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Abstract

The measurement-constrained problems become frequently encountered in many modern ap-

plications such as electronic health record studies. In such problems, despite the availability of

large datasets, collecting labeled data can be highly costly or time-consuming, and therefore

we may be only affordable to observe the labels on a very small portion of the large dataset.

This poses a critical question that which data points are most beneficial to label given a budget

constraint. In this paper, we focus on the estimation of the optimal individualized threshold

in a measurement-constrained M-estimation framework. In particular, our goal is to estimate

a high-dimensional parameter θ in a linear threshold θTZ for a continuous variable X such

that the discrepancy between whether X exceeds the threshold θTZ and a binary outcome Y

is minimized. In the measurement-constrained setting, we propose a novel K-step active sub-

sampling algorithm to estimate θ, which iteratively samples the most informative observations

in the dataset and solves a regularized M-estimator. The theoretical properties of our estima-

tor demonstrate a phase transition phenomenon with respect to β ≥ 1, the smoothness of the

conditional density of X given Y and Z. In particular, for β > (1 +
√
3)/2, we show that

the two-step algorithm (with K = 2) yields an estimator with the parametric convergence rate

Op((s log d/N)1/2) in l2 norm, where d and s are the dimension and sparsity of θ respectively

and N is the label budget. The rate of our estimator is strictly faster than the minimax optimal

rate Op((s log d/N)β/(2β+1)) with N i.i.d. samples drawn from the population, which illus-

trates the theoretical advantages of the proposed method. However, for the other two scenarios

1 < β ≤ (1 +
√
3)/2 and β = 1, the estimator from the two-step algorithm is sub-optimal. The

former requires to run K > 2 steps to attain the same parametric rate, whereas in the latter case

only a near parametric rate can be obtained even if K is allowed to scale with N . Furthermore,

we formulate a minimax framework for the measurement-constrained M-estimation problem and
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define the N -budget minimax risk. We prove that our estimator is minimax rate optimal up to

a logarithmic factor. We also provide the practical guidelines for the implementation of our al-

gorithm. Finally, we demonstrate the superior performance of our method in simulation studies

and apply the method to analyze a large diabetes dataset from 130 US hospitals.

Keyword: Non-regular models, High-dimensional estimation, Sampling, Measurement constraints, Mini-

max optimality, Kernel smoothing

1 Introduction

In many applications, the scientific questions can be formulated as identifying and interpreting

the optimal individualized threshold value for a continuous variable such that the discrepancy

with a binary outcome is minimized. One prominent example is the so-called minimum clinically

important difference (MCID), which has attracted increasing interests in medical research over

the past decade. The MCID is defined as the smallest difference in post-treatment changes, such

that a patient is considered experiencing a clinically meaningful improvement if her/his change

exceeds this value. Since introduced by Jaeschke et al. (1989), the MCID has been widely used by

clinicians and health policy makers to evaluate the clinical effectiveness of the treatment, because it

is tailored to reflect the patient’s satisfaction or the improvement of her/his health condition. More

recently, to account for the population heterogeneity, it was suggested by Hedayat et al. (2015);

Zhou et al. (2020) to incorporate individual patient’s clinical profile to construct the individualized

MCID (iMCID).

Formally, let X denote a continuous variable representing the measurement of post-treatment

change, Y denote a binary outcome in {−1,+1}, where Y = +1 if the patient’s health condition

is improved after receiving the treatment and Y = −1 otherwise, and Z denote a vector of d-

dimensional covariates such as the patient’s demographic information. Zhou et al. (2020) defined

the iMCID as a function c(Z) which minimizes

P (X < c(Z) | Y = 1) + P (X > c(Z) | Y = −1) . (1.1)

In other words, c(Z) is the optimal individualized threshold for X which minimizes the disagree-

ment between the estimated patient’s health condition and the binary outcome Y . Many other

applications can be also formulated as the problem similar to (1.1). For example, in disease di-

agnosis, the researchers may aim to find the optimal threshold for a continuous biomarker X by

maximizing the Youden’s index, which is defined as the sum of the sensitivity and specificity of

the diagnostic test (Xu et al., 2014). It can be shown that maximizing the Youden’s index is ex-

actly equivalent to minimizing (1.1). Other examples of (1.1) include policy learning problems in

causal inference (Zhao et al., 2012), binary response models in econometrics (Manski, 1975), and

classification in machine learning. The extensions of (1.1) to increasing dimensions and distributed

settings are recently studied by Mukherjee et al. (2021); Feng et al. (2022); Chen et al. (2024).
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From a practical standpoint, a linear structure on the threshold c(Z) is favored for its trans-

parency and ease of interpretation, particularly when dealing with high-dimensional covariates Z.

In this paper, we assume that c(Z) = θTZ for some high-dimensional parameter θ. Under these

assumptions, we can reformulate (1.1) as the following M-estimation problem

θ∗ = argmin
θ

R(θ), where R(θ) = E
[
γ(Y )L01{Y (X − θTZ)}

]
, (1.2)

L01(u) = 1
2{1 − sign(u)} is the 0-1 loss, with sign(u) = 1 if u ≥ 0 and −1 otherwise, and γ(·) is

a user-specified weight function. While this model-free formulation offers greater generality and

potential for accommodating model misspecifications, minimization of the empirical version of R(θ)

is computationally NP-hard due to the 0-1 loss. Additionally, it is well known that the M-estimator

of (1.2) is non-regular, resulting in nonstandard limiting distributions and rates of convergence

(Kim and Pollard, 1990). Recently, Feng et al. (2022, 2024) proposed a regularized M-estimation

framework with a smoothed surrogate loss to estimate and make inference on the high-dimensional

parameter θ∗. In particular, they demonstrated that the finite sample error bound for estimating

θ∗ in l2 norm is given by (s log d/N)β/(2β+1), where d and s are the dimension and sparsity of θ∗

respectively, N is the sample size, and β is the smoothness of the conditional density of X given the

response Y and the covariates Z. With the slower-than-classic root-n rate, they also established

that the resulting estimator is minimax rate optimal up to a logarithmic factor.

Up to this point, all aforementioned methods rely on the assumptions that the observations

are i.i.d. with the estimation process having no influence on the data collection process. How-

ever, in practice, the estimation and data collection processes can be intertwined, especially under

the measurement-constrained setting, where (X,Z) are available for all samples but we are only

affordable to observe Y on a very small portion of the samples (Wang et al., 2017; Zhang et al.,

2021). The measurement-constrained problems become frequently encountered in many modern

applications, when acquiring labeled data is highly costly or time-consuming. For instance, in EHR

(electronic health records) studies, while the data may contain a tremendous amount of patient’s

medical and diagnostic information which can be potentially used as (X,Z) in our problem (1.2),

the gold-standard outcome Y is often not immediately available and may require manual chart

reviews from medical experts. However, due to very expensive cost, chart reviews are typically

conducted only for a small subset of selected patients. Depending on how the patients are sampled

in the EHR database, the resulting M-estimator of (1.2) can be very inefficient.

To address this challenge, we propose a novel K-step active subsampling algorithm for estimat-

ing the high-dimensional parameter θ∗ ∈ Rd in (1.2) under the following measurement-constrained

setting. Formally, assume that we are accessible to a very large dataset (e.g., the EHR database)

D = {Xi,Zi}ni=1 with n i.i.d. samples, where the outcome Yi is unavailable. Let N denote the

label budget, that is the expected total number of samples we are allowed to select. Once a specific

data point is sampled, we can observe the outcome Yi (e.g., via chart reviews in the EHR stud-

ies). Our goal is to devise a computationally and statistically efficient interactive data sampling
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and estimation procedure for θ∗, subject to the budget constraint N , in the scenario N ≪ n and

N ≪ d. Our proposed algorithm starts from uniformly sampling a set of independent data from

D, and solving a regularized M-estimator with a smoothed surrogate loss to construct an initial

estimator for θ∗. We then iteratively use the estimator from the previous iteration to guide the

selection of a new set of independent samples and solve the corresponding regularized M-estimator.

Repeating this process K times yields our final estimator θ̂K . The underlying principle behind

our algorithm is that, as the algorithm iterates, the M-estimators lead to a sequence of intervals

with decreasing lengths that contain the true threshold θ∗TZ with high probability, and in return

sampling data in the corresponding neighborhoods around the threshold can further improve the

estimation accuracy of our M-estimators. One key property of our algorithm is that the probability

of the ith data point being sampled only depends on (Xi,Zi) and the previously sampled data,

making it applicable to the measurement-constrained setting. From the computational side, by

leveraging the smoothness of the surrogate loss, we can design gradient-based algorithms to solve

the regularized M-estimator at each iteration. As a result, our proposed K-step active subsampling

algorithm is computationally efficient.

To investigate the theoretical results of our estimators, we assume that the conditional density

of X given Y and Z satisfies the Hölder smoothness condition with parameter β ≥ 1. Under

this assumption, the theoretical properties of our estimator θ̂K demonstrate an interesting phase

transition phenomenon with respect to β. In particular, for β > (1 +
√
3)/2, with a proper

choice of tuning parameters, we show that the two-step algorithm, i.e., our algorithm with only

K = 2 iterations, yields an optimal estimator with the convergence rate Op((s log d/N)1/2) in l2

norm, where d and s are the dimension and sparsity of θ∗ respectively and N is the label budget.

Compared to the minimax optimal rate Op((s log d/N)β/(2β+1)) derived in Feng et al. (2022), where

the N samples are i.i.d. drawn from the population, our estimator has a faster rate of convergence,

given the same number of samples. In other words, the two-step algorithm requires less data to

attain the same order of convergence rate, rendering it attractive in scenarios where obtaining

labels is highly costly. However, for 1 < β ≤ (1+
√
3)/2, the estimator from the two-step algorithm

is sub-optimal. To achieve the same optimal rate Op((s log d/N)1/2), we need to run at least

K = ⌈log β
2β+1

(1 − β+1
2β2 )⌉ + 1 iterations in our algorithm, where K is strictly greater than 2 but is

fixed and finite. For the last case β = 1, we can achieve a near optimal rate Op((s log d/N)1/2)

multiplied with some extra logarithmic factors with K = ⌈log3(logN)⌉ iterations, where K diverges

slowly as N tends to infinity. The distinct behaviors of our algorithm in above three regimes are

driven by the closeness of the sequence of estimators relative to a fast convergence region. Finally,

we rigorously formulate a minimax framework to study the optimality of our estimators. Unlike

the traditional minimax framework, the distribution of a generic estimator θ̂ depends on the joint

distribution P of (X,Z, Y ) as well as the sampling distribution Q, where P is determined by the

nature but we have the freedom to choose Q. After introducing two proper classes P(β, s) for P
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and QN (P(β, s)) for Q, we define the N -budget minimax risk in l2 norm as

inf
Q∈QN (P(β,s))

inf
θ̂

sup
P∈P(β,s)

EP,Q∥θ̂ − θ∗(P )∥2,

where the supremum is only for the distribution P in P(β, s), the inner infimum is over all possi-

ble estimators θ̂ based on the observed data and the outer infimum is over all possible sampling

distributions Q in QN (P(β, s)), which contains necessary constraints on Q such as the conditional

independence assumptions for the sampling mechanism and the budget constraint. We prove in

Theorem 5 that the N -budget minimax risk for estimating θ in l2 norm is lower bounded by

(s log(d/s)/N)1/2, which implies that our proposed estimators are indeed rate optimal up to loga-

rithmic factors in the measurement-constrained setting.

1.1 Related Work

Subsampling is an effective method for handling computational constraints when dealing with

massive datasets. There’s a large literature on subsampling algorithms for regression models, such

as linear regression (Drineas et al., 2011; Ma et al., 2014; Wang et al., 2019; Raskutti and Mahoney,

2016) and generalized linear models (Wang et al., 2018). Given the budget constraint, the goal

is to construct an estimator based on the sampled data to approximate the least squares or the

maximum likelihood estimator from the entire dataset, and find the optimal subsampling weight

by minimizing the asymptotic variance. The similar idea has been extended to deal with the

measurement-constrained problems (Wang et al., 2017; Zhang et al., 2021). More recently, Zrnic

and Candès (2024) proposed to use a machine learning model to identify which data points are most

beneficial to label, and then find the optimal sampling weight by minimizing the variance of the

estimator or classification uncertainty. For binary data, the case-control subsampling is considered

by Fithian and Hastie (2014) among many others.

In recent years, there has been a substantial research focusing on adaptive experimental design,

often with the goal of efficiently estimating average treatment effects. For instance, Hahn et al.

(2011) developed a two-stage experiment for estimating average treatment effects, with data from

the first stage guiding treatment assignment in the second stage. Hadad et al. (2021) considered

how to construct confidence intervals for the average treatment effect with adaptively collected

data. A recent overview of adaptive design is given by Perera et al. (2020).

We can see that all aforementioned works share the similarity that the data are collected adap-

tively with the goal of improved asymptotic efficiency for statistical inference. However, our work

focuses on the threshold estimation problem which is known as a non-regular problem with nonstan-

dard rate of convergence. Our goal is to design a subsampling procedure to improve the convergence

rate of the estimators. Thus, our methodology and theoretical results are completely different from

the aforementioned works.

Another closely related area is active learning, see Balcan et al. (2007); Koltchinskii (2010);

Balcan and Long (2013); Castro and Nowak (2008); Wang and Singh (2016), among many others.
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While our problem setup is similar to the pool-based active learning algorithms, our work is distinct

from the active learning literature in both method and theory. Specifically, our algorithm itera-

tively solves regularized M-estimators with a smoothed surrogate loss via gradient-based methods,

which is computationally efficient. However, most of the margin-based active learning algorithms

such as Balcan et al. (2007); Wang and Singh (2016) require to minimize the empirical 0-1 loss,

which is computationally intractable especially in high-dimensional setting. In addition, when the

smoothness parameter β is greater than (1 +
√
3)/2 ≈ 1.37, our proposed algorithm employs a

streamlined two-step process (i.e., K = 2 iterations), which significantly enhances implementation

simplicity and efficiency. In contrast, the pipeline of an active learning algorithm often involves

iterative model updates (usually logN iterations) until a stopping criterion is met. In theory, the

Tsybakov noise condition plays a pivotal role in deriving theoretical guarantees in the active learn-

ing literature. Technically, when establishing these theoretical guarantees, the stopping criteria and

the number of total iterations in the active learning algorithm are determined to ensure compliance

with the assumed Tsybakov noise condition. In contrast, our analysis relies on the smoothness of

the conditional density of X given Z and Y rather than such noise conditions, and our estima-

tors show completely different behaviors. Furthermore, the active learning literature focuses on

bounding the excess risk of the classifiers, whereas we are interesting in estimating and interpret-

ing the optimal individualized threshold with theoretical guarantees on the estimation error of θ∗.

These differences in approach leads to fundamentally distinct theoretical results and proof strategy

compared to the active learning literature.

1.2 Organization of the paper

The rest of this paper is organized as follows. Section 2 introduces our proposed active subsampling

algorithm and the corresponding estimator. In Section 3 we analyze the theoretical properties of the

algorithm, and derive upper bounds for the estimation error, followed by establishing a matching

lower bound. Section 4 discusses the practical implementation considerations and presents a data-

driven active subsampling algorithm. Simulation studies and a real data application are presented

in Sections 5 and 6, respectively.

1.3 Notations

We write 1{} for the indicator function. For any set S, we write |S| for its cardinality. For

v = (v1, . . . , vd)
T ∈ Rd, we use vS to denote the subvector of v with entries indexed by the set S.

For q = [1,∞), ∥v∥q = (
∑d

i=1 |vi|
q)1/q and ∥v∥0 =

∑d
i=1 1{vi ̸= 0}. For any a, b ∈ R, we write

a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any positive sequences {a1, a2, . . .} and {b1, b2, . . .},
we write an ≲ bn or an = O(bn) if there exists a constant c such that an ≤ cbn for any n, and

an ≍ bn if an ≲ bn and bn ≲ an. Let ⌊a⌋ be the greatest integer strictly less than a, and ⌈a⌉ be
the smallest integer strictly greater than a. Let λmin(M) and λmax(M) be the smallest and largest
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eigenvalues of M . A random variable X is called sub-Gaussian if there exists a positive constant

K such that P(|X| ≥ t) ≤ 2 exp(−t2/K2) for all t ≥ 0. The sub-Gaussian norm of X is defined

as ∥X∥ψ2 = inf
{
c > 0 : E[exp(X2/c2)] ≤ 2

}
. A vector X ∈ Rd is a sub-Gaussian vector if the

one-dimensional marginals vTX are sub-Gaussian for all v ∈ Rd, and its sub-Gaussian norm is

defined as ∥X∥ψ2 = sup∥v∥2=1

∥∥vTX∥∥
ψ2
.

2 Proposed Method

2.1 Background and Heuristics for Subsampling

In this section, we briefly review the regularized M-estimation approach proposed by Feng et al.

(2022) for estimating θ∗ in (1.2) and use this to explain the heuristics for the subsampling method.

For now, assume that we observe n i.i.d copies of (X,Z, Y ). Recall that the risk function R(θ)

is defined in (1.2). While R(θ) is typically a smooth function of the parameter θ, the empirical

version Rn(θ) = 1
n

∑n
i=1 γ(Yi)L01{Yi(Xi − θTZi)} is non-smooth, which makes the minimization

of Rn(θ) intractable, especially when the dimension of θ is large, and also leads to nonstandard

theoretical properties, such as the cubic root rate of convergence (Kim and Pollard, 1990).

To address these challenges, Feng et al. (2022) proposed to approximate the 0-1 loss by the

following smoothed surrogate loss

Lδ(u) =

∫ ∞

u/δ
K(t)dt, (2.1)

where K(t) is a proper kernel function defined in Assumption 3.4, and δ > 0 is a bandwidth

parameter. As the bandwidth δ → 0, we have Lδ(u)→ L01(u) for any u ̸= 0. Thus, it is intuitive to

estimate θ∗ by the minimizer of the regularized smoothed empirical risk, θ̂iid = argmin{Rn
δ,iid(θ)+

λ∥θ∥1}, where

Rn
δ,iid(θ) =

1

n

n∑
i=1

γ(Yi)Lδ(Yi(Xi − θTZi)),

and λ is a tuning parameter. While Rn
δ,iid(θ) is still non-convex, Feng et al. (2022) showed that

the entire solution path for the lasso type estimator θ̂iid can be computed efficiently via the path-

following algorithm. In addition, with a proper choice of δ and λ, the convergence rate of θ̂iid is

faster than the classic cubic root rate.

We note that by the M-estimation theory, since Rn
δ,iid(θ) is differentiable in θ, the gradient of

Rn
δ,iid(θ) at θ

∗,

∇Rn
δ,iid(θ

∗) =
1

n

n∑
i=1

γ(Yi)
ZiYi
δ

K
(Yi(Xi − θ∗TZi)

δ

)
,

together with some other conditions, determine the convergence rate of θ̂iid. A basic but crucial

observation that inspires our subsampling method is that, by the property of the kernel function

K(·) in ∇Rn
δ,iid(θ

∗), the closer Xi − θ∗TZi to 0 the higher weight the ith data point receives. In
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other words, the data points whose Xi − θ∗TZi value is close to 0 are the most informative ones

for estimating θ∗, and therefore they are most beneficial to label in our subsampling algorithm.

Algorithm 1 θ ← K-step Active Subsampling

input: D = {Xi,Zi}ni=1, label budget N , the number of iterations K

parameter: {λk}Kk=1, {bk}
K−1
k=1 , {δk}Kk=1 and {Nk}Kk=1 with

∑K
k=1Nk = N

Randomly split D into K batches: D1, · · · , DK , each with batch size n/K.

Draw data (Xi,Zi) from D1 with probability cn,1 = N1K/n. Acquire the label Yi for each

sampled data and form the dataset D∗
1 = {Xi,Zi, Yi}Ri=1, where (Xi,Zi) ∈ D1.

θ̂1 ← argminθ{R
D1
δ1

(θ) + λ1∥θ∥1}.
for k = 2 to K do

Compute the active set: Sk ←
{
(X,Z) : −bk−1 ≤

X−θ̂T
k−1Z√

1+∥θ̂k−1∥22
≤ bk−1

}
.

Given (Xi,Zi) ∈ Sk, draw the data point (Xi,Zi) from Dk with probability cn,k =

NkK/ (nP ((X,Z) ∈ Sk)). Acquire the label Yi for each sampled data and form D∗
k =

{Xi,Zi, Yi}Ri=1, where (Xi,Zi) ∈ Dk.

θ̂k ← argminθ{R
Dk
δk

(θ) + λk∥θ∥1}.
end for

return θ̂K

2.2 Active Subsampling Algorithm

Now, let us consider the measurement-constrained setting. Recall that we are accessible to a very

large dataset D = {Xi,Zi}ni=1 with n i.i.d. samples, where the outcome Yi is unavailable. We

seek to sample N ≪ n data points (on average) from the dataset D and collect their outcomes to

construct an estimator of θ∗.

We introduce a binary random variable Ri to represent whether the data point (Xi,Zi) is

sampled or not, where Ri = 1 if (Xi,Zi) is sampled and Ri = 0 otherwise. Now, we introduce

our active subsampling approach as outlined in Algorithm 1. The algorithm runs for a total of

K iterations, where K is to be specified later on. To ensure that the data distribution during

each iteration remains consistent with the original data D, we randomly divide D into K batches

D1, · · · , DK with equal size n/K. In the first iteration, since there is no prior information on θ∗,

we uniformly sample data from D1 with probability 0 < cn,1 < 1. That is, for each (Xi,Zi) ∈ D1,

Ri is generated independently with probability

P(Ri = 1) = cn,1 =
N1K

n
, (2.2)

where N1 is the expected number of data points sampled in the first iteration. Given the sampled

dataset D∗
1 = {Xi,Zi, Yi}Ri=1, we then minimize the regularized smoothed empirical risk function
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to obtain

θ̂1 := argmin
θ
{RD1

δ1
(θ) + λ1∥θ∥1}, (2.3)

where RD1
δ1

(θ) is a special case of (2.4) with a bandwidth parameter δ1 and λ1 > 0 is a regularization

parameter. In general, for the sampled data from the dataset Dk with |Dk| = n/K, we define

RDk
δk

(θ) =
K

n

∑
(Xi,Zi)∈Dk

γ(Yi)Lδk(Yi(Xi − θTZi))Ri, (2.4)

for all 1 ≤ k ≤ K. For iteration 2 ≤ k ≤ K, we define an active set as

Sk :=

(X,Z) ∈ R× Rd : −bk−1 ≤
X − θ̂Tk−1Z√
1 + ∥θ̂k−1∥22

≤ bk−1

 , (2.5)

where θ̂k−1 is the estimator derived from the (k − 1)th iteration, and bk−1 > 0 is the tuning

parameter controlling the size of Sk. We propose to uniformly sample the data points from Dk

which belong to the active set Sk. Specifically, given (Xi,Zi) ∈ Dk and θ̂k−1, we generate Ri from

a Bernoulli distribution with

P(Ri = 1 | Xi,Zi, θ̂k−1) = cn,k · 1{(Xi,Zi) ∈ Sk}, (2.6)

where cn,k = NkK/ (nP ((X,Z) ∈ Sk)) under the label budget constraint Nk for this iteration. By

the definition of Sk, the sampling mechanism implies that only the data point whose Xi − θ̂k−1Zi

is sufficiently close to 0 is potentially sampled. This matches with our heuristics in Section 2.1.

Given how Ri is generated, we can verify that the independence assumptions (Xi,Zi, Yi) ⊥ H̄i−1

and Ri ⊥ Yi | Xi,Zi, H̄i−1 hold, where H̄i−1 denotes all observed data right before we decide

whether (Xi,Zi) is sampled or not. These two independence assumptions play an important role

in the minimax lower bound; see Section 3.3 for more detailed discussions.

Given the dataset Dk and the selection indicators, we derive the estimator

θ̂k := argmin
θ
{RDk

δk
(θ) + λk∥θ∥1}, (2.7)

where RDk
δk

(θ) is defined in (2.4). Repeating this procedure K times, we obtain our final estimator

θ̂K .

In our algorithm, the sampling probability cn,k, which depends on P ((X,Z) ∈ Sk), is assumed

to be known. In practice, provided the active set Sk is given, we can indeed estimate P ((X,Z) ∈ Sk)

easily as we have a large amount of unlabeled data. Specifically, in Algorithm 1, we can instead ran-

domly divide the dataset D into K+1 batches D0, D1, ..., DK , where we use D0 to compute an em-

pirical estimator p̂k of P ((X,Z) ∈ Sk), and then construct a plug-in estimator ĉn,k := NkK/(np̂k)

of cn,k. We draw samples from Dk according to (2.6) with cn,k replaced by ĉn,k and compute the

estimator in (2.7). The sample splitting procedure guarantees the desired independence between
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ĉn,k and the data in Dk and moreover the estimation error from p̂k is shown to be negligible as

P ((X,Z) ∈ Sk) is estimated based on O(n/K) amount of data with n≫ N . The discussion on the

other computational aspect of our algorithm is deferred to Section 4.

3 Theoretical Results

We first list the technical assumptions in Section 3.1. The convergence rate of our estimator is

studied in Section 3.2, followed by the minimax lower bound in Section 3.3. Without loss of

generality, we set the weight function in (1.2) as γ(y) = 1/P(Y = y).

3.1 Assumptions

Assumption 3.1. θ∗ is s-sparse with ∥θ∗∥0 ≤ s and ∥θ∗∥2 ≤ C for some constant C.

Assumption 3.1 gives the conditions on θ∗. Besides the sparsity of θ∗, we also assume ∥θ∗∥2 is

bounded, which intuitively matches the magnitude of X and its threhold θ∗TZ. Technically, this

condition is used to verify the restricted strong convexity (RSC) condition (Feng et al., 2022). In

particular, we provide a counterexample in Section A.8 that the RSC condition (such as Assumption

3.5 in below) fails when ∥θ∗∥2 diverges to infinity.

Assumption 3.2. (i) There exists a constant 0 < c < 1/2 such that c ≤ P(Y = 1) ≤ 1− c.

(ii) Assume that |Zij | ≤Mn for any 1 ≤ i ≤ n and 1 ≤ j ≤ d, where Mn is allowed to increase with

n such that

Mn ≤ C

√
nmin1≤k≤K δkcn,k

K log d
(3.1)

for some constant C, where K is the number of iterations, δk is the bandwidth parameter of the

kernel function utilized in the kth iteration and cn,k is defined in (2.6). In addition, it holds that

sup
∥v∥0≤s′

vTE
(
ZZT | Y = y

)
v

∥v∥22
≤M1 <∞, (3.2)

for some constant M1 > 0, where s′ = Cs for some sufficiently large constant C.

(iii) Z given Y = y is a sub-Gaussian vector with a bounded sub-Gaussian norm.

Assumption 3.2 is concerned with the boundedness of Z and Y . Part (i) ensures that the weight

function γ(y) = 1/P(Y = y) is bounded away from infinity. For part (ii), if each component of

Z is sub-Gaussian with bounded sub-Gaussian norm, max1≤i≤n,1≤j≤d |Zij | ≤ Mn holds with high

probability withMn ≍ (log(d∨n))1/2. Given the choices of δk and cn,k presented in Theorem 2, (3.1)

reduces to Mn ≤ C
√

N
K log d , which is a mild condition provided N is large enough. Furthermore,

(3.2) controls the maximal sparse eigenvalues of E(ZZT | Y = y), we refer to Bühlmann and Van

De Geer (2011) for the detailed discussion. Finally, part (iii) is used to provide a sharp bound for
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the plug-in error of θ̂k−1 in the active set Sk. This condition can be removed with the price of

obtaining a sub-optimal rate for our estimator; see Section A.4 for the detailed result.

The following definition and assumption are concerned with the smoothness of the conditional

density of X given Y and Z.

Definition 3.1. Let l = ⌊β⌋ be the greatest integer strictly less than β. We say P ∈ P (β, L) if

the conditional density f(x | y,z) of X | Y,Z is l times differentiable w.r.t x at x = θ∗Tz for any

y,z, and satisfies ∣∣∣f (l)
(
θ∗Tz +∆ | y,z

)
− f (l)

(
θ∗Tz | y,z

)∣∣∣ ≤ L |∆|β−l , (3.3)

for any ∆ ∈ R, y ∈ {−1, 1}, z ∈ Rd and some constant L > 0.

Assumption 3.3. We assume P ∈ P (β, L), where β ≥ 1 and L > 0 are constants. In addition,

sup
x∈X ,y∈{−1,1},z∈Z

f(x | y,z) < pmax <∞, (3.4)

and there exists a set G ∈ Rd such that P(Z ∈ G) ≥ C for some constant 0 < C ≤ 1 and

inf
x∈B(θ∗T z,ϵn),z∈G

f(x | z) ≥ pmin > 0, (3.5)

where X and Z are the support sets of X and Z, B(θ∗Tz, ϵn) := {x ∈ X : |x − θ∗Tz| ≤ ϵn},
ϵn = Cmax2≤k≤K bk−1 for some constant C large enough, and pmax, pmin > 0 are some constants.

In this assumption, f(x | y, z) is assumed to belong to a β-smooth Hölder class at x = θ∗Tz for

β ≥ 1. We exclude the case 0 < β < 1, as we show that under mild conditions the non-smoothness

of f(x | y,z) leads to diverging curvature of the risk function R(θ), which contradicts with the

restricted smoothness (RSM) condition (Feng et al., 2022); see also Assumption 3.5. We defer the

detailed results and counterexamples under 0 < β < 1 to Section A.9.

Assumption 3.3 requires that f(x | y,z) is upper bounded by some constant. Since we also need

to lower bound the probability of (X,Z) belonging to the active set Sk, we further assume that

there exists a region G of z, such that f(x | z) is lower bounded by some constant for any z ∈ G
and x ∈ B(θ∗Tz, ϵn).

Recall that we introduced the kernel function K(t) in the surrogate loss (2.1). The following

assumption is concerned with the kernel function K(t).

Assumption 3.4. Assume that K(t) is a proper kernel of order l = ⌊β⌋ with bounded support,

where β is the smoothness parameter in Assumption 3.3. That is K(t) satisfies K(t) = K(−t),
|K(t)| ≤ Kmax <∞,

∫
K(t)dt = 1,

∫
K2(t)dt <∞,

∫
tjK(t)dt = 0,∀j = 1, . . . , l, and

∫
|K(t)||t|qdt

is bounded by a constant for any q ∈ [l, l + 1].

Similar to the nonparametric estimation problems, we adopt a kernel of order l to control the

higher order bias of the gradient of the smoothed empirical risk E(∇RDk
δk

(θ∗) | θ̂k−1) as shown
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in Proposition A.2. For clarity we present our theoretical results for the kernel with bounded

support. With little modification on the proof, our results can be extended to kernels with mild

tail conditions such as Gaussian kernels. The detailed results are deferred to Section A.4.

Assumption 3.5. There exists a sequence of sets Ω0 = {θ : ∥θ∥2 ≤ R0} and Ωk−1 = {θ : ∥θ −
θ̂k−1∥2 ≤ Rk−1} for 2 ≤ k ≤ K, such that θ∗ ∈ Ωk−1 and the following restricted strong convexity

(RSC) and restricted smoothness (RSM) conditions hold for RDk
δk

(θ) over sparse vectors in Ωk−1,

for 1 ≤ k ≤ K. That is, uniformly over 1 ≤ k ≤ K and θ,θ′ ∈ Ωk−1 with (∥θ′∥0 ∨ ∥θ∥0) ≲ s, we

have

RDk
δk

(
θ′) ≥ RDk

δk
(θ) +∇RDk

δk
(θ)T

(
θ′ − θ

)
+

1

2
ρ−n,k

∥∥θ′ − θ
∥∥2
2
, (3.6)

and

RDk
δk

(
θ′) ≤ RDk

δk
(θ) +∇RDk

δk
(θ)T

(
θ′ − θ

)
+

1

2
ρ+n,k

∥∥θ′ − θ
∥∥2
2
, (3.7)

where ρ−n,k = C1cn,k, ρ
+
n,k = C2cn,k for some constants C1, C2 > 0.

The RSC and RSM conditions are commonly used to analyze the statistical rate and compu-

tational guarantee of the path-following algorithm for non-convex optimization problems in high-

dimensional regression. Similar conditions have been discussed extensively in the literature; see

Bühlmann and Van De Geer (2011) for the detailed discussion. In our context, we require that the

smoothed empirical risk at the kth iteration is ρ−n,k-strongly convex in (3.6) and ρ+n,k-smooth in (3.7)

when restricted to sparse vectors in Ωk−1, where ρ−n,k and ρ+n,k are both proportional to cn,k. Since

the ith data point at the kth iteration contributes to RDk
δk

(θ) only when Ri = 1, the convexity and

smoothness of RDk
δk

(θ) is expected to scale with cn,k. Assumption 3.5 can be verified in a case by

case manner under specific distributional assumptions. When k = 1, the RSC and RSM conditions

over Ω0 have been established by Feng et al. (2022) for some properly chosen constant R0. For

k ≥ 2, by mathematical induction, it suffices to conduct a localized analysis over Ωk−1 with Rk−1

being the upper bound for the statistical rate ∥θ̂k−1 − θ∗∥2. With this choice of Rk−1, clearly we

have θ∗ ∈ Ωk−1 with high probability. Given Rk−1 = o(1) and the fact that the smoothed empirical

risk RDk
δk

(θ) is sufficiently smooth, we can apply the Taylor expansion at θ∗ to verify (3.6) and

(3.7). The detailed verification of this assumption is deferred to Section A.7.

3.2 Convergence Rate of the Proposed Estimator

We first present a master theorem that characterizes the effect of subsampling on the convergence

rate of our estimators at each iteration.

Theorem 1. Under Assumptions 3.1-3.5, for any 1 ≤ k ≤ K, choose λk ≍
√

cn,kK log d
nδk

, and

δk ≍
(
Ks log d
ncn,k

)1/(2β+1)
. With probability greater than 1− 2d−1, we have

∥θ̂1 − θ∗∥2 ≲
(
s log d

N1

)β/(2β+1)

, ∥θ̂1 − θ∗∥1 ≲
√
s

(
s log d

N1

)β/(2β+1)

. (3.8)
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For 2 ≤ k ≤ K, if we further assume

bk−1 ≥ Cδk, the event Wk−1 =
{
bk−1 ≥ C∥θ̂k−1 − θ∗∥2

√
log

Nk

s log d

}
holds (3.9)

for some large constant C > 0 and there exists a large constant ζ such that ( s log dNk
)ζ ≲ δk with

δk = o(1), then with probability greater than 1− 2d−1,

∥θ̂k − θ∗∥2 ≲
(
P ((X,Z) ∈ Sk) s log d

Nk

)β/(2β+1)

,

∥θ̂k − θ∗∥1 ≲
√
s

(
P ((X,Z) ∈ Sk) s log d

Nk

)β/(2β+1)

, (3.10)

where Nk =
∑

(Xi,Zi)∈Dk
E (Ri) is the expected sample size at the kth iteration.

In this theorem, the tuning parameters λk and δk are determined by a bias-variance trade-off.

Specifically, Proposition A.2 implies that the bias of the smoothed empirical risk RDk
δk

(θ) due to

kernel smoothing satisfies ∥∥∥E(∇RDk
δk

(θ∗)|θ̂k−1)−∇R(θ∗)
∥∥∥
∞

≲ cn,kδ
β
k .

Moreover, Proposition A.1 characterizes the stochastic error of ∇RDk
δk

(θ∗),

∥∥∥∇RDk
δk

(θ∗)− E(∇RDk
δk

(θ∗)|θ̂k−1)
∥∥∥
∞

≲

√
cn,kK log d

nδk
.

Our analysis reveals that the bandwidth δk is chosen to balance the bias cn,kδ
β
k with the stochastic

error
√

cn,kK log d
nδk

multiplied by
√
s. A simple calculation yields δk ≍

(
Ks log d
ncn,k

)1/(2β+1)
. The

shrinkage parameter λk needs to dominate the stochastic error of ∇RDk
δk

(θ∗) to exploit the sparsity

of θ. In practice, the tuning parameters can be determined by a cross-validation approach shown

in Section 4.

In the following, we comment on the convergence rate of θ̂k. For k = 1, the convergence

rate of θ̂1 in (3.8) is nonstandard and slower than the typical parametric rate for regular models

(e.g., linear/logistic regression with Lasso). Since the estimator θ̂1 is computed under uniform

subsampling, the rate of θ̂1 matches with Feng et al. (2022), and the rate is minimax optimal

(up to a logarithmic factor) when data are i.i.d drawn from the population. In contrast, for

k ≥ 2, the convergence rate of θ̂k in (3.10) includes an additional factor P((X,Z) ∈ Sk). By

the definition of the active set Sk in (2.5), P((X,Z) ∈ Sk) depends on the regularity of the joint

distribution of (X,Z), the accuracy of the estimator θ̂k−1 from the previous iteration and the

choice of bk−1. Under Assumption 3.3 and when θ̂k−1 is close enough to θ∗, we can show that

P((X,Z) ∈ Sk) is proportional to bk−1. If we allow bk−1 → 0 and Nk no smaller than N1, the
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convergence rate of θ̂k obtained via active subsampling is faster than θ̂1 obtained under uniform

subsampling. Moreover, since (3.10) holds for any choice of bk−1 provided (3.9) is satisfied, there

is a trade-off for determining the optimal choice of bk−1 and the corresponding optimal rate of θ̂k.

Our previous argument suggests that a smaller value of bk−1 is desirable to attain a faster rate of

θ̂k in (3.10). However, the condition (3.9) prevents us from choosing the value of bk−1 too small,

see Remark 1 below for interpretation of condition (3.9). These together yield the optimal choice

of bk−1 and the corresponding optimal rate of θ̂k.

Remark 1. The condition (3.9) is inherited from Proposition A.2, which is used to control the

approximation error of E(∇RDk
δk

(θ∗)|θ̂k−1) to ∇R(θ∗) (which is 0 by definition). Since we show that

P((X,Z) ∈ Sk) ≍ bk−1, we can interpret bk−1 as the size of the active set Sk. The first condition

bk−1 ≥ Cδk in (3.9) requires that the bandwidth δk should be chosen in a smaller order than the

size of the active set. Otherwise, the surrogate risk Rδ(·) is not shrunk to R(·) sufficiently fast.

The event Wk−1 in (3.9) is concerned with the stability of the active set Sk with respect to the

plug-in estimator θ̂k−1. Recall that the sample (Xi,Zi) with Xi−θ∗TZi ≈ 0 is more informative for

estimating θ and therefore such sample is expected to fall into the active set. However, in practice,

we need to plug in the estimator θ̂k−1 to compute the active set. To retain the informative samples

in the active set as much as possible, the size of the active set needs to be large enough to account

for the uncertainty of the estimator θ̂k−1.

To obtain the optimal rate for our final estimator θ̂K via Theorem 1, we need to optimize

the parameters {λk}Kk=1, {bk}
K−1
k=1 , {δk}Kk=1 and {Nk}Kk=1 as well as the number of iterations K in

Algorithm 1. The choices of the parameters clearly affect the performance of our estimator. In

the following, we show that the property of our estimator θ̂K demonstrates a phase transition

phenomenon with respect to the smoothness parameter β. In particular, there exist two critical

points 1 and (1 +
√
3)/2 for β, that partition β ∈ [1,+∞) (see Assumption 3.3) into three cases:

(i) β ∈ ((1 +
√
3)/2,+∞); (ii) β ∈ (1, (1 +

√
3)/2]; and (iii) β = 1. We start from the theoretical

result for β ∈ ((1 +
√
3)/2,+∞).

Theorem 2 (Optimal rate for β > 1+
√
3

2 ). Assume that Assumptions 3.1-3.5 hold, K ≥ 2 and

β > 1+
√
3

2 are both fixed. We set Nk = N/K for 1 ≤ k ≤ K and

δ1 = c1

(
s log d

N

)1/(2β+1)

, λ1 = c2

√
N log d

n2δ1
,

δk = c1

(
s log d

N

)1/(2β)

, λk = c2

√
N log d

n2bk−1δk
, bk−1 = c3

(
s log d

N

)1/(2β)

, 2 ≤ k ≤ K,

for some constants c1, c2, c3 > 0. If

N ≲ (s log d)
1

2β+1n
2β

2β+1 , (3.11)
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and s log d = o(N), then with probability greater than 1− 2K/d, we have

∥θ̂k − θ∗∥2 ≲
(
s log d

N

)1/2

, ∥θ̂k − θ∗∥1 ≲
√
s

(
s log d

N

)1/2

, (3.12)

uniformly over 2 ≤ k ≤ K, where N is the pre-specified label budget.

The tuning parameters δk and λk in this theorem are chosen in the same way as in Theorem 1,

where we plug in cn,k =
KNk

nP((X,Z)∈Sk)
and invoke the intermediate result P ((X,Z) ∈ Sk) ≍ bk−1. In

addition, when β > 1+
√
3

2 , we choose the smallest value of bk−1 such that the condition bk−1 ≥ Cδk

in (3.9) holds, and we show that the event Wk−1 in (3.9) also holds with high probability for such

choice of bk−1. The condition (3.11) requires that the size of the original dataset n should far exceed

the desired label budget N , which is reasonable in many applications (e.g., EHR studies). This

condition ensures that there exist enough data points in the active set Sk for us to sample. In this

theorem, the budget N is evenly divided across K iterations so that the expected sample size at the

final iteration is NK = N/K. Intuitively, it may be desirable to allocate more budget to compute

θ̂k as k increases. However, theoretically, there is no improvement in terms of the convergence rate;

see Section A.6 for a variant of Theorem 2 in this case.

The convergence rate of our estimators θ̂k at each iterations is shown in (3.12). For any k ≥ 2,

the rate can be viewed as the parametric rate for sparse models and is faster than the minimax

optimal rate under uniform subsampling (Feng et al., 2022), see also (3.8), which justifies the

theoretical advantage of estimating θ∗ via the proposed active subsampling approach. Moreover,

as the rate (3.12) stays the same for any k ≥ 2, it suffices to only run K = 2 iterations in Algorithm

1.

Theorem 3 (Optimal rate for 1 < β ≤ 1+
√
3

2 ). Assume that Assumptions 3.1-3.5 hold, K =

⌈log β
2β+1

(1− β+1
2β2 )⌉+ 1 and 1 < β ≤ 1+

√
3

2 are fixed. We set Nk = N/K for 1 ≤ k ≤ K,

δ1 = c1

(
s log d

N

)1/(2β+1)

, λ1 = c2

√
N log d

n2δ1
,

for 2 ≤ k ≤ K − 1,

bk−1 = c3

(
log(

N

s log d
)

) (2β+1)(1−(
β

2β+1
)k−1)

2(β+1)
(
s log d

N

) β
β+1

(1−( β
2β+1

)k−1)

,

δk = c1

(
bk−1s log d

N

)1/(2β+1)

, λk = c2

√
N log d

n2bk−1δk
,

and

bK−1 = c3

(
s log d

N

)1/(2β)

, δK = c1

(
s log d

N

)1/(2β)

, λK = c2

√
N log d

n2bK−1δK
,
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for some constants c1, c2, c3 > 0. If

N ≲
(
log(

N

s log d
)
) β+1

2(2β+1)
(s log d)

β
2β+1n

β+1
2β+1 , (3.13)

(3.11) and s log d = o(N) hold, then with probability greater than 1− 2K/d, we have

∥θ̂K − θ∗∥2 ≲
(
s log d

N

)1/2

, ∥θ̂K − θ∗∥1 ≲
√
s

(
s log d

N

)1/2

. (3.14)

Compared with the results in Theorem 2, our estimator shows different behaviors when 1 <

β ≤ (1+
√
3)/2. While we still obtain the same parametric rate for θ̂K in (3.14), the key difference

is that we have to run at least K = ⌈log β
2β+1

(1− β+1
2β2 )⌉+1 iterations in Algorithm 1 to attain (3.14)

as opposed to only K = 2 iterations in Theorem 2. Note that log β
2β+1

(1− β+1
2β2 ) is well defined and

is strictly greater than 1 for 1 < β ≤ (1 +
√
3)/2. Indeed, a crucial intermediate result in the proof

of Theorem 3 is that, for any 2 ≤ k ≤ K − 1,

∥θ̂k − θ∗∥2 ≲
(
log(

N

s log d
)

) β
2(1+β)

(1−( β
2β+1

)k−1) (s log d
N

)(1−( β
2β+1

)k) β
1+β

, (3.15)

with high probability. It can be verified that, for any fixed 1 < β ≤ (1 +
√
3)/2 and for any

2 ≤ k ≤ K−1, the rate in (3.15) is slower than the parametric rate in (3.14). Consequently, in this

case, running Algorithm 1 with the number of iterations less than ⌈log β
2β+1

(1− β+1
2β2 )⌉+ 1 leads to

the sub-optimal rate (3.15). This phenomenon occurs because, for 1 < β ≤ (1 +
√
3)/2, the rate of

θ̂1 is not fast enough so that we have to choose a larger value of b1 to ensure the event W1 in (3.9)

holds. This continues to be the case, as the iterations progress until θ̂k falls into a fast convergence

region

Θfast,β =
{
θ : ∥θ − θ∗∥2 ≲

(Ks log d

N

)1/(2β)√
log(

Ks log d

N
)
}
, (3.16)

which is derived by matching the rate of θ̂k−1 with the order of δk up to a logarithmic factor (see

the two conditions in (3.9)). Once θ̂k ∈ Θfast,β with high probability, we only need to apply one

more iteration to achieve the parametric rate, which is in principle the same as how we analyze the

estimator θ̂2 given θ̂1 in Theorem 2.

Finally, the following theorem characterizes the convergence rate of the estimator for β = 1.

Theorem 4 (Optimal rate for β = 1). Assume that Assumptions 3.1-3.5 hold, β = 1 and K =

⌈log3(logN)⌉. We set Nk = N/K for 1 ≤ k ≤ K,

δ1 = c1

(
Ks log d

N

)1/3

, λ1 = c2

√
NK log d

n2δ1
,
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and for 2 ≤ k ≤ K,

bk−1 =c3

(
log(

N

Ks log d
)

) 3−1/3k−2

4
(
Ks log d

N

) 1−1/3k−1

2

, (3.17)

δk =c1

(
bk−1Ks log d

N

)1/3

, λk = c2

√
NK log d

n2bk−1δk
, (3.18)

for some constants c1, c2, c3 > 0. If

N ≲
(
log(

N

Ks log d
)
)1/3

(Ks log d)1/3n2/3, (3.19)

and Ks log d = o(N) hold, then with probability greater than 1− 2Kd−1,

∥θ̂K − θ∗∥2 ≲
(
log(

N

Ks log d
)

) 1
4
(
Ks log d

N

) 1
2

, (3.20)

∥θ̂K − θ∗∥1 ≲
√
s

(
log(

N

Ks log d
)

) 1
4
(
Ks log d

N

) 1
2

. (3.21)

For β = 1, the convergence rate of θ̂K in (3.20) and (3.21) is nearly parametric (with some

extra logarithmic factors). However, unlike the two previous cases (i) β > (1 +
√
3)/2 and (ii)

1 < β ≤ (1 +
√
3)/2, we have to run at least K = ⌈log3(logN)⌉ iterations in Algorithm 1 to attain

the near-parametric rate, where K has to grow with N , although, very slowly. The intuition is that

for β = 1, the rate of θ̂1 becomes Op((
Ks log d

N )1/3) and is too slow so that the sequence of estimators

θ̂1, θ̂2, ..., θ̂k, ... can only approach the fast convergence region Θfast,β=1 defined in (3.16) but never

fall into this region. Finally, we end the algorithm at K = ⌈log3(logN)⌉ steps when θ̂K is close

enough to the fast convergence region. More precisely, we choose K such that the convergence rate

of θ̂K+1 matches with that of θ̂K . In other words, there is no further improvement on the statistical

rate of the estimators to run more than K iterations in Algorithm 1.

Remark 2. Mallik et al. (2020) studied a general M-estimation problem with multistage sampling

procedures. In particular, they considered the following classification problem d∗ = argminE[L01(Y (X−
d))], where L01(·) is the 0-1 loss. They assumed that η(x) = P(Y = 1|X = x) is continuously dif-

ferentiable in a neighborhood of d∗. Their main idea is to use an isotonic regression approach

to estimate η(x) and then invert this function at 1/2 to estimate d∗. Using this approach, their

first-stage estimator d̂1 with N i.i.d data sampled uniformly from the population has the rate

Op(N
−1/3). In the second stage, they sampled another N i.i.d data in a zoomed-in neighborhood

of d̂1 and the resulting second-stage estimator d̂2 has the rate Op(N
−(1+γ)/3) for any γ < 1/3,

whose limiting distribution was also established. Compared with their results, under the assump-

tion that β = 1 and d, s are fixed, the proof of Theorem 4 shows that our estimator θ̂1 has the rate

Op((log(logN)/N)1/3) and θ̂2 has the rate Op((logN)1/6(log(logN)/N)4/9), which are comparable

to the rates of d̂1 and d̂2, respectively. In their paper, they did not pursue the theoretical results
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of the estimators beyond 2 stages, whereas our results confirm that the convergence rate can be

further accelerated until we reach the stage K = ⌈log3(logN)⌉.

Remark 3. It is seen that the choice of tuning parameters and the number of iterations requires

the knowledge of the smoothness parameter β. Feng et al. (2022) developed an adaptive estima-

tion procedure for β by applying the Lepski’s method, when the data are i.i.d sampled from the

population. We expect that a similar approach can be used for adaptive estimation in our context.

While this extension is of theoretical interest, the resulting algorithm may become computationally

expensive or even infeasible. To make our approach practical, we recommend choosing the tuning

parameters by cross-validations and fix K = 2 in practice, see Section 4 for more details about the

practical implementations.

Finally, we briefly summarize our main conclusions as follows:

(i) β > (1 +
√
3)/2. The first step estimator θ̂1 belongs to the fast convergence region Θfast,β

with high probability, so that after another iteration θ̂2 attains the parametric rate.

(ii) 1 < β ≤ (1 +
√
3)/2. After K − 1 = ⌈log β

2β+1
(1 − β+1

2β2 )⌉ iterations, we have θ̂K−1 ∈ Θfast,β

with high probability, and therefore θ̂K attains the parametric rate.

(iii) β = 1. For any k ≥ 1, the estimator θ̂k is not necessarily belonging to the fast convergence

region Θfast,β , so that the estimator θ̂K only attains the near-parametric rate.

3.3 Minimax Lower Bound

For clarity, we write RP (θ) for R(θ) in (1.2) to highlight the expectation is taken with respect to

P , the joint distribution of (X,Y,Z). Similarly, we use θ∗(P ) to denote the unique minimizer of

RP (θ). Let P(β, L, pmin, pmax) denote the class of distributions which belong to the Hölder class

P(β, L) defined in Definition 3.1 and supx∈X ,y∈{−1,1},z∈Z f(x | y, z) < pmax and infx∈X ,z∈Z f(x |
z) ≥ pmin hold, where X and Z are the support sets of X and Z. We consider the following class

of distributions

P(β, s) =
{
P ∈ P(β, L, pmin, pmax) : ∥θ∗(P )∥0 ≤ s, ∥θ∗(P )∥2 ≤ C, (3.2) holds and

ρ− ≤ λmin

(
∇2RP (θ∗(P ))

)
≤ λmax

(
∇2RP (θ∗(P ))

)
≤ ρ+

}
, (3.22)

where we treat L, pmin, pmax, C,M1, ρ− and ρ+ as positive constants.

For 1 ≤ i ≤ n, assume that (Xi,Zi, Yi) are i.i.d from the distribution P , and we observe data

Oi = (Xi,Zi, Yi) if Ri = 1 and Oi = (Xi,Zi) if Ri = 0. Here, the assumed observed data mechanism

is more flexible than that considered in Section 2, as we are allowed to keep the data (Xi,Zi) even

if the ith data point is not sampled. Let H̄i−1 = {O1, ..., Oi−1} denote the collection of the first i−1
observed data, which can be also viewed as the historical data before we observe the ith sample. For
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simplicity, denote H̄i−1 = ∅ for i = 1. In terms of the sampling procedure, we allow Ri to depend

on (Xi,Zi) as well as the first i− 1 observed data H̄i−1. We denote Qi := P(Ri = 1 | Xi,Zi, H̄i−1)

and Q = (Q1, ..., Qn). Based on the observed data {Oi}ni=1, our goal is to estimate the unknown

parameter θ∗(P ). In this setting, the estimator θ̂ is a measurable function of the observed data

(O1, ..., On), whose accuracy can be assessed by the following lq risk

EP,Q∥θ̂(O1, ..., On)− θ∗(P )∥q,

where the expectation is taken under (P,Q) which determines the distribution of (O1, ..., On). For

any given sampling distribution Q, the minimax risk for estimating θ∗(P ) is defined as

Mn(P(β, s), Q) := inf
θ̂

sup
P∈P(β,s)

EP,Q∥θ̂(O1, ..., On)− θ∗(P )∥q,

where the supremum is only for the distribution P in P(β, s) and the infimum is over all possible

estimators θ̂ based on the observed data {Oi}ni=1.

SinceMn(P(β, s), Q) depends on the sampling distribution Q, to characterize the assumptions

on Q, we define the following class. For any given distribution P ∈ P(β, s) and budget N , let

QN (P ) :=
{
(Q1, · · · , Qn) : ∀1 ≤ i ≤ n, (Xi,Zi, Yi) ⊥(P,Q) H̄i−1, Ri ⊥(P,Q) Yi | Xi,Zi, H̄i−1,

EP
( n∑
i=1

Qi

)
≤ N, sup

∥v∥0≤s

vTEP
(∑n

i=1QiZiZ
T
i

)
v

∥v∥22
≤ CN

}
, (3.23)

where C is a positive constant. In (3.23), (Xi,Zi, Yi) ⊥(P,Q) H̄i−1 and Ri ⊥(P,Q) Yi | Xi,Zi, H̄i−1

formalize the assumptions on the data generating process for Ri. More precisely, (Xi,Zi, Yi) ⊥(P,Q)

H̄i−1 is valid, since we generate (R1, ..., Ri−1) without using the future data (Xi,Zi, Yi). In addition,

the assumption Ri ⊥(P,Q) Yi | Xi,Zi, H̄i−1 is satisfied by the measurement-constrained sampling,

that is Yi is not used to decide whether the ith data point is sampled or not. The assumption

EP (
∑n

i=1Qi) ≤ N is equivalent to EP,Q(
∑n

i=1Ri) ≤ N , corresponding to our budget constraint.

Similarly, the last assumption in (3.23) can be rewritten as

sup
∥v∥0≤s

vTEP,Q
(∑n

i=1RiZiZ
T
i

)
v

∥v∥22
≲ N, (3.24)

which controls the maximal sparse eigenvalues of EP,Q
(∑n

i=1RiZiZ
T
i

)
. To better understand the

condition (3.24), let us consider the univariate case Z ∈ R, in which (3.24) reduces to
∑n

i=1 EP,Q
(
RiZ

2
i

)
≲

N . When Z has bounded support, it holds that
∑n

i=1 EP,Q
(
RiZ

2
i

)
≲
∑n

i=1 EP,Q(Ri) ≤ N , where

the last step follows from the budget constraint. On the other hand, when the support of Z is

unbounded, this assumption rules out the sampling procedures, which overly sample the data with

extreme values of Z. In practice, such data points often correspond to high leverage points or

outliers, which may indeed deteriorate the estimation accuracy.
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Since the class QN (P ) depends on the given distribution P ∈ P(β, s), we define QN (P(β, s)) :=
∩P∈P(β,s)QN (P ), as the set of sampling distributions that satisfy the conditions in (3.23) for all

P ∈ P(β, s).

Remark 4. We give some important examples of sampling distributions in QN (P(β, s)).

• Sampling with bounded probability. Consider an arbitrary sampling distribution Q, which

satisfies the independence assumptions, the budget constraint EP (
∑n

i=1Qi) ≤ N in (3.23) and

more importantly a bounded probability assumption max1≤i≤nQi ≤ CN
n for some constant

C > 0. We can show that Q ∈ QN (P ) for any P ∈ P(β, s). To see this, for any ∥v∥0 ≤ s,

vTEP
( n∑
i=1

QiZiZ
T
i

)
v ≤ CN

n

n∑
i=1

EP (vTZi)
2 ≤ CM1N∥v∥22,

where we use the assumption Qi ≤ CN
n in the first inequality, and the second inequality

follows from P ∈ P(β, s) and the corresponding sparse eigenvalue assumption (3.2). Thus,

Q ∈ QN (P(β, s)) holds. A specific example of Q is the uniform sampling, where the data are

sampled completely at random with Qi =
N
n . We note that, unlike the positivity assumption

in the missing data literature, we do not impose any lower bound for Qi, which means we

allow Qi = 0 in our scenario. Intuitively, the bounded probability assumption prevents us

from dramatically overly sampling some specific samples compared to the uniform sampling.

• Sampling within a region of X. Consider the following sampling distribution

Qi = g3i(H̄i−1)1{fi(Zi, H̄i−1)− g1i(H̄i−1) ≤ Xi ≤ fi(Zi, H̄i−1) + g2i(H̄i−1)}, (3.25)

where fi : (Zi, H̄i−1) → R, g1i, g2i : H̄i−1 → R+ and g3i : H̄i−1 → [0, 1] are user specified

functions such that EP (
∑n

i=1Qi) ≤ N holds. Apparently, the independence assumptions in

(3.23) are guaranteed by the data generating mechanism in (3.25). Moreover, in Section A.10

we show that (3.24) holds for any P ∈ P(β, s), which implies Q ∈ QN (P(β, s)). Recall that

the proposed sampling mechanism in Section 2 can be written as follows, for any (Xi,Zi) ∈ Dk

with k > 1,

Qi = cn,k 1{−bk−1

√
1 + ∥θ̂(H̄i−1)∥22 ≤ Xi − θ̂(H̄i−1)

TZi ≤ bk−1

√
1 + ∥θ̂(H̄i−1)∥22},

where we write θ̂(H̄i−1) for θ̂k−1 to highlight that it is function of the historical data. It

is seen that our sampling method in Section 2 belongs to the class (3.25). Indeed, this

class of sampling methods allow us to overly sample the data within a (small) region of

X, which complement the example of sampling with bounded probability. We also note

that (3.25) can be generalized to the sampling distributions in multiple regions of X, such

as Qi = g
(k)
3i (H̄i−1) if Xi ∈ S

(k)
i and Qi = 0 otherwise, for some k > 1, where S

(k)
i =

[f
(k)
i (Zi, H̄i−1)− g

(k)
1i (H̄i−1), f

(k)
i (Zi, H̄i−1) + g

(k)
2i (H̄i−1)] are non-overlapping intervals.
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Finally, we define the N -budget minimax risk for estimating θ∗(P ) as

Mn(P(β, s), N) := inf
Q∈QN (P(β,s))

inf
θ̂

sup
P∈P(β,s)

EP,Q∥θ̂(O1, ..., On)− θ∗(P )∥q.

Theorem 5. Assume that s( log(d/s)N )1/2 = o(1) and the smoothness parameter β ≥ 1. We have

inf
Q∈QN (P(β,s))

inf
θ̂

sup
P∈P(β,s)

PP,Q

[∥∥∥θ̂(O1, ..., On)− θ∗(P )
∥∥∥
q
≥ cs

1
q
− 1

2

(
s log(d/s)

N

)1/2
]
≥ c′,

for q = 1, 2, where c, c′ are positive constants.

Compared with the results in Section 3.2, this theorem shows that our proposed estimator via

the active subsampling algorithm is minimax rate optimal up to some logarithmic factors. By

Markov inequality, we can also obtain the lower bound for the N -budget minimax risk

Mn(P(β, s), N) ≥ c′cs
1
q
− 1

2

(s log(d/s)
N

)1/2
.

As a final remark, the same lower bound in Theorem 5 holds with θ̂(O1, ..., On) replaced by

θ̂({Oi}i:Ri=1), that is we take the infimum over all possible estimators based on the selected (and

labeled) data. Recall that our proposed estimator that achieves the lower bound is computed with

the labeled data only. This implies that the unlabeled data {Xi,Zi}i:Ri=0 does not bring additional

information to improve the convergence rate for estimating θ∗(P ) in our model.

4 Practical Considerations

In this section, we discuss several implementation issues in our Algorithm 1.

First, we discuss the computational challenge for solving the optimization problem (2.7). Despite

addressing the discontinuity of the 0-1 loss, the smoothed empirical risk function RDk
δk

(θ) remains

non-convex. Consequently, obtaining the global solution to (2.7) presents computational challenges.

To overcome this issue, we leverage the path-following algorithm outlined in Feng et al. (2022). For

any 1 ≤ k ≤ K, this algorithm computes approximate local solutions to (2.7) corresponding to

a sequence of decreasing regularization parameters λ until the desired regularization parameter

is reached. We set θ̂k = θ̃k,tgt, where θ̃k,tgt represents the final approximate local solution with

the desired regularization parameter λk,tgt. By employing this path-following approach, we can

efficiently compute the entire solution path for θ̂k while preserving sparsity across the sequence.

For k ≥ 2, to speed up the computation of θ̂k, we can use the estimator θ̂k−1 obtained from the

previous iteration as a warm start in the path-following approach. The details of the path-following

algorithm for solving (2.7) are provided in Appendix A.1.

Second, we consider how to choose K. Our theoretical results in Section 3.2 reveal that the

choice of K may depend on the smoothness parameter β. In particular, when β is greater than
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(1 +
√
3)/2 ≈ 1.37, the two-step algorithm with K = 2 yields the estimator with the optimal rate.

In practice, we recommend choosing K = 2 for the following reasons. First, in many applications, it

is often reasonable to assume that the conditional density of X given Y and Z is sufficiently smooth

(e.g., second order differentiable), which means β is indeed larger than 1.37. Even if β is not larger

than 1.37, the improvement from θ̂1 to θ̂2 is far more significant compared to the improvement

from θ̂2 to θ̂3. Second, compared to θ̂k with k > 2, the estimator θ̂2 depends on a much smaller

set of tuning parameters so that the implementation is more convenient and numerically more

stable. This makes our algorithm more practical in real world applications than many existing

active learning algorithms.

Finally, we discuss how to choose the tuning parameters λ1, λ2 and b1 in our active subsampling

algorithm with K = 2. We find that the performance of our algorithm is quite robust to the choice

of bandwidth parameters δ1 and δ2. Thus, we set δ1 = δ2 = 1 in both simulation and real data

analysis. Indeed, following Feng et al. (2022), we can easily modify our cross-validation algorithm to

choose λ1, λ2, b1 and δ1, δ2 simultaneously. However, such an approach tends to be computationally

far more expensive and may require a very large N to obtain stable results. We do not pursue this

approach here.

Similar to Feng et al. (2022), the cross-validation algorithm for λ with one standard error rule

is shown in Algorithm 2. Built on this algorithm, the data-driven two-step active subsampling with

cross-validation is shown in Algorithm 3. In this algorithm, Ñ1, Ñcv and Ñ2 stand for the budget

for obtaining θ̂1 in step 1, the budget for selecting b1 in step 2, and the budget for obtaining the

final estimator θ̂2 in step 3, respectively. In general, we recommend choosing the budget Ñ2 in the

final step relatively large, as Ñ2 plays the role of sample size for the final estimator θ̂2.

5 Simulation Studies

We conduct simulations to evaluate the performance of our proposed method. We consider the

following two classes of models, and for both models, it can be shown that the parameter θ coincides

with the estimand in (1.2).

• Binary response model: We consider Y = sign(Ỹ ), where

Ỹ = X − θTZ + ϵ,

X ∈ R,Z ∈ Rd, and ϵ is a random noise such that Median(Ỹ | X,Z) = X − θTZ. Logistic

regression belongs to the class of binary response models by setting ϵ to follow the logistic

distribution independent with (X,Z). We conduct simulations for both logistic regression

and a more general case where we allow ϵ to depend on (X,Z).

• Conditional mean model: We consider Y ∈ {−1, 1},Z ∈ Rd, and

X = µY + θTZ + ϵ,
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Algorithm 2 M -fold Cross-Validation for λ with one standard error rule

Input: Data D = {Xi,Zi, Yi}, a grid for λ.

Parameters: δ

Randomly split D into M folds, D1, ..., DM with equal size.

For each λ in the grid, compute

ĈV
k

λ =
1

|Dk|
∑
a∈Dk

γ(Ya)Lδ(Ya(Xa −ZT
a θ̂

(−k)
λ )),

where θ̂
(−k)
λ is our estimator with the tuning parameters δ and λ using the data excluding Dk.

Compute the cross-validation error ĈV λ = 1
M

∑M
k=1 ĈV

k

λ.

Define ĈV min = minλ ĈV λ as the minimum cross-validation error over this grid, and λ̄ =

argminλ ĈV λ. Define ŜEmin as the standard error of {ĈV
k

λ̄}Mk=1 over these M folds.

Find λ̂CV via the following “one standard error rule”,

λ̂CV = max λ ∈ grid s.t. ĈV λ ≤ ĈV min + ŜEmin.

return λ̂CV and ĈV
λ̂CV

.

where ϵ ⊥ Y,Z is a random noise and µ > 0 is a constant.

Under each model, we simulate i.i.d. samples with sample size n = 20000 and dimension

d = 200. We refer to the collection of these samples as the entire dataset. We set sparsity s = 10,

and generated the nonzero elements of θ∗ from Uniform(1, 2). We then normalize θ∗ such that

∥θ∗∥2 = 1. For the logistic regression, we generate X ∼ N(0, 1), Z ∼ Nd(0, 1). For the binary

response model where ϵ can depend on (X,Z), we generate X ∼ N(0, 1), Z ∼ Nd(0, 1), and

ϵ ∼ N(0, σ2(1 + 2(X − θTZ)2)) with σ = 0.5. We refer to this case as binary response model

in the following discussion. For the conditional mean model, we generate Y ∼ Uniform{−1, 1},
Z ∼ Nd(0, 1), ϵ ∼ N(0, (0.1)2) and we set µ = 2.

The label budget is set to be N = 2000 across all scenarios. For our proposed method, we

implement the two-step active subsampling algorithm outlined in Algorithm 1 with N1 = N/8 and

N2 = 7N/8. Empirically, we find that assigning a larger proportion of the label budget to the

second step leads to a more stable final estimator θ̂2. The numerical results for our algorithm with

N1 = N/5 and N2 = 4N/5 are quite similar and are deferred to the Appendix Section A.11. We

compare the performance of our proposed method with that of the method proposed in Feng et al.

(2022), where the path-following algorithm is applied on a dataset with size N = 2000 uniformly

sampled from the entire dataset. We refer to this method as “passive PF”, while our proposed

method is denoted as “two-step sampling with PF”. In the application of the path-following

algorithm, we set the bandwidth parameter δ = 1 and use the standard Gaussian density as the
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Algorithm 3 Data-Driven Two-Step Active Subsampling with Cross-Validation

Input: D = {Xi,Zi}ni=1, a grid ∆ for b and Ñ1, Ñcv, Ñ2 with Ñ1 + Ñcv + Ñ2 = N .

Parameters: δ1, δ2

Randomly split D into 3 batches with |D1| = Ñ1
N n, |Dcv| = Ñcv

N n and |D2| = Ñ2
N n.

Step 1: Obtain Initial Estimator θ̂1

Draw data from D1 with probability cn,1 = N
n . Acquire the label Yi for each sampled data

and form the dataset D∗
1 = {Xi,Zi, Yi}Ri=1, where (Xi,Zi) ∈ D1.

Apply the 5-fold cross-validation Algorithm 2 to D∗
1. Return the optimal parameter λ1,opt.

Compute the initial estimator: θ̂1 ← argminθ{R
D1
δ1

(θ) + λ1,opt∥θ∥1}.
Step 2: Select Optimal b1

For each candidate b ∈ ∆:

Define the active set: S2 ←

{
(X,Z) : −b ≤ X−θ̂T

1 Z√
1+∥θ̂1∥22

≤ b

}
.

Given (Xi,Zi) ∈ S2, draw data (Xi,Zi) fromDcv with probability N
n|∆|P((X,Z)∈S2)

. Acquire

the label Yi for each sampled data and form D∗
cv,b = {Xi,Zi, Yi}Ri=1, where (Xi,Zi) ∈ Dcv.

Apply the 5-fold cross-validation Algorithm 2 to D∗
cv,b. Return the optimal parameter

λb,opt and the minimum CV error ĈV b.

Compute b̂1 = argminb∈∆ ĈV b that minimizes the cross-validation error.

Step 3: Obtain Final Estimator θ̂2

Define the active set: S2 ←

{
(X,Z) : −b̂1 ≤

X−θ̂T
1 Z√

1+∥θ̂1∥22
≤ b̂1

}
.

Given (Xi,Zi) ∈ S2, draw data (Xi,Zi) fromD2 with probability cn,2 =
N

nP((X,Z)∈S2)
. Acquire

the label Yi for each sampled data and form D∗
2 = {Xi,Zi, Yi}Ri=1, where (Xi,Zi) ∈ D2.

Apply the 5-fold cross-validation Algorithm 2 to D∗
2. Return the optimal parameter λ2,opt.

Compute the final estimator: θ̂2 ← argminθ{R
D2
δ2

(θ) + λ2,opt∥θ∥1}.
return θ̂2
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kernel function. The number of regularization stages is fixed at T = 20, and we choose ν = 1/4,

ϕ = (λtgt/λ0)
1/T and η = 1 in the path-following Algorithm 4. For both methods and across all

scenarios, the tuning parameter λtgt is chosen by the 5-fold cross-validation via Algorithm 2.

In our comparison, we also include two simple methods “passive LR” and “two-step sampling

with LR”. The former refers to the ℓ1-penalized logistic regression applied to the dataset with size

N = 2000 uniformly sampled from the entire dataset. For the “two-step sampling with LR”, we

employ a similar two-step approach as in Algorithm 1. However, instead of solving (2.3) using

the path-following algorithm, we estimate θ by the ℓ1-penalized logistic regression. Similar to our

proposed method, the active set in second step has the same form as (2.5), which depends on the

choice of b1.

Figures 1, 2 and 3 illustrate the pattern of the statistical error ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 norms

as the size of the active set b1 increases under three models. The smallest b1 value is chosen such

that approximately 10% of the entire dataset fall into the active set, while the largest b1 value

corresponds to the case that the active set covers nearly 100% of the entire dataset. The simulation

is repeated 50 times.

Since the passive LR and passive PF methods are independent of b1, their estimation errors

correspond to two horizontal lines. In Figure 1, the passive LR can be viewed as the benchmark

estimator, since the data are generated under the logistic regression. We can see that applying

the two-step sampling idea to logistic regression generally does not improve the performance of the

passive LR. This may be due to the fact that the logistic regression is a regular model and the

parameter estimation may not be improvable. However, our proposed two-step sampling with PF

method can significantly improve upon the passive PF method, especially for small or moderate

values of b1. This is consistent with our theoretical results on the convergence rate of the estimators.

Similar patterns hold under the conditional mean model in Figure 2. In particular, our proposed

method yields the smallest ℓ1 and ℓ2 estimation errors among all the competing methods, for

small or moderate values of b1. For the binary response model in Figure 3, when b1 is small, our

proposed method has larger errors than the passive PF method. However, as b1 keeps increasing,

our proposed method outperforms the passive PF.

We also consider the comparison of the four methods concerning ∥θ̂ − θ∗∥∞ and prediction

errors, which exhibit similar patterns as ∥θ̂ − θ∗∥1 and ∥θ̂ − θ∗∥2. Further details are provided in

the Appendix Section A.11.

As discussed above, b1 plays a significant role in our proposed method, and the optimal choice of

b1 varies depending on the dataset. In the following, we examine the performance of our data-driven

two-step sampling method with cross-validation in Algorithm 3. Table 1 presents a comparison be-

tween our proposed method and the passive path-following method for the three models. The

simulation is repeated 50 times. From the result in Table 1 we can see that our proposed method

outperforms the passive path-following method across all three models. For example, the ℓ1 estima-

tion error of our proposed method is around 45% smaller than the passive path-following method
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Table 1: Comparison of the two-step path-following method with the passive path-following algo-

rithm. The number in the parentheses are standard deviations.

Error Conditional mean model Logistic model Binary response model

Two-step PF Passive PF Two-step PF Passive PF Two-step PF Passive PF

ℓ1 0.918(0.101) 1.648(0.165) 1.514(0.319) 1.625(0.416) 0.835(0.201) 0.937(0.200)

ℓ2 0.313(0.036) 0.525(0.052) 0.525(0.093) 0.559(0.129) 0.319(0.068) 0.341(0.066)

ℓ∞ 0.150(0.026) 0.196(0.022) 0.270(0.047) 0.275(0.050) 0.192(0.044) 0.187(0.038)

under the conditional mean model.

6 Real Data Analysis

In this section, we apply our proposed method to a dataset of hospitalized patient diagnosed with

diabetes, obtained from the UCI Machine Learning Repository (Clore et al., 2014). This dataset

contains 101,766 hospital records collected over a decade (1999-2008) from 130 US hospitals. The

data includes various attributes such as patient ID, race, gender, age, admission type, readmission

status, length of hospital stay, medical specialty of the admitting physician, number of lab tests

performed, Hemoglobin A1c (HbA1c) test results, diagnosis, and more. Among these attributes,

the HbA1c test result is a key indicator of glucose control and is widely used to evaluate the quality

of diabetes care (Baldwin et al., 2005). In an existing work (Strack et al., 2014), researchers were

interested in identifying important risk factors that lead to early readmission. They defined the

readmission attribute as a binary outcome: “readmitted” if the patient was readmitted within

30 days of discharge, and “otherwise,” which includes both readmission after 30 days and no

readmission.

In our analysis, we adopt the same definition of response variable Y as in Strack et al. (2014).

Specifically, Yi = 1 if a patient was readmitted within 30 days of discharge and Yi = −1 otherwise.

We chose the patient’s HbA1c test result as the primary measurement Xi, with Zi representing

additional patient demographic statistics and clinical biomarkers. The primary goal of our analysis

is to determine the optimal individualized threshold, θTZi, such that a patient’s early readmission

can be predicted based on whether the HbA1c test result exceeds this threshold (Xi ≥ θTZi) or

falls below it (Xi < θTZi). This problem can be formulated as an estimation task of the form (1.1)

or (1.2), with weights γ(y) = 1/P(Y = y).

The original dataset includes multiple inpatient visits from the same patients, making the

observations statistically dependent. To address this, as suggested by Strack et al. (2014), we

used only the first encounter per patient as the primary admission and determined whether they

were readmitted within 30 days. Next, we removed redundant features and those with a high

26



Table 2: Comparison of the active path-following method with the passive path-following algorithm.

N 3000 4000 5000

Two-step PF Passive PF Two-step PF Passive PF Two-step PF Passive PF

ℓ1 2.422 3.192 0.968 1.276 0.379 0.651

ℓ2 1.403 2.478 1.649 2.048 0.269 0.543

ℓ∞ 0.869 2.369 0.824 2.048 0.203 0.529

percentage of missing values. Following the discussion in Strack et al. (2014), we also added pairwise

interactions among features as new variables. After these preprocessing steps, the dataset contains

69,984 observations and d = 60 variables, excluding X. Furthermore, we observed significant

imbalance in the dataset, with only 6,293 positive instances (Y = 1) compared to 63,691 negative

instances (Y = −1). To address this issue, we randomly selected 6,293 samples from the negative

class to match the number of positive cases and then combined these with the positive instances.

This resulted in a final dataset containing n = 12, 586 observations.

Since the true value θ∗ is unknown, we first applied the path-following algorithm to the entire

dataset (n = 12, 586) to derive an estimator, which is used as the benchmark or equivalently

treated as θ∗ when evaluating ∥θ̂ − θ∗∥ for different methods. Suppose that there is a budget

constraint due to study design or administration cost, which prevents us from using the benchmark

estimator. Our goal is to illustrate the efficacy of our active subsampling methods under the budget

constraint. For our proposed method, we implement the data-driven two-step active subsampling

algorithm outlined in Algorithm 3 with label budgets of N = 3000, 4000, and 5000, respectively.

We compare the performance of our method with “passive path-following,” where the budgeted

data is uniformly sampled from the entire dataset to derive the estimator of θ∗. The result is

shown in Table 2. It is seen that, as the label budget increases, the estimation errors for both

methods decrease, with the two-step path-following method consistently outperforming the passive

path-following method across all three settings. From a scientific point of view, our two-step path-

following method identified a few important covariates in our model, including ‘time in hospital’

and ‘change of medications’. These findings are consistent with the previous work (Strack et al.,

2014), and seem to be clinically meaningful.
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(a) (b)

Figure 1: ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 norms under the logistic regression. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/8 of the label budget is used in the first step for both

two-step sampling methods.

(a) (b)

Figure 2: ∥θ̂−θ∗∥ in ℓ1 and ℓ2 norms under the conditional mean model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/8 of the label budget is used in the first step for both

two-step sampling methods.
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(a) (b)

Figure 3: ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 norms under the binary response model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/8 of the label budget is used in the first step for both

two-step sampling methods.
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Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods,

theory and applications. Springer Science & Business Media.

Castro, R. M. and Nowak, R. D. (2008). Minimax bounds for active learning. IEEE Transac-

tions on Information Theory 54 2339–2353.

Chen, X., Jing, W., Liu, W. and Zhang, Y. (2024). Distributed estimation and inference for

semiparametric binary response models. The Annals of Statistics 52 922–947.

Clore, J., Cios, K., DeShazo, J. and Strack, B. (2014). Diabetes 130-US Hospitals for Years

1999-2008. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5230J.

Drineas, P., Mahoney, M. W., Muthukrishnan, S. and Sarlós, T. (2011). Faster least

squares approximation. Numerische mathematik 117 219–249.

29



Feng, H., Duan, J., Ning, Y. and Zhao, J. (2024). Test of significance for high-dimensional

thresholds with application to individualized minimal clinically important difference. Journal of

the American Statistical Association 119 1396–1408.

Feng, H., Ning, Y. and Zhao, J. (2022). Nonregular and minimax estimation of individualized

thresholds in high dimension with binary responses. The Annals of Statistics 50 2284–2305.

Fithian, W. and Hastie, T. (2014). Local case-control sampling: Efficient subsampling in im-

balanced data sets. Annals of statistics 42 1693.

Hadad, V., Hirshberg, D. A., Zhan, R., Wager, S. and Athey, S. (2021). Confidence

intervals for policy evaluation in adaptive experiments. Proceedings of the national academy of

sciences 118 e2014602118.

Hahn, J., Hirano, K. andKarlan, D. (2011). Adaptive experimental design using the propensity

score. Journal of Business & Economic Statistics 29 96–108.

Hedayat, A., Wang, J. and Xu, T. (2015). Minimum clinically important difference in medical

studies. Biometrics 71 33–41.

Jaeschke, R., Singer, J. andGuyatt, G. H. (1989). Measurement of health status: ascertaining

the minimal clinically important difference. Controlled clinical trials 10 407–415.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics 191–219.

Koltchinskii, V. (2010). Rademacher complexities and bounding the excess risk in active learning.

The Journal of Machine Learning Research 11 2457–2485.

Ma, P., Mahoney, M. and Yu, B. (2014). A statistical perspective on algorithmic leveraging.

In International conference on machine learning. PMLR.

Mallik, A., Banerjee, M. and Michailidis, G. (2020). M-estimation in multistage sampling

procedures. Sankhya A 82 261–309.

Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice. Journal

of econometrics 3 205–228.

Mukherjee, D., Banerjee, M. and Ritov, Y. (2021). Optimal linear discriminators for the

discrete choice model in growing dimensions. The Annals of Statistics 49 3324–3357.

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical pro-

gramming 140 125–161.

30



Perera, H. N., Fahimnia, B. and Tokar, T. (2020). Inventory and ordering decisions: a

systematic review on research driven through behavioral experiments. International Journal of

Operations & Production Management 40 997–1039.

Raskutti, G. and Mahoney, M. W. (2016). A statistical perspective on randomized sketching

for ordinary least-squares. Journal of Machine Learning Research 17 1–31.

Strack, B., DeShazo, J. P., Gennings, C., Olmo, J. L., Ventura, S., Cios, K. J. and

Clore, J. N. (2014). Impact of hba1c measurement on hospital readmission rates: Analysis of

70,000 clinical database patient records. BioMed Research International 2014 781670.

URL https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/781670

Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. 1st ed. Springer Publishing

Company, Incorporated.

Wang, H., Yang, M. and Stufken, J. (2019). Information-based optimal subdata selection for

big data linear regression. Journal of the American Statistical Association 114 393–405.

Wang, H., Zhu, R. and Ma, P. (2018). Optimal subsampling for large sample logistic regression.

Journal of the American Statistical Association 113 829–844.

Wang, Y. and Singh, A. (2016). Noise-adaptive margin-based active learning and lower bounds

under tsybakov noise condition. In Thirtieth AAAI Conference on Artificial Intelligence.

Wang, Y., Yu, A. W. and Singh, A. (2017). On computationally tractable selection of experi-

ments in measurement-constrained regression models. Journal of Machine Learning Research 18

1–41.

Xu, T., Wang, J. and Fang, Y. (2014). A model-free estimation for the covariate-adjusted

youden index and its associated cut-point. Statistics in Medicine 33 4963–4974.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6290

Zhang, T., Ning, Y. and Ruppert, D. (2021). Optimal sampling for generalized linear models

under measurement constraints. Journal of Computational and Graphical Statistics 30 106–114.

Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012). Estimating individualized

treatment rules using outcome weighted learning. Journal of the American Statistical Association

107 1106–1118.

Zhou, Z., Zhao, J. and Bisson, L. J. (2020). Estimation of data adaptive minimal clinically

important difference with a nonconvex optimization procedure. Statistical Methods in Medical

Research 29 879–893.

Zrnic, T. and Candès, E. J. (2024). Active statistical inference. arXiv preprint arXiv:2403.03208

.

31

https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/781670
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6290


A Appendix

A.1 Path-following Algorithm

We employ the path-following algorithm introduced in Feng et al. (2022) to solve the optimization

problem θ̂k := argminθ{R
Dk
δk

(θ)+λk∥θ∥} for each iteration k. The idea is to compute approximate

local solutions corresponding to a sequence of decreasing regularization parameters λ, until the

target regularization parameter is reached. To be specific, we firstly choose a sequence of λk,0 >

λk,1 > . . . > λk,T = λk,tgt, where λk,t = ϕtλk,0, t = 0, 1, . . . for some constant ϕ ∈ (0, 1) and λk,tgt

is the target regularization parameter to be specified later. Let T denote the total number of the

path-following stages and we set T =
log(λk,tgt/λk,0)

log ϕ . At each stage t = 1, · · · , T , the goal is to

approximately compute the exact local solution θ̂k,t corresponding to λk,t,

θ̂k,t = argmin
θ

RDk
δk

(θ) + λk,t∥θ∥1. (A.1)

To this end, we apply the proximal-gradient method to iteratively approximate θ̂k,t by minimizing

a sequence of quadratic approximations of RDk
δk

(θ) over a convex constraint set Ω:

θj+1
k,t = argmin

θ∈Ω

{
RDk
δk

(
θjk,t

)
+
〈
∇RDk

δk

(
θjk,t

)
,
(
θ − θjk,t

)〉
+

1

2η

∥∥∥θ − θjk,t

∥∥∥2
2
+ λk,t∥θ∥1

}
= argmin

θ∈Ω

{
1

2η

∥∥∥θ − θjk,t + η∇RDk
δk

(
θjk,t

)∥∥∥2
2
+ λk,t∥θ∥1

}
:= Sλk,tη

(
θjk,Ω

)
,

(A.2)

where η is the step size to be specified later. The proximal-gradient algorithm is described in

Algorithm 5.

In the algorithm, we use the stopping criteria wλ(θ) defined as

ωλ(θ) = min
ξ∈∂∥θ∥1

max
θ′∈Ω

{
(θ − θ′)T

∥θ − θ′∥1

(
∇RDk

δk
(θ) + λξ

)}
.

At stage t, the proximal-gradient algorithm returns an approximate solution θ̃k,t with precision

ϵk,t = νλk,t, ν ∈ (0, 1) corresponding to λk,t. Then we use θ̃k,t as a warm start for stage t+ 1 and

repeat this process. At the final stage, we would compute the approximate solution θ̃k,T = θ̃k,tgt

corresponding to λk,tgt using a high precision ϵk,tgt. The detail of the path-following algorithm is

described in Algorithm 4.

We note that at iteration k, we can use the estimator θ̂k−1 obtained from iteration k− 1 as the

initial value for θ in Algorithm 4.

A.2 Preliminary Results

Recall that we consider the case γ(y) = 1/P(Y = y) and for simplicity denote ∥ω̂k∥2 =
√

1 + ∥θ̂k∥22
in the rest of the proof.
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Algorithm 4 θ ← Path-Following (λk,0, λk,tgt, ν, T, ϵk,tgt,Ω)

input: λk,tgt > 0, ν > 0, ϕ > 0, ϵk,tgt > 0,Ω

parameter: η > 0

initialize: θ̃k,0 ← 0, λk,0 ←
∥∥∥∇RDk

δk
(0)
∥∥∥
∞
, T ← log(λk,tgt/λk,0)

log ϕ

for t = 1, . . . , T − 1 do

λk,t ← ϕtλk,0 ϵk,t ← νλk,t θ̃k,t ← Proximal-Gradient
(
λt, ϵk,t, θ̃k,t−1,Ω

)
end for

θ̃k,T ← Proximal-Gradient
(
λk,tgt, ϵk,tgt, θ̃k,T−1,Ω

)
return θ̃k,tgt = θ̃k,T

Algorithm 5 θ ← Proximal-Gradient
(
λ, ϵ,θ0,Ω

)
input: λ > 0, ϵ > 0,θ0 ∈ Rd,Ω
parameter: η > 0

initialize: j ← 0

while wλ
(
θj
)
> ϵ do

j ← j + 1 θj+1 ← Sλη
(
θj ,Ω

)
end while

return θj+1

We also allow the kernel with unbounded support which satisfies the following tail condition.

Assume that there exits a sequence CN > 0 that may depend on N such that∫ ∞

CN/2
|K(t)|dt ≤ Cδβk , (A.3)

holds for any 2 ≤ k ≤ K, where C is a constant that does not depend on k and δk is the bandwidth

parameter in the kth iteration.

For example, the Gaussian kernel satisfies
∫∞
CN/2

|K(t)|dt ≤ C
CN

e−C
2
N/8. Note that in Theo-

rem 6, we choose δk ≍
(
CNKs log d

N

)1/(2β)
, for 2 ≤ k ≤ K. In this case, (A.3) requires e−C2

N/8

CN
≤

C
√

CNKs log d
N , which holds with CN ≍

√
logN . For the kernel with bounded support, we can

simply set CN = O(1) in the rest of the proof.

Lemma A.1. Under Assumptions 3.1, 3.2 (i) and (ii), 3.3 and 3.4, we have for any (Xi,Zi, Yi) ∈
Dk, 2 ≤ k ≤ K, and for all j = 1 · · · , d,

E

(γ(Yi)YiZij
δk

K

(
Yi
(
Xi − θ∗TZi

)
δk

)
Ri

)2

| θ̂k−1

 ≤ C
cn,k
δk

,

for some constant C > 0.
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Proof. For simplicity we omit the subscript i in the proof. Note that since θ̂k−1 is independent of

(X,Z, Y ), we have

E

(γ(Y )
Y Zj
δk

K

(
Y
(
X − θ∗TZ

)
δk

)
R

)2

| θ̂k−1


=E

E
(γ(Y )

Y Zj
δk

K

(
Y
(
X − θ∗TZ

)
δk

)
R

)2

| θ̂k−1, Y

 | θ̂k−1


=E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]
+ E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = −1

]
.

We bound the first term here and the second term follows similarly. Note that

E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]

=E

[
E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1, X,Z

]
| θ̂k−1, Y = 1

]
.

Recall that

Sk :=

{
(X,Z) : −bk−1 ≤

X − θ̂Tk−1Z

∥ω̂k−1∥2
≤ bk−1

}
,

and

P(R = 1 | X,Z, θ̂k−1) = cn,k · 1{(X,Z) ∈ Sk},

we have

E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1, X,Z

]

=cn,k

(
Zj
δk

K

(
X − θ∗TZ

δk

))2

· 1{(X,Z) ∈ Sk},

where we use the fact that R ⊥ Y | (X,Z, θ̂k−1). Hence

E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]

=cn,kE

[(
Zj
δk

K

(
X − θ∗TZ

δk

))2

· 1{(X,Z) ∈ Sk} | θ̂k−1, Y = 1

]

=cn,k

∫
z

z2j
δ2k

∫ bk−1∥ŵk−1∥2+θ̂T
k−1z

−bk−1∥ŵk−1∥2+θ̂T
k−1z

K2

(
x− θ∗Tz

δk

)
f(x | z, Y = 1)dxf(z | Y = 1)dz

=
cn,k
δk

∫
z

∫ (bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

(−bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

z2jK
2(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz.
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Since supx∈R,y∈{−1,1},z∈Rd f(x | y, z) < pmax <∞, we have

∫ (bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

(−bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

K2(u)f(uδk + θ∗Tz | z, Y = 1)du ≤ pmax

∫
K2(u)du.

Note that E(Z2
j |Y = 1) ≤M1 <∞, we obtain

E

[(
Zj
δk

K

(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]
≤

cn,k
δk

M1pmax

∫
K2(u)du,

hence we finish the proof.

Proposition A.1. Denote ∇R
δk,θ̂k−1

(θ∗) = E
(
∇RDk

δk
(θ∗) | θ̂k−1

)
for 2 ≤ k ≤ K. Under Assump-

tions 3.1, 3.2 (i) and (ii), 3.3 and 3.4, with probability greater than 1− 2d−1, we have

∥∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗)∥∞ ≤ C1

√
cn,kK log d

nδk
,

where C1 is a constant independent of n, d and k.

Proof. Denote T k = ∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗). By definition

∥T k∥∞ =

∥∥∥∥∥∥Kn
∑

(xi,zi)∈Dk

(
γ(yi)

yizi
δk

K(
yi(xi − θ∗Tzi)

δk
)Ri

)
− E

[
γ(Y )

YZ

δk
K(

Y (X − θ∗TZ)

δk
)R | θ̂k−1

]∥∥∥∥∥∥
∞

.

Note that for some constant C1, we have

|T kij | =

∣∣∣∣∣γ(yi)yizijδk
K(

yi(xi − θ∗Tzi)

δk
)Ri − E

[
γ(Y )

Y Zj
δk

K

(
Y
(
X − θ∗TZ

)
δk

)
R | θ̂k−1

]∣∣∣∣∣
≤C1

MnKmax

δk
,

and by Lemma A.1 we know that for some constant C2, we have

E((T kij)2 | θ̂k−1) ≤ C2
cn,k
δk

.

Then by Bernstein inequality we have

P
(
∥T k∥∞ > t | θ̂k−1

)
≤

d∑
j=1

P
(
|T kj | > t | θ̂k−1

)

≤2d exp

(
−

1
2 t

2n/K

C2
cn,k

δk
+ t

3C1MnKmax/δk

)
.
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Since the right side doesn’t contain θ̂k−1, we obtain that

P
(
∥∇RDk

δk
(θ∗)−∇R

δk,θ̂k−1
(θ∗)∥∞ > t

)
≤ 2d exp

(
−

1
2 t

2n/K

C2
cn,k

δk
+ t

3C1MnKmax/δk

)
.

Then note that Mn ≲
√

cn,knδk
K log d and take t = C3

√
cn,kK log d

nδk
for some constant C3 we finish the

proof.‘

Proposition A.2. Recall that θ∗ = argminθ R(θ), where R(θ) = E
(
γ(Y )L01(Y (X − θTZ))

)
, and

∇R
δk,θ̂k−1

(θ∗) = E
(
∇RDk

δk
(θ∗) | θ̂k−1

)
for 2 ≤ k ≤ K. Consider the following two cases:

(i) Assumptions 3.1, 3.2 (i) and (ii), 3.3 and 3.4 hold, and

bk−1 ≥ CNδk and bk−1 ≥ 2∥θ̂k−1 − θ∗∥1Mn. (A.4)

(ii) Assumptions 3.1, 3.2 (i), (ii) and (iii), 3.3 and 3.4 hold, and

bk−1 ≥ CNδk, and bk−1 ≥ C∥θ̂k−1 − θ∗∥2

√
log

N

Ks log d
, (A.5)

where CN > 0 is defined in (A.3) and there exists a large constant ζ such that (Ks log dN )ζ ≲ δk

with δk = o(1).

If either (i) or (ii) holds, we have for any v ∈ Rd with ∥v∥0 ≤ s′,∣∣∣vT (∇Rδk,θ̂k−1
(θ∗)−∇R(θ∗)

)∣∣∣ ≤ C2cn,kδ
β
k ∥v∥2,

where s′ is defined in Assumption 3.2 and C2 is a constant independent of n, d and k.

Proof. By definition we have

R(θ) = E
(
1(X < θTZ) | Y = 1

)
+ E

(
1(X > θTZ) | Y = −1

)
,

and

cn,k∇R(θ∗) =cn,k

∫
z
zf
(
θ∗Tz | z, Y = 1

)
f(z | Y = 1)dz

−cn,k
∫
z
zf
(
θ∗Tz | z, Y = −1

)
f(z | Y = −1)dz.

Note that

∇R
δk,θ̂k−1

(θ∗) =E
(
γ(Y )

YZ

δk
K(

Y (X − θ∗TZ)

δk
)R | θ̂k−1

)
=E

(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = 1, θ̂k−1

)
− E

(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = −1, θ̂k−1

)
,
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hence

∇R
δk,θ̂k−1

(θ∗)−∇R(θ∗)

=E
(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = 1, θ̂k−1

)
− cn,k

∫
z
zf
(
θ∗Tz | z, Y = 1

)
f(z | Y = 1)dz

−E
(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = −1, θ̂k−1

)
+ cn,k

∫
z
zf
(
θ∗Tz | z, Y = −1

)
f(z | Y = −1)dz.

We will bound the first term and the second term follows similarly. Denote

Su = {u :
−bk−1∥ŵk−1∥2 + (θ̂k−1 − θ∗)Tz

δk
≤ u ≤ bk−1∥ŵk−1∥2 + (θ̂k−1 − θ∗)Tz

δk
}.

We have

vTE
(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = 1, θ̂k−1

)
=cn,k

∫
z

∫ bk−1∥ŵk−1∥2+θ̂T
k−1z

−bk−1∥ŵk−1∥2+θ̂T
k−1z

vTz

δk
K

(
x− θ∗Tz

δk

)
f(x | z, Y = 1)dxf(z | Y = 1)dz

=cn,k

∫
z
vTz

∫
Su

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz

=cn,k

∫
z
vTz

∫
K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz

− cn,k

∫
z
vTz

∫
Sc
u

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz.

Therefore,

vT
(
E
(
Z

δk
K(

X − θ∗TZ

δk
)R | Y = 1, θ̂k−1

)
− cn,k

∫
z
zf
(
θ∗Tz | z, Y = 1

)
f(z, Y = 1)dz

)
=cn,k

∫
z
vTz

∫
K(u)

(
f(uδk + θ∗Tz | z, Y = 1)− f(θ∗Tz | z, Y = 1)

)
du︸ ︷︷ ︸

(A)

f(z | Y = 1)dz

−cn,k
∫
z
vTz

∫
Sc
u

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz. (A.6)

Now we look at the term (A). Since f(x | z, y) is l times differentiable, by Taylor expansion we

have

f
(
uδk + θ∗Tz | z, Y = 1

)
− f

(
θ∗Tz | z, Y = 1

)
=

l−1∑
i=1

f (i)
(
θ∗Tz | z, Y = 1

)
i!

(uδk)
i +

(uδk)
l

l!
f (l)

(
θ∗Tz + τuδk | z, Y = 1

)
for some τ ∈ [0, 1] where l = ⌊β⌋. By the definition of kernel of order l, we obtain

(A) =

∫
K(u)

(uδk)
l

l!

(
f (l)

(
θ∗Tz + τuδk | z, Y = 1

)
− f (l)

(
θ∗Tz | z, Y = 1

))
du,
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hence for any v with ∥v∥0 ≤ s′,∣∣∣∣cn,k ∫
z
vTz

∫
K(u)

(
f(uδk + θ∗Tz | z, Y = 1)− f(θ∗Tz | z, Y = 1)

)
duf(z | Y = 1)dz

∣∣∣∣
=

∣∣∣∣cn,k ∫ K(u)
(uδk)

l

l!

∫
z
vTz

(
f (l)

(
θ∗Tz + τuδk | z, Y = 1

)
− f (l)

(
θ∗Tz | z, Y = 1

))
f(z | Y = 1)dzdu

∣∣∣∣
≤cn,k

∫
|K(u)| |uδk|

l

l!
L∥v∥2|uδk|β−ldu

≤cn,kL∥v∥2
∫
|K(u)| |uδk|

β

l!
du.

For the second term on the right hand side of (A.6), we first show the result under (A.4), i.e.,

bk−1 ≥ CNδk and bk−1 ≥ 2∥θ̂k−1 − θ∗∥1Mn. Then we have

bk−1∥ŵk−1∥2 + (θ̂k−1 − θ∗)Tz

δk
≥ bk−1∥ŵk−1∥2 − ∥θ̂k−1 − θ∗∥1Mn

δk
,

and
−bk−1∥ŵk−1∥2 + (θ̂k−1 − θ∗)Tz

δk
≤ −bk−1∥ŵk−1∥2 + ∥θ̂k−1 − θ∗∥1Mn

δk
.

Therefore, by (A.3) we have∫
Sc
u

|K(u)|du =

∫ ∞

bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk

|K(u)|du+

∫ −bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk

−∞
|K(u)|du

≤
∫ ∞

bk−1∥ŵk−1∥2−∥θ̂k−1−θ∗∥1Mn

δk

|K(u)|du+

∫ −bk−1∥ŵk−1∥2+∥θ̂k−1−θ∗∥1Mn

δk

−∞
|K(u)|du

=2

∫ ∞

bk−1∥ŵk−1∥2−∥θ̂k−1−θ∗∥1Mn

δk

|K(u)|du

≤2
∫ ∞

CN/2
|K(u)|du = O(δβk ),

where the last inequality follows that ∥ω̂k−1∥2 =
√

1 + ∥θ̂k−1∥22 ≥ 1, hence

bk−1∥ŵk−1∥2 − ∥θ̂k−1 − θ∗∥1Mn

δk
≥bk−1∥ŵk−1∥2 − bk−1/2

δk
≥ bk−1

2δk
≥ CN/2.

Finally, since supx∈R,y∈{−1,1},z∈Rd f(x | y,z) < pmax, and sup∥v∥0≤s′
vTE(ZZT |Y=y)v

∥v∥22
≤ L2, we have

|cn,k
∫
z
vTz

∫
Sc
u

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz|

≲cn,kpmax|E(|vTz| | Y = 1)|δβk

≲cn,kpmax

√
E((vTz)2 | Y = 1)δβk

≲cn,kpmax∥v∥2Lδβk .
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Combining the bound for the two terms in (A.6) we finish the proof.

Now we show the result also holds under (A.5), i.e., bk−1 ≥ CNδk, and bk−1 ≥ C∥θ̂k−1 −
θ∗∥2

√
log N

Ks log d . For the second term on the right hand side of (A.6), we only need to check that∫
z
vTz

∫
Sc
u

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz = O(δβk ).

Since supx∈R,y∈{−1,1},z∈Rd f(x | y, z) < pmax, we have∫
z
vTz

∫
Sc
u

K(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz

≤pmax

∫
z
vTz

∫
Sc
u

K(u)duf(z | Y = 1)dz

≲
∫
|(θ̂k−1−θ∗)T z|≤C∥θ̂k−1−θ∗∥2

√
log( N

Ks log d
)
vTz

∫
Sc
u

K(u)duf(z | Y = 1)dz︸ ︷︷ ︸
A

+

∫
|(θ̂k−1−θ∗)T z|>C∥θ̂k−1−θ∗∥2

√
log( N

Ks log d
)
vTz

∫
Sc
u

K(u)duf(z | Y = 1)dz︸ ︷︷ ︸
B

.

For the term A, we have

∫
Sc
u

|K(u)|du =

∫ ∞

bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk

|K(u)|du+

∫ −bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk

−∞
|K(u)|du

≤
∫ ∞

bk−1∥ŵk−1∥2−C∥θ̂k−1−θ∗∥2
√

log( N
Ks log d

)/2

δk

|K(u)|du+

∫ −bk−1∥ŵk−1∥2+C∥θ̂k−1−θ∗∥2
√

log( N
Ks log d

)/2

δk

−∞
|K(u)|du

=2

∫ ∞
bk−1∥ŵk−1∥2−C∥θ̂k−1−θ∗∥2

√
log( N

Ks log d
)/2

δk

|K(u)|du

≤2
∫ ∞

CN/2
|K(u)|du = O(δβk ),

where the last inequality follows that ∥ω̂k−1∥2 =
√

1 + ∥θ̂k−1∥22 ≥ 1, (A.3) and

bk−1∥ŵk−1∥2 − C∥θ̂k−1 − θ∗∥2
√
log( N

Ks log d)/2

δk
≥bk−1∥ŵk−1∥2 − bk−1/2

δk
≥ bk−1

2δk
≥ CN/2.

For the term B, since (θ̂k−1 − θ∗)TZ | Y = 1 is sub-Gaussian with sub-Gaussian norm that scales

with ∥θ̂k−1 − θ∗∥2, we have

P

(
|(θ̂k−1 − θ∗)TZ| > C∥θ̂k−1 − θ∗∥2

√
log(

N

Ks log d
) | Y = 1

)
≤ 2

(
Ks log d

N

)C′

,
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hence we can choose C sufficiently large such that C ′/2 ≥ ζβ and thus
(
Ks log d

N

)C′/2
≲ δβk . There-

fore,

B ≲E

[
vTZ 1{|(θ̂k−1 − θ∗)TZ| > C∥θ̂k−1 − θ∗∥2

√
log(

N

Ks log d
)} | Y = 1

]

≤
√

E((vTZ)2 | Y = 1)

√√√√P

(
|(θ̂k−1 − θ∗)TZ| > C∥θ̂k−1 − θ∗∥2

√
log(

N

Ks log d
) | Y = 1

)

≲∥v∥2
(
Ks log d

N

)C′/2

≲ ∥v∥2δβk .

Combining the bound for the two terms in (A.6) we finish the proof.

A.3 Proof of the Main Results

Proof of Theorem 1. Note that our estimator is defined as θ̂k := θ̃k,tgt, where θ̃k,tgt represents the

approximate local solution from the path-following algorithm. Therefore, by Theorem 9, we have

that with probability greater than 1− 2d−1,

∥θ̂k − θ∗∥2 ≲
(
Ks log d

ncn,k

)β/(2β+1)

, (A.7)

and

∥θ̂k − θ∗∥1 ≲
√
s

(
Ks log d

ncn,k

)β/(2β+1)

. (A.8)

When k = 1, we have

P(Ri = 1) = cn,1, P(Ri = 0) = 1− cn,1,

hence N1 = ncn,1/K. Plugging this back to (A.7) and (A.8) we get the result for θ̂1. For 2 ≤ k ≤ K,

recall that

P(Ri = 1 | Xi,Zi, θ̂k−1) = cn,k · 1{(Xi,Zi) ∈ Sk}.

We have

E(Ri) =E
[
E[Ri | Xi,Zi, θ̂k−1]

]
=E [cn,k · 1{(Xi,Zi) ∈ Sk}]

=cn,kP ((X,Z) ∈ Sk) ,

hence Nk = nE(Ri)/K = ncn,kP ((X,Z) ∈ Sk) /K. Plugging this back to (A.7) and (A.8) we finish

the proof.
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Proof of Theorem 2. First, let’s consider the case when k = 1. For each (Xi,Zi) ∈ D1, we have

P(Ri = 1) = cn,1, P(Ri = 0) = 1− cn,1,

and N/K = N1 = ncn,1/K. According to Theorem 1, by selecting

δ1 = c1

(
Ks log d

ncn,1

)1/(2β+1)

= c1

(
Ks log d

N

)1/(2β+1)

and λ1 = c2

√
cn,1K log d

nδ1
= c2

√
NK log d
n2δ1

, with probability greater than 1− 2d−1, we obtain

∥θ̂1 − θ∗∥2 ≲
(
Ks log d

N

)β/(2β+1)

, ∥θ̂1 − θ∗∥1 ≲
√
s

(
Ks log d

N

)β/(2β+1)

. (A.9)

Next, we will establish the bound for ∥θ̂k − θ∗∥2. The result for ∥θ̂k − θ∗∥1 follows similarly.

According to Assumption 3.3, we have supx∈R,z∈Rd f(x | z) < pmax <∞. Recall that

Sk :=

(X,Z) : −bk−1 ≤
X − θ̂Tk−1Z√
1 + ∥θ̂k−1∥22

≤ bk−1

 .

Let us start from k = 2. Since Z|Y = y is sub-Gaussian with a bounded sub-Gaussian norm and

independent of θ̂k−1, we have (θ̂k−1 − θ∗)TZ|Y = y is also sub-Gaussian, with a sub-Gaussian

norm that scales with ∥θ̂k−1 − θ∗∥2, hence

P

(
|(θ̂k−1 − θ∗)TZ| > c∥θ̂k−1 − θ∗∥2

√
log

(
N

Ks log d

))
≤ 2

(
Ks log d

N

)c′
,

where c′ is a sufficiently large constant. Consider the following set

E =
{
(θ,Z) : ∥θ∥2 ≤ 2C, |(θ − θ∗)TZ| ≤ c∥θ − θ∗∥2

√
log

(
N

Ks log d

)}
,

where C is the constant defined in Assumption 3.1. Note that ∥θ∗ − θ̂k−1∥2 ≤ C with probability

greater than 1− 2d−1. Since ∥θ̂k−1∥2 ≤ ∥θ∗ − θ̂k−1∥2 + ∥θ∗∥2, the event (θ̂k−1,Z) ∈ E holds with

probability greater than 1− 2
(
Ks log d

N

)c′
− 2d−1. So we have

P
(
(X,Z) ∈ Sk | θ̂k−1,Z = z

)
=

∫ bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z

−bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z
f(x | z)dx

≤ 2bk−1pmax

√
1 + ∥θ̂k−1∥22.
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As a result, we have

P ((X,Z) ∈ Sk) = E
(
P
(
(X,Z) ∈ Sk | θ̂k−1,Z

)
1{(θ̂k−1,Z) ∈ E}

)
+ E

(
P
(
(X,Z) ∈ Sk | θ̂k−1,Z

)
1{(θ̂k−1,Z) /∈ E}

)
≤ 2bk−1pmax

√
1 + 4C2 + P((θ̂k−1,Z) /∈ E)

≤ 2bk−1pmax

√
1 + 4C2 + 2

(
Ks log d

N

)c′
+ 2d−1

≲ bk−1, (A.10)

where bk−1 = c3(
Ks log d

N )1/(2β) and the last step follows from the fact that d≫ N and c′ is sufficiently

large. In addition, it can be shown that

−bk−1

√
1 + ∥θ̂k−1∥22 + θ̂Tk−1z =θ∗Tz − bk−1

√
1 + ∥θ̂k−1∥22 +

(
θ̂k−1 − θ∗

)T
z

≥θ∗Tz − C1bk−1,

if the events (θ̂k−1,Z) ∈ E and

c∥θ̂k−1 − θ∗∥2

√
log
( N

Ks log d

)
≤ bk−1/2,

hold. By (A.9) and the choice of bk−1, the two events hold with probability greater than 1 −

2
(
Ks log d

N

)c′
− 2d−1. By a similar proof, we can show that

bk−1

√
1 + ∥θ̂k−1∥22 + θ̂Tk−1z ≤ θ∗Tz + C2bk−1.

Therefore, with probability greater than 1− 2
(
Ks log d

N

)c′
− 2d−1, the event

Ak =
{[
− bk−1

√
1 + ∥θ̂k−1∥22 + θ̂Tk−1z, bk−1

√
1 + ∥θ̂k−1∥22 + θ̂Tk−1z

]
⊂ B(θ∗Tz, ϵ)

}
,

holds, where ϵ = C3bk−1 for some constant C3 large enough. Following the similar derivations in

(A.10), by Assumption 3.3, we can show that

P ((X,Z) ∈ Sk) ≥ E
(
P
(
(X,Z) ∈ Sk | θ̂k−1,Z

)
1{(θ̂k−1,Z) ∈ E ,Ak}

)
= E

{
1{(θ̂k−1,Z) ∈ E ,Ak}

∫ bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z

−bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z
f(x | z)dx

}

≥ E
{
1{(θ̂k−1,Z) ∈ E ,Ak,Z ∈ G}

∫ bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z

−bk−1

√
1+∥θ̂k−1∥22+θ̂T

k−1z
f(x | z)dx

}
≥ 2bk−1pminP{(θ̂k−1,Z) ∈ E ,Ak,Z ∈ G} ≥ Cbk−1, (A.11)
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for some constant C. Combining (A.10) with (A.11), we have P ((X,Z) ∈ Sk) ≍ bk−1.

To apply Theorem 1, we need to verify that bk−1 satisfies

bk−1 ≥ Cδk and bk−1 ≥ C∥θ̂k−1 − θ∗∥2

√
log

(
N

Ks log d

)
. (A.12)

Given bk−1 = c3(
Ks log d

N )1/(2β) and from Theorem 1

δk ≍
(
Ks log d

ncn,k

)1/(2β+1)

≍
(
s log d P ((X,Z) ∈ Sk)

Nk

)1/(2β+1)

≍
(
bk−1Ks log d

N

)1/(2β+1)

,

(A.13)

where it follows from Nk = nE(Ri)/K = ncn,kP ((X,Z) ∈ Sk) /K, we can verify that bk−1 ≥ Cδk

holds. In addition, by (A.9), Ks log d = o(N) and for any fixed β > 1+
√
3

2 (which implies β
2β+1 >

1
2β ), we conclude that bk−1 ≥ C∥θ̂k−1 − θ∗∥2

√
log( N

Ks log d) holds with probability greater than

1− 2d−1. Thus, applying Theorem 1 with δk in (A.13) and λk = c2
√

NK log d
n2bk−1δk

, we obtain that with

probability greater than 1− 4d−1

∥θ̂k − θ∗∥2 ≲
(
P ((X,Z) ∈ Sk) s log d

Nk

)β/(2β+1)

≲

(
bk−1Ks log d

N

)β/(2β+1)

≲

(
Ks log d

N

)1/2

,

(A.14)

where we plug in bk−1 = c3(
Ks log d

N )1/(2β) in the last step. This completes the proof for k = 2.

By mathematical induction, assuming (A.14) holds for θ̂k with probability greater than 1 −
2kd−1, we would like to prove (A.14) holds for θ̂k+1 with probability greater than 1− 2(k+1)d−1.

Following the similar arguments, we can prove that P ((X,Z) ∈ Sk+1) ≍ bk. Note that δk+1 ≍
( bkKs log dN )1/(2β+1) and bk = c3(

Ks log d
N )1/(2β). As a result, bk ≥ Cδk+1, and by (A.14) it holds that

bk ≥ C∥θ̂k − θ∗∥2
√

log( N
Ks log d) with probability greater than 1 − 2kd−1. Finally, as shown in

(A.14), we obtain that with probability greater than 1− 2(k + 1)d−1,

∥θ̂k+1 − θ∗∥2 ≲
(
bkKs log d

N

)β/(2β+1)

≲

(
Ks log d

N

)1/2

.

This completes the proof for k + 1. It is easily seen that, by the union bound argument, the event

∩2≤k≤K{∥θ̂k − θ∗∥2 ≲ (Ks log dN )1/2} holds with probability greater than 1− 2Kd−1.

Finally let’s consider the assumption (3.11). By definition, we have Nk =
∑

(Xi,Zi)∈Dk
E (Ri) =

nE(Ri)/K = ncn,kP ((X,Z) ∈ Sk) /K. To ensure that 0 < cn,k ≤ 1, we require

NkK ≤ nP ((X,Z) ∈ Sk) , 2 ≤ k ≤ K.

Note that NkK = N , with (A.11), it suffices to ensure that N ≤ Cbk−1n for some constant C and

for all 2 ≤ k ≤ K. Some calculation yields (3.11).
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Proof of Theorem 3. By Theorem 1, choosing δ1 = c1

(
Ks log d

N

)1/(2β+1)
and λ1 = c2

√
NK log d
n2δ1

,

yields that with probability greater than 1− 2d−1,

∥θ̂1 − θ∗∥2 ≲
(
Ks log d

N

)β/(2β+1)

, ∥θ̂1 − θ∗∥1 ≲
√
s

(
Ks log d

N

)β/(2β+1)

. (A.15)

Similar as in Theorem 2, we find P ((X,Z) ∈ S2) ≍ b1, leading to

δ2 ≍
(
Ks log d

ncn,2

)1/(2β+1)

≍
(
s log d P ((X,Z) ∈ S2)

N2

)1/(2β+1)

≍
(
b1Ks log d

N

)1/(2β+1)

. (A.16)

To invoke Theorem 1 for θ̂2, we need to verify

b1 ≥ Cδ2 and b1 ≥ C∥θ̂1 − θ∗∥2

√
log

(
N

Ks log d

)
.

For simplicity, we denote ∆ = Ks log d
N and α = β

2β+1 . By (A.16) and (A.15), it suffices to verify

b1 ≥ C ′∆1/(2β) and b1 ≥ C∆α

√
log
( 1

∆

)
(A.17)

for some constant C,C ′. For any fixed 1 < β ≤ 1+
√
3

2 , we have α ≤ 1
2β . To satisfy (A.17), we

choose b1 = C∆α
√
log( 1

∆) for some constant C. With λ2 = c2

√
NK log d
n2b1δ2

, Theorem 1 implies, with

probability greater than 1− 4d−1,

∥θ̂2 − θ∗∥2 ≲
(
P ((X,Z) ∈ S2)Ks log d

N

)β/(2β+1)

≲

(
b1Ks log d

N

)β/(2β+1)

≲

(
log(

1

∆
)

)α
2

∆α2+α. (A.18)

In the following, we will show that for any 2 ≤ k ≤ ⌈log β
2β+1

(
1− β+1

2β2

)
⌉

∥θ̂k − θ∗∥2 ≲
(
log(

1

∆
)

) α−αk

2(1−α)

∆(1−αk) α
1−α := rk, (A.19)

holds with probability greater than 1 − 2kd−1. Note that log β
2β+1

(1 − β+1
2β2 ) is well defined for

1 < β ≤ 1+
√
3

2 . Clearly, (A.19) holds for k = 2. Assuming (A.19) holds for k− 1, it suffices to show

(A.19) holds for k. Following the same argument above for k = 2, bk−1 needs to satisfy

bk−1 ≥ C ′∆1/(2β) and bk−1 ≥ Crk−1

√
log
( 1

∆

)
,

where rk−1 is given by (A.19). We note that for any k ≤ ⌈log β
2β+1

(
1− β+1

2β2

)
⌉ and for any fixed

1 < β ≤ 1+
√
3

2 ,

(1− αk−1)
α

1− α
=

(
1− (

β

2β + 1
)k−1

)
β

β + 1
<

1

2β
,
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which implies

∆1/(2β) = O

(
rk−1

√
log(

1

∆
)

)
, (A.20)

and therefore we can choose

bk−1 ≍ rk−1

√
log(

1

∆
)

≍
(
log(

1

∆
)

)α−αk−1

2(1−α)
+ 1

2

∆(1−αk−1) α
1−α

≍
(
log(

N

Ks log d
)

) (2β+1)(1−(
β

2β+1
)k−1)

2(β+1)
(
Ks log d

N

) β
β+1

(1−( β
2β+1

)k−1)

.

Similar to (A.18), we have with probability greater than 1− 2kd−1,

∥θ̂k − θ∗∥2 ≲ (bk−1∆)α ≲ rαk−1

{
log(

1

∆
)
}α/2

∆α = rk,

which completes the proof of (A.19).

For k = K = ⌈log β
2β+1

(
1− β+1

2β2

)
⌉+ 1, to satisfy

bK−1 ≥ C ′∆1/(2β) and bK−1 ≥ CrK−1

√
log
( 1

∆

)
,

we set bK−1 = c∆1/(2β). To see this, note that ∆ = o(1), the bound (A.19) holds for rK−1, and

thus for any fixed 1 < β ≤ 1+
√
3

2 , some calculation shows that

(1− αK−1)
α

1− α
=

(
1− (

β

2β + 1
)K−1

)
β

β + 1
>

1

2β
, (A.21)

which implies

rK−1

√
log(

1

∆
) = O(∆1/(2β)).

Applying Theorem 1, we select

δK ≍
(
KbK−1s log d

N

)1/(2β+1)

≍
(
Ks log d

N

)1/(2β)

,

and λK = c2
√

NK log d
n2bK−1δK

, to ensure, with probability greater than 1− 2Kd−1

∥θ̂K − θ∗∥2 ≲
(
P ((X,Z) ∈ SK) s log d

NK

)β/(2β+1)

≲
√
s

(
KbK−1s log d

N

)β/(2β+1)

≲

(
Ks log d

N

)1/2

.
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The result for ∥θ̂k − θ∗∥1 follows similarly.

Finally, to ensure that 0 < cn,k ≤ 1 for 2 ≤ k ≤ K, we require

NkK ≤ nP ((X,Z) ∈ Sk) , 2 ≤ k ≤ K.

Note that NkK = N . It suffices to ensure that N ≤ Cbk−1n for some constant C, which is implied

by (3.13) for 2 ≤ k ≤ K − 1 and (3.11) for k = K.

Proof of Theorem 4. Following the proof of Theorem 2 we have by choosing δ1 = c1

(
Ks log d

N

)1/3
and λ1 = c2

√
cn,1K log d

nδ1
= c2

√
NK log d
n2δ1

, with probability greater than 1− 2d−1,

∥θ̂1 − θ∗∥2 ≲
(
Ks log d

N

)1/3

, ∥θ̂1 − θ∗∥1 ≲
√
s

(
Ks log d

N

)1/3

. (A.22)

Similar as in Theorem 2, we find P ((X,Z) ∈ S2) ≍ b1. Applying Theorem 1 with

δ2 ≍
(
Ks log d

ncn,2

)1/3

≍
(
s log dP ((X,Z) ∈ S2)

N2

)1/3

≍
(
b1Ks log d

N

)1/3

, (A.23)

and λ2 = c2

√
NK log d
n2b1δ2

, we have with probability greater than 1− 4d−1,

∥θ̂2 − θ∗∥2 ≲
(
KP ((X,Z) ∈ S2) s log d

N

)1/3

≲

(
Kb1s log d

N

)1/3

. (A.24)

To satisfy

b1 ≥ Cδ2 and b1 ≥ C∥θ̂1 − θ∗∥2

√
log

(
N

Ks log d

)
,

by (A.23) it suffices to verify

b1 ≥ C ′
(
Ks log d

N

)1/2

and b1 ≥ C

(
Ks log d

N

)1/3
√

log

(
N

Ks log d

)
(A.25)

for some constants C,C ′. Since Ks log d = o(N), clearly we have(
Ks log d

N

)1/2

= O

((
Ks log d

N

)1/3
√

log

(
N

Ks log d

))
.

Therefore, to satisfy (A.25), we choose b1 = C1

(
Ks log d

N

)1/3√
log
(

N
Ks log d

)
for some constant C1.

Then by (A.24) and (A.22) we have

∥θ̂2 − θ∗∥2 ≲
(
log(

1

∆
)

)1/6

∆4/9,
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where ∆ = Ks log d
N . Using a similar mathematical induction argument, we can show that with

probability greater than 1− 2kd−1,

∥θ̂k − θ∗∥2 ≲

(
∆

√
log(

1

∆
)

)∑k−1
i=1 1/3i

∥θ̂1 − θ∗∥1/3
k−1

2

≲

(
∆

√
log(

1

∆
)

) 1
2
(1−1/3k−1)

∆1/3k

≲

(
log(

1

∆
)

) 1
4
(1−1/3k−1)

∆
1
2
(1−1/3k), (A.26)

for any 2 ≤ k ≤ K. Given K = ⌈log3(logN)⌉, we have
(

N
Ks log d

) 1

2·3K ≤ C for some constant C > 0,

hence (A.26) with k = K can reduce to

∥θ̂K − θ∗∥2 ≲
(
log(

N

Ks log d
)

) 1
4
(
Ks log d

N

) 1
2

,

and the result for ∥θ̂k − θ∗∥1 follows similarly. Since 1
2(1 − 1/3k−1) < 1

2 , we can verify that

∆1/2 ≲
(
log( 1

∆)
) 1

2
+ 1

4
(1−1/3k−2)

∆
1
2
(1−1/3k−1) for all 2 ≤ k ≤ K. Therefore, we choose

bk−1 = C1

(
log(

N

Ks log d
)

) 3−1/3k−2

4
(
Ks log d

N

) 1−1/3k−1

2

,

and δk = C2

(
bk−1Ks log d

N

)1/3
where C1, C2 > 0 are some constants. Finally, to ensure that 0 <

cn,k ≤ 1, we require

NkK ≤ nP ((X,Z) ∈ Sk) , 2 ≤ k ≤ K − 1.

Note that NkK = N . It suffices to ensure that N ≤ Cbk−1n for some constant C, which is provided

in (3.19).

Proof of Theorem 5. The proof consists of the following two steps.

• For any sampling methodQ ∈ QN (P(β, s)), construct a set of hypothesesH = {Pj(X,Y,Z)} ⊂
P(β, s).

• Apply Theorem 2.7 in Tsybakov (2008) by checking the following two conditions:

1. KL
(
f j∥f0

)
≤ γ log |H| for some γ ∈ (0, 1/8), where KL

(
f j∥f0

)
is the K-L divergence

between probability measures f j and f0, and f j is the probability measure of the random

variables {Oi}ni=1 under hypothesis j.

2. For all j ̸= k and q = 1, 2, ∥θj − θk∥q ≥ 2t, where t ≍ s
1
q
− 1

2

(
s log(d/s)

N

)1/2
.
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Given the set

M =
{
x ∈ {0, 1}d : ∥x∥0 = s

}
,

there exists a subset H′ of M such that ρH (x, x′) > s/16 for x, x′ ∈ H′, x ̸= x′ and log |H′| ≥
c′s log

(
d
s

)
, where ρH denotes the Hamming distance and c′ is some absolute constant. We let

ω0 = 0 ∈ Rd and use ωj to denote the elements in H′ for j = 1, . . . , |H′|.
Now we start to construct Pj(X,Y,Z). We choose weight functions such that γ(1) = γ(−1).

For all j = 0, . . . , |H′|, we assume X and each of Z1, · · · , Zd follows a Uniform distribution on

[−1, 1] independently. For each j = 0, . . . , |H′|, let

fj(y = 1 | x, z) = 1

2
+

1

2σ

(
x− c

(
s log(d/s)

N

)1/2 ωTj z√
s

)
, (A.27)

fj(y = −1 | x, z) = 1

2
− 1

2σ

(
x− c

(
s log(d/s)

N

)1/2 ωTj z√
s

)
, (A.28)

where c is some sufficiently small constant and σ is some sufficiently large constant. Under the

assumption that s( log(d/s)N )1/2 = o(1), we can guarantee that fj(y = 1 | x, z) and fj(y = −1 | x, z)
are within [0, 1] for any (x, z) ∈ [−1, 1]d+1, and thus are well defined. By this construction we can

conclude that P0, . . . , PH′ are well defined probability measures. In the following we present two

lemmas which characterize two key properties of Pj .

Lemma A.2. Under the conditions of Theorem 5 and the construction of Pj = Pj (X,Y,Z) above,

we have Pj ∈ P(β, L, pmin, pmax),∀j = 0, . . . , |H′| and (3.2) holds.

Proof. By the construction of P (X,Y,Z), denoting c̃ = c√
s

(
s log(d/s)

N

)1/2
, we have

fj(y = 1, z) =

∫ 1

−1
fj(x, y = 1, z)dx

=

∫ 1

−1
fj(y = 1 | x, z)f(x)f(z)dx

=
1

2d+1
(1− c̃

σ
ωTj z), (A.29)

and fj(y = −1, z) = 1
2d+1 (1 +

c̃
σω

T
j z). Hence

fj(x | y,z) =
fj(y | x, z)(1/2)d+1

f(y, z)
=

1 + y
σ (x− c̃ωTj z)

2(1− y c̃σω
T
j z)

=
1

2
+

yx

2σ(1− y c̃σω
T
j z)

(A.30)

is l = ⌊β⌋ times differentiable w.r.t. x for any y,z. Now we check the condition in Definition 3.1,

i.e., fj(x | y, z), j = 0, . . . , |H′| satisfies that∣∣∣f (l)
j (x1 | y, z)− f

(l)
j (x2 | y,z)

∣∣∣ ≤ L |x1 − x2|β−l (A.31)
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for any y ∈ {−1, 1}, z ∈ Rd, x1, x2, and L > 0 is some constant. When β = 1, l = 0, by (A.30) we

have ∣∣∣f (0)
j (x1 | y, z)− f

(0)
j (x2 | y,z)

∣∣∣ = |x1 − x2|
2σ(1− y c̃σω

T
j z)

<
|x1 − x2|

σ
,

given σ sufficiently large. Then note that |x1 − x2| ≤ 2, therefore choosing L = 1
σ we ensure

that (A.31) is satisfied. For β > 1, l ≥ 1, we have
∣∣∣f (l)
j (x1 | y,z)− f

(l)
j (x2 | y, z)

∣∣∣ = 0, hence

(A.31) holds trivially. This means Pj ∈ P(β, L). Clearly, fj(x|z) = fj(x) = 1/2 = pmin, and

fj(x | y,z) ≤ 1/2 + 1/σ = pmax. Thus, Pj ∈ P(β, L, pmin, pmax) holds.

Now we check the condition (3.2), i.e.,

sup
∥v∥0≤s′

vTE
(
ZZT | Y = y

)
v

∥v∥22
≤M1. (A.32)

By (A.29) we have

Pj(Y = 1) =

∫
Z

1

2d+1
(1− c̃

σ
ωTj z)dz =

1

2
,

hence fj(z | Y = y) = 1
2d
(1− y c̃σω

T
j z). We have

vTE
(
ZZT | Y = y

)
v =

∫
(vTz)2

1

2d
(1− y

c̃

σ
ωTj z)dz

=vTE(ZZT )v − yc̃

σ

∫
1

2d
(vTz)2ωTj zdz.

Note that E
(
ZZT

)
= 1/3Id and ∥ωj∥0 = s, hence∣∣∣ ∫ 1

2d
(vTz)2ωTj zdz

∣∣∣ ≤ sE((vTZ)2) ≤ s

3
∥v∥22,

and

|vTE
(
ZZT | Y = y

)
v| ≤ 1

3
∥v∥22 +

c

3σ
s

√
log(d/s)

N
∥v∥22.

Since s

√
log(d/s)

N = o(1), (A.32) holds.

Lemma A.3. Under the conditions of Theorem 5 and the construction of Pj = Pj (X,Y,Z) above,

the unique minimizer θj ∈ Rd of the risk RPj (θ) is

θj =

0 if j = 0,

c√
s

(
s log(d/s)

N

)1/2
ωj otherwise,

where c is defined in (A.27). In addition, ∥θj∥2 ≤ C for some constant C > 0, and ρ− ≤
λmin

(
∇2Rj (θj)

)
≤ λmax

(
∇2Rj (θj)

)
≤ ρ+ for some constants ρ+ ≥ ρ− > 0.
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Proof. Recall that Rj(θ) = Ej
[
γ(Y )

(
1− sign

(
Y
(
X − θTZ

)))]
, and γ(1) = γ(−1) = C for some

constant C > 0, the difference between Rj(θ) and Rj(θj) can be written as

Rj(θ)−Rj (θj) =Ej
[
γ(Y )Y

(
sign

(
X − θTj Z

)
− sign

(
X − θTZ

))]
=2

∫
G
sign

(
x− θTj z

)
Ej [γ(Y )Y | x, z]dPj;X,Z

=2C

∫
G
sign

(
x− θTj z

)
Ej [Y | x, z]dPj;X,Z ,

where

G =
{
(x, z) | sign

(
x− θTz

)
̸= sign

(
x− θTj z

)}
,

Pj;X,Z is the joint distribution of (X,Z) under Pj , and

Ej [Y | x, z] =fj(Y = 1 | x, z)− fj(Y = −1 | x, z)

=
1

σ

(
x− c

(
s log(d/s)

N

)1/2 ωTj z√
s

)
=
1

σ

(
x− θTj z

)
, (A.33)

sign (Ej [Y | x, z]) = sign
(
x− θTj z

)
.

Therefore,

Rj(θ)−Rj (θj) = 2C

∫
G
|Ej [Y | x, z]| dPj;X,Z ≥ 0, (A.34)

hence θj is a minimizer of Rj(θ). In addition, ∥θj∥2 = c

√
log(d/s)

N ∥ωj∥2 = c

√
s log(d/s)

N = O(1).

Now we check the uniqueness. By (A.33) we have

Rj(θ)−Rj (θj) =
2C

σ

∫
G

∣∣x− θTj z
∣∣ dPj;X,Z . (A.35)

For any θ ̸= θj , consider the set

Gz =
{
z : (θ − θj)

T z ̸= 0,
∣∣θTz∣∣ ≤ 1,

∣∣θTj z∣∣ ≤ 1
}
.

Note that there exists an open neighborhood in Gz, hence Gz has nonzero measure. Then define

Ḡ =
{
(x, z) : θTz < x < θTj z or θTj z < x < θTz, z ∈ Gz

}
, we have Ḡ ⊂ Gz and Ḡ has nonzero

measure as well. Therefore, (A.35) implies that Rj(θ)−Rj (θj) > 0, which completes the proof of

the uniqueness. Note that

∇Rj(θ) =
∑
y=±1

γ(y)

∫
Z
zyf

(
θTz | z, y

)
fj(z, y)dz

=
∑
y=±1

γ(y)

∫
Z
zyfj

(
y | θTz, z

)
fX,Z(θ

Tz, z)dz

=
1

2

∑
y=±1

γ(y)

∫
Z
zy

(
1

2
+

y

2σ

(
θTz − θTj z

))
fZ(z)dz,
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hence

∇2Rj(θ) =
1

4σ

∑
y=±1

γ(y)

∫
Z
zzT fZ(z)dz =

C

2σ
E(ZZT ) =

C

6σ
Id,

and λmin

(
∇2Rj (θj)

)
= λmax

(
∇2Rj (θj)

)
= C

6σ > 0. This completes the proof.

For the second step of the proof, we check both the two conditions in the following. Recall that f j

is the probability measure of the random variables {(Xi,Zi, Yi, Ri)
1{Ri=1}, (Xi,Zi, Ri)

1{Ri=0}}ni=1

under hypothesis j, and H̄i−1 = {(Xj ,Zj , Yj , Rj)
1{Rj=1}, (Xj ,Zj , Rj)

1{Rj=0}}i−1
j=1. We have

f j =

n∏
i=1

{
f(Ri = 1 | Xi,Zi, Yi, H̄i−1)fj(Xi,Zi, Yi | H̄i−1)

}1{Ri=1}

·
{
f(Ri = 0 | Xi,Zi, H̄i−1)fj(Xi,Zi | H̄i−1)

}1{Ri=0}

=
n∏
i=1

{
f(Ri = 1 | Xi,Zi, H̄i−1)fj(Xi,Zi, Yi)

}1{Ri=1} ·
{
f(Ri = 0 | Xi,Zi, H̄i−1)fj(Xi,Zi)

}1{Ri=0}

=
n∏
i=1

{
f(Ri = 1 | Xi,Zi, H̄i−1)

}1{Ri=1} {
f(Ri = 0 | Xi,Zi, H̄i−1)

}1{Ri=0}

· fj(Yi | Xi,Zi)
1{Ri=1}fj(Xi,Zi),

where in the second last equation we used the fact that Ri ⊥ Yi | Xi,Zi, H̄i−1 and (Xi,Zi, Yi) ⊥
H̄i−1 as specified in the class of sampling method in (3.23). Since the sampling method f(Ri |
Xi,Zi, H̄i−1) and the joint distribution of (X,Z) keep invariant under different hypotheses, we

have

KL
(
f j∥f0

)
=E

[
log

∏n
i=1 fj(Yi | Xi,Zi)

1{Ri=1}fj(Xi,Zi)∏n
i=1 f0(Yi | Xi,Zi)1{Ri=1}f0(Xi,Zi)

]

=E

[
log

∏n
i=1 fj(Yi | Xi,Zi)

1{Ri=1}∏n
i=1 f0(Yi | Xi,Zi)1{Ri=1}

]

=E

[
log

n∏
i=1

(
fj(Yi | Xi,Zi)

f0(Yi | Xi,Zi)

)1{Ri=1}
]

=

n∑
i=1

E
[
1{Ri = 1} · log fj(Yi | Xi,Zi)

f0(Yi | Xi,Zi)

]

=

n∑
i=1

E
[
E
[
1{Ri = 1} · log fj(Yi | Xi,Zi)

f0(Yi | Xi,Zi)
| Xi,Zi, H̄i−1

]]

=
n∑
i=1

E
[
E
[
log

fj(Yi | Xi,Zi)

f0(Yi | Xi,Zi)
| Xi,Zi

]
· P
(
Ri = 1 | Xi,Zi, H̄i−1

)]
, (A.36)
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where in the last equation we used the fact that Ri ⊥ Yi | Xi,Zi, H̄i−1 and (Xi,Zi, Yi) ⊥ H̄i−1,

and the expectation is with respect to f j . Note that E
[
log

fj(Yi|Xi,Zi)
f0(Yi|Xi,Zi)

| Xi,Zi

]
is the K-L di-

vergence between two Bernoulli distributions fj(Yi | Xi,Zi) and f0(Yi | Xi,Zi). Since δj :=

c
(
s log(d/s)

N

)1/2 ωT
j z
√
s

= o(1) uniformly over z, we have

E
[
log

fj(Yi | Xi,Zi)

f0(Yi | Xi,Zi)
| Xi = x,Zi = z

]
=fj(y = 1 | x, z) log fj(y = 1 | x, z)

f0(y = 1 | x, z)
+ fj(y = −1 | x, z) log fj(y = −1 | x, z)

f0(y = −1 | x, z)

=

(
1

2
+

1

2σ
(x− δj)

)
log

(
1− δj

σ + x

)
+

(
1

2
− 1

2σ
(x− δj)

)
log

(
1 +

δj
σ − x

)
=

δ2j
2(σ + x)(σ − x)

+ o(δ2j ) ≤ δ2j .

Plugging this back to (A.36), we have

KL
(
f j∥f0

)
≤

n∑
i=1

E
[
δ2jP

(
Ri = 1 | Xi,Zi, H̄i−1

)]
=c2

s log(d/s)

N

ωTj
s

n∑
i=1

E
[
QiZiZ

T
i

]
ωj . (A.37)

Since Q ∈ QN (P(β, s)), we have

ωTj

n∑
i=1

E
[
ZiZ

T
i · P

(
Ri = 1 | Xi,Zi, H̄i−1

)]
ωj ≤ C∥ωj∥22N.

Giving this back to (A.37), and choosing c in (A.27) sufficiently small, we can ensure C2 small

enough such that

KL
(
f j∥f0

)
≤ C2

s log(d/s)

N

∥ωj∥22N
s

= C2s log(d/s) ≤ γc′s log(d/s) ≤ γ log |H′|

for some γ ∈ (0, 1/8), hence condition 1 is satisfied.

For condition 2, by Lemma A.3, we have when j ̸= 0,

∥θ0 − θj∥2 = c

(
s log(d/s)

N

)1/2

∥ωj∥2 /
√
s = c

(
s log(d/s)

N

)1/2

,

∥θ0 − θj∥1 = c

(
s log(d/s)

N

)1/2

∥ωj∥1 /
√
s = c

√
s

(
s log(d/s)

N

)1/2

.

For all j, k ̸= 0, we have

∥θj − θk∥2 = c

(
s log(d/s)

N

)1/2

∥ωj − ωk∥2 /
√
s ≥ c

4

(
s log(d/s)

N

)1/2

,
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∥θj − θk∥1 = c

(
s log(d/s)

N

)1/2

∥ωj − ωk∥1 /
√
s ≥ c

√
s

16

(
s log(d/s)

N

)1/2

.

Therefore condition 2 holds. Then we apply Theorem 2.7 in Tsybakov (2008) and finish the

proof.

A.4 Additional theoretical results

In this section, we assume that there exits a sequence CN > 0 that may depend on N such that∫ ∞

CN/2
|K(t)|dt ≤ Cδβk , (A.38)

holds for any 2 ≤ k ≤ K, where C is a constant that does not depend on k and δk is the bandwidth

parameter in the kth iteration. In addition, we also remove the sub-Gaussian vector assumption

for Z in Assumption 3.2 in this section.

The proof of the following theorems is similar to the proof of the main results in the previous

section, and is omitted to avoid repetition. We note that without the sub-Gaussian vector assump-

tion, it becomes complicated to pinpoint the critical points for β at which the transition of the

property of the algorithm occurs. Indeed, the conditions (A.39), (A.42) and (A.46) in the following

three theorems correspond to the cases (i) β ∈ ((1 +
√
3)/2,+∞); (ii) β ∈ (1, (1 +

√
3)/2]; and (iii)

β = 1 considered in the main paper.

Theorem 6. Assume that Assumptions 3.1, 3.2 (i) and (ii), 3.3-3.5 hold, and K ≥ 2. We set

Nk = N/K for 1 ≤ k ≤ K, and

δ1 = c1

(
Ks log d

N

)1/(2β+1)

, λ1 = c2

√
NK log d

n2δ1
,

δk = c1

(
CNKs log d

N

)1/(2β)

, λk = c2

√
NK log d

n2bk−1δk
, bk−1 = c3

(
C2β+1
N Ks log d

N

)1/(2β)

, 2 ≤ k ≤ K,

for some constants c1, c2, c3 > 0 and c3 ≥ c1. If

√
sMn

((
Ks log d

N

)β/(2β+1)

∨
(
CNKs log d

N

)1/2
)

= O

(C2β+1
N Ks log d

N

)1/(2β)
 , (A.39)

and

N ≤ Cn2β/(2β+1)(Ks log d)1/(2β+1)CN (A.40)

hold for some constant C, then with probability greater than 1− 2K/d, we have

∥θ̂K − θ∗∥2 ≲
(
CNKs log d

N

)1/2

, ∥θ̂K − θ∗∥1 ≲
√
s

(
CNKs log d

N

)1/2

, (A.41)

where N is the given label budget.
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Theorem 7. Assume that Assumptions 3.1, 3.2 (i) and (ii), 3.3-3.5 hold, and suppose there exists

an integer K∗ such that

M

2β+1
β+1

− βK
∗−1

(β+1)(2β+1)K
∗−2

n s
2β+1
2(β+1)

− βK
∗−1

2(β+1)(2β+1)K
∗−2

C
(2β+1)/(2β)
N

= O

(K log d

N

) 1
2β

− β
β+1

+ βK
∗

(β+1)(2β+1)K
∗−1

 . (A.42)

We set K = K∗, Nk = N/K for 1 ≤ k ≤ K. We set

δ1 = c1

(
sK log d

N

)1/(2β+1)

, λ1 = c2

√
NK log d

n2δ1
,

for 2 ≤ k ≤ K − 1,

δk = c1

(
Ks log dbk−1

N

)1/(2β+1)

, λk = c2

√
NK log d

n2bk−1δk
,

bk−1 = c3M
2β+1
β+1

− βk−1

(β+1)(2β+1)k−2

n s
2β+1
2(β+1)

− βk−1

2(β+1)(2β+1)k−2

(
Ks log d

N

) β
β+1

− βk

(β+1)(2β+1)k−1

,

for some constants c1, c2, c3 > 0, and

δK = c′1

(
CNKs log d

N

)1/(2β)

, λK = c′2

√
NK log d

n2bK−1δK
, bK−1 = c′3

(
C2β+1
N Ks log d

N

)1/(2β)

,

for some constants c′1, c
′
2, c

′
3 > 0 and c′3 ≥ c′1. If

(
K log d

N

) 1
2β

− β
β+1

+ βk

(β+1)(2β+1)k−1

= O

M
2β+1
β+1

− βk−1

(β+1)(2β+1)k−2

n s
2β+1
2(β+1)

− βk−1

2(β+1)(2β+1)k−2

C
(2β+1)/(2β)
N

 (A.43)

for 2 ≤ k ≤ K − 1, and

N ≤ C1M
β+1
2β+1
n s

β+1
2(2β+1) (Ks log d)

β
2β+1 , (A.44)

N ≤ C2n
2β/(2β+1)(Ks log d)1/(2β+1)CN (A.45)

hold for some constants C1, C2, then with probability greater than 1− 2Kd−1,

∥θ̂K − θ∗∥2 ≲
(
CNKs log d

N

)1/2

, ∥θ̂K − θ∗∥1 ≲
√
s

(
CNKs log d

N

)1/2

.

Theorem 8. Assume that Assumptions 3.1, 3.2 (i) and (ii), 3.3-3.5 hold. We set Nk = N/K for

1 ≤ k ≤ K, and

δ1 = c1

(
Ks log d

N

)1/(2β+1)

, λ1 = c2

√
NK log d

n2δ1
,

2 ≤ k ≤ K : δk = c1

(
Ks log dbk−1

N

)1/(2β+1)

, λk = c2

√
NK log d

n2bk−1δk
,
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bk−1 = c3M
2β+1
β+1

− βk−1

(β+1)(2β+1)k−2

n s
2β+1
2(β+1)

− βk−1

2(β+1)(2β+1)k−2

(
Ks log d

N

) β
β+1

− βk

(β+1)(2β+1)k−1

,

for some constants c1, c2, c3 > 0. If

(
K log d

N

) 1
2β

− β
β+1

+ βk

(β+1)(2β+1)k−1

= O

M
2β+1
β+1

− βk−1

(β+1)(2β+1)k−2

n s
2β+1
2(β+1)

− βk−1

2(β+1)(2β+1)k−2

C
(2β+1)/(2β)
N

 (A.46)

for all 2 ≤ k ≤ K, and

N ≤ CM
β+1
2β+1
n s

β+1
2(2β+1) (Ks log d)

β
2β+1 , (A.47)

hold for some constant C, then with probability greater than 1− 2Kd−1,

∥θ̂K − θ∗∥2 ≲ M
β

β+1
− βK

(β+1)(2β+1)K−1

n s
β

2(β+1)
− βK

2(β+1)(2β+1)K−1

(
Ks log d

N

) β
β+1

− βK+1

(β+1)(2β+1)K

,

∥θ̂K − θ∗∥1 ≲ M
β

β+1
− βK

(β+1)(2β+1)K−1

n s
2β+1
2(β+1)

− βK

2(β+1)(2β+1)K−1

(
Ks log d

N

) β
β+1

− βK+1

(β+1)(2β+1)K

.

A.5 Supplementary Results for Path-following Algorithm

The analysis of the path-following algorithm follows the same line as Feng et al. (2022) and the

references therein. We only provide a sketch of the proof and refer the details to the original paper.

In fact, the key difference between our proof and Feng et al. (2022) is established in Proposition A.2

and Proposition A.1.

Lemma A.4. Assume the conditions of Proposition A.2 and Assumption 3.5 hold. For λ ≥ λk,tgt,

if θ ∈ Ω, ∥θS∗c∥0 ≤ s̃, ωλ(θ) ≤ 1
2λ, and

∥∥∥∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗)
∥∥∥
∞
≤ λ/8, we have

∥θ − θ∗∥2 ≤
C̄1

ρ−

(
cn,kδ

β
k ∨
√
sλ
)
,

∥θ − θ∗∥1 ≤
C̄2

ρ−

(
c2n,kδ

2β
k

λ
∨
√
scn,kδ

β
k ∨ sλ

)
,

fλ(θ)− fλ (θ
∗) ≤ C̄2

2ρ−

(
c2n,kδ

2β
k ∨

√
scn,kδ

β
kλ ∨ sλ2

)
,

where fλ(θ) denotes the objective function RDk
δk

(θ) + λ∥θ∥1 and C̄1, C̄2 > 0 are constants that

depend on C2 in Proposition A.2.

Proof. Combining (3.6) in Assumption 3.5 with the definition of wλ(θ), we can derive

3

2
λ ∥(θ − θ∗)S∗∥1 − (θ − θ∗)T ∇RDk

δk
(θ∗) ≥ 1

2
λ ∥(θ − θ∗)S∗c∥1 + ρ− ∥θ − θ∗∥22 . (A.48)
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By Proposition A.2, Proposition A.1, and notice the sparsity of θ,θ∗, we have∣∣∣(θ − θ∗)T ∇RDk
δk

(θ∗)
∣∣∣ =| (θ − θ∗)T (∇RDk

δk
(θ∗)−∇R

δk,θ̂k−1
(θ∗)︸ ︷︷ ︸

E1

+∇R
δk,θ̂k−1

(θ∗)−∇R(θ∗)︸ ︷︷ ︸
E2

) |)

≤ ∥θ − θ∗∥1 ∥E1∥∞ + C2cn,kδ
β
k ∥θ − θ∗∥2 ,

(A.49)

where C2 is the constant defined in Proposition A.2. Combining (A.49) with (A.48) we have

ρ− ∥θ − θ∗∥22 ≤ C2cn,kδ
β
k ∥θ − θ∗∥2 +

(
3

2
λ+ ∥E1∥∞

)
∥(θ − θ∗)S∗∥1

−
(
1

2
λ− ∥E1∥∞

)
∥(θ − θ∗)S∗c∥1 .

(A.50)

Now we discuss two cases. If ρ− ∥θ − θ∗∥22 ≤ 3C2cn,kδ
β
k ∥θ − θ∗∥2, then

∥θ − θ∗∥2 ≤
3

ρ−
C2cn,kδ

β
k . (A.51)

If ρ− ∥θ − θ∗∥22 > 3C2cn,kδ
β
k ∥θ − θ∗∥2, then we have

2ρ−
3
∥θ − θ∗∥22 ≤

(
3

2
λ+ ∥E1∥∞

)
∥(θ − θ∗)S∗∥1

−
(
1

2
λ− ∥E1∥∞

)
∥(θ − θ∗)S∗c∥1 .

(A.52)

Note that the condition of λ ensures that 1
2λ− ∥E1∥∞ ≥ 0, hence we have

∥θ − θ∗∥2 ≤
3
√
s
(
3
2λ+ ∥E1∥∞

)
2ρ−

≤ 3

ρ−

√
sλ. (A.53)

Combining the above two cases, we conclude that

∥θ − θ∗∥2 ≤
3

ρ−

(
C2cn,kδ

β
k ∨
√
sλ
)
. (A.54)

For ∥θ − θ∗∥1, define γ =
3
2
λ+∥E1∥∞

1
2
λ−∥E1∥∞

≤ 13
3 , and we consider two cases below.

If ∥(θ − θ∗)S∗c∥1 > 2γ ∥(θ − θ∗)S∗∥1, by (A.54) we obtain

∥θ − θ∗∥1 ≤
√
s(1 + 2γ) ∥θ − θ∗∥2

≤ 29

3

√
s ∥θ − θ∗∥2

≤ 29

ρ−

(
C2

√
scn,kδ

β
k ∨ sλ

)
.

(A.55)

If ∥(θ − θ∗)S∗c∥1 > 2γ ∥(θ − θ∗)S∗∥1, we have

∥θ − θ∗∥1 ≤
(
1 +

1

2γ

)
∥(θ − θ∗)S∗c∥1 . (A.56)
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By (A.50) we have(
1

2
λ− ∥E1∥∞

)
∥(θ − θ∗)S∗c∥1 ≤ C2cn,kδ

β
k ∥θ − θ∗∥2 − ρ− ∥θ − θ∗∥22 +

(
3

2
λ+ ∥E1∥∞

)
∥(θ − θ∗)S∗∥1

≤ C2cn,kδ
β
k ∥θ − θ∗∥2 − ρ− ∥θ − θ∗∥22 +

(
3

2
λ+ ∥E1∥∞

)
1

2γ
∥(θ − θ∗)S∗∥1 .

By the definition of γ we have(
1

2
λ− ∥E1∥∞

)
∥(θ − θ∗)S∗c∥1 ≤ 2

(
C2cn,kδ

β
k ∥θ − θ∗∥2 − ρ− ∥θ − θ∗∥22

)
.

Combine this with (A.56) and note that ∥E1∥∞ ≤ λ/8 we have

∥θ − θ∗∥1 ≤

(
2 + 1

γ

)
1
2λ− ∥E1∥∞

C2cn,kδ
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≤
56C2cn,kδ

β
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β
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λ
∨
√
s

)
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(A.57)

Conclude the two cases we have

∥θ − θ∗∥1 ≤
1

ρ−

(
29
√
sC2cn,kδ

β
k ∨ 29sλ ∨

56C2
2cn,kδ

2β
k

3λ

)
. (A.58)

Finally, note that ξ ∈ ∂∥θ∥1 implies ξT (θ − θ∗) ≥ ∥θ∥1 − ∥θ∗∥1, and Assumption 3.5 gives

∇RDk
δk

(θ)T (θ − θ∗) ≥ RDk
δk

(θ)−RDk
δk

(θ∗), therefore

fλ(θ)− fλ (θ
∗) = RDk

δk
(θ)−RDk

δk
(θ∗) + λ∥θ∥1 − λ∥θ∗∥1

≤ (θ − θ∗)T
(
∇RDk

δk
(θ) + λξ

)
≤ 1

2
λ ∥θ − θ∗∥1
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2ρ−

(
29
√
sC2cn,kδ

β
kλ ∨ 29sλ2 ∨

56C2
2cn,kδ

2β
k

3

)
.

Rewriting the constants we finish the proof.

The next two lemmas characterize the properties of the iterates θ1
k,t, · · · at stage t.

Lemma A.5 (Lemma 2 in Feng et al. (2022)). Assume the conditions of Proposition A.2 and

Assumption 3.5 hold. For λ ≥ λk,tgt, if θ ∈ Ω, ∥θS∗c∥0 ≤ s̃, and
∥∥∥∇RDk

δk
(θ∗)−∇R

δk,θ̂k−1
(θ∗)

∥∥∥
∞
≤

λ/8, and fλ(θ)− fλ (θ
∗) ≤ C̄2

2ρ−

(
c2n,kδ

2β
k ∨

√
scn,kδ

β
kλ ∨ sλ2

)
, then we have

∥θ − θ∗∥2 ≤
C̄ ′
1

ρ−

(
cn,kδ

β
k ∨ s1/4

√
cn,kδkλ ∨

√
sλ
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,

57



∥θ − θ∗∥1 ≤
2C̄2

ρ−

(
c2n,kδ

2β
k

λ
∨
√
scn,kδ

β
k ∨ sλ

)
,

where C̄ ′
1 depends on C̄1, C̄2, which are constants defined in Lemma A.4.

Lemma A.6 (Lemma 3 in Feng et al. (2022)). Under the same conditions of Lemma A.5, if we

choose λk,tgt = C
√

cn,kK log d
nδk

for some large enough constant C, and δk = c
(
sK log d
ncn,k

)1/(2β+1)
for

some constant c > 0, then ∥∥∥Sλk,tη (θ,Rd)
S∗c

∥∥∥
0
≤ s̃, (A.59)

where s̃ = 8
(
C̄2
ηρ−

+
2C̄′2

1 ρ
2
+

ρ2−
+ 2C2

2

)
·s, and C̄1

′
, C̄2, C2 are constants defined in Lemma A.5, Lemma A.4

and Proposition A.2, respectively.

Lemma A.5 and Lemma A.6 together imply that if the initialization at stage t is sparse and satis-

fies ωλk,t

(
θ0
k,t

)
≤ 1

2λk,t, then the subsequent iterate should also retain sparsity and exhibit favorable

properties. Furthermore, under Assumption 3.5, Lemma A.7 ensures that fλ(θ
0
k,t), fλ(θ

1
k,t), · · · are

decreasing. Consequently, the conditions delineated in Lemma A.5 and Lemma A.6 persist through-

out the entire path θ1
k,t, · · · , guaranteeing both sparsity and convergence towards a local solution.

This proposition is formally articulated as follows.

Proposition A.3 (Proposition 3 in Feng et al. (2022)). Under Assumptions 3.1-3.5, suppose δk =

c
(
sK log d
ncn,k

)1/(2β+1)
for some constant c > 0. If

∥∥∥∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗)
∥∥∥
∞
≤ λk,tgt/8 ≤ λk,t/8

and at stage t, the proximal gradient method is initialized with θ0
k,t ∈ Ω satisfying∥∥∥(θ0

k,t

)
S∗c

∥∥∥
0
≤ s̃ and ωλk,t

(
θ0
k,t

)
≤ 1

2
λk,t, (A.60)

then for j = 1, 2, · · · , we have

•
∥∥∥(θjk,t)

S∗c

∥∥∥
0
≤ s̃

• The sequence
{
θjk,t

}∞

j=0
converges towards a unique local solution θ̂k,t satisfying the first-order

optimality ωλk,t

(
θ̂k,t

)
≤ 0 with

∥∥∥(θjk,t)
S∗c

∥∥∥
0
≤ s̃

• fλk,t

(
θjk,t

)
− fλk,t

(
θ̂k,t

)
≤
(
1− ηρ−

4

)j (
fλk,t

(
θ0
k,t

)
− fλk,t

(
θ̂k,t

))
.

Lemma A.7. (Nesterov (2013), Theorem 1) Under the same conditions of Lemma A.6, we have

fλ (Sλη(θ,Ω)) ≤ fλ(θ)−
1

2η
∥Sλη(θ,Ω)− θ∥22 .

Lemma A.8. (Nesterov (2013), Corollary 1) Under the same conditions of Lemma A.6, we have

ωλt (Sλη(θ,Ω)) ≤
(
1

η
+ ρ+

)
∥Sλη(θ,Ω)− θ∥2 .
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Lemma A.9 (Lemma 10 in Feng et al. (2022)). Suppose Assumption 3.5 holds. If λ ≥ λk,tgt,

∥∇RDk
δk

(θ∗) −∇R
δk,θ̂k−1

(θ∗)∥∞ ≤ λk,tgt/8, ωλ (θ) ≤ 1
2λ, ∥θS∗∥0 ≤ s̃ and θ̂λ ∈ Ω is a minimizer of

fλ satisfying ∥(θ̂λ)S∗c∥0 ≤ s̃, then we have

fλ(θ)− fλ

(
θ̂λ

)
≤ C̄2

ρ−

(
δ2β ∨

√
sδβλ ∨ sλ2

)
.

Theorem 9. Assume the conditions of Proposition A.2 and Assumption 3.5 hold. By choosing

ν = 0.25, ϕ = 0.9, η ≤ 1
ρ+

, λk,tgt = 8C1

√
cn,kK log d

nδk
, where C1 is defined in Proposition A.1 and

δk = c
(
sK log d
ncn,k

)1/(2β+1)
for some constant c > 0, with probability greater than 1− 2d−1, the final

approximate local solution θ̃k,tgt from the path-following algorithm satisfies∥∥∥θ̃k,tgt − θ∗
∥∥∥
2
≲

(
Ks log d

ncn,k

)β/(2β+1)

,

∥∥∥θ̃k,tgt − θ∗
∥∥∥
1
≲
√
s

(
Ks log d

ncn,k

)β/(2β+1)

.

Proof. By Proposition A.1 we have

∥∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗)∥∞ ≤ C1

√
cn,kK log d

nδk
,

hence with probability greater than 1− 2d−1, ∥∇RDk
δk

(θ∗)−∇R
δk,θ̂k−1

(θ∗)∥∞ ≤ λk,tgt/8 holds. We

prove this theorem by induction. Note that the initialization in Algorithm 4 guarantees that∥∥∥(θ0
k,0

)
S∗c

∥∥∥
0
≤ s̃ and ωλk,0

(
θ0
k,0

)
≤ 1

2
λk,0,

where s̃ is defined in Proposition A.3. Suppose at stage t = 1, · · · , T − 1, we have∥∥∥(θ0
k,t

)
S∗c

∥∥∥
0
≤ s̃ and ωλk,t

(
θ0
k,t

)
≤ 1

2
λk,t.

By Proposition A.3, we know
∥∥∥(θjk,t)

S∗c

∥∥∥
0
≤ s̃ for j = 1, · · · , which implies that

∥∥∥(θ̃k,t)
S∗c
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0
≤ s̃

if exists. Recall that at stage t, the stopping criteria requires ωλk,t (θ) ≤
1
4λk,t, therefore it suffices

to find j such that ωλk,t

(
θjk,t

)
≤ 1

4λk,t to finish stage t. By Lemma A.8, we have

ωλk,t

(
θjk,t

)
≤
(
1

η
+ ρ+

)∥∥∥θjk,t − θj−1
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2
.

Recall that θ̂k,t is defined as (A.1), from Lemma A.7 we obtain

1
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,

(A.61)
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where the second last inequality is from Proposition A.3 and the last inequality follows from

Lemma A.9. Now it suffices to guarantee that(
1

η
+ ρ+

)√
2η
(
1− ηρ−

4

)j−1 C̄2

ρ−

(
δ2β ∨

√
sδβλk,t ∨ sλ2

k,t

)
≤ 1

4
λk,t.

Recall that we choose δk = c
(
sK log d
ncn,k

)1/(2β+1)
, λk,t > λk,tgt and λk,tgt = 8C1

√
cn,kK log d

nδk
. With

some algebra we can show that it suffices to guarantee that

j ≥ log

32
(
1
η + ρ+

)2
ηC̄2s

ρ−

 / log

(
4

4− ηρ−

)
+ 1,

where the RHS is independent of λ.

A.6 A Variation of Theorem 6

Theorem 10. Under Assumptions 3.1-3.5, assume that the number of iterations K ≥ 2 and β ≥ 2.

We set NK = N/2, Nk = (tNk+1)
1/β for 2 ≤ k ≤ K − 1, N1 =

(
tN2

(s log d)β/(2β+1)Cβ
N

)(2β+1)/(2β2)

, and
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N1
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, λ1 = c2

√
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,

δk = c1

(
CNs log d

Nk

)1/(2β)

, λk = c2

√
NkK2 log d

n2bk−1δk
, bk−1 = c3

(
C2β+1
N s log d

Nk

)1/(2β)

, 2 ≤ k ≤ K,

for some constants c1, c2, c3 and c3 ≥ c1. If

N ≥ t
1

β−1 2K ∨

 t
β−1/β(K−2)

β−1

(s log d)β/(2β+1)Cβ
N


βK−2(2β+1)

2βK−(2β+1)

2
2(K−1)βK−(2β+1)

2βK−(2β+1) , (A.62)

where t = s2β−1M2β
n (log d)β−1/Cβ+1

N and

N ≤ C (n/K)2β/(2β+1) (s log d)1/(2β+1)CN (A.63)

hold for some constant C, then
∑K

k=1Nk ≤ N and with probability greater than 1− 2K/d,

∥∥∥θ̂K − θ∗
∥∥∥
2
≲

(
CNs log d

N

)1/2

,
∥∥∥θ̂K − θ∗

∥∥∥
1
≲
√
s

(
CNs log d

N

)1/2

.

Proof. First, let’s consider the case when k = 1. For each (Xi,Zi) ∈ D1, we have

P(Ri = 1) = cn,1, P(Ri = 0) = 1− cn,1.
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and N1 = ncn,1/K. According to Theorem 1, by selecting δ1 = c1

(
s log d
N1

)1/(2β+1)
and λ1 =

c2

√
N1K2 log d

n2δ1
, with probability greater than 1− 2d−1, we obtain

∥θ̂1 − θ∗∥2 ≲
(
s log d

N1

)β/(2β+1)

, (A.64)

∥θ̂1 − θ∗∥1 ≲
√
s

(
s log d

N1

)β/(2β+1)

. (A.65)

Next, we will establish the bound for ∥θ̂K − θ∗∥1. The result for ∥θ̂K − θ∗∥2 follows similarly.

Following the same proof as in Theorem 6, we can show that P ((X,Z) ∈ Sk) ≍ bk−1. Note that

Nk = nE(Ri)/K = ncn,kP ((X,Z) ∈ Sk) /K. Applying Theorem 1, we select

δk ≍
(
Ks log d

ncn,k

)1/(2β+1)

≍
(
s log dP ((X,Z) ∈ Sk)

Nk

)1/(2β+1)

≍
(
bk−1s log d

Nk

)1/(2β+1)

, (A.66)

and λk = ck,2

√
NkK2 log d
n2bk−1δk

, to ensure, with probability greater than 1− 2d−1

∥∥∥θ̂k − θ∗
∥∥∥
1
≲
√
s

(
P ((X,Z) ∈ Sk) s log d

Nk

)β/(2β+1)

≲
√
s

(
bk−1s log d

Nk

)β/(2β+1)

. (A.67)

It’s important to note that for Proposition A.2 to hold which enables us to apply Theorem 1, we

need to choose bk−1 such that

bk−1 ≥ CNδk and bk−1 ≥ 2∥θ̂k−1 − θ∗∥1Mn. (A.68)

To meet the first condition and by (A.66), we have

(
C2β+1

N s log d
Nk

)1/(2β)

= O(bk−1). Therefore, we

choose bk−1 = c3

(
C2β+1

N s log d
Nk

)1/(2β)

for some constant c3. Substituting this into (A.67), we get

∥∥∥θ̂k − θ∗
∥∥∥
1
≲
√
s

(
CNs log d

Nk

)1/2

, (A.69)

which implies
∥∥∥θ̂K − θ∗

∥∥∥
1
≲
√
s
(
CNs log d

N

)1/2
, and

∥∥∥θ̂K − θ∗
∥∥∥
2
≲
(
CNs log d

N

)1/2
follows similarly.

Now, let’s explore the assumption (A.63). By definition, we have Nk =
∑

(Xi,Zi)∈Dk
E (Ri) =

nE(Ri)/K = ncn,kP ((X,Z) ∈ Sk) /K, where 0 < cn,k < 1 is defined as

P(Ri = 1 | Yi, Xi,Zi, θ̂k−1) = P(Ri = 1 | Xi,Zi, θ̂k−1) = cn,k · 1{(Xi,Zi) ∈ Sk}.

To ensure that 0 < cn,k ≤ 1, we require

NkK ≤ nP ((X,Z) ∈ Sk) , 2 ≤ k ≤ K,
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and it suffices to ensure that NkK ≤ Cbk−1n, where bk−1 = c3

(
C2β+1

N s log d
Nk

)1/(2β)

. Subsequently,

some calculation yields Nk ≤ C (n/K)2β/(2β+1) (s log d)1/(2β+1)CN for some constant C, which is

provided in (A.63).

Next we check that the second condition in (A.68), i.e., bk−1 ≥ 2∥θ̂k−1 − θ∗∥1Mn holds for the

chosen bk−1 andN1, · · · , NK . Recall that we chooseNK = N/2, Nk = (tNk+1)
1/β for 2 ≤ k ≤ K−1,

N1 =

(
tN2

(s log d)β/(2β+1)Cβ
N

)(2β+1)/2β2

, where t = s2β−1M2β
n (log d)β−1/Cβ+1

N . When k = 2, by (A.65)

it suffices to show that

N2 = O

(
C2β+1
N log d

sβ−1M2β
n

(
N1

s log d

)2β2/(2β+1)
)
, (A.70)

and when 2 ≤ k ≤ K, by (A.69) we need to ensure that

Nk = O

(
Cβ+1
N log d

sβ−1M2β
n

(
Nk−1

s log d

)β)
. (A.71)

It is easy to check that the choice of Nk above satisfies both (A.70) and (A.71).

Lastly, we demonstrate that the selected values N1, · · · , NK satisfy the condition
∑K

k=1Nk ≤ N .

Our objective is to prove that for all 0 ≤ j ≤ K − 2,

NK−j ≤
N

2j+1
, (A.72)

and N1 ≤ N
2K−1 . These inequalities together imply that

∑K
j=1Nj ≤ N

2K−1 +
∑K−1

j=1
N
2j

= N . Given

NK = N/2, Nk = (tNk+1)
1/β for 2 ≤ k ≤ K − 1, we can derive

NK−j = t
∑j

i=1 1/β
j

(
N

2

)1/βj

= t
1−1/βj

β−1

(
N

2

)1/βj

.

Thus to show (A.72), it suffices to prove t
1−1/βj

β−1
(
N
2

)1/βj

≤ N
2j+1 for all 0 ≤ j ≤ K − 2. Some

calculations yield

N ≥ t
1

β−1 2
(j+1)βj−1

βj−1 .

Noting that (j+1)βj−1
βj−1

= j + 1 + j
βj−1

≤ K, we have N ≥ t
1

β−1 2K in (A.62), ensuring the re-

sult. To show that N1 ≤ N
2K−1 , first note that N1 =

(
tN2

(s log d)β/(2β+1)Cβ
N

)(2β+1)/2β2

and N2 =

t
1−1/β(K−2)

β−1
(
N
2

)1/β(K−2)

. We need to verify that

 t
β−1/β(K−2)

β−1
(
N
2

)1/β(K−2)

(s log d)β/(2β+1)Cβ
N


2β+1

2β2

=

 t
β−1/β(K−2)

β−1

(s log d)β/(2β+1)Cβ
N


2β+1

2β2 (
N

2

) 2β+1

2βK

≤ N

2K−1
,
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which implies N ≥ 2
2(K−1)βK−(2β+1)

2βK−(2β+1)

(
t
β−1/β(K−2)

β−1

(s log d)β/(2β+1)Cβ
N

)βK−2(2β+1)

2βK−(2β+1)

, and this is provided by the sec-

ond part of (A.62).

A.7 Justification of Assumption 3.5

In this section, we verify that the restricted strong convexity and restricted smoothness condition

hold w.h.p for the class of conditional mean model. For simplicity, we assume Y ∼ Uniform({−1, 1})
and γ(y) = 1/P(Y = y) = 2 is known. The model is defined as

X = θ∗TZ + µY + u,

where we assume Z ∈ Rd is a zero-mean sub-Gaussian vector with parameter σ2, Z ⊥ u, and

µ > 0.

Recall that in Theorem 2, we showed that with high probability, ∥θ̂1 − θ∗∥2 ≲
(
s log d
N

)β/(2β+1)

and ∥θ̂k − θ∗∥2 ≲
(
s log d
N

)1/2
for 2 ≤ k ≤ K. For k = 1 when data are uniformly sampled from

D1, Feng et al. (2022) have shown that under some regularity conditions, Assumption 3.5 holds for

the conditional mean model specified above with high probability. Therefore, it suffices to verify

Assumption 3.5 on the set Ω = {θ : ∥θ − θ̂k−1∥2 ≲
(
s log d
N

)β/(2β+1)
} at the kth iteration for any

2 ≤ k ≤ K. We apply a proper kernel function K satisfying (i) K has bounded support on [−1, 1],
(ii) ∥K∥∞, ∥K ′∥∞ , ∥K ′′∥∞ and K̃ = −

∫
K ′(t)tdt > 0 are bounded above by universal constants.

To verify that Assumption 3.5 holds w.h.p, it suffices to show that the following sparse eigenvalue

condition holds w.h.p:

ρmax = sup
{
vT∇2RDk

δk
(θ)v : ∥v∥2 = 1, ∥v∥0 ≤ Cs,θ ∈ Ω, ∥θ∥0 ≤ Cs

}
< C1cn,k, (A.73)

ρmin = inf
{
vT∇2RDk

δk
(θ)v : ∥v∥2 = 1, ∥v∥0 ≤ Cs,θ ∈ Ω, ∥θ∥0 ≤ Cs

}
> C2cn,k, (A.74)

for some constants C1, C2 > 0. We let ΣZ = Cov(Z) and g(·) be the p.d.f of the error u. Denote

∇2Rδk(θ) = E
[
∇2RDk

δk
(θ)|θ̂k−1

]
as the population Hessian.

Proposition A.4. Under the setup above, suppose g̃′ = minu∈[−3µ
2
,−µ

2 ] g
′(u) > 0. If M2

n ≲√
n min

1≤k≤K
δkcn,k

K log d ,

s
2β−1
β−1 log d = o(N), (A.75)

and

s
M3
n

√
s

δ3k

(
s log d

N

)β/(2β+1)

= o (1) , (A.76)

then with probability greater than 1− 4d−1, it holds that

ρmin ≥ cn,kg̃′K̃λmin (ΣZ) , ρmax ≤ 3cn,kK̃
∥∥g′∥∥∞ λmax (ΣZ) .
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Proof. Write

vT∇2RDk
δk

(θ)v = vT∇2Rδk(θ
∗)v+vT (∇2RDk

δk
(θ∗)−∇2Rδk(θ

∗))v+vT (∇2RDk
δk

(θ)−∇2RDk
δk

(θ∗))v.

(A.77)

By Lemma A.10 we have

vT∇2Rδk(θ
∗)v ≤ 2cn,kK̃

∥∥g′∥∥∞ λmax (ΣZ) , vT∇2Rδk(θ
∗)v ≥ 2cn,kg̃′K̃λmin (ΣZ) . (A.78)

By Lemma A.12 we have with probability greater than 1− d−1,

∥∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗)∥∞ ≤ C2

√
cn,kK log d

nδ3k
.

Therefore, for any v such that ∥v∥2 = 1, ∥v∥0 ≤ Cs, with probability greater than 1− d−1,

vT (∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗))v =

d∑
j=1

d∑
k=1

vj(∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗))jkvk

≤∥∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗)∥∞∥v∥21 ≤ C1s

√
cn,kK log d

nδ3k
(A.79)

for some constant C1 > 0. Recall that cn,k ≍ N
nbk−1

, and by Theorem 2 we have

δk ≍
(
s log d

N

)1/(2β)

, bk−1 ≍
(
s log d

N

)1/(2β)

,

then by (A.75) we can show that

vT (∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗))v = O

(
s

√
cn,kK log d

nδ3k

)
= o(cn,k). (A.80)

Recall that with probability greater than 1 − 2d−1, ∥θ̂1 − θ∗∥1 ≲
√
s
(
s log d
N

)β/(2β+1)
. Hence

uniformly over θ ∈ Ω = {θ : ∥θ − θ̂k−1∥2 ≲
(
s log d
N

)β/(2β+1)
} and ∥θ∥0 ≤ Cs, we have with

probability greater than 1− 2d−1,∣∣∣∣K ′(
yi(xi − θTzi)

δk
)−K ′(

yi(xi − θ∗Tzi)

δk
)

∣∣∣∣ = ∣∣∣∣(θ∗ − θ)Tzi
δk

K ′′(
yi(xi − θ∗Tzi + κ(θ∗ − θ)Tzi)

δk
)

∣∣∣∣
≤∥θ − θ∗∥1Mn

δk
|K ′′

max|

≤

(
∥θ − θ̂k−1∥1 + ∥θ̂k−1 − θ∗∥1

)
Mn

δk
|K ′′

max|

≲
Mn

δk

√
s

(
s log d

N

)β/(2β+1)
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where 0 < κ < 1. Then note that ERi = E (cn,k 1{(Xi,Zi) ∈ Sk}) ≤ cn,k, |Ri − ERi| ≤ 1,

ER2
i ≤ cn,k, by Bernstein inequality we have

P

∥∥∥∥∥∥Kn
∑

(Xi,Zi)∈Dk

Ri − ERi

∥∥∥∥∥∥
∞

> t

 ≤ exp

(
−

1
2 t

2n/K

cn,k +
t
3

)
.

Note that cn,k = N
nP((X,Z)∈Sk)

≥ K
n , hence take t = C

√
Kcn,k

n for some constant C, and with

probability greater than 1− d−1,∥∥∥∥∥∥Kn
∑

(xi,zi)∈Dk

Ri − ERi

∥∥∥∥∥∥
∞

≲ cn,k.

Therefore, with probability greater than 1− 3d−1,

sup
θ∈Ω
∥∇2RDk

δk
(θ)−∇2RDk

δk
(θ∗)∥∞

= sup
θ∈Ω

∥∥∥∥∥∥Kn
∑

(xi,zi)∈Dk

γ(yi)
ziz

T
i

δ2k

(
K ′(

yi(xi − θTzi)

δk
)−K ′(

yi(xi − θ∗Tzi)

δk
)

)
Ri

∥∥∥∥∥∥
∞

≲
M2
n

δ2k
· Mn

δk

√
s

(
s log d

N

)β/(2β+1)
∥∥∥∥∥∥Kn

∑
(xi,zi)∈Dk

Ri

∥∥∥∥∥∥
∞

=O

(
M3
n

√
s

δ3k

(
s log d

N

)β/(2β+1)

cn,k

)
,

and by (A.76) we have

vT (∇2RDk
δk

(θ)−∇2RDk
δk

(θ∗))v ≤∥∇2RDk
δk

(θ)−∇2RDk
δk

(θ∗)∥∞∥v∥21

≤C2s
M3
n

√
s

δ3k

(
s log d

N

)β/(2β+1)

cn,k = o(cn,k), (A.81)

where C2 > 0 is some constant. Combining (A.78), (A.80), (A.81) and giving them back to (A.77)

we finish the proof.

By definition

∇2RDk
δk

(θ) = −K

n

∑
(xi,zi)∈Dk

γ(yi)
y2i ziz

T
i

δ2k
K ′(

yi(xi − θTzi)

δk
)Ri.
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Denoting
−bk−1∥ŵk−1∥2+(θ̂k−1−θ)T z

δk
:= S−

u and
bk−1∥ŵk−1∥2+(θ̂k−1−θ)T z

δk
:= S+

u , then we have

vT∇2Rδk(θ)v

=−
cn,k
δ2k

∫
z

∫ bk−1∥ŵk−1∥2+θ̂T
k−1z

−bk−1∥ŵk−1∥2+θ̂T
k−1z

(
vTz

)2
·
(
K ′
(
x− θTz

δk

)
g
(
x− θ∗Tz − µ

)
+K ′

(
−(x− θTz)

δk

)
g
(
x− θ∗Tz + µ

))
f(z)dxdz

=−
cn,k
δk

∫
z
(vTz)2

∫ S+
u

S−
u

(
K ′(t)g

(
δkt+ θTz − θ∗Tz − µ

)
+K ′(−t)g

(
δkt+ θTz − θ∗Tz + µ

))
f(z)dtdz.

Note that

g
(
δkt+ θTz − θ∗Tz − µ

)
= g

(
θTz − θ∗Tz − µ

)
+ δktg

′ (κδkt+ θTz − θ∗Tz − µ
)
,

and

g
(
δkt+ θTz − θ∗Tz + µ

)
=g
(
−δkt− θTz + θ∗Tz − µ

)
=g
(
−θTz + θ∗Tz − µ

)
− δktg

′ (−κ′δkt− θTz + θ∗Tz − µ
)
,

where 0 < κ, κ′ < 1. We choose K(t) such that K ′(t) is an odd function, then we have

vT∇2Rδk(θ)v (A.82)

=−
cn,k
δk

∫
z
(vTz)2

∫ S+
u

S−
u

K ′(t)dt
(
g
(
θTz − θ∗Tz − µ

)
− g

(
−θTz + θ∗Tz − µ

))
f(z)dz (A.83)

−cn,k
∫
z
(vTz)2

∫ S+
u

S−
u

K ′(t)t
(
g′
(
κδkt+ θTz − θ∗Tz − µ

)
+ g′

(
−κ′δkt− θTz + θ∗Tz − µ

))
dtf(z)dz.

(A.84)

The following lemma shows that ∇2Rδk(θ
∗) satisfies the sparse eigenvalue condition.

Lemma A.10. Suppose K̃ = −
∫
K ′(t)tdt > 0, g̃′ = minu∈[−3µ

2
,−µ

2 ] g
′(u) > 0, then for all unit

vector v ∈ Rd we have

vT∇2Rδk(θ
∗)v ≤ 2cn,kK̃

∥∥g′∥∥∞ λmax (ΣZ) , vT∇2Rδk(θ
∗)v ≥ 2cn,kg̃′K̃λmin (ΣZ) .

Proof. Denote
−bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk
:= S∗−

u and
bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z

δk
:= S∗+

u . Recall that

in Proposition A.2 we showed that

S∗+
u ≥

bk−1∥ŵk−1∥2 − ∥θ̂k−1 − θ∗∥1Mn

δk
≥ CN/2,

and similarly,

S∗−
u ≤ −CN/2.
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By (A.82) we have

vT∇2Rδk(θ
∗)v

=− cn,k

∫
z
(vTz)2

∫ S∗+
u

S∗−
u

K ′(t)t
(
g′ (κδkt− µ) + g′

(
−κ′δkt− µ

))
dtf(z)dz,

where 0 < κ, κ′ < 1. Note that K̃ = −
∫
K ′(t)tdt > 0, g′ and K̃ are bounded, we obtain that

vT∇2Rδ(θ
∗)v ≤ 2cn,kK̃ ∥g′∥∞ λmax (ΣZ). By the choice of the kernel function we can ensure that

κδkt− µ,−κ′δkt− µ ∈ [
−3µ
2

,
−µ
2

],

therefore, vT∇2Rδk(θ
∗)v ≥ 2cn,kg̃′K̃λmin (ΣZ) .

Lemma A.11. For any (X,Z, Y ) ∈ Dk, 2 ≤ k ≤ K, for all j, k = 1 · · · , d,

E

[(
γ(Y )

ZjZk
δ2k

K ′(
Y (X − θ∗TZ)

δk
)R

)2

| θ̂k−1

]
≤ C

cn,k
δ3k

,

for some constant C > 0.

Proof. We have

E

[(
γ(Y )

ZjZk
δ2k

K ′
(
Y (X − θ∗TZ)

δk

)
R

)2

| θ̂k−1

]

=E

[
E

[(
γ(Y )

ZjZk
δ2k

K ′
(
Y (X − θ∗TZ)

δk

)
R

)2

| θ̂k−1, Y

]
| θ̂k−1

]

=E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]
+ E

[(
ZjZk
δ2k

K ′
(
−(X − θ∗TZ)

δk

)
R

)2

| θ̂k−1, Y = −1

]
.

We bound the first term here and the second term follows similarly. Note that

E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]

=E

[
E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1, X,Z

]
| θ̂k−1, Y = 1

]
.

Recall that

Sk :=

{
(X,Z) : −bk−1 ≤

X − θ̂Tk−1Z

∥ω̂k−1∥2
≤ bk−1

}
,

and

P(R = 1 | X,Z, θ̂k−1) = cn,k · 1{(X,Z) ∈ Sk},
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we have

E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1, X,Z

]

=cn,k

(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

))2

· 1{(X,Z) ∈ Sk},

where we use the fact that R ⊥ Y | (X,Z, θ̂k−1). Hence

E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]

=cn,kE

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

))2

· 1{(X,Z) ∈ Sk} | θ̂k−1, Y = 1

]

=cn,k

∫
z

z2j z
2
k

δ4k

∫ bk−1∥ŵk−1∥2+θ̂T
k−1z

−bk−1∥ŵk−1∥2+θ̂T
k−1z

K ′2
(
x− θ∗Tz

δk

)
f(x | z, Y = 1)dxf(z | Y = 1)dz

=
cn,k
δ3k

∫
z

∫ (bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

(−bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

z2j z
2
kK

′2(u)f(uδk + θ∗Tz | z, Y = 1)duf(z | Y = 1)dz.

Since supx∈R,y∈{−1,1},z∈Rd f(x | y,z) < pmax <∞, we have

∫ (bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

(−bk−1∥ŵk−1∥2+(θ̂k−1−θ∗)T z)/δk

K ′2(u)f(uδk + θ∗Tz | z, Y = 1)du ≤ pmax

∫
K ′2(u)du.

Note that E(Z2
jZ

2
k) ≤M2 <∞, we obtain

E

[(
ZjZk
δ2k

K ′
(
X − θ∗TZ

δk

)
R

)2

| θ̂k−1, Y = 1

]
≤

cn,k
δ3k

M2pmax

∫
K ′2(u)du,

hence we finish the proof.

Lemma A.12. Suppose M2
n ≲

√
n min

1≤k≤K
δkcn,k

K log d , then with probability greater than 1−d−1, we have

∥∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗)∥∞ ≤ C2

√
cn,kK log d

nδ3k
,

where C2 is a constant independent of n, d.

Proof. Denote T = ∥∇2RDk
δk

(θ∗)−∇2Rδk(θ
∗)∥∞. By definition,

∥T∥∞ =

∥∥∥∥∥∥Kn
∑

(xi,zi)∈Dk

γ(yi)
ziz

T
i

δ2k
K ′(

yi(xi − θ∗Tzi)

δk
)Ri − E

[
γ(Y )

ZZT

δ2k
K ′(

Y (X − θ∗TZ)

δk
)R | θ̂k−1

]∥∥∥∥∥∥
∞

.
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We have

Tijk =

∣∣∣∣γ(yi)zijzikδ2k
K ′(

yi(xi − θ∗Tzi)

δk
)Ri − E

[
γ(Y )

ZjZk
δ2k

K ′(
Y (X − θ∗TZ)

δk
)R | θ̂k−1

]∣∣∣∣
≤4K ′

maxM
2
n

δ2k
,

and by Lemma A.11 we have

E[T 2
ijk | θ̂k−1] ≤E

[(
γ(Y )

ZjZk
δ2k

K ′(
Y (X − θ∗TZ)

δk
)R

)2

| θ̂k−1

]
≤ C

cn,k
δ3k

for some constant C > 0. Then by Bernstein inequality we have

P
(
∥T∥∞ > t | θ̂k−1

)
≤

d∑
j=1

d∑
k=1

P
(
|Tjk| > t | θ̂k−1

)

≤2d2 exp

− 1
2 t

2n/K

C
cn,k

δ3k
+ 4t

3 M
2
nK

′
max/δ

2
k

 .

Since the right side doesn’t contain θ̂k−1, we obtain that

P
(
∥∇2RDk

δk
(θ∗)−∇2Rδk(θ

∗)∥∞ > t
)
≤ 2d2 exp

− 1
2 t

2n/K

C
cn,k

δ3k
+ 4t

3 M
2
nK

′
max/δ

2
k

 .

Then note that M2
n ≲

√
n min

1≤k≤K
δkcn,k

K log d and take t = C2

√
cn,kK log d

nδ3k
for some constant C2 we finish

the proof.

A.8 Binary Response Model with Diverging ∥θ∗∥2

For the binary response model, we can construct a counterexample that shows that the eigenvalues

of the Hessian matrix of R(θ∗) at the true value θ∗ are of order 1/∥θ∗∥2. When ∥θ∗∥2 is diverging,

the eigenvalues of ∇2R(θ∗) shrink to 0 and thus the RSC condition would fail even if we only

consider θ = θ∗. Thus, the statistical rate presented in Section 3 is generally not applicable to the

case with diverging ∥θ∗∥2. In the following, we provide the counterexample.

Recall that the binary response model takes the form Y = sign(X − θ∗TZ + u). For simplicity

we assume X ∼ N(0, 1), Z ∼ N(0, I) independent of X and γ(y) ≡ 1. In addition, we assume the

error u is independent of X (but possibly depends on Z), and the conditional density given Z = z,

denoted by fu|z(·), is bounded by a constant for all z. The median of u given Z is 0.

By the definition of R(θ), it is easily shown that for any ∥v∥2 = 1

vT∇2R(θ∗)v = 2

∫
(zTv)2fu|z(0)ϕ(θ

∗Tz)ϕ(z1)...ϕ(zn)dz,
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where ϕ is the pdf of N(0, 1). Since fu|z(·) is upper bounded by a constant C, we have

vT∇2R(θ∗)v ≤ 2C

∫
(zTv)2

1

(2π)1/2
1

(2π)d/2
exp(−zT (I+ θ∗θ∗T )z

2
)dz

= 2C
vT (I+ θ∗θ∗T )−1v

(2π)1/2|I+ θ∗θ∗T |1/2
,

where in the last step we use the integral of a normal distribution with variance (I + θ∗θ∗T )−1.

Since the matrix I+ θ∗θ∗T has d− 1 eigenvalues 1 and 1 eigenvalue 1 + ∥θ∗∥22, we obtain that

vT∇2R(θ∗)v ≤ 2C

(2π)1/2(1 + ∥θ∗∥22)1/2
.

Thus, when ∥θ∗∥2 is diverging, vT∇2R(θ∗)v is of order 1/∥θ∗∥2. Note that we can make the

approximation error vT∇2(Rδk(θ
∗) − cn,kR(θ∗))v ignorable with a small bandwidth δk and the

stochastic error vT (∇2RDk
δk

(θ∗) − ∇2Rδk(θ
∗))v ignorable via concentration inequality. Thus, we

can show that vT∇2RDk
δk

(θ)v is also of order cn,k/∥θ∗∥2, violating our RSC condition (even at the

true value θ∗) when ∥θ∗∥2 is diverging.

A.9 Remark on β < 1

In this section, we argue that the density function with β < 1 in Assumption 3.3 may contradict

with the RSM condition in Assumption 3.5. As shown in Feng et al. (2022), to verify the RSM

condition under the surrogate loss Rn
δ (·), the key step is to verify the population-level RSM con-

dition under the 0-1 loss. For simplicity, we consider the model with no covariate Z, and define

R̃(c) = E [γ(Y )L01 (Y (X − c))] and c∗ = argminc R̃(c). Under this model, the population-level

RSM condition is given by the following: there exits a small neighborhood around c∗ such that for

any c in this neighborhood it holds that

R̃(c)− R̃(c∗)− (c− c∗)R̃′(c∗) ≤ ρ+(c− c∗)2 (A.85)

for some constant ρ+ > 0.

Proposition A.5. Let f(c|y) be the conditional density function of X at c given Y = y. Assume

that, for any constant L > 0, there exists some u > 0, such that for any |∆| < u, y ∈ {−1, 1},

|f(c∗ +∆ | y)− f(c∗ | y)| > L|∆|. (A.86)

In addition, assume that for any c ∈ (c∗ − u, c∗ + u),

[f(c|y = 1)− f(c∗|y = 1)](c− c∗) > 0, and [f(c|y = −1)− f(c∗|y = −1)](c− c∗) < 0. (A.87)

Then for any c ∈ (c∗ − u, c∗ + u), we have

R̃(c)− R̃(c∗)− (c− c∗)R̃′(c∗) > L(c− c∗)2.
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Proof. By definition, we have

R̃(c) = P(x < c | Y = 1) + P(x > c | Y = −1)

=

∫ c

−∞
f(x | y = 1)dx+

∫ +∞

c
f(x | y = −1)dx,

and

R̃′(c) = f(c | y = 1)− f(c | y = −1).

For any c ∈ (c∗ − u, c∗ + u),

R̃(c)− R̃(c∗)− (c− c∗)R̃′(c∗)

=

∫ c

c∗
f(x | y = 1)dx−

∫ c

c∗
f(x | y = −1)dx− (c− c∗) (f(c∗ | y = 1)− f(c∗ | y = −1))

=

∫ c

c∗
[f(x | y = 1)− f(c∗ | y = 1)]dx−

∫ c

c∗
[f(x | y = −1)− f(c∗ | y = −1)]dx.

Without loss of generality, we assume c > c∗. By (A.86) and (A.87), we have∫ c

c∗
[f(x | y = 1)− f(c∗ | y = 1)]dx > L

∫ c

c∗
(x− c∗)dx =

L

2
(c− c∗)2,

and ∫ c

c∗
[f(c∗ | y = −1)− f(x | y = −1)]dx > L

∫ c

c∗
(x− c∗)dx =

L

2
(c− c∗)2.

This implies R̃(c)− R̃(c∗)− (c− c∗)R̃′(c∗) > L(c− c∗)2.

Given this proposition, by taking a sequence {Lj : j = 1, 2...} diverging to infinity, we can find

a sequence {cj : j = 1, 2...} converging to c∗ such that

R̃(cj)− R̃(c∗)− (cj − c∗)R̃′(c∗)

(cj − c∗)2
> Lj →∞,

which contradicts with the population-level RSM condition (A.85). In the following, we give an

example of the conditional mean model where (A.86) and (A.87) hold, and f(c|y) is β-smooth at

c = c∗ with β < 1. The example can be easily generalized to a large class of β-smooth functions.

To avoid imposing contradictory conditions, we have to exclude the case β < 1 when deriving the

convergence rate of our estimators.

Remark 5. For any 0 < β < 1, consider the conditional mean model X = µY + ϵ, where µ is a

positive constant and the pdf of ϵ is

fϵ(x) =

a1 + a2(x+ µ)β, −µ ≤ x ≤ 0

a1 − a2(−x− µ)β, −a3 ≤ x < −µ,
(A.88)
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and fϵ(x) = fϵ(−x) for 0 < x ≤ a3, where a1, a2, a3 are some proper positive constants which makes

fϵ(x) a valid pdf. Under this model, it is easily seen that

f(x|y = 1) = fϵ(x− µ), and f(x|y = −1) = fϵ(x+ µ).

Since fϵ(x) is symmetric, there is a unique solution of R̃′(c) = f(c | y = 1) − f(c | y = −1) = 0,

that is c∗ = 0.

First, we will show that f(c|y) is β-smooth at c = c∗ = 0. For any ∆ ∈ (0, µ),

|f(∆ | y = 1)− f(0 | y = 1)| = |fϵ(∆− µ)− fϵ(−µ)| = a2|∆|β, (A.89)

and the same bound holds for ∆ ∈ (−a3 + µ, 0). Thus, f(c|y = 1) is β-smooth at c = 0 and so is

f(c|y = −1).
Second, to verify (A.86), from (A.89) we have that, for any constant L > 0, and any |∆| < u

with u = min(a3 − µ, µ, (a2L )
1

1−β ),

|f(∆ | y = 1)− f(0 | y = 1)| = a2|∆|β > L|∆|.

Since fϵ(x) is symmetric, the same bound holds for X given Y = −1. This verifies (A.86).
Finally, for (A.87), it is easily seen that f(x|y = 1) in monotonically increasing for x ∈ (−u, u)

and f(x|y = −1) in monotonically decreasing for x ∈ (−u, u). So (A.87) holds.

A.10 Analysis of Sampling Within a region of X

Recall that

Qi = g3i(H̄i−1)1{fi(Zi, H̄i−1)− g1i(H̄i−1) ≤ Xi ≤ fi(Zi, H̄i−1) + g2i(H̄i−1)}.

Since EP (
∑n

i=1Qi) ≤ N holds and infx∈R,z∈Rd f(x | z) ≥ pmin for P ∈ P(β, s), we have

n∑
i=1

EP (g3i(H̄i−1)(g1i(H̄i−1) + g2i(H̄i−1))) = O(N).

Finally, we obtain that

n∑
i=1

E
[
ZiZ

T
i ·Qi

]
=

n∑
i=1

E
[
ZiZ

T
i · g3i(H̄i−1)1{fi(Zi, H̄i−1)− g1i(H̄i−1) ≤ Xi ≤ fi(Zi, H̄i−1) + g2i(H̄i−1)}

]
≤pmax

n∑
i=1

E
[
ZiZ

T
i · g3i(H̄i−1)(g1i(H̄i−1) + g2i(H̄i−1))

]
=pmaxE(ZZT )

n∑
i=1

E
[
g3i(H̄i−1)(g1i(H̄i−1) + g2i(H̄i−1))

]
=O(N) · E(ZZT ),
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(a) (b)

Figure 4: ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 for logistic regression. LR: ℓ1 penalized logistic regression; PF:

path-following algorithm. 1/5 of the label budget is used in the first step for both two-step sampling

methods.

where we used the fact that (Xi,Zi) ⊥ H̄i−1. Since the sparse eigenvalue assumption (3.2) holds,

the last condition in (3.23) holds as well.

A.11 Additional simulation results

In this section, we consider the numerical results for our algorithm with N1 = N/5 and N2 = 4N/5

and the comparison of the four methods concerning ∥θ̂−θ∗∥∞ and prediction errors, which exhibit

similar patterns as ∥θ̂ − θ∗∥1 and ∥θ̂ − θ∗∥2.
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(a) (b)

Figure 5: ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 for conditional mean model. LR: ℓ1 penalized logistic regression;

PF: path-following algorithm. 1/5 of the label budget is used in the first step for both two-step

sampling methods.

(a) (b)

Figure 6: ∥θ̂ − θ∗∥ in ℓ1 and ℓ2 for binary response model. LR: ℓ1 penalized logistic regression;

PF: path-following algorithm. 1/5 of the label budget is used in the first step for both two-step

sampling methods.
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(a) (b)

Figure 7: ∥θ̂−θ∗∥∞ and prediction error for logistic regression. LR: ℓ1 penalized logistic regression;

PF: path-following algorithm. 1/8 of the total budget of labeled data is used in the first step for

both two-step sampling methods.

(a) (b)

Figure 8: ∥θ̂ − θ∗∥∞ and prediction error for conditional mean model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/8 of the total budget of labeled data is used in the first

step for both two-step sampling methods.
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(a) (b)

Figure 9: ∥θ̂ − θ∗∥∞ and prediction error for binary response model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/8 of the total budget of labeled data is used in the first

step for both two-step sampling methods.

(a) (b)

Figure 10: ∥θ̂−θ∗∥∞ and prediction error for logistic regression. LR: ℓ1 penalized logistic regression;

PF: path-following algorithm. 1/5 of the total budget of labeled data is used in the first step for

both two-step sampling methods.
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(a) (b)

Figure 11: ∥θ̂ − θ∗∥∞ and prediction error for conditional mean model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/5 of the total budget of labeled data is used in the first

step for both two-step sampling methods.

(a) (b)

Figure 12: ∥θ̂ − θ∗∥∞ and prediction error for binary response model. LR: ℓ1 penalized logistic

regression; PF: path-following algorithm. 1/5 of the total budget of labeled data is used in the first

step for both two-step sampling methods.
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