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Abstract

To design Bayesian studies, criteria for the operating characteristics of posterior analyses – such as
power and the type I error rate – are often assessed by estimating sampling distributions of posterior
probabilities via simulation. In this paper, we propose an economical method to determine optimal
sample sizes and decision criteria for such studies. Using our theoretical results that model posterior
probabilities as a function of the sample size, we assess operating characteristics throughout the sample
size space given simulations conducted at only two sample sizes. These theoretical results are used to
construct bootstrap confidence intervals for the optimal sample sizes and decision criteria that reflect
the stochastic nature of simulation-based design. We also repurpose the simulations conducted in our
approach to efficiently investigate various sample sizes and decision criteria using contour plots. The
broad applicability and wide impact of our methodology is illustrated using two clinical examples.
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1 Introduction

In Bayesian methods for data-driven decision making, a scalar estimand often quantifies the impact of two

choices available to decision makers. Such decisions are regularly informed by assessing a hypothesis H1

based on the posterior distribution of this estimand. Decision-making methods with posterior probabilities

have been proposed in various settings (see e.g., Berry et al. (2010); Brutti et al. (2014); Stevens and

Hagar (2022)). The observed data provide sufficient evidence to support H1 if the posterior probability

Pr(H1 | data) is greater than or equal to a critical value γ ∈ [0.5, 1). When comparing complementary

hypotheses H1 and H0, decision-making methods with Bayes factors (Jeffreys, 1935; Kass and Raftery, 1995;

Morey and Rouder, 2011) can be viewed as a special case of those with posterior probabilities (Hagar and

Stevens, 2024). This paper therefore focuses on posterior probabilities, though the methods extend to the

use of Bayes factors.

It is important that decision-making methods with posterior summaries yield trustworthy conclusions.

In clinical trials, regulatory agencies require that Bayesian designs are assessed with respect to frequentist

operating characteristics (FDA, 2019). These design procedures are called hybrid approaches to sample

size determination since they leverage theory from Bayesian and frequentist statistics (Berry et al., 2010).

Decision makers in nonclinical settings may also want to control the power and type I error rate of Bayesian
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designs (see e.g., Deng (2015) and Larsen et al. (2024) for a discussion of operating characteristics in online

A/B tests). Power is the probability that Pr(H1 | data) ≥ γ according to some data generation process

where H1 is true. Under this data generation process, the study power should be at least 1− β. The type I

error rate is the probability that Pr(H1 | data) ≥ γ according to some data generation process where H1 is

false (and H0 is true). Given a data generation process under H0, the type I error rate for the study should

not exceed α.

Design inputs for Bayesian studies include the hypotheses H1 and H0, data generation processes, prior

distributions, treatment allocations, and values for α and β. For a particular set of design inputs, the sample

size n and critical value γ determine whether criteria for the operating characteristics of the posterior analysis

are satisfied. To support flexible study design, (n, γ) combinations that control these operating characteristics

can be found using intensive simulation (Wang and Gelfand, 2002). In general, many samples of size n are

simulated according to H1 (H0) to estimate the sampling distribution of posterior probabilities and the

proportion of samples for which Pr(H1 | data) ≥ γ estimates power (the type I error rate). This process is

repeated for various sample sizes using various critical values until a suitable (n, γ) combination is found,

and this computational burden is compounded over all combinations of the design inputs that practitioners

wish to investigate. Moreover, the impact of simulation variability on the recommended (n, γ) combination

is underreported since quantifying this impact often involves conducting further numerical studies (Wilson

et al., 2021). An economical framework to determine the (n, γ) combination that minimizes the sample

size n while satisfying criteria for both operating characteristics would meaningfully expedite the design of

posterior analyses.

Recently, several strategies have been employed to reduce the computational burden associated with

controlling operating characteristics for Bayesian studies. Certain strategies are tailored to specific statistical

distributions (see e.g., Shi and Yin (2019) for the efficient design of sequential Bernoulli trials). Other

approaches accommodate a variety of statistical models. One such general strategy leverages the parametric

efficiency of beta distributions fit to the sampling distribution of posterior probabilities (Golchi, 2022; Golchi

and Willard, 2024). Another general strategy prioritizes exploring segments of the sampling distribution

of posterior probabilities such that Pr(H1 |data) ≈ γ (Hagar and Stevens, 2024). The use of sampling

distribution segments is efficient, but those methods are difficult to implement in complex design scenarios.

Here, we present a remarkably simple method to design posterior analyses that does not impose parametric

assumptions on the sampling distribution of Pr(H1 |data). This broadly applicable method is economical

and acknowledges the variability inherent to simulation-based design.

The remainder of this article is structured as follows. We introduce background information and notation

in Section 2. In Section 3, we develop theory for a proxy to the sampling distribution of posterior probabilities,

and we propose a method in Section 4 that adapts this theory to determine which (n, γ) combination
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minimizes the sample size n while satisfying criteria for power and the type I error rate. This procedure

estimates the sampling distributions of posterior probabilities at only two sample sizes. Given bootstrap

samples from these estimated sampling distributions, we construct confidence intervals for the optimal sample

size and critical value. We illustrate the use of our design framework with examples based on semaglutide

development in Section 5. In Section 6, we repurpose the posterior probabilities used to find the optimal

(n, γ) combination to create contour plots that facilitate the investigation of various n and γ values. Section

7 concludes with a summary and discussion of extensions to this work.

2 Preliminaries

Our design framework generally represents data from a random, to-be-observed sample of n potentially

multivariate observations as W (n) = {W i}ni=1. The observed data are denoted by w(n) . In regression

settings, W i may consist of a scalar response Yi and a vector of explanatory covariates Xi. For two-group

comparisons, W (n) consists of n = nA + nB observations, where the first nA observations are from group

A and the final nB observations are from group B. We consider fixed treatment allocation in these settings

such that nA = ⌊qnB⌉ for some q > 0, but this constant q is not incorporated into W (n) . We assume that

each observation in W (n) is generated independently according to the model f(w;η), where η denotes a

vector of parameters.

The estimand θ is typically specified as a function g(·) of these parameters: θ = g(η). For posterior

analyses, we consider interval hypotheses of the form H1 : θ ∈ δ = (δL, δU ), where −∞ ≤ δL < δU ≤ ∞. The

complementary hypothesis is H0 : θ /∈ δ. We use general notation for the interval δ to accommodate a broad

suite of hypothesis tests based on superiority, noninferiority, and practical equivalence (Spiegelhalter et al.,

1994, 2004). We assume larger θ values are preferred to introduce several such hypotheses. In that case, the

interval (δL, δU ) = (0,∞) facilitates one-sided hypothesis tests based on superiority. The interval endpoint

δL might instead take a negative (positive) value to assess hypotheses based on noninferiority (practical

superiority). For an equivalence test, both interval endpoints of δ would take finite values.

Algorithm 1 details a simulation-based procedure to estimate the sampling distributions of posterior prob-

abilities at a given sample size n. We now discuss several design inputs for this algorithm. We characterize

data generation for W (n) using the model f+(w;η+). We have that η ⊆ η+ since additional parameters

beyond those needed to specify θ may be required to generate data. For instance, regression settings require

additional parameters because those used to generate the explanatory covariates {Xi}ni=1 are not part of the

regression model. The model f+(w;η+) generalizes f(w;η) to take these additional parameters. The prior

p(η) is used to induce the posterior of θ = g(η). We must also specify the number of simulation repetitions

m for Algorithm 1, and we provide guidance for this choice when quantifying simulation variability in Section

4.
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The final design inputs that we must specify are Ψ0 and Ψ1, probability models that characterize how

η+ values are drawn in each simulation repetition r = 1, . . . ,m. The probability model Ψj outputs η+

values that correspond to Hj , j = 0, 1. The inputs Ψ0 and Ψ1 could be viewed as design priors (De Santis,

2007; Berry et al., 2010; Gubbiotti and De Santis, 2011) that differ from the analysis prior p(η). If Ψj is

degenerate, then the values {η+
j,r}mr=1 generated across all m simulation repetitions in Line 4 of Algorithm 1

are identical. If Ψ1 is not degenerate and incorporates uncertainty about the parametric assumptions used

to generate data, power is commonly referred to as assurance (O’Hagan and Stevens, 2001).

Algorithm 1 Sampling Distribution Estimation

1: procedure Estimate(f+(·), g(·), δ, p(η), n, q, m, Ψ0, Ψ1)
2: for j in {0,1} do
3: for r in 1:m do
4: Generate η+

j,r ∼ Ψj and w(n)

j,r ∼ f+(η+
j,r)

5: Compute estimate P̂ r(H1 |w(n)

j,r )

6: return {P̂ r(H1 |w(n)

1,r)}mr=1 and {P̂ r(H1 |w(n)

0,r)}mr=1

Line 4 of Algorithm 1 also generates a sample w(n)

j,r in each simulation repetition given the value for η+
j,r

drawn from Ψj . This collection of estimates {P̂ r(H1 |w(n)

j,r )}mr=1 is used to estimate the sampling distribution

of posterior probabilities under the hypothesis Hj . Power and the type I error rate can respectively be

estimated as

1

m

m∑

r=1

I
{
P̂ r(H1 |w(n)

1,r) ≥ γ
}

and
1

m

m∑

r=1

I
{
P̂ r(H1 |w(n)

0,r) ≥ γ
}
. (1)

To determine whether criteria for the operating characteristics are satisfied, we introduce the notation ξ(a, b)

to denote the ath order statistic of the collection of observations b. For an (n, γ) combination, the estimated

power in (1) is at least 1−β if and only if ξ1 = ξ(⌊mβ⌋, {P̂ r(H1 |w(n)

1,r)}mr=1) ≥ γ. The estimated type I error

rate in (1) is at most α if and only if ξ0 = ξ(⌈m(1− α)⌉, {P̂ r(H1 |w(n)

0,r)}mr=1) ≤ γ.

We now describe how n and γ impact the operating characteristics of a posterior analysis. The sampling

distributions of posterior probabilities change with n. As n → ∞, the sampling distribution of posterior

probabilities under H1 converges to a point mass at 1 under standard regularity conditions (van der Vaart,

1998). A sample size n is sufficiently large if and only if ξ0 ≤ ξ1 since both criteria in (1) are satisfied for

any γ ∈ [ξ0, ξ1]. Otherwise, there is no value of γ such that the estimated power is at least 1 − β and the

estimated type I error rate is at most α. For any Ψ0 assigning all weight to ηj,r ⊆ η+
j,r values such that

θj,r = g(ηj,r) is an endpoint of δ, the sampling distribution of posterior probabilities under H0 converges to

the standard uniform distribution as n → ∞ under weak conditions (Bernardo and Smith, 2009). In such

cases, choosing γ = 1 − α yields a type I error rate of approximately α for large sample sizes. However,

this choice for γ may not maintain the desired type I error rate with finite samples or certain nondegenerate

probability models Ψ0 as demonstrated in this paper.

To better satisfy criteria for both operating characteristics, our design procedures make optimal choices
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for both n and γ instead of selecting a sample size n to achieve a study power of 1−β given a predetermined

critical value of γ = 1−α. These choices for n and γ are informed by estimating the sampling distributions of

posterior probabilities underH1 (H0) to estimate ξ1 (ξ0). The procedure in Algorithm 1 requires independent

implementation for each sample size n that we consider. This process is often computationally intensive,

but we could reduce the computational burden by using the estimated sampling distributions under H1 (H0)

for previously considered sample sizes to estimate ξ1 (ξ0) for new n values. We could use this process to

explore (n, γ) combinations with substantially fewer simulation repetitions. We propose such a method for

the design of posterior analyses in this paper and begin its development in Section 3.

3 A Proxy for the Sampling Distribution

Design methods to control the operating characteristics of posterior analyses require that we estimate the

sampling distribution of posterior probabilities for various sample sizes n. We approximate such sampling

distributions by generating data w(n) using the straightforward process in Algorithm 1. For theoretical

development, we create a proxy for these sampling distributions. These proxies motivate – but are not used

in – our design methods proposed in Section 4. A detailed understanding of these proxies is not necessary to

appreciate the practical benefits of our design methods that are simple and straightforward to implement,

but the proxies are needed for the theory that underpins the proposed methodology.

Our proxies make use of the regularity conditions listed in Appendix A of the supplement. Appendix A.1

details the four necessary assumptions to invoke the Bernstein-von Mises (BvM) theorem (van der Vaart,

1998). The first three assumptions are weaker than the regularity conditions for the asymptotic normality

of the maximum likelihood estimator (MLE) (Lehmann and Casella, 1998), which are listed in Appendix

A.2. By the BvM theorem, a large-sample approximation to the posterior of θ | w(n)

j,r is N (θ̂(n)

j,r , I(θj,r)−1/n)

(van der Vaart, 1998). Here, θ̂(n)

j,r is the maximum likelihood estimate of θ, I(·) is the Fisher information, and

θj,r = g(ηj,r) corresponds to ηj,r ⊆ η+
j,r ∼ Ψj . The approximate sampling distribution of θ̂(n) | η+ = η+

j,r

is N (θj,r, I(θj,r)−1/n). We can simulate one realization from this approximate sampling distribution using

cumulative distribution function (CDF) inversion with a point uj,r ∈ [0, 1]:

θ̂(n)

j,r = θj,r +Φ−1(uj,r)

√
I(θj,r)−1

n
, (2)

where Φ(·) is the standard normal CDF. Thus, we require a pseudorandom sequence of m points {uj,r}mr=1 ∈

[0, 1] to simulate from the approximate distribution of θ̂(n) under Hj . This sample allows us to estimate a

proxy for the sampling distribution of the relevant posterior probability. We let

p(n)

δ,j,r = Φ

(
δ − θ̂(n)

j,r√
I(θj,r)−1/n

)
= Φ

(
δ − θj,r√
I(θj,r)−1

√
n− Φ−1(uj,r)

)
(3)

be a large-sample approximation to Pr(θ < δ |w(n)

j,r ) obtained with the point uj,r ∈ [0, 1] given η+ = η+
j,r.

This approximation is based on the BvM theorem and (2). The rightmost equality in (3) underscores how
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p(n)

δ,j,r changes with the sample size n. We emphasize that the probability p(n)

δ,j,r depends on the point uj,r

and parameter value η+
j,r through the subscripts j and r.

For theoretical purposes, a proxy sampling distribution of posterior probabilities under Hj could be

constructed using a collection of p(n)

δ,j,r = p(n)

δU ,j,r − p(n)

δL,j,r values corresponding to {uj,r}mr=1 ∈ [0, 1] and

{η+
j,r}mr=1 ∼ Ψj . Theorem 1 of Hagar and Stevens (2024) proved that under the conditions in Appendix A,

the total variation distance between the sampling distribution of p(n)

δ,j,r and that of Pr(H1 |w(n)

j,r ) converges

in probability to 0 as n → ∞. The estimates of power and the type I error rate based on the (proxy)

sampling distribution of p(n)

δ,j,r are therefore consistent as n → ∞. This consistency is adequate for theoretical

consideration of the proxy sampling distribution, but we do not use it in Section 4. The corresponding

estimates based on the (true) sampling distribution of Pr(H1 |w(n)

j,r ) obtained via Algorithm 1 are instead

unbiased for finite n so long as the posterior approximation method does not introduce bias.

Theorem 1 below is original to this paper. It provides guidance concerning how to economically assess

the operating characteristics of a posterior analysis at a broad range of sample sizes. In particular, Theorem

1 guarantees that the logit of p(n)

δ,j,r constructed using posterior probabilities in (3) is an approximately linear

function of n; hence, exploration of the (n, γ)-space can be achieved by estimating the sampling distributions

of posterior probabilities under H0 and H1 at only two values of n. The probabilities p(n)

δ,j,r in (3) depend on

the model f+(w;η+
j,r), the sample size n, and the point uj,r. We fix the point uj,r and let the sample size

n vary. When the point uj,r and model f+(w;η+
j,r) are fixed, p(n)

δ,j,r is a deterministic function of n.

Theorem 1. For any η+
j,r ∼ Ψj, let the model f(w;η+

j,r) satisfy the conditions in Appendix A.2 and the

prior p(η) satisfy the conditions in Appendix A.1. Define logit(x) = log(x) − log(1 − x) and a(δ, θj,r) =

(δ − θj,r)/
√

I(θj,r)−1. For a given point uj,r ∈ [0, 1], the function p(n)

δ,j,r in (3) is such that

lim
n→∞

d

dn
logit

[
p(n)

δU ,j,r − p(n)

δL,j,r

]
= (0.5− I{θj,r /∈ (δL, δU )})×min{a(δU , θj,r)2, a(δL, θj,r)2}.

Theorem 1 is proved in Appendix B of the supplement, but we consider its practical implications here.

For the proxy sampling distributions, the linear approximation to l(n)

δ,j,r = logit(p(n)

δ,j,r) as a function of n

is a good global approximation for large sample sizes. This linear approximation should also be locally

suitable for a range of smaller sample sizes. Therefore, the quantiles of the sampling distribution of l(n)

δ,j,r

change linearly as a function of n when Ψj is degenerate. We exploit this linear trend in the proxy sampling

distributions to flexibly model logits of posterior probabilities as linear functions of n when independently

simulating samples w(n) as in Algorithm 1 – even when Ψj is nondegenerate. Since we only use the limiting

slopes from Theorem 1 to initialize our method, we do not require very large sample sizes to apply our

methodology with the true sampling distributions in Section 4. This will be illustrated in Section 5.
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4 Economical Assessment of Operating Characteristics

The methods we propose to design posterior analyses can be broadly applied when the conditions in Appendix

A are satisfied. We generalize the results from Theorem 1 to develop methodology in Algorithm 2 that is

easily implemented and performs well with moderate to large sample sizes. Algorithm 2 allows users to

efficiently explore the sample size space to find the (n, γ) combination that minimizes the sample size while

satisfying both criteria in (1). Our approach involves estimating the sampling distributions of posterior

probabilities at only two sample sizes: n0 and n1.

Algorithm 2 Procedure to Determine Optimal Sample Size and Critical Value

1: procedure Optimize(f+(·), g(·), δ, p(η), q, α, β, m, Ψ0, Ψ1)
2: Select n0 to achieve power 1− β for γ = 1− α based on the BvM theorem
3: for j in {0, 1} do

4: Estimate {P̂ r(H1 |w(n0)

j,r )}mr=1 via Algorithm 1 and their logits {l̂(n0)

δ,j,r}mr=1

5: for r in 1:m do
6: Use the line L̂(n)

δ,j,r passing through (n0, l̂
(n0)

δ,j,r) with the slope from Theorem 1 to get l̂(n)

δ,j,r for
other sample sizes

7: Use binary search to find n1, the smallest n such that ξ(⌊mβ⌋, {l̂(n)

δ,1,r}mr=1) ≥ ξ(⌈m(1−α)⌉, {l̂(n)

δ,0,r}mr=1)
8: for j in {0, 1} do

9: Estimate {P̂ r(H1 |w(n1)

j,r )}mr=1 via Algorithm 1 and their logits {l̂(n1)

δ,j,r}mr=1

10: for r in 1:m do
11: Use the line L̂(n)

δ,j,r passing through (n0, ξ(r, {l̂(n0)

δ,j,r}mr=1)) and (n1, ξ(r, {l̂(n1)

δ,j,r}mr=1)) to get l̂(n)

δ,j,r

for other sample sizes

12: Use binary search to find n2, the smallest n such that ξ(⌊mβ⌋, {l̂(n)

δ,1,r}mr=1) ≥ ξ(⌈m(1−α)⌉, {l̂(n)

δ,0,r}mr=1)

13: return n2 as recommended n and ξ(⌈m(1− α)⌉, {p̂(n2)

δ,0,r}mr=1) as γ

We elaborate on several steps in Algorithm 2 below. We choose the initial sample size n0 in Line 2 under

the assumption that the posterior of θ is N (θ̂(n) , I(θ∗)−1/n), where θ̂(n) ∼ N (θ∗, I(θ∗)−1/n) is the MLE and

θ∗ is the median value of θ induced by η+ ∼ Ψ1. This sample size provides a suitable starting point, but it

may differ materially from the optimal n if Ψ1 is nondegenerate or the large-sample approximations based

on the theory in Appendix A are not suitable. One strength of our methodology is its flexibility: Algorithm

2 can readily be integrated with any computational or analytical method used to estimate the posterior

probabilities in Line 4. If a computational method is used to generate posterior samples, we recommend

calculating posterior probabilities using a nonparametric kernel density estimate of the posterior so that the

logits of all probabilities are finite. The notation l̂(n)

δ,j,r is also introduced in Line 4. These logits and their

posterior probabilities p̂(n)

δ,j,r from the true sampling distribution leverage independently generated samples

w(n)

j,r for each hypothesis j and simulation repetition r. Unlike for l(n)

δ,j,r from the proxy sampling distribution

in Theorem 1, there is no relationship between the l̂(n)

δ,j,r values corresponding to two different sample sizes

that happen to have the same indices for j and r.

To choose a sample size n1 that improves on the initial one, we construct linear approximations to the

logits of posterior probabilities as a function of n using the limiting slopes from Theorem 1 in Line 6. For
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moderate n, the limiting slopes for l(n)

δ,j,r may not be accurate since Theorem 1 relies on large-sample results –

including the approximate normality of the posterior that is asymptotically guaranteed when the conditions

for the BvM theorem are satisfied. Thus, we only use those slopes in this initial phase of our method. If using

analytical posterior approximation, considering the posterior of a monotonic transformation of θ may improve

its normal approximation and the accuracy of the limiting slopes for moderate n. If computational posterior

approximation is used, monotonic transformations of θ need not be considered. The order statistics in Line

7 are quickly calculated based on the linear approximations – not by approximating posterior probabilities

based on observed data.

In Line 11 of Algorithm 2, we construct linear approximations to logits of posterior probabilities that

are less reliant on large-sample results. These approximations use independent estimates of each sampling

distribution (under H0 and H1) at the sample sizes n0 and n1, and they exploit the linear trend in the proxy

sampling distribution quantiles discussed in Section 3. For the true sampling distributions, we sort the logits

of the posterior probabilities estimated under Hj at n0 and n1 and construct linear approximations using

the same order statistic at both sample sizes. This approach is suitable when the true value of the estimand

θj,r is similar for all η+
j,r ∼ Ψj . When Ψj is nondegenerate, the process in Line 11 can be modified: we

instead split the logits of the posterior probabilities for each sample size into subgroups based on the order

statistics of their θj,r values before constructing the linear approximations.

In Line 12, we repeat the process in Line 7 with our improved linear approximations to obtain the final

sample size recommendation n2. These linear approximations yield unbiased estimates of the operating

characteristics at n0 and n1. Thus, the suitability of the sample size recommendation n2 only relies on the

accuracy of the empirically estimated slopes. The optimal critical value is the ⌈m(1−α)⌉th order statistic of

{l̂(n2)

δ,0,r}mr=1 on the probability scale. If n1 and n2 differ greatly, the large-sample approximations used in Lines

2 and 6 may not be suitable. We could approximate the sampling distributions of posterior probabilities at

n2 using Algorithm 1 in that event. Lines 8 to 12 of Algorithm 2 could be rerun using n1 and n2 instead

of n0 and n1, respectively. However, we have found that it is generally not necessary to approximate the

sampling distributions of posterior probabilities at a third sample size.

We now describe how to construct bootstrap confidence intervals for the optimal n and γ values given a

single implementation of Algorithm 2. In Algorithm 2, we obtain four estimates of the sampling distribution

of posterior probabilities: {P̂ r(H1 |w(n0)

j,r )}mr=1 and {P̂ r(H1 |w(n1)

j,r )}mr=1 for j = 0, 1. We independently

obtain a bootstrap sample from each estimated sampling distribution by resampling with replacement. We

use these four bootstrap sampling distribution estimates to obtain linear approximations to logits of posterior

probabilities as a function of n as in Line 11. These linear approximations obtained using the bootstrap

samples give rise to a new (n, γ) recommendation following the process in Lines 12 and 13. We repeat this

procedure M times to construct bootstrap confidence intervals using the percentile method (Efron, 1982).
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These confidence intervals could be used to help select the number of simulation repetitions m. The U.S.

Food and Drug Administration (FDA) recommends using at least 104 simulation repetitions to estimate

sampling distributions (FDA, 2019). So, Algorithm 2 could be run with an initial value of m = 104; if the

resulting bootstrap confidence intervals for n and γ were not sufficiently precise, one could use Algorithm 1

with sample sizes n0 and n1 to augment the sampling distributions estimated in Lines 4 and 9 of Algorithm

2. This process to incrementally increase m could be alternated with the bootstrap procedure until the con-

fidence intervals for n and γ were narrow enough. Furthermore, this process is incredibly economical in that

previously estimated posterior probabilities can be efficiently repurposed. We investigate the performance

of Algorithm 2 and the procedure to construct bootstrap confidence intervals when considering study design

for several examples in Section 5.

5 Numerical Studies

5.1 Example 1

Here, we consider a two-group comparison based on a recent clinical trial for semaglutide development

(Wilding et al., 2021). In this clinical trial, patients in groups A and B were respectively given a weekly

semaglutide injection or placebo for 68 weeks. A total of nA = 1306 and nB = 655 patients were enrolled in

this study. While the primary outcome for this study concerned weight loss, the proportion of participants

that experienced a serious adverse event (SAE) was also of interest. As detailed in Wilding et al. (2021), 9.8%

and 6.4% of patients respectively receiving the semaglutide and placebo experienced SAEs. We now suppose

that we want to design a two-group comparison for an early clinical trial of a similar semaglutide medication.

As part of this trial, we consider a Bayesian logistic regression model for the probability of experiencing an

SAE. This model is such that yi ∼ BIN(1, πi), where logit(πi) = β0+β1x1i+β2x2i, y ∈ {0, 1} denotes whether

an SAE is experienced, x1 = I(Group = A) is the binary treatment indicator, x2 is the patient’s baseline

weight in kilograms. We use this model for pedagogical purposes, but our methodology accommodates much

more complex models so long as the conditions for Theorem 1 are satisfied.

For this comparison, the characteristic of interest is θ = exp(β1), the odds ratio (OR) of experiencing an

SAE when taking the semaglutide compared to the placebo. The model parameters are η = β = (β0, β1, β2).

We aim to support the hypothesis H1 : θ ∈ δ = (−∞, 2), which would suggest the semaglutide does not

increase the OR of experiencing an SAE enough to preclude further study of the semaglutide in later trials.

We use a treatment allocation constant of q = 2 as in Wilding et al. (2021). For this example, we specify Ψ0

as a degenerate process such that β+
0,r = (−2.71, log(2), 0.25) and {x2i}ni=1

i.i.d.∼ N (0, 1) after centering and

scaling the baseline weight. The process Ψ1 is the same as Ψ0 except that β+
1,r = (−2.71, log(1.25), 0.25).

For this example, we independently join a N (−2.71, 1) prior for β0 with N (0, 102) priors for β1 and β2. This

marginal prior for β0 is rather informative for illustration, but we have substantial information about the
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prevalence of SAEs for patients taking the placebo from past studies. The motivation for the choices in this

paragraph is further discussed in Appendix C.1 of the supplement.

We define criteria for the operating characteristics using α = 0.4 and β = 0.25. While the criterion for

the type I error rate is quite lenient, it is not uncommon to use larger values for α with secondary safety

outcomes in early phases of clinical trials. Moreover, the values for α, β, and the β1 component of β+
1,r were

selected to ensure this example illustrates the performance of our method with smaller sample sizes. We also

used m = 105. This value is 10 times larger than the FDA’s minimum recommendation (104), and we use a

large value of m to contextualize these recommendations. This example is interesting because informative

priors and smaller sample sizes are considered, so analytical sample size calculations based on limiting results

may perform poorly.

When using Algorithm 2, the optimal design was characterized by (nB , γ) = (73, 0.5651). At this (nB , γ)

combination, power and the type I error rate were estimated as 0.7535 and 0.4016 using confirmatory

simulations. We have that n = nA + nB = 3nB in this case. This optimal design took roughly 2.5 hours

to obtain using parallelization with 72 cores. This process would have taken about 15 minutes if m = 104

were used. With m = 105, Algorithm 2 required us to approximate 4 × 105 posterior probabilities. We

approximated each posterior of θ using Markov chain Monte Carlo methods with 103 posterior draws and 500

burnin iterations. This procedure could have been expedited if we used analytical posterior approximation

or approximate Bayesian computation. Despite the long runtime for this example, Algorithm 2 is 4 times

faster than exploring the sample size space via binary search. The discrepancy in runtime between estimating

the sampling distributions of posterior probabilities at only two samples sizes and thoroughly exploring the

sample size space scales logarithmically as the recommended value of n increases.

With M = 104, we implemented the bootstrap procedure from Section 4 with each of the following sample

sizes for the bootstrap resamples: m∗ = 104 × {1, 2.5, 5, 7.5, 10}. While m∗ and m are typically equal, our

numerical studies consider settings where m∗ < m to explore the precision of the bootstrap confidence

intervals. Table 1 details the 95% bootstrap confidence intervals for nB and γ obtained from this numerical

study. First, we note that the confidence interval for nB is rather wide when m∗ = 104. This interval

includes total sample size recommendations for n = 3nB ranging between 195 and 237. Therefore, using

only m = 104 simulation repetitions to estimate the sampling distributions may not always meaningfully

inform sample size determination. The variability in this bootstrap confidence interval is not specific to

our method in Algorithm 2 – it reflects the variability inherent to simulation-based design. This variability

is often underreported because it is difficult to construct interval estimates for recommended sample sizes

without repeatedly implementing simulation-based design methods. The theory in this paper allows us

to explore the sample size space via numerical studies at only two sample sizes; the results in Table 1

underscore the advantages of obtaining fewer high-quality estimates of the sampling distributions instead of

10



Table 1: 95% bootstrap confidence intervals for nB and γ obtained with M = 104 and various values of m∗

m∗

104 2.5× 104 5× 104 7.5× 104 1× 105

nB (65, 79) (69, 77) (70, 76) (71, 76) (71, 75)
γ (0.5578, 0.5715) (0.5608, 0.5692) (0.5620, 0.5681) (0.5626, 0.5676) (0.5629, 0.5672)

many estimates of lower quality. Second, we note that none of the 95% confidence intervals for γ in Table 1

include 1− α = 0.6.

An n0 value of 93 for group B was obtained in Line 2 of Algorithm 2 for this example. For the (nB , γ)

combination of (93, 0.6), the estimated type I error rate and power for this design were respectively 0.3622

and 0.7459. The type I error rate estimated via simulation is substantially less than α = 0.4, but the power

criterion is not satisfied. When taking nB = 97 recommended by a modified version of Algorithm 2 with

fixed γ = 0.6, we obtained estimates for power and the type I error rate of 0.7482 and 0.3611. There is a

considerable discrepancy between these sample sizes and the value for nB of 73 recommended by Algorithm 2.

This discrepancy is driven in part by the informative prior that was used for β0. Furthermore, the expected

number of SAEs in the placebo group was less than 5 when nB = 73, so large-sample normal approximations

to the binomial distribution used in analytical sample size calculations may be inaccurate. Nevertheless,

Algorithm 2 can readily be used to select optimal (n, γ) combinations that satisfy both criteria in (1), so it

is a valuable alternative to naive calculations based on large-sample results and fixed γ values.

5.2 Example 2

We now reconsider the clinical trial detailed in Wilding et al. (2021). One primary outcome in that trial

was the percentage change in body weight over the course of the study. The patients who were given the

semaglutide lost an average of 12.4% more of their initial weight than the patients who were given the

placebo. We again suppose that we want to design a two-group comparison for an early clinical trial of

a similar semaglutide medication. The regression model that we consider takes the following form: yi =

β0 + β1x1i + β2x2i + εi, where y is percentage change in body weight, x1 = I(Group = A) is the binary

treatment indicator, x2 is the patient’s baseline waist circumference in centimeters, and εi ∼ N (0, σ2
ε) are

independent error terms.

For this comparison, the characteristic of interest is θ = β1, the increased amount of weight loss (in

%) associated with taking the semiglutide injections. The model parameters are η = (β, σ2
ε), where β =

(β0, β1, β2). We aim to support the hypothesis H1 : θ ∈ δ = (5,∞), which would suggest the semaglutide

yields substantial weight loss of at least 5% more than the placebo to offset treatment side effects. We

again use a treatment allocation constant of q = 2. For this example, we specify Ψ0 as a degenerate process

such that β+
0,r = (−25.75, 5, 0.25), {x2i}ni=1

i.i.d.∼ N (115, 14.52), and {εi}ni=1
i.i.d.∼ N (0, 10.072). These choices

are justified using summary statistics from Wilding et al. (2021) in Appendix C.1 of the supplement. The
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process Ψ1 is the same as Ψ0 except the β1 component of β+
1,r

i.i.d.∼ U(9, 12). For this example, we use an

uninformative conjugate normal-inverse-gamma prior p(η) with the following parameters: µ0 = (0, 0, 0),

λ0 = 0.01× I3, a0 = 1, and b0 = 1 such that I3 is the 3× 3 identity matrix. We also use α = 0.05, β = 0.2,

and m = 104 for illustration.

Since Ψ1 is not degenerate, we split the logits of the posterior probabilities under H1 for each sample

size into 10 subgroups based on the order statistics of their θj,r values before sorting them. We do not need

to split the posterior probabilities under H0 since Ψ0 is degenerate. This example is interesting because

our sampling distribution of posterior probabilities under H1 is an infinite mixture of sampling distributions

conditional on the β1 component of β+
1,r. This result regularly holds true when Ψ1 is nondegenerate and

we consider assurance. While we only considered degenerate Ψ0 processes in this paper, our framework

does accommodate uncertainty in the data generation process under H0. Once again, we have specified

this example to consider a setting with small sample sizes where asymptotic approximations may perform

poorly. The use of conjugate priors with this example also allows us to implement Algorithm 2 many times

to explore the coverage properties of the bootstrap confidence intervals for nB and γ.

When using Algorithm 2, the optimal design was characterized by (nB , γ) = (35, 0.9561). Again, we have

that n = 3nB . This optimal design took less than 4 seconds on a standard laptop without parallelization to

obtain. For this example, it would take 3 times as long to explore the sample size space using binary search.

This discrepancy would be much more pronounced for larger sample size recommendations. We repeated the

process of determining the optimal design for this example 1000 times, which gave rise to 95% confidence

intervals for nB and γ of (34, 36) and (0.9535, 0.9595). It is not computationally feasible to obtain these

confidence intervals based on repeated implementation of Algorithm 2 for more complex models, which is

why we generally recommend using the bootstrap procedure in Section 4. We note that this confidence

interval for γ excludes 1 − α = 0.95. The median recommendations for nB and γ across these 1000 sample

size calculations were 35 and 0.9564, respectively. At this (nB , γ) combination, power and the type I error

rate were estimated as 0.8029 and 0.0500 using intensive simulation, which verified that (35, 0.9564) is the

true optimal (nB , γ) combination.

We used the 1000 repetitions of Algorithm 2 to evaluate the coverage properties of the bootstrap confi-

dence intervals for nB and γ that are feasible to create in practice. We implemented the bootstrap procedure

from Section 4 alongside each repetition of Algorithm 2 for this example with m∗ = m = 104 and M = 103.

This process gave rise to 1000 95% bootstrap confidence intervals for nB and γ. 99.6% of these confidence

intervals for nB contained 35, and 96.1% of these confidence intervals for γ contained 0.9564. The discrete

nature of the sample size caused these intervals to have coverage that exceeds the nominal level of 0.95. To

illustrate this phenomenon, we note that the linear approximations from Algorithm 2 allow us to approximate

sampling distributions of posterior probabilities at noninteger values of nB .
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We then implemented a modified version of Algorithm 2 where n2 in Line 12 is found to the nearest

hundredth. We made the same modification to the bootstrap procedure in Section 4 to allow noninteger

nB recommendations. We used this procedure to obtain 1000 noninteger (nB , γ) recommendations, each

of which was accompanied by a bootstrap confidence interval. The median recommendations for nB and γ

across these 1000 sample size calculations were 34.73 and 0.9565, respectively. 94.9% of these new confidence

intervals for nB contained 34.73, and 95.0% of these new confidence intervals for γ contained 0.9565. In

practice, we take the (nB , γ) combination corresponding to the ceiling of those nB recommendations, so any

bootstrap confidence interval with a lower endpoint in (34.73, 35] or an upper endpoint in (34, 34.73) would

count as covering the true optimal value for nB after rounding up. For this reason, the estimated coverage

for the confidence intervals was closer to the nominal value of 0.95 when allowing for noninteger sample sizes.

We still, however, recommend constructing the bootstrap confidence intervals with integer sample sizes since

rounding up cannot lead to systematically anti-conservative confidence intervals. The degree of conservatism

of those bootstrap confidence intervals is more pronounced when m is large enough to ensure the confidence

interval for nB contains only several sample sizes.

An n0 value of 32 for group B informed by a θ∗ value of 10.5 was obtained in Line 2 of Algorithm 2

for this example. For θ∗ values of 9 and 12 that correspond to the extremes of the U(9, 12) distribution,

the recommended nB value was respectively 59 and 20. It is difficult to choose nB analytically when Ψ1 is

nondegenerate because it is difficult to account for the sampling distribution of posterior probabilities under

H1 being a mixture distribution. For the (nB , γ) combination of (32, 0.95), the estimated type I error rate

and power for this design were respectively 0.0573 and 0.7916. Thus, neither the criterion for power nor the

type I error rate are satisfied. When taking nB = 33 recommended by a modified version of Algorithm 2

with fixed γ = 0.95, we obtained estimates for power and the type I error rate of 0.8012 and 0.0571. In this

case, the power criterion is satisfied but the type I error criterion is not. These discrepancies produced by

naive alternatives further emphasize the value of the proposed methodology.

6 Contour Plots for Design Criteria Exploration

While Algorithm 2 returns the (n, γ) combination that minimizes the sample size n while satisfying both

criteria in (1), practitioners may want to explore multiple designs that are similar to the optimal one. We

obtained linear approximations L̂(n)

δ,j,r in Line 11 of Algorithm 2 using estimates of the sampling distributions

of posterior probabilities under H0 and H1 at two sample sizes: n0 and n1. We approximate the sampling

distribution under Hj for other sample sizes using the functions {L̂(n)

δ,j,r}mr=1. We use contour plots to

synthesize these approximations to the sampling distributions. These plots visualize how changes to n and

the critical value γ impact power and the type I error rate.

The left column of Figure 1 illustrates the contour plots with respect to the type I error rate and power
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Figure 1: Left: Contour plots for the type I error rate and power from one sample size calculation for
the semaglutide example with the optimal (nB , γ) combination in gray. Center: Averaged contour plots
from 1000 sample size calculations. Right: Contour plots obtained by estimating sampling distributions
throughout the nB-space.

for the sample size calculation in Section 5.2. These contour plots are available with a single application of

our methodology. To assist with interpretation, the green contour corresponding to power of 1−β = 0.8 and

the red contour corresponding to a type I error rate of α = 0.05 are depicted on both plots. We explored

the (nB , γ)-space in Section 5.2. The criteria in (1) are respectively satisfied for the regions of the (nB , γ)-

space that are below the green contour and above the red contour. The optimal design for this repetition

characterized by (nB , γ) = (35, 0.9561) is depicted by the gray point. The optimal sample size of nB = 35

is the smallest nB ∈ Z+ that is to the right of the intersection of the red and green contours. The left

contour plots and the optimal sample size would differ slightly for each implementation of Algorithm 2, with

variability decreasing as m increases.

The contour plots in the left column of Figure 1 are created by repurposing logits of posterior probabilities

that were computed in Algorithm 2. These contour plots can therefore be generated in about the same

amount of time that it takes to implement Algorithm 2 (under 4 seconds for the example in Section 5.2).

Even if strictly controlling the type I error rate is not required, it is worthwhile to explore the sampling

distributions of posterior probabilities under both H0 and H1; these contour plots allow practitioners to
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visualize the trade-off between type I and II error for various sample sizes and decision criteria without

implementing extensive numerical studies. We emphasize that the contours for the type I error rate in the

top left plot are not perfectly flat, which we might expect if the standard uniform approximation to the

sampling distribution of posterior probabilities under H0 were exact (Bernardo and Smith, 2009). These

contours may noticeably change as a function of n if (i) informative priors are used, (ii) the data generation

process Ψ0 is nondegenerate, or (iii) moderate sample sizes are considered as also illustrated in Appendix

C.1 of the supplement in the contour plots for the example from Section 5.1. This reinforces why we consider

study design in the (n, γ)-space rather than selecting sample sizes n for fixed critical values γ. However, we

acknowledge that design in the n-space may be suitable with uninformative priors and large sample sizes;

Algorithm 2 can be simplified to accommodate these settings.

To gain insight into how our method performs under repeated simulation, we averaged contour plots

corresponding to the 1000 repetitions of the sample size calculation from Section 5.2. These plots are given

in the center column of Figure 1, but they take 1000 times as long to generate as the left plots and are not

feasible to create in practice. Based on these plots, the smallest nB ∈ Z+ to the right of the intersection

of the green and red contours is also 35. The contour plots in the right column of Figure 1 were created

by simulating m = 81920 samples samples according to Ψ0 and Ψ1 for nB = {25, 26, . . . , 45} following

the process detailed in Algorithm 1. Even for this example that leverages conjugate priors, this process

takes about 80 minutes using parallelization with 72 cores. The contours in the right plots are more jagged

because we obtained independent estimates for power and the type I error rate for each nB value in the plot.

Nevertheless, the plots in the center and right columns are similar, which is a consequence of Theorem 1.

The smallest nB ∈ Z+ to the right of the intersection of the green and red contours in the right plots is

nB = 35. Moreover, the fact that the center and right columns of Figure 1 do not differ much from the left

column builds confidence in the single-application contour plots.

7 Discussion

In this paper, we developed an economical framework to design posterior analyses using operating character-

istics – namely power and the type I error rate – that determines optimal sample sizes and decision criteria.

The efficiency of this framework stems from considering a proxy for the sampling distribution of posterior

probabilities based on large-sample theory to justify estimating the true sampling distributions at only two

sample sizes. This approach substantially reduces the number of simulation repetitions required to design

posterior analyses, making them much more attractive and accessible to practitioners who want to control

type I and II error. The posterior probabilities used to determine the optimal sample size and decision

criteria can also be repurposed to (i) construct bootstrap confidence intervals that acknowledge simulation

variability and (ii) helpfully investigate various sample sizes and decision criteria using contour plots.
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Our proposed methods are broadly applicable to various two-group comparisons, including those that are

more complex than our illustrative examples. Nevertheless, our methods could be extended in many aspects

to accommodate more complex designs. For instance, future work could consider economical design methods

that account for sequential analyses allowing for early termination or the multiple comparisons problem more

generally. This extension would be nontrivial because we would need to properly account for the level of

dependence in the joint distribution of the posterior probabilities across all potential analyses and estimands.

We could also extend our methods to accommodate Bayesian hierarchical models for dependent data; the

standard BvM theorem does not apply in those settings. Furthermore, practitioners may want to consider

the operating characteristics of a posterior analysis for various data generation processes Ψ1 and Ψ0. While

we already efficiently explore the sample size space, it would be of interest to derive analogs to Theorem 1

that enable efficient consideration of the Ψ1-space and Ψ0-space.

Supplementary Material

These materials include a detailed description of the conditions for Theorem 1 along with its proof and

additional simulation results. The code to conduct the numerical studies in the paper is available online:

https://github.com/lmhagar/EconDesignPosterior.
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An Economical Approach to Design Posterior Analyses

Supplementary Material

A Additional Content for Theorem 1

A.1 Conditions for the Bernstein-von Mises Theorem

Theorem 1 from the main text requires that the conditions for the Bernstein-von Mises (BvM) theorem

are satisfied. These conditions are described in van der Vaart (1998), starting on page 140. Conditions

(B0), (B1), and (B2) concern the likelihood component of the posterior distribution for a parameter θ. (B3)

concerns the prior specifications for θ. van der Vaart (1998) uses θ0 instead of θj,r as defined in Section 3 of

the main text to refer to the fixed parameter value, so we use that notation to state the conditions.

(B0) The observations are drawn independently and identically from a distribution Pθ0 for some fixed,

nonrandom θ0.

(B1) The parametric statistical model from which the data are generated is differentiable in quadratic mean.

(B2) There exists a sequence of uniformly consistent tests for testing H0 : θ = θ0 against H1 : ∥θ − θ0∥ ≥ ε

for every ε > 0.

(B3) Let the prior distribution for θ be absolutely continuous in a neighbourhood of θ0 with continuous

positive density at θ0.

A.2 Conditions for the Asymptotic Normality of the Maximum Likelihood Es-
timator

Theorem 1 from the main text also requires that the model f+(w;η+) satisfies the regularity conditions for

the asymptotic normality of the maximum likelihood estimator. These conditions should hold true for all

η+
0,r ∼ Ψ0 and η+

1,r ∼ Ψ1. These conditions are detailed in Lehmann and Casella (1998); they consider a

family of probability distributions P = {Pθ : θ ∈ Ω}, where Ω is the parameter space. Lehmann and Casella

(1998) use θ as the unknown parameter with true fixed value θ0, so we again state the conditions using this

notation. Lehmann and Casella (1998) detail nine conditions that guarantee the asymptotic normality of

the maximum likelihood estimator. We provide the following guidance on where to find more information

about these conditions in their text. The first four conditions – (R0), (R1), (R2), and (R3) – are described
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on pages 443 and 444 of their text. (R4) is mentioned as part of Theorem 3.7 on page 447. (R5), (R6), and

(R7) are described in Theorem 2.6 on pages 440 and 441. (R8) is mentioned in Theorem 3.10 on page 449.

(R0) The distributions Pθ of the observations are distinct.

(R1) The distributions Pθ have common support.

(R2) The observations are X = (X1, ..., Xn), where the Xi are identically and independently distributed

with probability density function f(xi|θ) with respect to a σ-finite measure µ.

(R3) The parameter space Ω contains an open set ω of which the true parameter value θ0 is an interior

point.

(R4) For almost all x, f(x|θ) is differentiable with respect to θ in ω, with derivative f ′(x|θ).

(R5) For every x in the set {x : f(x|θ) > 0}, the density f(x|θ) is differentiable up to order 3 with respect

to θ, and the third derivative is continuous in θ.

(R6) The integral
∫
f(x|θ)dµ(x) can be differentiated three times under the integral sign.

(R7) The Fisher information I(θ) satisfies 0 < I(θ) < ∞.

(R8) For any given θ0 ∈ Ω, there exists a positive number c and a function M(x) (both of which may

depend on θ0) such that |∂3logf(x|θ)/∂θ3| ≤ M(x) for all {x : f(x|θ) > 0}, θ0 − c < θ < θ0 + c, and

E[M(X)] < ∞.

B Proof of Theorem 1

To prove Theorem 1, we introduce simplified notation, where a(δU , θj,r) = a and a(δL, θj,r) = c. Moreover, we

let Φ−1(uj,r) = b, which we note is the same for both endpoints of the interval (δL, δU ). These simplifications

yield the following result:

log
(
p(n)

δ,j,r

)
− log

(
1− p(n)

δ,j,r

)

≈ log
(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

))
− log

(
1−

(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

)))
.

(B.1)

The first derivative of (B.1) with respect to n is

d

dn

[
log
(
Φ
(
a
√
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)
− Φ

(
c
√
n+ b

))
− log

(
1−

(
Φ
(
a
√
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)
− Φ

(
c
√
n+ b

)))]

=
aϕ (a

√
n+ b)− cϕ (c

√
n+ b)

2
√
n(Φ (a

√
n+ b)− Φ (c

√
n+ b))

+
aϕ (a

√
n+ b)− cϕ (c

√
n+ b)

2
√
n (1− (Φ (a

√
n+ b)− Φ (c

√
n+ b)))

.
(B.2)

We consider the limit of this derivative as n → ∞ in three cases. In the first case, we consider θj,r ∈

(δL, δU ) under H1. In this setting, Φ (a
√
n+ b) − Φ (c

√
n+ b) → 1 as n → ∞. Therefore, the limit of the
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first fraction in (B.2) as n → ∞ is 0. The second fraction can be written in an indeterminate form, so we

consider its limiting behaviour using L’Hopital’s rule. We have that

lim
n→∞

a√
n
ϕ (a

√
n+ b)− c√

n
ϕ (c

√
n+ b)

2(1− (Φ (a
√
n+ b)− Φ (c

√
n+ b)))
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n→∞

a

(
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ab√
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1
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)
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√
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cb√
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1

n

)
ϕ (c

√
n+ b)

2 (aϕ (a
√
n+ b)− cϕ (c

√
n+ b))

.

(B.3)

We must consider the limiting behaviour of (B.3) in cases. For the points under H1 where θj,r ∈ (δL, δU ),

a > 0 and c < 0. When |a| < |c|, it follows that
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n→∞
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(B.4)

The last step of (B.4) follows because the limit of the exponential term in the numerator and denominator

is 0 when |a| < |c|. When |a| > |c|, it follows that

lim
n→∞
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√
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− c
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(B.5)

The last step of (B.5) follows because the limit of the exponential term in the numerator and denominator

is 0 when |a| > |c|. When a = −c, the limit in (B.3) is 0.5× (a3 − c3)/(a− c) = a2/2 = c2/2. Therefore, the

limit of the first derivative in (B.2) is min{a2, c2}/2 when θj,r ∈ (δL, δU ).

In the second case for (B.2), we consider points under H0, where a and c have the same sign. When

θj,r > δU , c < a < 0, and 0 < c < a when θj,r < δL. In either case, Φ (a
√
n+ b) − Φ (c

√
n+ b) → 0 as

n → ∞. Therefore, the limit of the second fraction in (B.2) as n → ∞ is 0. The first fraction can be written

3



in an indeterminate form, so we consider its limiting behaviour using L’Hopital’s rule. We have that

lim
n→∞

a√
n
ϕ (a

√
n+ b)− c√

n
ϕ (c

√
n+ b)

2(Φ (a
√
n+ b)− Φ (c

√
n+ b))

= lim
n→∞

−1×
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1
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)
ϕ (a

√
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(
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1
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)
ϕ (c

√
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2 (aϕ (a
√
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√
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.

(B.6)

The limit in (B.6) is just −1 times the limit in (B.3). Therefore, the limit of the first derivative in (B.2) is

−min{a2, c2}/2 when θj,r /∈ [δL, δU ].

The third and final case for (B.2) is when θj,r ∈ {δL, δU} under H0. In this scenario, we conclude that the

limit of both fractions in (B.2) is 0 without appealing to L’Hopital’s rule because Φ (a
√
n+ b)−Φ (c

√
n+ b) →

0.5 as n → ∞. Thus, the limit of (B.2) as n → ∞ is 0. We emphasize that a = 0 if θj,r = δU and c = 0 if

θj,r = δL. Thus, the limit of the first derivative in (B.2) is min{a2, c2}/2 = 0 when θj,r ∈ {δL, δU}.

Putting the three cases together, we obtain part (b) of Theorem 1:

lim
n→∞

d

dn
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log
(
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(
a
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)
− Φ

(
c
√
n+ b
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(
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(
Φ
(
a
√
n+ b

)
− Φ

(
c
√
n+ b

)))]

=





min{a2, c2}
2

, if θj,r ∈ [δL, δU ]

−min{a2, c2}
2

, if θj,r /∈ [δL, δU ]

= (0.5− I{θj,r /∈ (δL, δU )})×min{a2, c2}.

(B.7)

C Additional Content for the Numerical Studies

C.1 Additional Content for Example 1

Here, we present additional context and numerical studies for Example 1 from Section 5.1 of the main text.

For this example, the binary response yi that was collected for each patient i = 1, . . . , nA + nB denotes

whether the patient experienced a severe adverse event (SAE). The covariate x1 = I(Group = A) is the

binary treatment indicator, and x2 is the patient’s baseline waist weight in kilograms (kg). We use this

model for illustration.

For this example, we specified Ψ0 as a degenerate process. We must therefore choose parameter values

for β = (β0, β1, β2) along with parameters for the normal distributions of x2. We choose values for the

regression parameters of β+
0,r = (−2.71, log(2), 0.25). The value for β1 = log(2) = log(δL) is on the boundary

of the hypotheses H0 and H1. The semaglutide from Wilding et al. (2021) was deemed acceptable given an

odds ratio (OR) of experiencing an SAE when taking the semaglutide vs. the placebo of 1.59. With this

information in mind, an upper limit of 2 on the OR may be reasonable for a preliminary study. The choice

for β0 = −2.71 indicates that a typical patient who receives the placebo has a 6.4% chance of experiencing

an SAE, which aligns with summary statistics from Wilding et al. (2021). The value for β2 = 0.25 reflects

patients with baseline weights equal to the 5th and 95th percentiles of its distribution from Wilding et al.
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(2021) having a 4.2% and 9.1% probability of experiencing an SAE, respectively. Thus, we assume there

is a moderate relationship between the probability of experiencing an SAE and baseline weight. Moreover,

we suppose the baseline waist circumference x2 for all patients follows a N (0, 1) distribution after centering

and scaling. In Table 1 of Wilding et al. (2021), the mean and standard deviation of the baseline weight in

kg for both groups is roughly the same, so we assume the distributions of x2 are the same in both groups.

The data generation process in Ψ1 is such that the β1 component of β+
1,r is log(1.25). The OR of 1.25 that

characterizes this scenario is acceptable. If actually designing this study, we might want to consider power

for various OR values that are less than 2.

We followed the procedure described in Section 6 of the main text to construct contour plots using the

computation from the sample size calculation from Section 5.1. These plots are given in the left column

of Figure C.1. Based on these plots, the smallest nB ∈ Z+ to the right of the intersection of the green

and red contours is 73. The contour plots in the right column of Figure C.1 were created by simulating
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Figure C.1: Left: Contour plots for the type I error rate and power from the sample size calculation for
Example 1 with the optimal (nB , γ) combination in gray. Right: Contour plots obtained by estimating
sampling distributions throughout the nB-space.
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m = 105 samples according to Ψ0 and Ψ1 for nB = {63, 68, . . . , 98}. The smallest nB ∈ Z+ to the right of

the intersection of the green and red contours in the right plots is nB = 72. The plots in the left and right

columns are similar, which illustrates that using the linear approximations from Algorithm 2 to construct

contour plots for this example prompts suitable performance. We emphasize that the right contour plots

took four times as long to construct as the left ones because we explored the nB-space without using linear

approximations. Furthermore, the contours in the top plots of Figure C.1 are not perfectly flat nor perfectly

calibrated such that the type I error rate when using a critical value of γ is 1− α.

C.2 Additional Content for Example 2

We now present additional context for Example 2 from Section 5.2 of the main text. For this example, the

response yi that was collected for each patient i = 1, . . . , nA+nB was their percentage change in body weight

over the course of the study. The covariate x1 = I(Group = A) is the binary treatment indicator, and x2

is the patient’s baseline waist circumference in centimeters (cm). We choose to include this covariate in our

linear model because it is reasonable to expect that correlation between baseline waist circumference and

percentage weight loss is nonnegligible.

For this example, we specify Ψ0 as a degenerate process. We must therefore choose parameter values

for β = (β0, β1, β2) along with parameters for the normal distributions of x2 and ε. Here, we choose values

for the regression parameters of β+
0,r = (−25.75, 5, 0.25). The value for β1 = 5 = δL is on the boundary

of the hypotheses H0 and H1. The choice for β0 = −25.75 indicates that we expect patients in group B

who are given the placebo to lose 3% of their initial body weight on average. This assumption is reasonable

since patients in both groups are given non-pharmaceutical interventions, such as counseling and diet plans.

The value for β2 = 0.25 reflects a Pearson’s correlation coefficient of roughly 0.3 between baseline waist

circumference in cm and percentage weight loss.

Moreover, we suppose the baseline waist circumference x2 for all patients follows a N (115, 14.52) distri-

bution to align with summary statistics from Table 1 of Wilding et al. (2021). We suppose the error terms

ε follow a N (0, 10.072) distribution to reflect the confidence interval for the unadjusted treatment effect in

Wilding et al. (2021) and our assumed correlation between y and x2. The two groups in Wilding et al. (2021)

were balanced with respect to various covariates, so we assume the distributions of x2 and ε are the same in

both groups. The data generation process in Ψ1 reflects a continuum of beliefs regarding the effectiveness of

the semaglutide treatment since the β1 component of β+
1,r

i.i.d.∼ U(9, 12). We have that β1 = 12 reflects the

previously demonstrated efficacy of semaglutide injections (Wilding et al., 2021), and β1 = 9 reflects a less

optimistic scenario.
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