial Intelligence in Chemistry Sym-

posium.

Published Code

• Codebase to reproduce and extend the computational experiments from our

published paper Exploring QSAR Models for Activity-Cliff Prediction [45]. Link

to GitHub repository.

162

https://github.com/MarkusFerdinandDablander/QSAR-activity-cliff-experiments
https://github.com/MarkusFerdinandDablander/QSAR-activity-cliff-experiments

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classifica-

tion with deep convolutional neural networks. In Advances in Neural Informa-

tion Processing Systems, pages 1097–1105, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[3] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In Proceedings of the European Conference on Computer Vi-

sion, pages 818–833, 2014.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

[6] Tomaž Stepǐsnik, Blaž Škrlj, Jörg Wicker, and Dragi Kocev. A comprehensive

comparison of molecular feature representations for use in predictive modeling.

Computers in Biology and Medicine, 130:104197, 2021.

[7] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert,

Jörg K Wegner, Hugo Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter.

Large-scale comparison of machine learning methods for drug target prediction

on ChEMBL. Chemical Science, 9(24):5441–5451, 2018.

[8] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao,

Zhe Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. Could

163

graph neural networks learn better molecular representation for drug discov-

ery? A comparison study of descriptor-based and graph-based models. Journal

of Cheminformatics, 13(1):1–23, 2021.

[9] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Mol-

CLR: Molecular contrastive learning of representations via graph neural net-

works. arXiv preprint arXiv:2102.10056, 2021.

[10] Janosch Menke and Oliver Koch. Using domain-specific fingerprints generated

through neural networks to enhance ligand-based virtual screening. Journal of

Chemical Information and Modeling, 61(2):664–675, 2021.

[11] Seyone Chithrananda, Gabe Grand, and Bharath Ramsundar. ChemBERTa:

Large-Scale self-supervised pretraining for molecular property prediction. arXiv

preprint arXiv:2010.09885, 2020.

[12] Maŕıa Virginia Sabando, Ignacio Ponzoni, Evangelos E. Milios, and Axel J.

Soto. Using molecular embeddings in QSAR modeling: Does it make a differ-

ence? arXiv preprint arXiv:2104.02604, 2021.

[13] Robin Winter, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. Learn-

ing continuous and data-driven molecular descriptors by translating equivalent

chemical representations. Chemical Science, 10(6):1692–1701, 2019.

[14] Roberto Todeschini and Viviana Consonni. Handbook of Molecular Descriptors.

John Wiley & Sons, 2008.

[15] Dávid Bajusz, Anita Rácz, and Károly Héberger. Fingerprints, and other molec-

ular descriptions for database analysis and searching. 2017.

[16] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal

of Chemical Information and Modeling, 50(5):742–754, 2010.

[17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and

George E. Dahl. Neural message passing for quantum chemistry. In Inter-

national Conference on Machine Learning, pages 1263–1272. PMLR, 2017.

[18] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

164

[19] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick

Riley. Molecular graph convolutions: Moving beyond fingerprints. Journal of

Computer-Aided Molecular Design, 30(8):595–608, 2016.

[20] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional net-

works on graphs for learning molecular fingerprints. In Advances in Neural

Information Processing Systems, pages 2224–2232, 2015.

[21] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay

Pande, and Jure Leskovec. Strategies for pre-training graph neural networks.

arXiv preprint arXiv:1905.12265, 2019.

[22] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua

Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea,

et al. Analyzing learned molecular representations for property prediction.

Journal of Chemical Information and Modeling, 59(8):3370–3388, 2019.

[23] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S. Yu Philip. A comprehensive survey on graph neural networks. IEEE Trans-

actions on Neural Networks and Learning Systems, 2020.

[24] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre

Ducrot, Thomas Seidel, and Thierry Langer. A compact review of molecu-

lar property prediction with graph neural networks. Drug Discovery Today:

Technologies, 2020.

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[26] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.

Interaction networks for learning about objects, relations and physics. In Ad-

vances in Neural Information Processing Systems, pages 4502–4510, 2016.

[27] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems, pages 3844–3852, 2016.

165

[28] Ke Liu, Xiangyan Sun, Lei Jia, Jun Ma, Haoming Xing, Junqiu Wu, Hua Gao,

Yax Sun, Florian Boulnois, and Jie Fan. Chemi-Net: A molecular graph convo-

lutional network for accurate drug property prediction. International Journal

of Molecular Sciences, 20(14):3389, 2019.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[30] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural

networks. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 338–348, 2020.

[31] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Universal readout

for graph convolutional neural networks. In Proceedings of International Joint

Conference on Neural Networks (IJCNN), pages 1–7, 2019.

[32] Jiahua Rao, Shuangjia Zheng, Yutong Lu, and Yuedong Yang. Quantitative

evaluation of explainable graph neural networks for molecular property predic-

tion. Patterns, page 100628, 2022.

[33] Patrick Hop, Brandon Allgood, and Jessen Yu. Geometric deep learning au-

tonomously learns chemical features that outperform those engineered by do-

main experts. Molecular Pharmaceutics, 15(10):4371–4377, 2018.

[34] Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi, and

Jinbo Bi. Edge attention-based multi-relational graph convolutional networks.

arXiv preprint arXiv: 1802.04944, 2018.

[35] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for

drug discovery. arXiv preprint arXiv:1709.03741, 2017.

[36] Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan,

Xutong Li, Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al.

Pushing the boundaries of molecular representation for drug discovery with the

graph attention mechanism. Journal of Medicinal Chemistry, 63(16):8749–8760,

2019.

[37] Derek van Tilborg, Alisa Alenicheva, and Francesca Grisoni. Exposing the

limitations of molecular machine learning with activity cliffs. ChemRxiv, 2022.

doi: 10.26434/chemrxiv-2022-mfq52.

166

[38] Carlo Silipo and Antonio Vittoria. QSAR, rational approaches to the design of

bioactive compounds. In Proceedings of European Symposium on Quantitative

Structure-Activity Relationships. Distributors for the US and Canada, Elsevier

Science, 1991.

[39] Gerald M. Maggiora. On outliers and activity cliffs: Why QSAR often disap-

points. Journal of Chemical Information and Modeling, 46(4):1535–1535, 2006.

[40] Robert P. Sheridan, Prabha Karnachi, Matthew Tudor, Yuting Xu, Andy Liaw,

Falgun Shah, Alan C. Cheng, Elizabeth Joshi, Meir Glick, and Juan Alvarez.

Experimental error, kurtosis, activity cliffs, and methodology: What limits the

predictivity of quantitative structure–activity relationship models. Journal of

Chemical Information and Modeling, 60(4):1969–1982, 2020.

[41] Maykel Cruz-Monteagudo, José L. Medina-Franco, Yunierkis Pérez-Castillo,

Orazio Nicolotti, M. Natália D. S. Cordeiro, and Fernanda Borges. Activity

cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discovery Today, 19(8):

1069–1080, 2014.

[42] Dagmar Stumpfe, Ye Hu, Dilyana Dimova, and Jürgen Bajorath. Recent

progress in understanding activity cliffs and their utility in medicinal chem-

istry: miniperspective. Journal of Medicinal Chemistry, 57(1):18–28, 2014.

[43] Dagmar Stumpfe, Huabin Hu, and Jürgen Bajorath. Evolving concept of ac-

tivity cliffs. ACS Omega, 4(11):14360–14368, 2019.

[44] Dagmar Stumpfe, Huabin Hu, and Jürgen Bajorath. Advances in exploring

activity cliffs. Journal of Computer-Aided Molecular Design, 34(9):929–942,

2020.

[45] Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Morris.

Exploring QSAR models for activity-cliff prediction. Journal of Cheminformat-

ics, 15(1):47, 2023. URL https://doi.org/10.1186/s13321-023-00708-w.

[46] Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Mor-

ris. Exploring molecular machine learning models for activity-cliff predic-

tion. Poster presentation at the 10th International Congress on Industrial

and Applied Mathematics (ICIAM). In-person, Tokyo, 2023. URL http:

//dx.doi.org/10.13140/RG.2.2.35914.34241.

167

https://doi.org/10.1186/s13321-023-00708-w
http://dx.doi.org/10.13140/RG.2.2.35914.34241
http://dx.doi.org/10.13140/RG.2.2.35914.34241

[47] Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M. Morris.

Siamese neural networks work for activity cliff prediction. Poster presentation

at the 4th RSC-BMCS / RSC-CICAG Artificial Intelligence in Chemistry Sym-

posium. Virtual, 2021. URL http://dx.doi.org/10.13140/RG.2.2.18137.

60000.

[48] Thomas MacDougall. (2022) Reduced collision fingerprints and pairwise molec-

ular comparisons for explainable property prediction using deep learning. M.Sc.

thesis. Université de Montréal. URL https://hdl.handle.net/1866/26533.

Accessed on 05.10.2023.

[49] Garrett B. Goh, Charles Siegel, Abhinav Vishnu, Nathan O. Hodas, and Nathan

Baker. Chemception: A deep neural network with minimal chemistry knowl-

edge matches the performance of expert-developed QSAR/QSPR models. arXiv

preprint arXiv:1706.06689, 2017.

[50] Atsushi Yoshimori. Prediction of molecular properties using molecular topo-

graphic map. Molecules, 26(15):4475, 2021.

[51] Javed Iqbal, Martin Vogt, and Jürgen Bajorath. Prediction of activity cliffs on

the basis of images using convolutional neural networks. Journal of Computer-

Aided Molecular Design, 2021.

[52] Joshua Schrier. Can one hear the shape of a molecule (from its Coulomb matrix

eigenvalues)? Journal of Chemical Information and Modeling, 60(8):3804–3811,

2020.

[53] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei

Wei, Linfeng Zhang, and Guolin Ke. Uni-Mol: A universal 3D molecu-

lar representation learning framework. ChemRxiv, 2022. doi: 10.26434/

chemrxiv-2022-jjm0j-v2.

[54] Norman Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory, 1736-1936.

Oxford University Press, 1986.

[55] Agnieszka Pocha, Tomasz Danel, and Lukasz Maziarka. Comparison of atom

representations in graph neural networks for molecular property prediction.

arXiv preprint arXiv:2012.04444, 2020.

168

http://dx.doi.org/10.13140/RG.2.2.18137.60000
http://dx.doi.org/10.13140/RG.2.2.18137.60000
https://hdl.handle.net/1866/26533

[56] David Weininger. SMILES, a chemical language and information system. Jour-

nal of Chemical Information and Computer Sciences, 28(1):31–36, 1988.

[57] David Weininger, Arthur Weininger, and Joseph L. Weininger. Algorithm for

generation of unique SMILES notation. Journal of Chemical Information and

Computer Sciences, 29(2):97–101, 1989.

[58] David Weininger. Graphical depiction of chemical structures. Journal of Chem-

ical Information and Computer Sciences, 30(3):237–243, 1990.

[59] Fdardel (original) and DMacks (edited). Image: Deriving the SMILES represen-

tation of a chemical molecule, Shown example: ciprofloxacin, a fluoroquinolone

antibiotic. URL https://commons.wikimedia.org/wiki/File:SMILES.png.

CC BY-SA 3.0 License, via Wikimedia Commons. Accessed on 14.11.2022.

[60] Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi, and Igor

Pletnev. InChI - the worldwide chemical structure identifier standard. Journal

of Cheminformatics, 5(1):1–9, 2013.

[61] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel

Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge

Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-

Guzik. Automatic chemical design using a data-driven continuous representa-

tion of molecules. ACS Central Science, 4(2):268–276, 2018.

[62] Mario Krenn, Florian Häse, Akshat-Kumar Nigam, Pascal Friederich, and Alan

Aspuru-Guzik. Self-referencing embedded strings (SELFIES): A 100% robust

molecular string representation. Machine Learning: Science and Technology, 1

(4):045024, 2020.

[63] Noel O’Boyle and Andrew Dalke. DeepSMILES: An adaptation of SMILES for

use in machine-learning of chemical structures. ChemRxiv, 2018. doi: 10.26434/

chemrxiv.7097960.v1.

[64] Tomasz Puzyn, Jerzy Leszczynski, and Mark T. Cronin. Recent advances in

QSAR studies: Methods and applications, volume 8. Springer Science & Busi-

ness Media, 2010.

[65] Huixiao Hong, Qian Xie, Weigong Ge, Feng Qian, Hong Fang, Leming Shi,

Zhenqiang Su, Roger Perkins, and Weida Tong. Mold2, molecular descriptors

169

https://commons.wikimedia.org/wiki/File:SMILES.png

from 2D structures for chemoinformatics and toxicoinformatics. Journal of

Chemical Information and Modeling, 48(7):1337–1344, 2008.

[66] Ling Xue and Jürgen Bajorath. Molecular descriptors in chemoinformatics,

computational combinatorial chemistry, and virtual screening. Combinatorial

Chemistry & High Throughput Screening, 3(5):363–372, 2000.

[67] Viviana Consonni and Roberto Todeschini. Molecular descriptors. In Recent

Advances in QSAR Studies, pages 29–102. Springer, 2010.

[68] Christopher A. Lipinski, Franco Lombardo, Beryl W. Dominy, and Paul J.

Feeney. Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Advanced Drug De-

livery Reviews, 23(1-3):3–25, 1997.

[69] Scott A. Wildman and Gordon M. Crippen. Prediction of physicochemical pa-

rameters by atomic contributions. Journal of Chemical Information and Com-

puter Sciences, 39(5):868–873, 1999.

[70] Greg Landrum. RDKit: Open-source cheminformatics. 2006. URL http://

www.rdkit.org. Accessed on 05.10.2023.

[71] Alexandru T. Balaban. Highly discriminating distance-based topological index.

Chemical Physics Letters, 89(5):399–404, 1982.

[72] Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Mey-

ers, Marco Fiscato, and Mohamed Ahmed. Molecular representation learn-

ing with language models and domain-relevant auxiliary tasks. arXiv preprint

arXiv:2011.13230, 2020.

[73] Harry L. Morgan. The generation of a unique machine description for chemical

structures—A technique developed at chemical abstracts service. Journal of

Chemical Documentation, 5(2):107–113, 1965.

[74] Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse.

Reoptimization of MDL keys for use in drug discovery. Journal of Chemical

Information and Computer Sciences, 42(6):1273–1280, 2002.

[75] Online description of PubChem substructure fingerprints. URL https://ftp.

ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf.

Accessed on 01.10.2023.

170

http://www.rdkit.org
http://www.rdkit.org
https://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf
https://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf

[76] Lianyi Han, Yanli Wang, and Stephen H. Bryant. Developing and validating

predictive decision tree models from mining chemical structural fingerprints

and high-throughput screening data in PubChem. BMC Bioinformatics, 9:1–8,

2008.

[77] Online description of Daylight substructure fingerprints. URL https://

www.daylight.com/dayhtml/doc/theory/theory.finger.html. Accessed on

01.10.2023.

[78] Sereina Riniker and Greg Landrum. Open-source platform to benchmark fin-

gerprints for ligand-based virtual screening. Journal of Cheminformatics, 5(1):

26, 2013.

[79] Henry E. Webel, Talia B. Kimber, Silke Radetzki, Martin Neuenschwander,

Marc Nazaré, and Andrea Volkamer. Revealing cytotoxic substructures in

molecules using deep learning. Journal of Computer-aided Molecular Design,

34(7):731–746, 2020.

[80] David Rogers, Robert D. Brown, and Mathew Hahn. Using extended-

connectivity fingerprints with Laplacian-modified Bayesian analysis in high-

throughput screening follow-up. Journal of Biomolecular Screening, 10(7):682–

686, 2005.

[81] Jonathan Alvarsson, Martin Eklund, Ola Engkvist, Ola Spjuth, Lars Carlsson,

Jarl E. S. Wikberg, and Tobias Noeske. Ligand-based target prediction with

signature fingerprints. Journal of Chemical Information and Modeling, 54(10):

2647–2653, 2014.

[82] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric deep learning: Going beyond Euclidean data. IEEE

Signal Processing Magazine, 34(4):18–42, 2017.

[83] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geomet-

ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint

arXiv:2104.13478, 2021.

[84] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio,

and Xavier Bresson. Benchmarking graph neural networks. arXiv preprint

arXiv:2003.00982, 2020.

171

https://www.daylight.com/dayhtml/doc/theory/theory.finger.html
https://www.daylight.com/dayhtml/doc/theory/theory.finger.html

[85] Mohammadamin Tavakoli and Pierre Baldi. Continuous representa-

tion of molecules using graph variational autoencoder. arXiv preprint

arXiv:2004.08152, 2020.

[86] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets

for machine learning on graphs. Advances in Neural Information Processing

Systems, 33:22118–22133, 2020.

[87] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[88] Byung-Hoon Kim and Jong Chul Ye. Understanding graph isomorphism net-

work for rs-fMRI functional connectivity analysis. Frontiers in Neuroscience,

page 630, 2020.

[89] Boris Weisfeiler and Andrei Lehman. The reduction of a graph to canonical

form and the algebra which appears therein. NTI, Series, 2(9):12–16, 1968.

[90] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P. Zafeiriou, and Michael Bron-

stein. Improving graph neural network expressivity via subgraph isomorphism

counting. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2022.

[91] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,

Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman

go neural: Higher-order graph neural networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[92] Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, and Jiliang Tang. Feature over-

correlation in deep graph neural networks: A new perspective. arXiv preprint

arXiv:2206.07743, 2022.

[93] Wentao Zhang, Zeang Sheng, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi

Yang, and Bin Cui. Evaluating deep graph neural networks. arXiv preprint

arXiv:2108.00955, 2021.

[94] Jonathan Godwin, Michael Schaarschmidt, Alexander L. Gaunt, Alvaro

Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, and

172

Peter Battaglia. Simple GNN regularisation for 3D molecular property pre-

diction and beyond. In International Conference on Learning Representations,

2021.

[95] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and

relieving the over-smoothing problem for graph neural networks from the topo-

logical view. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 3438–3445, 2020.

[96] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428, 2019.

[97] Alexander Golbraikh, Eugene Muratov, Denis Fourches, and Alexander Trop-

sha. Data set modelability by QSAR. Journal of Chemical Information and

Modeling, 54(1):1–4, 2014.

[98] Jr. Leadley et al. Coagulation factor Xa inhibition: Biological background and

rationale. Current Topics in Medicinal Chemistry, 1(2):151–159, 2001.

[99] Martin Vogt, Yun Huang, and Jürgen Bajorath. From activity cliffs to activity

ridges: Informative data structures for SAR analysis. Journal of Chemical

Information and Modeling, 51(8):1848–1856, 2011.

[100] Dilyana Dimova, Dagmar Stumpfe, Ye Hu, and Jürgen Bajorath. Activity

cliff clusters as a source of structure–activity relationship information. Expert

Opinion on Drug Discovery, 10(5):441–447, 2015.

[101] José L. Medina-Franco. Activity cliffs: Facts or artifacts? Chemical Biology &

Drug Design, 81(5):553–556, 2013.

[102] Maykel Cruz-Monteagudo, José L. Medina-Franco, Yunier Perera-Sardiña, Fer-

nanda Borges, Eduardo Tejera, Cesar Paz-y Mino, Yunierkis Pérez-Castillo,

Aminael Sánchez-Rodŕıguez, Zuleidys Contreras-Posada, Natália DS Cordeiro,

et al. Probing the hypothesis of SAR continuity restoration by the removal

of activity cliffs generators in QSAR. Current Pharmaceutical Design, 22(33):

5043–5056, 2016.

[103] David A. Winkler and Tu C. Le. Performance of deep and shallow neural net-

works, the universal approximation theorem, activity cliffs, and QSAR. Molec-

ular Informatics, 36(1-2):1600118, 2017.

173

[104] Kathrin Heikamp, Xiaoying Hu, Aixia Yan, and Jürgen Bajorath. Prediction of

activity cliffs using support vector machines. Journal of Chemical Information

and Modeling, 52(9):2354–2365, 2012.

[105] Shunsuke Tamura, Tomoyuki Miyao, and Kimito Funatsu. Ligand-based activ-

ity cliff prediction models with applicability domain. Molecular Informatics, 39

(12):2000103, 2020.

[106] Antonio De la Vega de León and Jürgen Bajorath. Prediction of compound

potency changes in matched molecular pairs using support vector regression.

Journal of Chemical Information and Modeling, 54(10):2654–2663, 2014.

[107] Jeremy M. Beck and Clayton Springer. Quantitative structure-activity relation-

ship models of chemical transformations from matched pairs analyses. Journal

of Chemical Information and Modeling, 54(4):1226–1234, 2014.

[108] Vigneshwaran Namasivayam and Jürgen Bajorath. Searching for coordinated

activity cliffs using particle swarm optimization. Journal of Chemical Informa-

tion and Modeling, 52(4):927–934, 2012.

[109] Vigneshwaran Namasivayam, Preeti Iyer, and Jürgen Bajorath. Prediction of

individual compounds forming activity cliffs using emerging chemical patterns.

Journal of Chemical Information and Modeling, 53(12):3131–3139, 2013.

[110] Jarmila Husby, Giovanni Bottegoni, Irina Kufareva, Ruben Abagyan, and An-

drea Cavalli. Structure-based predictions of activity cliffs. Journal of Chemical

Information and Modeling, 55(5):1062–1076, 2015.

[111] Dragos Horvath, Gilles Marcou, Alexandre Varnek, Shilva Kayastha, Antonio

de la Vega de León, and Jürgen Bajorath. Prediction of activity cliffs using

condensed graphs of reaction representations. Journal of Chemical Information

and Modeling, 56(9):1631–1640, 2016.

[112] Laura Pérez-Benito, Nil Casajuana-Martin, Mireia Jiménez-Rosés, Herman van

Vlijmen, and Gary Tresadern. Predicting activity cliffs with free-energy pertur-

bation. Journal of Chemical Theory and Computation, 15(3):1884–1895, 2019.

[113] Yasunobu Asawa, Atsushi Yoshimori, Jürgen Bajorath, and Hiroyuki Naka-

mura. Prediction of an MMP-1 inhibitor activity cliff using the SAR matrix

approach and its experimental validation. Scientific Reports, 10(1):14710, 2020.

174

[114] Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, and Farhaneh

Moradi. PCAC: A new method for predicting compounds with activity cliff

property in QSAR approach. International Journal of Information Technology,

13(6):2431–2437, 2021.

[115] Junhui Park, Gaeun Sung, SeungHyun Lee, SeungHo Kang, and ChunKyun

Park. ACGCN: Graph convolutional networks for activity cliff prediction be-

tween matched molecular pairs. Journal of Chemical Information and Modeling,

2022.

[116] Hengwei Chen, Martin Vogt, and Jürgen Bajorath. DeepAC—Conditional

transformer-based chemical language model for the prediction of activity cliffs

formed by bioactive compounds. Digital Discovery, 2022.

[117] Frank Hoonakker, Nicolas Lachiche, Alexandre Varnek, and Alain Wagner. Con-

densed graph of reaction: Considering a chemical reaction as one single pseudo

molecule. International Journal on Artificial Intelligence Tools, 20(2):253–270,

2011.

[118] Philippe Jauffret, Thierry Hanser, Christian Tonnelier, and Gérard Kaufmann.

Machine learning of generic reactions: 1. Scope of the project; The GRAMS

program. Tetrahedron Computer Methodology, 3(6):323–333, 1990.

[119] Philip Seeman. Dopamine receptors and the dopamine hypothesis of schizophre-

nia. Synapse, 1(2):133–152, 1987.

[120] Sven Ullrich and Christoph Nitsche. The SARS-CoV-2 main protease as drug

target. Bioorganic & Medicinal Chemistry Letters, 30(17):127377, 2020.

[121] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N.

Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein

Data Bank. Nucleic Acids Research, 28(1):235–242, 2000. URL https://www.

rcsb.org.

[122] Tiqing Liu, Yuhmei Lin, Xin Wen, Robert N. Jorissen, and Michael K. Gilson.

BindingDB: A web-accessible database of experimentally determined protein-

ligand binding affinities. Nucleic Acids Research, 35:D198–D201, 2007.

[123] Hagit Achdout, Anthony Aimon, Elad Bar-David, Haim Barr, Amir Ben-

Shmuel, James Bennett, Melissa L. Bobby, Juliane Brun, BVNBS Sarma, Mark

175

https://www.rcsb.org
https://www.rcsb.org

Calmiano, et al. COVID moonshot: Open science discovery of SARS-CoV-2

main protease inhibitors by combining crowdsourcing, high-throughput experi-

ments, computational simulations, and machine learning. BioRxiv, 2020.

[124] A. Patŕıcia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton,

Francis Atkinson, Louisa J. Bellis, Marleen de Veij, and Andrew R. Leach.

An open source chemical structure curation pipeline using RDKit. Journal of

Cheminformatics, 12(1):1–16, 2020.

[125] Peter W. Kenny and Jens Sadowski. Structure modification in chemical

databases. Chemoinformatics in Drug Discovery, 23:271–285, 2005.

[126] Ye Hu and Jürgen Bajorath. Extending the activity cliff concept: Structural

categorization of activity cliffs and systematic identification of different types of

cliffs in the ChEMBL database. Journal of Chemical Information and Modeling,

52(7):1806–1811, 2012.

[127] Andrew Dalke, Jerome Hert, and Christian Kramer. mmpdb: An open-source

matched molecular pair platform for large multiproperty data sets. Journal of

Chemical Information and Modeling, 58(5):902–910, 2018.

[128] Jürgen Bajorath. Exploring activity cliffs from a chemoinformatics perspective.

Molecular Informatics, 33(6-7):438–442, 2014.

[129] Xiaoying Hu, Ye Hu, Martin Vogt, Dagmar Stumpfe, and Jürgen Bajorath.

MMP-cliffs: Systematic identification of activity cliffs on the basis of matched

molecular pairs. Journal of Chemical Information and Modeling, 52(5):1138–

1145, 2012.

[130] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python. Jour-

nal of Machine Learning Research, 12:2825–2830, 2011.

[131] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. PyTorch: An imperative style, high-performance deep learning library.

Advances in Neural Information Processing Systems, 32, 2019.

176

[132] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pages 2623–2631, 2019.

[133] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of Machine

Learning Research, pages 448–456, 2015.

[134] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

[135] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[136] Davide Chicco. Siamese neural networks: An overview. Artificial Neural Net-

works, pages 73–94, 2021.

[137] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,

Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification us-

ing a “Siamese” time delay neural network. International Journal of Pattern

Recognition and Artificial Intelligence, 7(04):669–688, 1993.

[138] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural net-

works for one-shot image recognition. In ICML Deep Learning Workshop, vol-

ume 2. Lille, 2015.

[139] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1701–1708, 2014.

[140] Devendra Singh Dhami, Gautam Kunapuli, David Page, and Sriraam Natara-

jan. Predicting drug-drug interactions from molecular structure images. In

Proceedings of AAAI Fall Symposium on AI for Social Good, 2019.

[141] Yi Zhong, Xueyu Chen, Yu Zhao, Xiaoming Chen, Tingfang Gao, and Zuquan

Weng. Graph-augmented convolutional networks on drug-drug interactions pre-

diction. arXiv preprint arXiv:1912.03702, 2019.

177

[142] Kyriakos Schwarz, Ahmed Allam, Nicolas Andres Perez Gonzalez, and Michael

Krauthammer. AttentionDDI: Siamese attention-based deep learning method

for drug-drug interaction predictions. arXiv preprint arXiv:2012.13248, 2020.

[143] Luis Torres, Nelson Monteiro, Josè Oliveira, Joel Arrais, and Bernardete

Ribeiro. Exploring a Siamese neural network architecture for one-shot drug

discovery. In Proceedings of 20th International Conference on Bioinformatics

and Bioengineering (BIBE), pages 168–175, 2020.

[144] Igor I. Baskin, Vladimir A. Palyulin, and Nikolai S. Zefirov. Neural networks in

building QSAR models. In Artificial Neural Networks, pages 133–154. Springer,

2006.

[145] Paulino A. Alvarez and Jaime Pahissa. QT alterations in psychopharmacology:

Proven candidates and suspects. Current Drug Safety, 5(1):97–104, 2010.

[146] Muhao Chen, Chelsea J-T Ju, Guangyu Zhou, Xuelu Chen, Tianran Zhang,

Kai-Wei Chang, Carlo Zaniolo, and Wei Wang. Multifaceted protein-protein

interaction prediction based on Siamese residual RCNN. Bioinformatics, 35

(14):i305–i314, 2019.

[147] Daniel Fernández-Llaneza, Silas Ulander, Dea Gogishvili, Eva Nittinger, Hong-

tao Zhao, and Christian Tyrchan. Siamese recurrent neural network with a

self-attention mechanism for bioactivity prediction. ACS Omega, 6(16):11086–

11094, 2021.

[148] Minji Jeon, Donghyeon Park, Jinhyuk Lee, Hwisang Jeon, Miyoung Ko, Sunkyu

Kim, Yonghwa Choi, Aik-Choon Tan, and Jaewoo Kang. ReSimNet: Drug

response similarity prediction using Siamese neural networks. Bioinformatics,

35(24):5249–5256, 2019.

[149] Nicholas Roberts, Poornav S. Purushothama, Vishal T. Vasudevan, Siddarth

Ravichandran, Chen Zhang, William H. Gerwick, and Garrison W. Cottrell.

Using deep Siamese neural networks to speed up natural products research.

ICLR 2019 Conference Blind Submission, 2018.

[150] Esmaeil Nourani, Ehsaneddin Asgari, Alice C. McHardy, and Mohammad R. K.

Mofrad. TripletProt: Deep representation learning of proteins based on Siamese

networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 19(6):3744–3753, 2021.

178

[151] Kyle Yingkai Gao, Achille Fokoue, Heng Luo, Arun Iyengar, Sanjoy Dey, and

Ping Zhang. Interpretable drug-target prediction using deep neural representa-

tion. In Proceedings of International Joint Conference on Artificial Intelligence,

volume 2018, pages 3371–3377, 2018.

[152] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and

Pietro Liò. Towards sparse hierarchical graph classifiers. arXiv preprint

arXiv:1811.01287, 2018.

[153] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In

International Conference on Machine Learning, pages 3734–3743. PMLR, 2019.

[154] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive struc-

ture aware pooling for learning hierarchical graph representations. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

5470–5477, 2020.

[155] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path

integral based convolution and pooling for graph neural networks. Advances in

Neural Information Processing Systems, 33:16421–16433, 2020.

[156] Daniel Probst and Jean-Louis Reymond. A probabilistic molecular fingerprint

for big data settings. Journal of Cheminformatics, 10:1–12, 2018.

[157] Martin Gütlein and Stefan Kramer. Filtered circular fingerprints improve either

prediction or runtime performance while retaining interpretability. Journal of

Cheminformatics, 8(1):1–16, 2016.

[158] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948.

[159] Thomas M. Cover, Joy A. Thomas, et al. Entropy, relative entropy and mutual

information. Elements of Information Theory, 2(1):12–13, 1991.

[160] SMARTS Theory Manual. Daylight Chemical Information Systems. URL

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.

Accessed on 05.10.2023.

[161] Karl Pearson. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can

be reasonably supposed to have arisen from random sampling. The London,

179

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):

157–175, 1900.

[162] Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. LIT-PCBA:

An unbiased data set for machine learning and virtual screening. Journal of

Chemical Information and Modeling, 60(9):4263–4273, 2020.

[163] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb

Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A

benchmark for molecular machine learning. Chemical Science, 9(2):513–530,

2018.

[164] Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. AqSolDB, a cu-

rated reference set of aqueous solubility and 2D descriptors for a diverse set of

compounds. Scientific Data, 6(1):143, 2019.

[165] Katja Hansen, Sebastian Mika, Timon Schroeter, Andreas Sutter, Antonius

Ter Laak, Thomas Steger-Hartmann, Nikolaus Heinrich, and Klaus-Robert

Muller. Benchmark data set for in silico prediction of Ames mutagenicity. Jour-

nal of Chemical Information and Modeling, 49(9):2077–2081, 2009.

[166] Guy W. Bemis and Mark A. Murcko. The properties of known drugs: Molecular

frameworks. Journal of Medicinal Chemistry, 39(15):2887–2893, 1996.

[167] François Fleuret. Fast binary feature selection with conditional mutual infor-

mation. Journal of Machine Learning Research, 5(9), 2004.

[168] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geof-

frey E. Hinton. Big self-supervised models are strong semi-supervised learners.

Advances in Neural Information Processing Systems, 33:22243–22255, 2020.

[169] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in Neural Information Processing Systems, 30, 2017.

[170] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and

Yee Whye Teh. Set transformer: A framework for attention-based permutation-

invariant neural networks. In International Conference on Machine Learning,

pages 3744–3753. PMLR, 2019.

180

[171] Jiye Kim, Seungbeom Lee, Dongwoo Kim, Sungsoo Ahn, and Jaesik Park.

Substructure-atom cross attention for molecular representation learning. arXiv

preprint arXiv:2210.08243, 2022.

[172] Dea Gogishvili, Eva Nittinger, Christian Margreitter, and Christian Tyrchan.

Nonadditivity in public and inhouse data: Implications for drug design. Journal

of Cheminformatics, 13:1–18, 2021.

[173] Karolina Kwapien, Eva Nittinger, Jiazhen He, Christian Margreitter, Alexey

Voronov, and Christian Tyrchan. Implications of additivity and nonadditivity

for machine learning and deep learning models in drug design. ACS Omega, 7

(30):26573–26581, 2022.

[174] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. Do transformers really perform badly for

graph representation? Advances in Neural Information Processing Systems, 34,

2021.

181

	Introduction
	Outline of Thesis and Research Contributions

	Molecular Representations and Featurisations for Machine Learning
	Overview
	Molecular Graphs
	SMILES Strings
	Physicochemical-Descriptor Vectors
	Mathematical Description
	Critical View

	Extended-Connectivity Fingerprints
	A Short Background on Structural Fingerprints
	Mathematical Description
	Standard and Pharmacophoric Atom Features
	Critical View

	Message-Passing Graph Neural Networks
	Mathematical Description
	Graph Convolutional Networks
	Graph Isomorphism Networks
	Theoretical Expressivity of Graph Neural Networks
	Critical View

	Molecular Featurisations: Critical Overview

	Exploring Molecular Featurisations for QSAR and Activity-Cliff Prediction: A Computational Study
	Overview
	Introduction to Activity Cliffs and Activity-Cliff Prediction
	Experimental Methodology
	Molecular Data Sets
	Definition of Binary Activity-Cliff Classification-Tasks
	Developed Pair-Based Data Splitting Technique
	Prediction Strategies
	Performance Metrics
	Model Training and Hyperparameter Optimisation

	Results and Discussion
	QSAR-Prediction Performance
	AC-Classification Performance
	PD-Classification Performance
	Linear Relationship between QSAR-MAE and AC-MCC

	Conclusions

	A Twin Neural Network Model for Activity-Cliff Prediction
	Overview
	Twin Neural Network: Mathematical Description
	Neural Architecture and Symmetry Properties
	Loss Function and Model Training
	Molecular Featurisations: Four Model Versions

	Computational Experiments
	Experimental Methodology
	Molecular Data Set
	Data Splitting Technique and Prediction Tasks
	Prediction Tasks and Prediction Strategies
	Performance Measures
	Evaluated Models
	Model Training and Hyperparameter Settings

	Results and Discussion
	AC-Classification Performance
	PD-classification Performance

	Conclusions

	Beyond Hashing: Substructure-Pooling Techniques to Robustly Improve Extended-Connectivity Fingerprints
	Introduction
	Methods and Experimental Methodology
	Substructure Pooling: Mathematical Description
	Investigated Substructure-Pooling Techniques
	Hashing
	Sort & Slice
	Filtering
	Mutual-Information Maximisation

	Experimental Setup

	Results and Discussion
	Conclusions

	Future Directions
	A Graph-Based Self-Supervised Learning Strategy to Make Classical Molecular Featurisations Trainable
	Trainable Substructure Pooling via Differentiable Self-Attention

	Conclusions and Further Thoughts
	Summary of Research Contributions
	Bibliography

