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CONVERGENCE/DIVERGENCE PHENOMENA IN THE VANISHING
DISCOUNT LIMIT OF HAMILTON-JACOBI EQUATIONS

ANDREA DAVINI, PANRUI NI, JUN YAN AND MAXIME ZAVIDOVIQUE

Abstract. We study the asymptotic behavior of solutions of an equation of the form

G
(
x,Dxu, λu(x)

)
= c0 in M (*)

on a closed Riemannian manifold M , where G ∈ C(T ∗M ×R) is convex and superlinear
in the gradient variable, is globally Lipschitz but not monotone in the last argument, and
c0 is the critical constant associated with the Hamiltonian H := G(·, ·, 0). By assuming
that ∂uG(·, ·, 0) satisfies a positivity condition of integral type on the Mather set of
H , we prove that any equi-bounded family of solutions of (*) uniformly converges to a
distinguished critical solution u0 as λ → 0+. We furthermore show that any other possible
family of solutions uniformly diverges to +∞ or −∞. We then look into the linear case
G(x, p, u) := a(x)u+H(x, p) and prove that the family (uλ)λ∈(0,λ0) of maximal solutions
to (*) is well defined and equi-bounded for λ0 > 0 small enough. When a changes sign
and enjoys a stronger localized positivity assumption, we show that equation (*) does
admit other solutions too, and that they all uniformly diverge to −∞ as λ → 0+. This
is the first time that converging and diverging families of solutions are shown to coexist
in such a generality.

Introduction

In this paper we are concerned with the asymptotic behavior of solutions of an equation
of the form

G
(
x,Dxu, λu(x)

)
= c0 in M (Eλ)

posed on a closed Riemannian manifold M , where G ∈ C(T ∗M × R) is convex and
superlinear in the gradient variable, is globally Lipschitz in the last argument, and c0 is

the critical constant associated with the Hamiltonian H := G(·, ·, 0). We refer the reader
to Section 1.3 for the definition of c0 and of the other related objects coming from weak

KAM Theory that will be mentioned in this introduction. The monotonicity condition on
G in the last argument, that is standard for these kind of equations, is dropped here in

favor of the following much weaker integral condition

(L5)

∫

TM

∂LG

∂u
(x, v, 0) dµ̃(x, v) < 0 for all µ̃ ∈ M̃,

where LG is the convex conjugate function of G, M̃ denotes the set of Mather measures

for LG(·, ·, 0), and G (and hence LG) satisfies a C
1-type regularity condition near u = 0,

see conditions (G4) and (L4) in Section 2. Under these assumptions, we prove that any
equi-bounded family of solutions of (Eλ) uniformly converges to a distinguished critical
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solution u0 as λ→ 0+. We furthermore show that any family consisting of other possible

solutions uniformly diverges to +∞ or −∞.

We underline that the conditions presented above on G are not sufficient to guarantee
the existence and uniqueness of viscosity solutions to (Eλ). This is due to the fact that,

without global strict monotonicity of G with respect to u, there is no comparison princi-
ple. This also makes unenforceable Perron’s method, which is the technique customarily

employed to prove existence of solutions.
The general issue of existence and uniqueness of such solutions is subsequently ad-

dressed in the paper in the linear case G(x, p, u) := a(x)u + H(x, p) under the minimal
hypotheses on a ∈ C(M) and H ∈ C(T ∗M) that guarantee that the conditions on G

and LG mentioned above are in force. We prove that the family (uλ)λ∈(0,λ0) of maximal
solutions to (Eλ) is well defined and equi-bounded for λ0 > 0 small enough. When a

changes sign and a > 0 in a neighborhood of the projected Aubry set A, we show that
equation (Eλ) does admit other solutions too that uniformly diverge to −∞ as λ → 0+.

If we additionally assume a > 0 on A, we furthermore show that any family made up of
solutions to (Eλ) that differ from the maximal ones uniformly diverge to −∞. Inciden-

tally, this completely solves the vanishing discount problem for this model case under the

sole assumption that a > 0 on A in view of the results established in [41], where a was
additionally assumed nonnegative on M .

Condition (L5) was introduced in [7] and therein employed to solve the vanishing
discount problem for an equation of the form (Eλ) under the same set of assumptions

considered herein, plus the additional requirement that G is globally non-decreasing in u.
Condition (L5) can be read as a strict monotonicity condition on G with respect to u, and

this is transparent in the linear case G(x, p, u) := a(x)u+H(x, p). What we find striking
about the output of our study is the fact that (L5) is a very weak requirement: it implies

that a has to be strictly positive only on some portions of the projected Mather set M,
where the latter is the minimal closed set that contains the projection of the supports of all

Mather measures. This set M can be very small, such as a finite set of points, see Remark
1.10. Furthermore, it has been conjectured by Mañé [33] that for generic Hamiltonians

H both A and M coincide with the support of a closed curve. Many results have been
obtained in this direction, see for example [8] and the references therein, showing that

condition (L5) generically leaves a lot of space for a to take negative values.

The main results proved in this paper keep holding when the superlinearity condition
on G is relaxed in favor of a simple coercivity. We have decided not to pursue this gener-

alization here since that would add additional technicalities with the drawback of hiding
the ideas at the base of our work, see Remark 1.12 for further details.

History of the problem. The so-called ergodic approximation is a technique introduced
in [32] to study the existence of solutions of the Hamilton-Jacobi equation1

H(x,Dxu) = c in M (1)

on the flat d-dimensional torus M := T
d ≃ R

d/Zd, where the Hamiltonian H is a continu-
ous function on T ∗M , coercive in the gradient variable, uniformly with respect to x ∈ M ,

1All solutions in the paper are meant in the viscosity sense. The definition will be provided later.
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and c is a real number. Let λ > 0 and uλ be the unique solution of

λu(x) +H(x,Dxu) = 0 in M.

According to [32], the functions −λuλ uniformly converge onM , as λ→ 0+, to a constant

c0. Furthermore, the solutions (uλ)λ>0 are equi-Lipschitz, yielding, by the Arzelá-Ascoli
Theorem, that the functions uλ −minx∈M uλ uniformly converge, along subsequences as

λ→ 0+, to a solution of (1) with c equaling c0. The constant c0 is called critical value of
H and is characterized by the property of being the unique constant c ∈ R such that (1)

admits solutions. At that time, it was not clear if different converging sequences yield the
same limit. Some constraints on the possible limit solutions were subsequently found in

[22, 29], but the breakthrough came with the work [12], where the authors proved that
the unique solution uλ of

λu(x) +H(x,Dxu) = c0 in M (HJλ)

converges to a distinguished solution of

H(x,Dxu) = c0 in M, (HJ0)

as λ→ 0+ under the sole additional assumption that H is convex in the gradient variable.
The proof relies on techniques and tools issued from weak KAM Theory, in particular on

the concept of Mather measure, and it works wheneverM is a closed Riemannian manifold.
This kind of problem is also known as the vanishing discount problem. When the convexity

condition on H is dropped, the functions uλ may not converge, as it was pointed out in

[44] through a counterexample posed on the 1-dimensional torus.
As a nonlinear generalization (see [6, 5, 23] and [39]), one can study the uniform

convergence of the unique solution of

Hλ

(
x,Dxu, u(x)

)
= c0 in M,

as λ→ 0+, where Hλ(x, p, u) is strictly increasing in u, and uniformly converges to H(x, p)

on compact sets as λ→ 0+. This kind of problem is called the vanishing contact structure
problem. The vanishing discount problem falls in this framework as a particular case by

choosing Hλ(x, p, u) := λu+H(x, p).
The asymptotic convergence result has been subsequently established in many different

situations. For the second order case, one can refer to [26, 27, 34, 43]. For the discrete

case, one can refer to [11, 38, 42] and also [2] in the context of twist maps. For the similar
problem in the mean field game theory, one can refer to [4]. For the weakly coupled

Hamilton-Jacobi systems, one can refer to [17, 14, 24, 25]. For the non-compact setting,
one can refer to [18, 28].

A natural and challenging question is to weaken the hypothesis on the monotonicity of
the Hamiltonian. A first degenerate case was studied in [41], where the author considered

the convergence of the solution of

λa(x)u(x) +H(x,Dxu) = c0 in M

as λ→ 0+, where a(x) > 0 onM , and a(x) > 0 on the projected Aubry set of H . Inspired

by the works [5, 41], the authors studied in [7] the vanishing discount problem for contact
Hamilton-Jacobi equations of the form (Eλ), where the positivity hypothesis on a assumed
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in [41] is weakened and generalized by introducing the non-degeneracy integral condition

(L5). This work highlights once more that the concept of Mather measure plays a central

role in the convergence result.
It is worth pointing out that all works mentioned above required a global non-decreasing

hypothesis of the Hamiltonians in u. If the discounted equation is not increasing in the
unknown function u, solutions may even not exist, and, if they exist, they may be not

unique. In [15, 40], the authors discussed the uniform convergence of the minimal solu-
tion of (HJλ) as λ → 0−. For the non-monotone vanishing discount problem, the second

author provided the first example in [35] of nonconvergence. In this example, there exist a
convergent family of solutions and a divergent family of solutions at the same time. This

phenomenon is new comparing with all the previous works in this direction. In the present
paper, we show that the example in [35] is in fact a very general phenomenon when the

Hamiltonian is continuous, convex and superlinear in the fibres.
Let us conclude by mentioning that the type of problems we study are also closely

linked to optimization problems in economics. The discount factor then models the effect
of time through interest rates or inflation. Negative interest rates or deflation have been

studied by economists (see for instance [31]). Our results then give possible asymptotics

in the presence of coexisting inflation and deflation.

Presentation of our results. We present here our main results. Section 2 contains our
analysis on the asymptotic behavior of possible solutions of a general contact Hamilton-

Jacobi equation of the form (Eλ) when the discount factor λ goes to 0. The Hamiltonian
G(x, p, u) is assumed convex and superlinear in p, and globally Lipschitz in u, see condi-

tions (G1-3) in Section 2. It is also assumed to satisfy a C1-type regularity condition in u
near u = 0, see condition (G4) in Section 2. The latter is for instance satisfied when the

map u 7→ G(x, p, u) is C1 in a neighborhood of u = 0 in the following sense:

(G4′) there exists ε > 0 such that ∂G
∂u

(x, p, u) exists for all (x, p, u) ∈ T ∗M × (−ε, ε) and
is continuous in T ∗M × (−ε, ε).

Let us consider

G
(
x,Dxu, λu(x)

)
= c0 in M, (Eλ)

and the limit equation

G(x,Dxu, 0) = c0 in M, (E0)

where c0 is the critical value associated with H := G(·, ·, 0). We will furthermore assume

the non-degeneracy integral condition (L5), where M̃ denotes the set of Mather measures
for L := LG(·, ·, 0).

The main results contained in Section 2 can be summarized as follows, see Theorems
2.2 and 2.5.

Theorem 1. Under the previous assumptions, there exist a viscosity solution u0 of (E0)
and functions ϕ : (0, 1) → (−∞,+∞], ψ : (0, 1) → [−∞,+∞) and θ : (0, 1) → R with

lim
λ→0

ψ(λ) = −∞, lim
λ→0

ϕ(λ) = +∞, lim
λ→0

θ(λ) = 0
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such that, if vλ is a solution of (Eλ) for some λ > 0, then either one of the following

alternatives occurs:

(i) vλ 6 ψ(λ);

(ii) vλ > ϕ(λ);

(iii) ‖vλ − u0‖∞ 6 θ(λ).

We stress that all these three behaviors can happen at the same time for a properly
chosen Hamiltonian G. Indeed, consider G(x, p, u) := sin(u) + ‖p‖2x. It is easlily seen that

G verifies all of the above conditions. The limit Hamiltonian is H(x, p) := G(x, p, 0) =
‖p‖2x, its critical constant is c0 = 0 and the constant functions are the only solutions to

H(x,Dxu) = 0 in M . Moreover, for all λ > 0, the three constant functions uλ = 0, and
u±λ = ±π

λ
are solutions to the discounted equation.

Theorem 1 shows in great generality that the only possible asymptotic behavior of

families of solutions (vλ)λ∈(0,λ0) is, up to subsequences, either to uniformly diverge to
±∞, or to uniformly converge to a specific solution u0 of (E0). We also provide two

characterizations of u0, see Theorems 2.2 and 2.3.

The general problem of existence and uniqueness of such solutions is addressed in
Section 3. Here we consider the linear case G(x, p, u) := a(x)u+H(x, p) under the minimal

hypotheses on a ∈ C(M) and H ∈ C(T ∗M) that guarantee that the conditions on G and
LG presented above are in force. The discounted equation is then

λa(x)u(x) +H(x,Dxu) = c0 in M, (HJλ)

with limit equation

H(x,Dxu) = c0 in M. (HJ0)

We prove the following existence and convergence result:

Theorem 2. Under the previous hypotheses, there is λ0 > 0 such that, for all λ ∈ (0, λ0),
the equation (HJλ) admits a maximal viscosity solution uλ ∈ C(M). Moreover, the family

(uλ)λ∈(0,λ0) is equi-bounded, hence it uniformly converges to u0 as λ→ 0+.

The previous theorem excludes the possibility of families of solutions that uniformly

diverge to +∞, but leaves open the possibility of families uniformly diverging to −∞.
By strengthening the non-degeneracy integral condition (L5) with a pointwise positivity

condition on a on the projected Aubry set A, we are able to improve the statement of

Theorem 1 as follows.

Theorem 3. Let us additionally assume that a > 0 in a neighborhood of A and that there

exist x0 ∈ M such that a(x0) < 0. Then there exists a family of solutions (vλ)λ∈(0,λ̂) to

(HJλ) for some λ̂ ∈ (0, 1) uniformly diverging to −∞ as λ→ 0+.

When the previous hypothesis is reinforced, we obtain a stronger conclusion:

Theorem 4. Let us additionally assume that a > 0 on A. Then any family (vλ)λ∈(0,λ′)

of solutions to (HJλ) satisfying vλ 6= uλ for all λ ∈ (0, λ′), with λ′ ∈ (0, 1), uniformly
diverges to −∞.
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Namely, in this last case, (uλ)λ is the only converging family of solutions.

Let us conclude this presentation by stressing that, combining this analysis with the
results of [41], we fully understand the asymptotic behavior of solutions to (HJλ) when

a > 0 on A. The output is the following:

(a) if a > 0 on the wholeM , (this situation was considered in [41]) then, for all λ > 0,

there is a unique solution uλ to (HJλ), and the family (uλ)λ converges as λ→ 0+.

(b) if there exist a point x0 ∈ M such that a(x0) < 0, (this situation is discussed in

the present paper), then we can find a λ0 > 0 small enough such that equation
(HJλ) admits at least two solutions for every λ ∈ (0, λ0). The family (uλ)λ∈(0,λ0)

of maximal solutions uniformly converges to u0 as λ → 0+. Any family of other
solutions (vλ)λ uniformly diverges to −∞ as λ→ 0+.

1. Preliminaries

1.1. Notation.

◦ Throughout this paper, we assume that M is a closed, connected and smooth
Riemannian manifold.

◦ We fix g an auxiliary Riemannian metric onM . Let d(x, y) be the distance between
x and y in M induced by g. By compactness of M our results are independent on

the choice of g.
◦ Let diam(M) be the diameter of M .

◦ We denote by TM and T ∗M the tangent and cotangent bundle over M respec-
tively. We denote by (x, p) and (x, v) points of T ∗M and TM respectively.

◦ Let π : TM, T ∗M → M denote both canonical projections, the context will make
it clear which one is considered.

◦ We denote by ‖ · ‖x the norm on both TxM and T ∗
xM induced by g.

◦ If N is a smooth manifold, we will denote by C(N) the Polish space of continuous
functions from N to R endowed with the metric of local uniform convergence on

N . We will denote by Cc(N)
(
resp. C1(N)

)
the set of compactly supported (resp.,

C1) functions from N to R.

◦ We denote by P(TM) the space of Borel probability measures on TM endowed

with the weak-∗ topology coming from the dual
(
Cc(TM)

)′
.

◦ We denote Cℓ(TM) the set of continuous functions g : TM → R with at most
linear growth meaning that

sup
(x,v)∈TM

|g(x, v)|
1 + ‖v‖x

< +∞.

This last quantity defines a norm ‖g‖ℓ on the vector space Cℓ(TM).

◦ N denotes the set of positive integers.

1.2. Viscosity solutions. We start by recalling the notion of viscosity solution.

Definition 1.1. Let G : T ∗M × R → R be a continuous function, c ∈ R, and consider
the equation

G
(
x,Dxu, u(x)

)
= c in M. (1.1)
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(a) We say that u ∈ C(M) is a viscosity subsolution of (1.1), denoted by

G
(
x,Dxu, u(x)

)
6 c in M,

if, for all ϕ ∈ C1(M) and x0 ∈M such that u− ϕ has a local maximum at x0, we
have G

(
x0, Dx0

ϕ, u(x0)
)
6 c. Such a function ϕ is termed supertangent to u at x0.

(b) We say that u ∈ C(M) is a viscosity supersolution of (1.1), denoted by

G
(
x,Dxu, u(x)

)
> c in M,

if, for all ϕ ∈ C1(M) and x0 ∈ M such that u − ϕ has a local minimum at x0,
then G

(
x0, Dx0

ϕ, u(x0)
)
> c. Such a function ϕ is termed subtangent to u at x0.

(c) We say that u ∈ C(M) is a viscosity solution of (1.1) if it is both a viscosity sub

and supersolution.

In this paper, solutions, subsolutions, supersolutions will be always meant in the vis-

cosity sense and implicitly assumed continuous. We recall that, if u is C1 on an open set
U , then it is a viscosity solution (resp. subsolution, supersolution) in U if and only if it is

a pointwise solution (resp. subsolution, supersolution) in U .

The following stability result is well known, see for instance [3].

Proposition 1.2. Let (Gn)n and (un)n be two sequences of functions in C(T ∗M × R)
and C(M), respectively, such that un is a subsolution (resp. supersolution, solution) of

(1.1) with G := Gn, for each n ∈ N. If un → u in C(M) and Gn → G in C(T ∗M ×R) as
n→ +∞, then u is a subsolution (resp. supersolution, solution) of (1.1).

1.3. Weak KAM solutions and Aubry-Mather theory. We assume H : T ∗M → R

is a continuous Hamiltonian satisfying

(H1) (Convexity) H(x, p) is convex in p for all x ∈M .

(H2) (Superlinearity) lim
‖p‖x→+∞

H(x, p)/‖p‖x = +∞.

Let L : TM → R be the convex conjugate function of H , i.e.,

L(x, v) := sup
p∈T ∗

xM

(
p(v)−H(x, p)

)
, (x, v) ∈ TM.

It is well known that the Lagrangian L is a continuous function on TM and it is convex

and superlinear in v. The Fenchel inequality is a direct consequence of this definition:

L(x, v) +H(x, p) > p(v), for all (x, v, p) ∈ M × TxM × T ∗
xM . (1.2)

Moreover, it can be proven that H is itself the convex conjugate of L, i.e.,

H(x, p) = sup
v∈TxM

(
p(v)− L(x, v)

)
for all (x, p) ∈ T ∗M. (1.3)

Let c0 ∈ R denote the critical constant defined as follows:

c0 = min{c ∈ R : H(x,Dxu) = c in M admits subsolutions}. (1.4)

We present here some facts that we will need about the critical equation, i.e.,

H(x,Dxu) = c0 in M. (HJ0)

Solutions, subsolutions and supersolutions of (HJ0) will be termed critical in the sequel.
Due to the convex character of H , the following holds, see for instance [3, 19].



8 A. DAVINI, P. NI, J. YAN AND M. ZAVIDOVIQUE

Proposition 1.3. Let u ∈ C(M). The following properties hold:

(i) if u is the pointwise supremum (respectively, infimum) of a family of subsolutions

(resp., supersolutions) to (HJ0), then u is a subsolution (resp., supersolution) of
(HJ0);

(ii) if u is the pointwise infimum of a family of equi-Lipschitz subsolutions to (HJ0),

then u is a Lipschitz subsolution of (HJ0);

(iii) if u is a convex combination of a family of equi-Lipschitz subsolutions to (HJ0),

then u is a Lipschitz subsolution of (HJ0).

More precisely, items (ii) and (iii) above require the convexity of H in the momentum,

while item (i) is a general fact.
Since we are assuming H to be superlinear (hence coercive, which is enough), we also

have the following characterization of critical subsolutions, see for instance [3, 19].

Proposition 1.4. The following are equivalent facts:

(i) v is a viscosity subsolution of (HJ0);

(ii) v is Lipschitz continuous and an almost everywhere subsolution of (HJ0), i.e.,

H(x,Dxv) 6 c0 for a.e. x ∈M .

Moreover, the set of viscosity subsolutions of (HJ0) is equi-Lipschitz, with κc0 := sup{‖p‖x :

H(x, p) ≤ c0} as a common Lipschitz constant.

For every t > 0, we define the minimal action function ht :M ×M → R as

ht(x, y) = inf
γ

∫ 0

−t

[
L
(
γ(s), γ̇(s)

)
+ c0

]
ds,

where γ : [−t, 0] →M is taken among all absolutely continuous curves2 satisfying γ(−t) =
x and γ(0) = y. The Peierls barrier is the function h :M ×M → R defined by

h(x, y) := lim inf
t→+∞

ht(x, y). (1.5)

It satisfies the following properties, see for instance [16]:

Proposition 1.5.

(i) The Peierls barrier h is finite valued and Lipschitz continuous.

(ii) If v is a critical subsolution, then

v(x)− v(y) 6 h(y, x), v(x)− v(y) 6 ht(y, x) for every x, y ∈M and t > 0.

(iii) For every fixed y ∈M , the function h(y, ·) is a critical solution.

(iv) For every fixed y ∈M , the function −h(·, y) is a critical subsolution.

The projected Aubry set A is the closed set defined by

A := {y ∈M : h(y, y) = 0 }.
The following holds, see [19, 21]:

2In the paper, even if not explicitly stated, all curves considered are at least absolutely continuous.
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Theorem 1.6. There exists a critical subsolution v which is both strict and of class C∞

in M \ A, meaning that

H(x,Dxv) < c0 for every x ∈M \ A.

In particular, the projected Aubry set A is nonempty.

The last assertion directly follows from the definition of c0, see (1.4).

Proposition 1.7. If u and v are respectively a sub and supersolution such that u 6 v on

A, then u 6 v on the whole of M . In particular, A is a uniqueness set for (HJ0), meaning
that if two solutions coincide on A, then they are equal.

We will say that a Borel probability measure µ̃ on TM is closed if it satisfies the

following conditions:

(a)

∫

TM

‖v‖x dµ̃(x, v) < +∞;

(b) for all function f ∈ C1(M), we have

∫

TM

Dxf(v) dµ̃(x, v) = 0.

We will denote by P0 the set of such measures.

We will furthermore denote by Pℓ the family of probability measures µ̃ that satisfy
condition (a) above. The inclusions P0 ⊂ Pℓ ⊂

(
Cℓ(TM)

)′
hold. We will endow Pℓ with

the weak-∗ topology coming from the dual
(
Cℓ(TM)

)′
. We refer the reader to [9] for more

details on these families of measures.

Theorem 1.8. The following holds

min
µ̃∈P0

∫

TM

L(x, v) dµ̃ = −c0.

Measures realizing the above minimum are calledMather measures for L. We denote by

M̃ the set of all Mather measures. This set is compact. The Mather set and the projected
Mather set are defined as follows:

M̃ :=
⋃

µ̃∈M̃

supp(µ̃), M := π
(
M̃

)
.

These sets are also compact, see [19] for a proof in the regular case.3 Furthermore, the
following holds, see [41, Proposition 3.13] for a proof in the nonregular case.

Theorem 1.9. The following inclusion holds: M ⊆ A.

Remark 1.10. In the example of a mechanical Hamiltonian, i.e.,H(x, p) = ‖p‖2x/2+V (x),
it is well known that c0 = maxM V , A = {y ∈ M : V (y) = maxM V } and the Mather

measures are convex combinations of delta Diracs concentrated at points (y, 0) with y ∈ A,

so that M is also equal to {y ∈M : V (y) = maxM V }.
We conclude this paragraph by a technical lemma that will be of crucial use (see [9,

Theorem 2-4.1.3.]).

3For the present nonregular case, a proof of this can be found in Appendix A in the ArXiv version of
[12].
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Lemma 1.11. Let a ∈ R. The set {µ̃ ∈ Pℓ :
∫
TM

L(x, v)dµ̃(x, v) 6 a} is compact in Pℓ.

Note that, as L is bounded below, the quantity
∫
TM

L(x, v)dµ̃(x, v) ∈ R∪{+∞} is well
defined for any Borel probability measure. We also remark that in [9, Theorem 2-4.1.3.]

the result is proved for a particular subclass of measures, however the proof makes no use
of this fact and proves the above result.

1.4. Hamiltonians depending on the unknown function. We recall here known
results that can be found in [36, 37] and the references therein. In this section, we consider

a continuous Hamiltonian G : T ∗M × R → R which satisfies the following conditions

(G1) (Lipschitz in u) u 7→ G(x, p, u) is K-Lipschitz continuous for some K > 0, uni-
formly in (x, p) ∈ T ∗M ;

(G2) (Convexity in p) p 7→ G(x, p, u) is convex for each (x, u) ∈M × R;

(G3) (Superlinearity in p) p 7→ G(x, p, u) is superlinear for each (x, u) ∈M × R.

Remark 1.12. The results of this paper keep holding even when the superlinearity condi-
tion (G3) is weakened in favor of a simple coercivity. For instance, Theorems 2.2 and 2.3

can be easily generalized to this setting. Indeed, since we are dealing there with a family
of equi-bounded, and hence equi-Lipschitz, solutions, see Lemma 2.6, we could employ the

usual trick of modifying G outside a compact subset of T ∗M × R to make it superlinear.
This cannot be done in other parts of the paper since we are dealing with families of so-

lutions that are neither equi-bounded nor equi-Lipschitz in general. And even when they
are, as in Section 3.1, this needs to be proved. In fact, this is the core of the analysis per-

formed in Section 3.1, which takes advantage of the fact that the Lagrangian associated

with the Hamiltonian via the Fenchel duality is finite-valued. This is no longer true in
the purely coercive case, even though the difficulties arising could be handled by showing

that all the minimizing curves that come into play in our analysis are indeed supported
on the set where the Lagrangian is finite. Yet, we believe that treating this more general

case would bring additional technicalities that would have the effect of hiding the ideas
at the base of this work. We prefer to leave the coercive case to a possible future work.

Let LG : TM × R → R be the convex conjugate function of G, i.e.,

LG(x, v, u) := sup
p∈T ∗

xM

(
p(v)−G(x, p, u)

)
.

Then it can be proven that LG verifies similar properties (see [5, Lemma 4.1] with easy

adaptations):

(L1) u 7→ LG(x, v, u) is K-Lipschitz continuous uniformly in (x, v) ∈ TM ;

(L2) v 7→ LG(x, v, u) is convex for each (x, u) ∈M × R;

(L3) v 7→ LG(x, v, u) is superlinear for each (x, u) ∈M × R;

Definition 1.13. Let G : T ∗M × R → R be a Hamiltonian satisfying (G1-3) and let

LG : TM × R → R be the associated Lagrangian. Let c ∈ R. A function u ∈ C(M)
satisfying the following two properties is called a backward (resp. forward) weak KAM

solution of

G
(
x,Dxu, u(x)

)
= c in M. (1.6)
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(1) For each absolutely continuous curve γ : [t′, t] →M , we have

u
(
γ(t)

)
− u

(
γ(t′)

)
6

∫ t

t′

[
LG

(
γ(s), γ̇(s), u

(
γ(s)

))
+ c

]
ds.

The above condition reads as u is dominated by LG + c and will be denoted by

u ≺ LG + c.

(2) For each x ∈ M , there exists an absolutely continuous curve γ− : (−∞, 0] → M
(resp. γ+ : [0,+∞) →M) with γ−(0) = x (resp. γ+(0) = x) such that

u(x)− u
(
γ−(t)

)
=

∫ 0

t

[
LG

(
γ−(s), γ̇−(s), u

(
γ−(s)

))
+ c

]
ds, ∀t < 0

(
resp. u(γ+(t))− u(x) =

∫ t

0

[
LG

(
γ+(s), γ̇+(s), u

(
γ+(s)

))
+ c

]
ds, ∀t > 0

)
.

The curves satisfying the above equality are called (u, LG, c)-calibrated curves.

By [37, Appendix D] and [36, Appendix A] we have

Lemma 1.14.

(i) If u ∈ C(M) is a backward weak KAM solution of (1.6), it is a viscosity solution

of (1.6).

(ii) The function w ∈ C(M) is a viscosity subsolution of (1.6) if and only if w ≺
LG + c. The latter is also equivalent to w being Lipschitz continuous and verifying
G
(
x,Dxw,w(x)

)
6 c for almost every x ∈M .

We then give an approximation result in this setting. It is an easy consequence of [20,

Theorem 8.5].

Theorem 1.15. Assume G : T ∗M ×R → R is a continuous Hamiltonian verifying (G2).

Let w : M → R be a Lipschitz function verifying G
(
x,Dxw,w(x)

)
6 c for almost every

x ∈M . Then, for every ε > 0, there is a wε ∈ C∞(M) such that ‖w − wε‖∞ < ε and

G
(
x,Dxwε, w(x)

)
6 c + ε, G

(
x,Dxwε, wε(x)

)
6 c+ ε for all x ∈M.

Let a ∈ C(M). Assume there are two points x1 and x2 such that a(x1) > 0 and
a(x2) < 0. Let c ∈ R and consider the equation

a(x)u(x) +H(x,Dxu) = c in M. (1.7)

This is a particular case of the previous setting for G(x, p, u) = a(x)u +H(x, p). In this

case, the associated Lagrangian is LG(x, v, u) = L(x, v) − a(x)u. The following implicit
Lax-Oleinik semigroup (T−

t )t>0 is a well defined semigroup of operators T−
t : C(M) →

C(M) that verify, for all ϕ ∈ C(M),

T−
t ϕ(x) = inf

γ(t)=x

{
ϕ
(
γ(0)

)
+

∫ t

0

[
L
(
γ(τ), γ̇(τ)

)
− a

(
γ(τ)

)
T−
τ ϕ

(
γ(τ)

)
+ c

]
dτ

}
, (1.8)

where the infimum is taken among absolutely continuous curves γ : [0, t] → M with
γ(t) = x. A similar property defines and characterizes the forward semigroup (T+

t )t>0,
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where, for all ϕ ∈ C(M),

T+
t ϕ(x) = sup

γ(0)=x

{
ϕ
(
γ(t)

)
−

∫ t

0

[
L
(
γ(τ), γ̇(τ)

)
− a

(
γ(τ)

)
T+
t−τϕ

(
γ(τ)

)
+ c

]
dτ

}
. (1.9)

Lemma 1.16. [36, Appendix A] If u0 is a subsolution of (1.7), then

T+
t u0 6 u0 6 T−

t u0.

If u0 is a strict subsolution4 of (1.7), then

T+
t u0 < u0 < T−

t u0.

Lemma 1.17. [36, Proposition 2.9, Proposition 3.5, Lemma 5.4] If u0 is a subsolution of

(1.7), then the limit

u− := lim
t→+∞

T−
t u0 (resp. v+ := lim

t→+∞
T+
t u0)

exists, and is a viscosity solution (resp. forward weak KAM solution) of (1.7). In addition,

v− := lim
t→+∞

T−
t v+

is also a viscosity solution of (1.7), and there is a point x0 ∈M such that v−(x0) = v+(x0).
If u0 is a strict subsolution of (1.7), then u− is the maximal solution of (1.7), and v−

is the minimal solution of (1.7).

2. General convergence/divergence results

In this section, we consider a continuous Hamiltonian G : T ∗M×R → R which satisfies

the following conditions:

(G1) (Lipschitz in u) u 7→ G(x, p, u) is K-Lipschitz continuous uniformly in (x, p) ∈
T ∗M for some K > 0;

(G2) (Convexity in p) v 7→ G(x, p, u) is convex for each (x, u) ∈M × R;

(G3) (Superlinearity in p) p 7→ G(x, p, u) is superlinear for each (x, u) ∈M × R;

(G4) (Modulus continuity near u = 0) The partial derivative ∂G
∂u
(x, p, 0) exists. For every

compact subset S ⊂ TM , we can find a modulus of continuity5 ηS such that∣∣∣∣G(x, p, u)−G(x, p, 0)− ∂G

∂u
(x, p, 0)u

∣∣∣∣ 6 |u|ηS(|u|), ∀(x, p) ∈ S.

The dependence of G in the u-variable is nonlinear, in general, as in [7], but we do not
make any global monotonicity assumption. As established in [5, Lemma 4.1] the associated

Lagrangian function LG : TM × R → R defined by

LG(x, v, u) := sup
p∈T ∗

xM

(
p(v)−G(x, p, u)

)
,

has similar properties:

(L1) (Lipschitz in u) u 7→ LG(x, v, u) is K-Lipschitz continuous uniformly in (x, v) ∈
TM ;

4Meaning that c can be replaced with c− ε for some ε > 0.
5A modulus of continuity is a nondecreasing function η : (0,+∞) → (0,+∞) such that η(s) → 0 as

s → 0.
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(L2) (Convexity in v) v 7→ LG(x, v, u) is convex for each (x, u) ∈M × R;

(L3) (Superlinearity in v) v 7→ LG(x, v, u) is superlinear for each (x, u) ∈M × R;

(L4) (Modulus continuity near u = 0) The partial derivative ∂LG

∂u
(x, v, 0) exists. For

every compact subset S ⊂ TM , we can find a modulus of continuity ηS such that∣∣∣∣LG(x, v, u)− LG(x, v, 0)−
∂LG

∂u
(x, v, 0)u

∣∣∣∣ 6 |u|ηS(|u|), ∀(x, v) ∈ S.

The last condition is easier to state with the Lagrangian function as it involves Mather

measures defined on TM :

(L5) (Non-degeneracy condition) For all Mather measures µ̃ of (x, v) 7→ LG(x, v, 0), we
have∫

TM

∂LG

∂u
(x, v, 0) dµ̃ < 0.

Remark 2.1. (1) It is classical in convex analysis that for all (x, v) ∈ TM there is

(x, p) ∈ T ∗M verifying LG(x, v, 0) + G(x, p, 0) = p(v). It is proved in [5, Lemma 4.1]
that if (x, p) ∈ T ∗M and (x, v) ∈ TM verify the previous formula then ∂LG

∂u
(x, v, 0) =

−∂G
∂u
(x, p, 0). Therefore, an equivalent formulation of (L5) is

(G5) (Non-degeneracy condition) For all Mather measures µ̃ of (x, v) 7→ LG(x, v, 0),∫

TM

∂G

∂u
(x, p(x,v), 0) dµ̃ > 0.

where p(x,v) is chosen so to satisfy LG(x, v, 0) +G(x, p(x,v), 0) = p(x,v)(v) .

(2) A result of Mañé ([33]) asserts that a generic Hamiltonian H has a unique Mather
measure.6 Hence our condition of integral type is quite loose for such a generic H . We

also refer the reader to Remark 1.10 for an explicit example.

Consider

G
(
x,Dxu, λu(x)

)
= c0 in M, (Eλ)

and the limit equation

G(x,Dxu, 0) = c0 in M. (E0)

Here we denote by c0 the critical value of H(x, p) := G(x, p, 0). We denote by M̃ (resp.

M̃) the set of all Mather measures (resp. the Mather set) corresponding to H . In the
sequel, we will always assume that λ belongs to the interval (0, 1).

The main theorems of this section are the following.

Theorem 2.2. Let conditions (L1–5) be in force. Let us assume that there exist an equi-
bounded family (uλ)λ∈(0,λ0) of solutions to (Eλ), for some λ0 ∈ (0, 1). Then the functions

uλ uniformly converge in M , as λ → 0+, to a solution u0 of the critical equation (E0).

Moreover, u0 is the largest subsolution w of (E0) satisfying
∫

TM

w(x)
∂LG

∂u
(x, v, 0) dµ̃(x, v) > 0, ∀µ̃ ∈ M̃. (S)

6It has been conjectured by Mañé that for generic Hamiltonians H this unique Mather measure is
supported on a closed curve.
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Under an additional pointwise condition on LG(·, ·, 0) on the Mather set, the limit

critical solution u0 can be characterized as follows.

Theorem 2.3. Let conditions (L1–5) be in force, and let us furthermore assume that
∂LG

∂u
(x, v, 0) 6 0 for all (x, v) ∈ M̃. Then the function u0 = lim

λ→0+
uλ obtained in Theorem

2.2 above can be characterized as follows:

u0(x) = inf
µ̃∈M̃

∫
TM

h(y, x)∂LG

∂u
(y, v, 0)dµ̃(y, v)∫

TM
∂LG

∂u
(y, v, 0)dµ̃(y, v)

, x ∈M,

where h(y, x) is the Peierls barrier defined in (1.5).

Remark 2.4. Let us stress that the previous theorems hold with same proofs even if

(uλ)λ∈(0,λ0) is replaced by any family (uλ)λ∈Λ of solutions to (Eλ), where Λ is a subset
of (0, 1) having 0 as accumulation point. In particular, this holds for Λ := (λn)n with

λn → 0+ as n→ +∞.

Concerning the asymptotic behavior of other possible families of solutions to (Eλ), we
have the following trichotomy result.

Theorem 2.5. Let conditions (L1–5) be in force, and let u0 = lim
λ→0+

uλ be the critical

solution obtained in Theorem 2.2. There exist ϕ : (0, 1) → ( − ∞,+∞], ψ : (0, 1) →
[−∞,+∞) and θ : (0, 1) → R with

lim
λ→0

ψ(λ) = −∞, lim
λ→0

ϕ(λ) = +∞, lim
λ→0

θ(λ) = 0

such that, if vλ is a solution of (Eλ) for some λ > 0, then either one of the following

alternatives occurs:

(i) vλ 6 ψ(λ);

(ii) vλ > ϕ(λ);

(iii) ‖vλ − u0‖∞ 6 θ(λ).

We start our analysis by remarking that the solutions (uλ)λ∈(0,λ0) are equi-Lipschitz

continuous. In the remainder of the section, we will denote by C > 0 the following constant

C := sup
λ∈(0,λ0)

‖uλ‖∞.

Lemma 2.6. The bounded family (uλ)λ∈(0,λ0) is equi-Lipschitz continuous.

Proof. For each x, y ∈ M , we denote by d := d(x, y) the distance between them. Take a

geodesic ζ : [0, d] → M satisfying ζ(0) = x and ζ(d) = y with constant speed ‖ζ̇‖ζ = 1.
Denote Lλ(x, v) := LG(x, v, λuλ). Since uλ ≺ Lλ + c0, we have

uλ(y)− uλ(x) 6

∫ d

0

[
LG

(
ζ(s), ζ̇(s), λuλ

(
ζ(s)

))
+ c0

]
ds

6

(
max

x∈M,‖v‖x61
|LG(x, v, 0)|+ λ0KC + c0

)
d(x, y).

The assertion follows by exchanging the role of x and y. �
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From the fact that uλ is Lipschitz for every fixed λ ∈ (0, λ0) we deduce the following

fact.

Lemma 2.7. Let λ ∈ (0, λ0). Then∫

TM

LG

(
x, v, λuλ(x)

)
dµ̃(x, v) > −c0 for all µ̃ ∈ P0.

Proof. Pick µ̃ ∈ P0 and choose ε > 0. By applying Theorem 1.15 to the Hamiltonian

(x, p) 7→ G
(
x, p, λuλ(x)

)
and by choosing w := uλ, we infer that there exists wε ∈ C∞(M)

such that G
(
x,Dxwε, λuλ(x)

)
6 c0 + ε for all x ∈M . By definition of LG we have that

G
(
x,Dxwε, λuλ(x)

)
+ LG

(
x, v, λuλ(x)

)
> Dxwε(v) for all (x, v) ∈ TM.

By integrating this inequality with respect to µ̃ we get

0 =

∫

TM

Dxwε(v) dµ̃(x, v)

6

∫

TM

(
LG

(
x, v, λuλ(x)

)
+G

(
x,Dxwε, λuλ(x)

))
dµ̃(x, v)

6

∫

TM

(
LG

(
x, v, λuλ(x)

)
+c0+ε

)
dµ̃(x, v) =

∫

TM

LG

(
x, v, λuλ(x)

)
dµ̃(x, v)+c0+ε.

The result follows letting ε→ 0+. �

By the Arzelá-Ascoli Theorem and Lemma 2.6, any sequence (uλn
)n with λn → 0+

admits a subsequence which uniformly converges to a continuous function u∗. By the sta-

bility of viscosity solution, see Proposition 1.2, u∗ is a solution of (E0). In the following,
we are going to show the uniqueness of the possible limit u∗, thus establishing the con-

vergence result. Define S the set of all subsolutions w of (E0) satisfying condition (S). We
define

u0(x) := sup
w∈S

w(x). (2.1)

A priori, S may be empty, and, even if S is not empty, u0 might be +∞. Both these

circumstances will be excluded under the hypotheses of Theorem 2.2.

Lemma 2.8. Any accumulation point u∗ of the family (uλ)λ∈(0,λ0) as λ→ 0+ satisfies
∫

TM

∂LG

∂u
(x, v, 0)u∗(x)dµ(x, v) > 0, ∀µ̃ ∈ M̃.

In particular, S 6= ∅ and u∗ 6 u0.

Proof. Recall that C is the uniform bound of (uλ)λ∈(0,λ0). Let µ̃ ∈ M̃. For λ ∈ (0, λ0) we
have

−c0 6
∫

TM

LG

(
x, v, λuλ(x)

)
dµ̃

6

∫

TM

[
LG(x, v, 0) + λ

∂LG

∂u
(x, v, 0)uλ(x) + λCηM̃(λC)

]
dµ̃

= −c0 +
∫

TM

[
λ
∂LG

∂u
(x, v, 0)uλ(x) + λCηM̃(λC)

]
dµ̃,
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which implies
∫

TM

∂LG

∂u
(x, v, 0)uλ(x)dµ̃ > −CηM̃(λC).

The conclusion follows by sending λ→ 0+. �

In what follows, we will use the notation Lλ(x, v) := LG(x, v, λuλ).

Lemma 2.9. For x ∈M and λ ∈ (0, λ0), let γ
x
λ : (−∞, 0] → M be a (uλ, Lλ, c0)-calibrated

curve with γxλ(0) = x. Then there exists κ̂ > 0, independent of λ ∈ (0, λ0) and of x ∈ M ,
such that γxλ is κ̂-Lipschitz continuous for every λ ∈ (0, λ0) and x ∈M .

Proof. By Lemma 2.6, there is κ > 0 independent of λ such that uλ is κ-Lipschitz contin-
uous. By superlinearity of LG, for each T > 0, there is CT ∈ R such that

LG(x, v, 0) > T‖v‖x + CT . (2.2)

Thus, we have for 0 > t > s

κd
(
γxλ(t), γ

x
λ(s)

)
> uλ

(
γxλ(t)

)
− uλ

(
γxλ(s)

)
=

∫ t

s

[
LG

(
γxλ(τ), γ̇

x
λ(τ), λuλ

(
γxλ(τ)

))
+ c0

]
dτ

>

∫ t

s

(
(κ + 1)‖γ̇xλ(τ)‖γx

λ
(τ) + Cκ+1

)
dτ + (c0 − λ0KC)(t− s)

> (κ+ 1)d
(
γxλ(t), γ

x
λ(s)

)
+ (Cκ+1 + c0 − λ0KC)(t− s),

which implies

d
(
γxλ(t), γ

x
λ(s)

)
6 (λ0KC − c0 − Cκ+1)(t− s).

The proof is now complete. �

From now on, we denote by γxλ the calibrated curve considered in Lemma 2.9. By the

compactness of M̃, there are two constants ε1 > 0 and ε2 > 0 with

−ε2 < inf
µ̃∈M̃

∫

TM

∂LG

∂u
(x, v, 0)dµ̃ 6 sup

µ̃∈M̃

∫

TM

∂LG

∂u
(x, v, 0)dµ̃ < −ε1, (2.3)

We derive from this the following asymptotic informations on the calibrated curves γxλ,
cf. [7, Corollary 7.4].

Lemma 2.10. There exist λ̄ ∈ (0, λ0) and T0 > 0 such that, for all λ ∈ (0, λ̄) and for all

x ∈M , we have

−ε2 <
1

b− a

∫ b

a

∂LG

∂u
(γxλ(s), γ̇

x
λ(s), 0)ds < −ε1, (2.4)

for all a < b 6 0 with b− a > T0.

Proof. Let us prove the left-hand inequality in (2.4). We argue by contradiction. Assume

there is a sequence λn → 0 and a sequence bn − an → +∞ such that

1

bn − an

∫ bn

an

∂LG

∂u
(γxλn

(s), γ̇xλn
(s), 0)ds 6 −ε2. (2.5)



CONVERGENCE/DIVERGENCE OF DISCOUNTED SOLUTIONS 17

Define for all n ∈ N a probability measure µ̃n on TM by
∫

TM

g(x, v)dµ̃n :=
1

bn − an

∫ bn

an

g
(
γxλn

(s), γ̇xλn
(s)

)
ds, ∀g ∈ Cc(TM).

Here Cc(TM) is the set of all continuous functions defined on TM with compact supports.
By Lemma 2.9, all the measures µ̃n have support in the compact set

{(x, v) ∈ TM : ‖v‖x 6 λ0KC − c0 − Cκ+1}.
Up to extracting a subsequence if necessary, we can assume that µ̃n converges to µ̃ in the

weak-∗ topology on Cc(TM). Note that µ̃ is also compactly supported. For f ∈ C1(M),
we have

∫

TM

Dxf(v)dµ̃n(x, v) =
1

bn − an

∫ bn

an

Dγx

λn
(s)f

(
γ̇xλn

(s)
)
ds

=
1

bn − an

(
f
(
γxλn

(bn)
)
− f

(
γxλn

(an)
))

→ 0,

as n→ +∞, which implies that µ̃ is closed. Since γxλn
is a calibrated curve, we have

∫

TM

[
LG

(
x, v, λnuλn

(x)
)
+ c0

]
dµ̃n(x, v)

=
1

bn − an

∫ bn

an

[
LG

(
γxλn

(s), γ̇xλn
(s), λnuλn

(
γxλn

(s)
))

+ c0

]
ds

=
1

bn − an

(
uλn

(
γxλn

(bn)
)
− uλn

(
γxλn

(an)
))
.

Since uλ is bounded, letting n→ +∞, we find that
∫

TM

LG(x, v, 0)dµ̃ = −c0.

Therefore, the limit µ̃ is a Mather measure of H . By (2.5), we get
∫

TM

∂LG

∂u
(x, v, 0)dµ̃(x, v) 6 −ε2,

which contradicts (2.3). The right-hand side inequality in (2.4) can be proved similarly. �

In the following, we will denote by λ̄ > 0 and T0 > 0 the constants given by Lemma
2.10.

Lemma 2.11. Let λ ∈ (0, λ̄) and x ∈M . The following holds:

(i) for any t ∈ (−∞,−T0], we have

ε2t 6

∫ 0

t

∂LG

∂u
(γxλ(s), γ̇

x
λ(s), 0)ds 6 ε1t.

As a consequence, eλ
∫
0

−∞

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0) ds = 0.

(ii) For any T > T0, we have

e−λε2T0 − e−λε2T

λε2
6

∫ 0

−T

eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt 6

1

λε1
+
eλKT0 − 1

λK
.
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In particular,

e−λε2T0

λε2
6

∫ 0

−∞

eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt 6

1

λε1
+
eλKT0 − 1

λK
. (2.6)

Proof. Item (i) is a direct consequence of Lemma 2.10. It remains to prove Item (ii). By

Item (i) and (L1) we have

∫ 0

−T

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt =

∫ −T0

−T

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt+

∫ 0

−T0

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

6

∫ −T0

−T

eλε1tdt+

∫ 0

−T0

e−λKtdt =
e−λε1T0 − e−λε1T

λε1
+
eλKT0 − 1

λK
6

1

λε1
+
eλKT0 − 1

λK
.

For the other side, we have

∫ 0

−T

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt >

∫ −T0

−T

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

>

∫ −T0

−T

eλε2tdt =
e−λε2T0 − e−λε2T

λε2
.

Let T → +∞, we then get (2.6). �

We proceed by associating to each calibrated curve a probability measure on TM .
These probability measures will play a key role in the proof of the convergence result

stated in Theorem 2.2. They can be regarded as a generalization to the case at issue of

the analogous measures first introduced in [11, formula (3.5)]. They already appeared in
this exact form in [5, 41, 7].

Definition 2.12. We define probability measures µ̃x
λ on TM by

∫

TM

f(y, v)dµ̃x
λ(y, v) =

∫ 0

−∞
f
(
γxλ(t), γ̇

x
λ(t)

)
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

, ∀f ∈ Cc(TM).

By (2.6), the measure µ̃x
λ is well-defined for λ ∈ (0, λ̄).

The following holds, cf. [11, Proposition 3.6], [5, Proposition 4.5], [41, Proposition 5.8],

[7, Proposition 7.5].

Lemma 2.13. The family (µ̃x
λ)λ∈(0,λ̄) has support contained in a common compact subset

of TM , in particular it is relatively compact in P(TM). Furthermore, if µ̃x
λn

∗
⇀ µ̃ in

P(TM) for λn → 0+, then µ̃ is a Mather measure.

Proof. The first part is a direct consequence of Lemma 2.9. It remains to prove that the
limit µ̃ is a Mather measure. We first prove that µ̃ is closed. For f ∈ C1(M), we have, by
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integrating by parts,

∫

TM

Dxf(v)dµ̃
x
λ(y, v) =

∫ 0

−∞
d
dt

(
f
(
γxλ(t)

))
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

=
f(x)−

∫ 0

−∞
f
(
γxλ(t)

)
d
dt

(
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt

∫ 0

−∞
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

.

By (L1) and eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds > 0, we have

∣∣∣∣
∫ 0

−∞

f
(
γxλ(t)

) d
dt

(
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt

∣∣∣∣

=

∣∣∣∣
∫ 0

−∞

λf
(
γxλ(t)

)∂LG

∂u
(γxλ(t), γ̇

x
λ(t), 0)e

λ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∣∣∣∣

6 λ‖f‖∞K
∫ 0

−∞

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt 6 K

(
1

ε1
+
eλKT0 − 1

K

)
‖f‖∞,

where, for the last inequality, we have used (2.6). By (2.6) again, we have

∫

TM

Dxf(v)dµ̃
x
λ(y, v) 6

λε2
e−λε2T0

K

(
1

ε1
+
eλKT0

K

)
‖f‖∞ → 0,

as λ→ 0+.

We then prove that µ̃ is minimizing. Since t 7→ uλ
(
γxλ(t)

)
is Lipschitz continuous, and

γxλ is a (uλ, Lλ, c0)-calibrated curve, for a.e. t < 0 we have

d

dt
uλ

(
γxλ(t)

)
= LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
+ c0.

Then
∫

TM

(
LG(x, v, 0) + c0

)
dµ̃x

λ(x, v)

=

∫ 0

−∞

(
LG(γ

x
λ(t), γ̇

x
λ(t), 0) + c0

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

=

∫ 0

−∞

(
LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
+ c0 −∆λ(t)

)
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

=

∫ 0

−∞

(
d
dt

(
uλ

(
γxλ(t)

))
−∆λ(t)

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

,

where

∆λ(t) = LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
− LG

(
γxλ(t), γ̇

x
λ(t), 0

)
.
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Similarly to the first part of the proof, we have
∫ 0

−∞
d
dt
uλ

(
γxλ(t)

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

6
λε2

e−λε2T0
K

(
1

ε1
+
eλKT0

K

)
C → 0,

as λ→ 0+, where C is a uniform bound on the ‖uλ‖∞.
Finally, to bound the error term we use (L1) to find

|∆λ(t)| =
∣∣∣LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
− L

(
γxλ(t), γ̇

x
λ(t), 0

)∣∣∣ 6 λKC.

Therefore, as λ → 0+ along the sequence (λn), we conclude that µ̃ is a Mather measure.
�

The following lemma will be crucial for the proof of the convergence result, cf. [11,

Lemma 3.7], [5, Lemma 4.7], [7, Lemma 7.7].

Lemma 2.14. Let w be any subsolution of (E0). For every x ∈M and λ ∈ (0, λ̄), we have

uλ(x) > w(x)−
∫
TM

w(y)∂LG

∂u
(y, v, 0)dµ̃x

λ(y, v)∫
TM

∂LG

∂u
(y, v, 0)dµ̃x

λ(y, v)
+Rλ(x),

where lim
λ→0+

Rλ(x) = 0.

Proof. For ε > 0, using Theorem 1.15 we take wε ∈ C∞(M) such that ‖wε − w‖∞ 6 ε

and

G(x,Dxwε, 0) 6 c0 + ε, ∀x ∈M.

Using the Fenchel inequality we have for all (x, v) ∈ TM ,

LG(x, v, 0) > LG(x, v, 0) +G(x,Dxwε, 0)− c0 − ε

> Dxwε(v)− c0 − ε.

Since t 7→ uλ
(
γxλ(t)

)
is Lipschitz continuous, and γxλ is a (uλ, Lλ, c0)-calibrated curve, for

a.e. t < 0 we have

d

dt
uλ

(
γxλ(t)

)
= LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
+ c0 (2.7)

> LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))
− LG

(
γxλ(t), γ̇

x
λ(t), 0

)
+Dγx

λ
(t)wε(γ̇

x
λ(t))− ε

=
d

dt
wε

(
γxλ(t)

)
+ λ

∂LG

∂u

(
γxλ(s), γ̇

x
λ(s), 0

)
uλ

(
γxλ(t)

)
− ε+ Ωλ,x(t),

where

Ωλ,x(t) :=LG

(
γxλ(t), γ̇

x
λ(t), λuλ

(
γxλ(t)

))

− LG

(
γxλ(t), γ̇

x
λ(t), 0

)
− λ

∂LG

∂u

(
γxλ(s), γ̇

x
λ(s), 0

)
uλ

(
γxλ(t)

)
.

Let us estimate the error term Ωλ,x(t). Let us set S := {(x, v) ∈ TM : ‖v‖x 6 κ̂ }, where
κ̂ > 0 is the Lipschitz constant of the curves {γxλ : λ ∈ (0, λ0) }, according to Lemma 2.9.
By (L4) we have

|Ωλ,x(t)| 6 λCηS(λC) for all t 6 0 and λ ∈ (0, λ0), (2.8)
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where C is a uniform bound on the ‖uλ‖∞. By multiplying both sides of (2.7) by

eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds and by rearranging terms, we obtain, for a.e. t < 0,

d

dt

(
uλ

(
γxλ(t)

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
>

(
d

dt
wε

(
γxλ(t)

)
− ε+ Ωλ,x(t)

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds.

Integrating the above inequality over the interval (−T, 0] where T > T0 as stated in

Lemma 2.11, and using an integration by parts, we have

uλ(x)− uλ
(
γxλ(−T )

)
eλ

∫ 0

−T

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

> wε(x)− wε

(
γxλ(−T )

)
eλ

∫ 0

−T

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

−
∫ 0

−T

wε

(
γxλ(t)

) d
dt

(
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt+

∫ 0

−T

(Ωλ,x(t)− ε)eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds.

Letting ε→ 0+ it follows that,

uλ(x) > w(x)− (‖w‖∞ + C)eλ
∫
0

−T

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

−
∫ 0

−T

w
(
γxλ(t)

) d
dt

(
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt+

∫ 0

−T

Ωλ,x(t)e
λ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds.

From Lemma 2.11 we infer that the maps

t 7→ eλ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds and t 7→ d

dt

(
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)

are in L1
(
(−∞, 0]

)
and converge to 0 as t → −∞. By taking also into account (2.7),

we can send T → +∞ in the above inequality, to get, by the Dominated Convergence
Theorem,

uλ(x) > w(x)

−
∫ 0

−∞

w
(
γxλ(t)

) d
dt

(
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt+

∫ 0

−∞

Ωλ,x(t)e
λ
∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

=: w(x)− Iλ +Rλ(x).

By Definition 2.12, we have

Iλ = −λ
∫ 0

−∞

w
(
γxλ(t)

)∂LG

∂u

(
γxλ(s), γ̇

x
λ(s), 0

)
eλ

∫ 0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

= −λ
( ∫ 0

−∞

eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

)∫

TM

w(y)
∂LG

∂u
(y, v, 0) dµ̃x

λ(y, v).
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According to Lemma 2.11-(i), for λ ∈ (0, λ0), we derive that

λ

∫ 0

−∞

eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt =

λ
∫ 0

−∞
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
d
dt

(
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds

)
dt

= −
∫ 0

−∞
eλ

∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

∫ 0

−∞
∂LG

∂u
(γxλ(t), γ̇

x
λ(t), 0)e

λ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)dsdt

= − 1∫
TM

∂LG

∂u
(y, v, 0)dµ̃x

λ(y, v)
.

By (2.7) we also have

|Rλ(x)| 6 λCηS(λC)

∫ 0

−∞

eλ
∫
0

t

∂LG

∂u
(γx

λ
(s),γ̇x

λ
(s),0)ds 6

(
1

ε1
+
eλKT0 − 1

K

)
CηS(λC).

The assertion follows by sending λ→ 0+. �

We are now in position to prove the first two main theorems of this section.

Proof of Theorem 2.2. Let u∗ be an accumulation point of the (uλ)λ∈(0,λ0) as λ→ 0+. By
Lemma 2.8, we know that u∗ ∈ S, so u∗ 6 u0 inM . Let us prove that u∗ > u0. Fix x ∈M

and pick w ∈ S. From Lemmas 2.13 and 2.14 we infer that

u∗(x) > w(x)−
∫
TM

w(y)∂LG

∂u
(y, v, 0)dµ̃∫

TM
∂LG

∂u
(y, v, 0)dµ̃

,

for some Mather measure µ̃. Since w satisfies the constraint (S), we get from this that

u∗(x) > w(x), hence u∗(x) > sup
w∈S

w(x) =: u0(x). By the arbitrariness of the choice of

x ∈M , we get that u0 is finite-valued and that u∗ > u0 in M . We conclude that u0 is the
unique accumulation point of the family of functions (uλ)λ∈(0,λ0) as λ→ 0+. The proof is

complete. �

Proof of Theorem 2.3. We denote

û0(x) := inf
µ̃∈M̃

∫
TM

h(y, x)∂LG

∂u
(y, v, 0)dµ̃(y, v)∫

TM
∂LG

∂u
(y, v, 0)dµ̃(y, v)

, x ∈M.

Note that û0 is finite-valued, as û0 ≥ min
M×M

h > −∞. We start by remarking that û0 is

a subsolution of (E0). Indeed, for every fixed µ̃ ∈ M̃, the function hµ̃ : M → R, x 7→∫
TM

h(y, x) dµ̃(y) is a convex combination of the family of critical solutions (hy)y∈M ,

where hy(x) = h(y, x). By the convexity of H in the momentum and the equi-Lipschitz
character of the critical subsolutions, see Propositions 1.3 and 1.4, it follows that each hµ̃
is a critical subsolution. By Proposition 1.3 again, we infer that a finite valued infimum of
critical subsolutions is itself a critical subsolution. Therefore û0 is a critical subsolution.

Let us now prove that u0 6 û0. By Proposition 1.4 we know that u0(x) 6 u0(y)+h(y, x)
for all x, y ∈ M . Let us integrate this inequality with respect to a Mather measure
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µ̃ ∈ M̃. By assumption and by definition of Mather set, we have ∂LG

∂u
(x, v, 0) 6 0 for all

(x, v) ∈ supp(µ̃). We infer

u0(x)

∫

TM

∂LG

∂u
(y, v, 0) dµ̃(y, v)

>

∫

TM

u0(y)
∂LG

∂u
(y, v, 0) dµ̃(y, v) +

∫

TM

h(y, x)
∂LG

∂u
(y, v, 0) dµ̃(y, v)

>

∫

TM

h(y, x)
∂LG

∂u
(y, v, 0) dµ̃(y, v),

where, for the last inequality, we used that u0 satisfies (S). From this we get

u0(x) 6

∫
TM

h(y, x)∂LG

∂u
(y, v, 0) dµ̃(y, v)∫

TM
∂LG

∂u
(y, v, 0) dµ̃(y, v)

for all x ∈M .

By taking the inf with respect to µ̃ ∈ M̃ of the right-hand side term in the above

inequality, we get u0 6 û0.
Last, we prove that u0 > û0. For every fixed z ∈ A, set

Uz(x) := −h(x, z) + û0(z), x ∈M.

Then Uz is a subsolution of (E0), by Proposition 1.5. Furthermore, for every x ∈ M and

µ̃ ∈ M̃, we have
∫
TM

Uz(x)
∂LG

∂u
(x, v, 0)dµ̃(x, v)∫

TM
∂LG

∂u
(x, v, 0)dµ̃(x, v)

= −
∫
TM

h(x, z) ∂LG

∂u
(x, v, 0)dµ̃(x, v)∫

TM
∂LG

∂u
(x, v, 0)dµ̃(x, v)

+ û0(z) 6 0,

which implies that Uz ∈ S. Then u0(x) > Uz(x) for all x ∈ M . In particular, by taking

x = z ∈ A, we get

u0(z) > Uz(z) = −h(z, z) + û0(z) = û0(z).

We have thus shown that u0 > û0 on A, hence u0 > û0 on M according according to
Proposition 1.7. �

We proceed by proving the third main theorem of this section, namely the trichotomy

result stated in Theorem 2.5. We start by establishing a sort of Harnack-type inequality
for subsolutions of (Eλ).

Lemma 2.15. There exists a constant A+ > 0 such that, if λ ∈ (0, 1) and wλ :M → R is

a subsolution to (Eλ), then

min
x∈M

wλ(x) 6 max
x∈M

wλ(x) 6 min
x∈M

wλ(x) + A+

(
1 + λmin

x∈M
|wλ(x)|

)
. (2.9)

Proof. The left hand side inequality is obvious. Let us prove the right hand side inequality.

Let xλ ∈ M such that Mλ = wλ(xλ) = maxwλ. Let yλ ∈ M such that mλ = wλ(yλ) =
minwλ. Denote dλ := d(yλ, xλ). Let ζ : [0, dλ] → M be a geodesic satisfying ζ(0) = yλ
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and ζ(dλ) = xλ with constant speed 1. By wλ ≺ Lλ + c0 and (L1), we get

wλ

(
ζ(s)

)
6 wλ(yλ) +

∫ s

0

[
LG

(
ζ(τ), ζ̇(τ), λwλ

(
ζ(τ)

))
+ c0

]
dτ

6 mλ +

∫ s

0

[
LG

(
ζ(τ), ζ̇(τ), λmλ

)
+ c0 + λK

(
wλ

(
ζ(τ)

)
−mλ

)]
dτ

6 mλ +

∫ s

0

[
LG

(
ζ(τ), ζ̇(τ), 0

)
+ c0 + λK|mλ|

]
dτ + λK

∫ s

0

[
wλ

(
ζ(τ)

)
−mλ

]
dτ

6 mλ + (CLG
+ λK|mλ|)dλ + λK

∫ s

0

[
wλ

(
ζ(τ)

)
−mλ

]
dτ

where CLG
:= max

x∈M,‖v‖x61
|LG(x, v, 0) + c0|. By the Gronwall inequality we infer

wλ

(
ζ(s)

)
−mλ 6 (CLG

+λK|mλ|)dλeλKs 6 (CLG
+λK|mλ|)dλeλKdλ, ∀s ∈ (0, dλ].

Taking s = dλ, and recalling that λ ∈ (0, 1),we have

Mλ = wλ(xλ) 6 mλ + (CLG
+ λK|mλ|)dλeλKdλ 6 mλ + (CLG

+ λK|mλ|)DeKD,

where D :=diam(M). The result follows taking A+ = max(CLG
, K)DeKD. �

As a consequence, we derive the following key proposition. It will be also used in
Section 3 to show the existence of diverging families of solutions.

Proposition 2.16. Let Λ be a subset of (0, 1) having 0 as accumulation point. Let (wλ)λ∈Λ
be a family of subsolutions of (Eλ).

(i) If, for each λ ∈ Λ, there is a point xλ ∈ M such that wλ(xλ) → −∞ as λ → 0+,

λ ∈ Λ, then wλ uniformly converges to −∞ as λ→ 0+, λ ∈ Λ.
(ii) If, for each λ ∈ Λ, there is a point xλ ∈ M such that wλ(xλ) → +∞ as λ → 0+,

λ ∈ Λ, then wλ uniformly converges to +∞ as λ→ 0+, λ ∈ Λ.

Proof. As in the previous proof, we denote Mλ = maxwλ and mλ = minwλ.

Let us prove assertion (i). The hypothesis wλ(xλ) → −∞ is equivalent to mλ → −∞
as λ → 0+, λ ∈ Λ. Then restricting to λ ∈ Λ ∩ (0, 1), (2.9) implies that mλ ∼ Mλ hence

Mλ → −∞ as λ→ 0+, λ ∈ Λ.
Let us prove item (ii). The hypothesis wλ(xλ) → +∞ is equivalent to Mλ → +∞ as

λ → 0+, λ ∈ Λ. Then restricting to λ ∈ Λ ∩ (0, 1), (2.9) implies that mλ ∼ Mλ hence
mλ → +∞ as λ→ 0+, λ ∈ Λ. �

We are now in position to prove Theorem 2.5. We recall that, in what follows, u0 still

denotes the critical solution provided by Theorem 2.2

Proof of Theorem 2.5. Let us denote by Sλ the set of solutions to (Eλ). Define

S−
λ := {vλ is a solution of (Eλ) with vλ < u0 − 1}

and

ψ(λ) := sup{vλ(x) : vλ ∈ S−
λ , x ∈M}.

If S−
λ = ∅, we set ψ(λ) = −∞.
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We claim that lim
λ→0

ψ(λ) = −∞. Otherwise, there is A > 0, sequences λn → 0+,

vλn
∈ Sλn

and yn ∈M such that

vλn
(yn) > −A, ∀n ∈ N. (2.10)

We claim that vλn
is uniformly bounded from below. If not, there is zn ∈M such that

vλn
(zn) → −∞ as n→ +∞.

By Proposition 2.16, vλn
uniformly converges to −∞, which contradicts (2.10). Then,

according to Theorem 2.2 and Remark 2.4, the sequence vλn
uniformly converges. to the

only possible limit u0, which contradicts the fact that vλn
∈ Sλn

for all n ∈ N.
In a similar manner, define

S+
λ := {vλ is a solution of (Eλ) with vλ > u0 + 1}

and

ϕ(λ) := inf{vλ(x) : vλ ∈ S+
λ , x ∈ M}.

If S+
λ = ∅, we set ϕ(λ) = +∞. The same proof yields that lim

λ→0
ϕ(λ) = +∞.

Define

θ(λ) := sup{|vλ(x)− u0(x)|, vλ ∈ Sλ \ (S−
λ ∪ S+

λ ), x ∈M}.
We claim that lim

λ→0
θ(λ) = 0. Otherwise, there is ε > 0, a sequence of discount factors

λn → 0+ and of solutions vλn
∈ Sλn

\ (S−
λn

∪ S+
λn
) and yn ∈M such that

|vλn
(yn)− u0(yn)| > ε, ∀n. (2.11)

Since vλn
∈ Sλn

\ (S−
λn

∪ S+
λn
), there is also a point xn such that

|vλn
(xn)− u0(xn)| 6 1.

Similarly to the first step, we infer from Proposition 2.16 that vλn
is uniformly bounded.

Then, according to Theorem 2.2 and Remark 2.4, the sequence vλn
uniformly converges

to the only possible limit u0. But again this yields a contradiction as ‖vλn
− u0‖∞ > ε for

all n ∈ N. This concludes the proof. �

3. The linear case

In this section we continue our analysis on the vanishing discount problem in the case
when G depends linearly on u. Hence we will consider a Hamilton-Jacobi equation with

discount factor λ > 0 of the form

λa(x)u(x) +H(x,Dxu) = c0 in M, (HJλ)

where we assume that H : T ∗M → R is a continuous function satisfying (H1)-(H2) (con-

vexity and superlinearity) and the coefficient a is a continuous function on M satisfying
the following condition:∫

TM

a(x)dµ̃ > 0 for all µ̃ ∈ M̃, (a1)

where M̃ denotes the compact and convex subset of P(TM) made up by Mather measures
associated with H . Without any loss of generality, we shall restrict to the case λ ∈ (0, 1).
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Equations of the form (HJλ) can be regarded as a model example for the more general

Hamilton-Jacobi equations of contact type considered in Section 2, cf. equation (Eλ). The

full Hamiltonian is then given by G(x, p, u) = a(x)u +H(x, p). The Hamiltonian G then
fulfills all the hypotheses of the previous section. In particular, it is Lipschitz with respect

to u with Lipschitz constant ‖a‖∞.
We will be concerned with the issue of existence of solutions to equation (HJλ), at

least for small values of λ ∈ (0, 1), and their asymptotic behavior as λ → 0+. In Section
3.1 we show the existence of the maximal solution to (HJλ) for values of λ ∈ (0, 1) small

enough. These solutions are shown to be equi-bounded and equi-Lispchitz, therefore, in
view of the results established in Section 2, they converge to a solution of the limit critical

equation

H(x,Du) = c0 in M . (HJ0)

In Section 3.2, under further natural conditions on the coefficient a, we investigate the
existence of possible other families of solutions of (HJλ) and we describe their asymptotic

behavior as λ→ 0+.

3.1. A converging family of solutions. We recall that L : TM → R is the Lagrangian
associated with H via the Legendre transform, namely

L(x, v) := sup
p∈T ∗

xM

(
p(v)−H(x, p)

)
for all (x, v) ∈ TM.

The constant c0 ∈ R is the critical value of H . We define the following value function, for

x ∈M ,

Vλ(x) := inf
γ
lim sup
t→+∞

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds,

where the infimum is taken among absolutely continuous curves γ : (−∞, 0] → M with

γ(0) = x. This definition is inspired by the formula given in [41, Theorem 4.8] to represent
the unique solution of (HJλ) in the case a > 0 in M and a > 0 on A.

The following holds.

Theorem 3.1. There exists λ0 ∈ (0, 1) such that for every λ ∈ (0, λ0) the following holds:

(i) the value function Vλ :M → R is finite-valued;

(ii) the functions {Vλ : λ ∈ (0, λ0) } are equi-bounded and equi-Lipschitz;

(iii) the value function Vλ is the maximal subsolution of (HJλ). In particular, it is the
maximal solution of (HJλ);

(iv) for every x ∈M , there exists a curve γxλ : (−∞, 0] →M such that

Vλ(x) =

∫ 0

−∞

e−λ
∫ 0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds.

Furthermore, the curve γxλ is κ̂-Lipschitz, for some κ̂ > 0 independent of λ ∈ (0, λ0)

and x ∈M .

Remark 3.2. For every λ > 0, define

cλ := inf
u∈C∞(M)

sup
x∈M

{
H(x,Du) + λa(x)u

}
.
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According to [30, 36], if (HJλ) has solutions, then c0 > cλ. Theorem 3.1 implies that

c0 > cλ for every λ > 0 small enough if (a1) holds. We also point out that the value

provided by the above inf-sup with λ = 0 agrees with the critical constant c0, as it is well
known, see for instance [21, 10].

According to Theorem 2.2, the functions Vλ uniformly converge to a critical solution
u0 as λ→ 0+, where u0 is the maximal subsolution w of (HJ0) satisfying

∫

TM

w(x)a(x)dµ̃(x, v) 6 0, ∀µ̃ ∈ M̃.

We can furthermore strengthen the conclusion of Theorem 2.5 on the asymptotic be-
havior, as λ → 0+, of all possible families of solutions to equation (HJλ). Theorem 3.1

in fact rules out the possibility that there exist families of solutions that diverge to +∞.
The precise statement is the following.

Theorem 3.3. There exist ψ : (0, 1) → [−∞,+∞) and θ : (0, 1) → R with

lim
λ→0

ψ(λ) = −∞, lim
λ→0

θ(λ) = 0

such that, if vλ is a solution of (HJλ), then either vλ 6 ψ(λ) or ‖vλ −u0‖∞ 6 θ(λ) for all
λ ∈ (0, 1).

The remainder of this subsection is devoted to prove the statement of Theorem 3.1.

This will be obtained via a series of intermediate results.
A key step in order to establish that the value function is a (Lispchitz) viscosity

subsolution to (HJ0) is to prove that it satisfies the Dynamic Programming Principle.
Please note that the next proposition is valid even when Vλ is not finite-valued.

Proposition 3.4. (Dynamic Programming Principle). Let λ ∈ (0, 1). For each absolutely

continuous curve γ : [b1, b2] →M , we have

e
−λ

∫ 0

b2
a(γ(τ))dτ

Vλ
(
γ(b2)

)
6 e

−λ
∫ 0

b1
a(γ(τ))dτ

Vλ
(
γ(b1)

)
+

∫ b2

b1

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds.

Proof. We start by claiming that we can reduce to the case b2 = 0, without any loss of

generality. Indeed, by multiplying the above inequality for e
λ
∫ 0

b2
a(γ(τ))dτ

, we get

Vλ
(
γ(b2)

)
6 e−λ

∫ b2
b1

a(γ(τ))dτVλ
(
γ(b1)

)
+

∫ b2

b1

e−λ
∫
b2
s

a(γ(τ))dτ
(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds.

The claim follows by making the change of variables τ ′ := τ − b2, s
′ := s − b2 and by

replacing γ with γ−b2(·) := γ(·+ b2).
Let us then prove the assertion with b2 = 0. For each ξ : (−∞, 0] → M with ξ(0) =

γ(b1), we define

γ̄(t) :=

{
γ(t) if t ∈ [b1, 0]

ξ(t− b1) if t ∈ (−∞, b1)
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Then, by definition of the value function, we have

Vλ
(
γ(0)

)
6 lim sup

t→+∞

∫ 0

−t

e−λ
∫
0

s
a(γ̄(τ))dτ

(
L
(
γ̄(s), ˙̄γ(s)

)
+ c0

)
ds

=

∫ 0

b1

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

+ e
−λ

∫
0

b1
a(γ(τ))dτ

lim sup
t→+∞

∫ 0

−t

e−λ
∫
0

s
a(ξ(τ))dτ

(
L
(
ξ(s), ξ̇(s)

)
+ c0

)
ds.

Taking the infimum among all ξ, we get the assertion. �

We now proceed to show Vλ is a bounded function on M , at least for λ ∈ (0, 1) small

enough. We start by proving the following upper bound.

Lemma 3.5. There is a constant Ĉ+
v > 0 such that Vλ(x) 6 Ĉ+

v /λ for all x ∈ M and
λ ∈ (0, 1).

Proof. By condition (a1), there is a point x0 ∈ M such that a(x0) > 0. We denote

d := d(x0, x), D := diam(M). We take a geodesic ζ : [−d, 0] → M with ζ(−d) = x0 and
ζ(0) = x. Define

γ̄(t) =

{
ζ(t), −d 6 t 6 0,

x0, t < −d

and set CL := max
x∈M,‖v‖x61

|L(x, v) + c0|. Then

Vλ(x) 6 lim sup
t→+∞

∫ 0

−t

e−λ
∫ 0

s
a(γ̄(τ))dτ

(
L
(
γ̄(s), ˙̄γ(s)

)
+ c0

)
ds

=

∫ 0

−d

e−λ
∫ 0

s
a(ζ(τ))dτ

(
L
(
ζ(s), ζ̇(s)

)
+ c0

)
ds

+ e−λ
∫ 0

−d
a(ζ(τ))dτ lim sup

t→+∞

∫ −d

−t

e−λ
∫
−d

s
a(x0)dτ

(
L(x0, 0) + c0

)
ds

6 CL

(∫ 0

−d

e−λ‖a‖∞sds+ eλ‖a‖∞d

∫ −d

−∞

eλa(x0)(d+s)ds

)

= CL

(
eλ‖a‖∞d − 1

λ‖a‖∞
+
eλ‖a‖∞d

λa(x0)

)
6

2CL e
‖a‖∞D

λa(x0)
. �

Now we know that the infimum in Vλ(x) is taken among curves in

Γλ :=

{
γ : (−∞, 0] →M : lim sup

t→+∞

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds 6

Ĉ+
v

λ

}
.

For γ : (−∞, 0] → M and t > 0, we define

α(λ, γ, t) :=

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτds
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and

β(λ, γ, t) := e−λ
∫
0

−t
a(γ(s))ds.

Since d
dt
α(λ, γ, t) = β(λ, γ, t) > 0, t 7→ α(λ, γ, t) is increasing. Then lim

t→+∞
α(λ, γ, t) exists

for each λ and γ, and may equal +∞. We will also need the following auxiliary remark.

Lemma 3.6. For every λ > 0 and for all curves γ, we have

−λ‖a‖∞ +
1

α(λ, γ, t)
6
β(λ, γ, t)

α(λ, γ, t)
6 λ‖a‖∞ +

1

α(λ, γ, t)
, ∀t > 0.

Proof. A direct calculation shows that

d
dt
β(λ, γ, t)

d
dt
α(λ, γ, t)

= −λa
(
γ(−t)

)
.

By the Cauchy mean value theorem, there is ξ ∈ (0, t) such that

β(λ, γ, t)− β(λ, γ, 0)

α(λ, γ, t)− α(λ, γ, 0)
=
β(λ, γ, t)− 1

α(λ, γ, t)
=

d
dt
β(λ, γ, ξ)

d
dt
α(λ, γ, ξ)

= −λa
(
γ(−ξ)

)
,

which implies the conclusion. �

We distill in the next lemma an argument that we will repeatedly use in the sequel.

Lemma 3.7. Assume there are sequences λn → 0+, γn : (−∞, 0] →M , tn ∈ (0,+∞) and

θn → 0+ such that

α(λn, γn, tn) :=

∫ 0

−tn

e−λn

∫
0

s
a(γn(τ))dτds→ +∞, as n→ +∞, (3.1)

1

α(λn, γn, tn)

∫ 0

−tn

e−λn

∫ 0

s
a(γn(τ))dτ

(
L
(
γn(s), γ̇n(s)

)
+ c0

)
ds 6 θn, ∀n ∈ N. (3.2)

Define a probability measure µ̃n ∈ P(TM) by

∫

TM

f dµ̃n :=

∫ 0

−tn
e−λn

∫ 0

s
a(γn(τ))dτf

(
γn(s), γ̇n(s)

)
ds

α(λn, γn, tn)
, ∀f ∈ Cℓ(TM). (⋆)

Then the set (µ̃n)n is relatively compact in Pℓ (for the weak-∗ topology coming from

Cℓ(TM)) and any of its accumulation points is a Mather measure associated with L.

Proof. Note that, due to (3.1), we have tn → +∞ as n → +∞. Since L is uniformly

superlinear in the fibers, there exists a constant C1 > 0 such that

max
n∈N

θn >

∫

TM

(
L(x, v) + c0

)
dµ̃n(x, v) >

∫

TM

(‖v‖x − C1)dµ̃n for all n ∈ N,

which readily implies that the sequence (µ̃n)n is a well defined sequence in Pℓ. The
asserted precompactness of (µ̃n)n in P(TM) follows from Lemma 1.11.

Let µ̃ be a limit point of a subsequence of (µ̃n)n, that we will not relabel to ease
notations. We are going to show that µ̃ is a Mather measure.
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The measure µ̃ is closed: we pick φ ∈ C1(M). An integration by parts shows that
∫

TM

Dxφ(v) dµ̃n(x, v)

=

∫ 0

−tn

dφ

dt

(
γn(s)

)
e−λn

∫ 0

s
a(γn(τ))dτ ds

α(λn, γn, tn)
(3.3)

=
φ
(
γn(0)

)
− e−λn

∫
0

−tn
a(γn(τ))dτφ

(
γn(−tn)

)

α(λn, γn, tn)
− λn

∫

TM

a(x)φ(x) dµ̃n(x, v).

We infer
∣∣∣∣
∫

TM

Dxφ(v)dµ̃n

∣∣∣∣ 6
‖φ‖∞

α(λn, γn, tn)
+
e−λn

∫
0

−tn
a(γn(τ))dτ

α(λn, γn, tn)
‖φ‖∞ + λn‖a‖∞‖φ‖∞

=

(
1

α(λn, γn, tn)
+
β(λn, γn, tn)

α(λn, γn, tn)
+ λn‖a‖∞

)
‖φ‖∞.

By sending n → +∞ and by using Lemma 3.6, hypothesis (3.1) and again Lemma 1.11,

we derive∫

TM

Dxφ(v) dµ̃(x, v) = lim
n→+∞

∫

TM

Dxφ(v) dµ̃n(x, v) = 0.

The measure µ̃ is minimizing: by (3.2) we get

0 = lim
n→+∞

θn > lim inf
n→+∞

∫

TM

(
L(x, v) + c0

)
dµ̃n(x, v) >

∫

TM

(
L(x, v) + c0

)
dµ̃(x, v),

where the last inequality follows from the fact that L is continuous and bounded from be-

low and the measures µ̃n are weakly-∗ converging to µ̃ in Pℓ (hence, narrowly converging),
see for instance [1, Section 5.1.1].

In view of Theorem 1.8, we conclude that µ̃ is a Mather measure. �

Let C > 0 be a fixed constant and define, for any fixed integer p > 0,

Γλ(p) :=

{
γ : (−∞, 0] → M : lim sup

t→+∞

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds 6

C

λp

}
.

The information provided by the next lemma will be crucial for our upcoming analysis.

Lemma 3.8. Let p > 0 be a fixed integer and assume that Γλ(p) 6= ∅ for every λ ∈ (0, 1)
small enough. Then there exists λ(p) ∈ (0, 1) such that

A(p) := sup
{
λp+1α(λ, γ, t) : λ ∈

(
0, λ(p)

)
, γ ∈ Γλ(p), t > 0

}
< +∞.

Remark 3.9. Note that Γλ(p + 1) ⊇ Γλ(p) for every integer p > 0 and λ ∈ (0, 1). In

particular, when p > 1 and C := Ĉ+
v , we have Γλ(p) 6= ∅ for every λ ∈ (0, 1) in view of

Lemma 3.5.

Proof. Let p > 0 be a fixed integer. We argue by contradiction. Assume there exist

sequences λn → 0+, γn ∈ Γλn
(p) and tn → +∞ such that

λp+1
n α(λn, γn, tn) → +∞ as n→ +∞,
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with
∫ 0

−tn

e−λn

∫
0

s
a(γn(τ))dτ

(
L
(
γn(s), γ̇n(s)

)
+ c0

)
ds 6

C

λpn
+ 1.

In particular, conditions (3.1) and (3.2) in Lemma 3.7 are satisfied with

θn :=
C/λpn + 1

α(λn, γn, tn)
.

Let µ̃n be the probability measure defined in (⋆). According to Lemma 3.7, up to extraction

of a subsequence (not relabeled), the measures µ̃n weakly converge to a Mather measure

µ̃.
Now we choose a subsolution ϕ 6 −1 of (HJ0). For every ε > 0, there exists, in view

of Theorem 1.15, a function ϕε ∈ C∞(M) satisfying

‖ϕε − ϕ‖∞ 6 ε and H
(
x,Dxϕε

)
6 c0 + ε for all x ∈M. (3.4)

For ε > 0 small, we have ϕε < 0. We get

θn >

∫

TM

(
L(x, v) + c0

)
dµ̃n(x, v)

>

∫

TM

(
Dxϕε(v)−H

(
x,Dxϕε

)
+ c0

)
dµ̃n(x, v) >

∫

TM

(
Dxϕε(v)− ε

)
dµ̃n(x, v)

=
ϕε

(
γn(0)

)
− e−λn

∫
0

−tn
a(γn(τ))dτϕε

(
γn(−tn)

)

α(λn, γn, tn)
− λn

∫

TM

a(x)ϕε(x) dµ̃n(x, v)− ε

>
ϕε

(
γn(0)

)

α(λn, γn, tn)
− λn

∫

TM

a(x)ϕε(x) dµ̃n(x, v)− ε.

The equality appearing above is obtained via an integration by parts (cf. proof of Lemma

3.7 equation (3.3), when we prove that µ̃ is closed), while for the last inequality we have
used that fact that ϕε < 0. Now we send ε → 0+ and divide the above inequality by λn.

We get

C

λp+1
n α(λn, γn, tn)

+
1

λnα(λn, γn, tn)
>

ϕ
(
γn(0)

)

λnα(λn, γn, tn)
−
∫

TM

a(x)ϕ(x)dµ̃n.

Since λnα(λn, γn, tn) > λp+1
n α(λn, γn, tn) → +∞ as n→ +∞, we get

∫

TM

a(x)ϕ(x) dµ̃(x, v) > 0.

Since for all m > 0 the function ϕ−m 6 −1 is also a negative subsolution of (HJ0), by
replacing ϕ with ϕ−m in the inequality above we obtain

‖ϕ‖∞‖a‖∞ >

∫

TM

a(x)ϕ(x) dµ̃(x, v) > m

∫

TM

a(x) dµ̃(x, v), for all m > 0,

which implies that
∫
TM

a(x)dµ̃ 6 0. This contradicts assumption (a1). �

We now proceed to show that the value function Vλ is bounded from below, for every
fixed λ ∈

(
0, λ(1)

)
, where λ(1) > 0 is the value obtained according to Lemma 3.7 with

p = 1 and C = Ĉ+
v , where Ĉ

+
v is the constant provided by Lemma 3.5.
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Lemma 3.10. There exists a constant Ĉ−
v > 0 independent of λ such that

Vλ(x) > −Ĉ−
v λ

−2 for all x ∈M and λ ∈
(
0, λ(1)

)
.

Proof. Let us fix γ ∈ Γλ. For every t > 0 we have
∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds > −C−

L

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτds,

where C−
L := −min

{
minTM

(
L(x, v) + c0

)
, 0
}
> 0. We are now going to apply Lemma

3.8 with p = 1 and by choosing C := Ĉ+
v in the definition of Γλ(1), so that Γλ(1) = Γλ:

from the above inequality we infer
∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds > −C

−
LA(1)

λ2
for all t > 0.

The assertion readily follows from the definition of Vλ. �

From the information gathered so far, we know that the value function Vλ is finite-
valued on M for every λ ∈

(
0, λ(1)

)
. We now proceed to get bounds for Vλ from above

and from below on M independent of λ.

Lemma 3.11. There is a constant C
+

v > 0 such that

Vλ(x) 6 C
+

v for all x ∈ A and λ ∈
(
0, λ(1)

)
.

Proof. According to [13, Theorem 4.14 and Proposition 4.4], see also [16, Theorem 3.3],

for every x ∈ A there exists a curve η : R → A with η(0) = x such that, for every
subsolution ϕ of (HJ0),

L
(
η(s), η̇(s)

)
+ c0 =

d

ds
(ϕ◦η)(s) for a.e. s ∈ R. (3.5)

Let us denote by K the family of curves η : R → A satisfying (3.5). We remark for further
use that these curves are equi-Lipschitz, see for instance [13, Lemma 4.9].

Pick a subsolution ϕ 6 0 of (HJ0) and fix x ∈ A. From the definition of Vλ we get

Vλ(x) 6 lim sup
t→+∞

∫ 0

−t

e−λ
∫ 0

s
a(η(τ))dτ

(
L
(
η(s), η̇(s)

)
+ c0

)
ds

= lim sup
t→+∞

∫ 0

−t

e−λ
∫
0

s
a(η(τ)) dτ d

ds
(ϕ◦η)(s) ds (3.6)

= lim sup
t→+∞

{
ϕ
(
η(0)

)
− e−λ

∫ 0

−t
a(η(τ))dτϕ

(
η(−t)

)
− λα(λ, η, t)

∫

TM

a(x)ϕ(x)dµ̃η
t

}
,

where µ̃η
t ∈ P(TM) is defined by

∫

TM

f(x, v) dµ̃η
t (x, v) :=

∫ 0

−t
e−λ

∫ 0

s
a(η(τ))dτ f

(
η(s), η̇(s)

)
ds

∫ 0

−t
e−λ

∫
0

s
a(η(τ))dτds

, ∀f ∈ Cc(TM).

The second equality in (3.6) is derived via an integration by parts as for (3.3). By as-

sumption (a1) and compactness of the family of Mather measures M̃, there exists ε > 0
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such that
∫

TM

a(x) dµ̃(x, v) > ε for all µ̃ ∈ M̃. (3.7)

We show that there is T0 > 0 such that, for all curves η ∈ K, we have

∫ 0

−t

a
(
η(s)

)
ds > εt for all t > T0.

We argue by contradiction. Assume there exist sequences ηn ∈ K and tn → 0 such that

∫ 0

−tn

a
(
ηn(s)

)
ds 6 εtn. (3.8)

Define µ̃n ∈ P(TM) by

∫

TM

f(x, v)dµ̃n :=
1

tn

∫ 0

−tn

f
(
ηn(s), η̇n(s)

)
ds, ∀f ∈ Cc(TM).

Due to the fact that the curves (ηn)n are equi-Lipschitz, the measures (µ̃n)n have equi-

compact support. In particular, up to extracting a subsequence (not relabeled), they
weakly converge to a probability measure µ̃ ∈ P(TM). Furthermore

lim
n

∫

TM

f(x, v) dµ̃n(x, v) =

∫

TM

f(x, v) dµ̃(x, v) ∀f ∈ C(TM).

We claim that µ̃ is closed. Indeed, for every φ ∈ C1(M) we have

∫

TM

Dxφ(v) dµ̃(x, v) = lim
n

∫

TM

Dxφ(v) dµ̃n(x, v)

= lim
n

1

tn

∫ 0

−tn

d

ds
(φ◦ηn)(s) ds 6 lim

n

2‖φ‖∞
tn

= 0.

We proceed to show that µ̃ is minimizing, namely, a Mather measure. Pick a subsolution

ϕ to (HJ0). By exploiting (3.5), we get

∫

TM

(
L(x, v) + c0

)
dµ̃ = lim

n

∫

TM

(
L(x, v) + c0

)
dµ̃n = lim

n

1

tn

∫ 0

−tn

(
L
(
ηn(s), η̇n(s)

)
+ c0

)
ds

= lim
n

1

tn

∫ 0

−tn

d

ds
(ϕ◦ηn)(s) ds = lim

n

ϕ
(
ηn(0)

)
− ϕ

(
ηn(−tn)

)

tn
= 0.

By (3.8), we also have
∫
TM

a(x) dµ̃(x, v) 6 ε, which leads to a contradiction with (3.7).
Then for t > T0 we have

e−λ
∫ 0

−t
a(η(τ))dτ

6 e−λεt
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and

0 < λα(λ, η, t) = λ

∫ 0

−t

e−λ
∫ 0

s
a(η(τ))dτ ds

= λ

∫ 0

−T0

e−λ
∫ 0

s
a(η(τ))dτ ds+ λ

∫ −T0

−t

e−λ
∫ 0

s
a(η(τ))dτds

6 λ

∫ 0

−T0

e−λ‖a‖∞s ds+ λ

∫ −T0

−t

eλεsds

6
eλ‖a‖∞T0 − 1

‖a‖∞
+
e−λεT0

ε
6
e‖a‖∞T0

‖a‖∞
+

1

ε
=: Cη.

By using these inequalities in (3.6) and recalling that ϕ 6 0, we finally get

Vλ(x) 6 Cη‖a‖∞‖ϕ‖∞,
which gives the upper bound of Vλ on A independent of λ. �

By exploiting the fact that Vλ satisfies the Dynamic Programming Principle, we show
that the partial upper bound obtained in Lemma 3.11 actually entails a uniform upper

bound on the whole M .

Proposition 3.12. There is C+
v > 0 independent of λ such that

Vλ(x) 6 C+
v for all x ∈M and λ ∈

(
0, λ(1)

)
.

Proof. Fix x ∈ M and pick a point y ∈ A. Set d := d(x, y), D :=diam(M) and CL :=
max

x∈M,‖v‖x61
|L(x, v) + c0| . Take a geodesic ζ : [−d, 0] → M with ζ(−d) = y, ζ(0) = x and

‖ζ̇‖ζ = 1. By Proposition 3.4 we have

Vλ(x) 6 e−λ
∫
0

−d
a(ζ(τ))dτVλ(y) +

∫ 0

−d

e−λ
∫
0

s
a(ζ(τ))dτ

(
L
(
ζ(s), ζ̇(s)

)
+ c0

)
ds

6 eλ‖a‖∞dC
+

v + CLde
λ‖a‖∞d 6 e‖a‖∞D(C

+

v + CLD),

which gives the sought uniform upper bound of Vλ. �

Now that we know that Vλ is uniformly bounded from above, we can prove that Vλ is
also uniformly bounded from below.

Proposition 3.13. There exist λ ∈
(
0, λ(1)

)
and a constant C−

v > 0 independent of λ

such that

Vλ(x) > −C−
v for all x ∈M and λ ∈ (0, λ).

In particular, |Vλ(x)| 6 Cv := max{C−
v , C

+
v } for all x ∈ M and λ ∈ (0, λ).

Proof. By Proposition 3.12, we know that, for λ < λ(1), the infimum in Vλ is taken among

the set

Γ :=

{
γ : (−∞, 0] →M : lim sup

t→+∞

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds 6 C+

v

}
.
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By Lemma 3.8, there exists λ(0) ∈ (0, 1) (depending on C+
v ) such that

A(0) := sup

{
λα(λ, γ, t) : λ ∈

(
0, λ(0)

)
, γ ∈ Γ, t > 0

}
< +∞.

Let us set λ := min{λ(0), λ(1)}.7 Let ϕ 6 −1 be a subsolution of (HJ0). For each ε > 0,
we can take ϕε ∈ C∞(M) satisfying ‖ϕε − ϕ‖∞ 6 ε and H

(
x,Dxϕε

)
6 c0 + ε for all

x ∈M , given by Theorem 1.15. For ε > 0 small, we have ϕε < 0. For each γ ∈ Γ, we have
∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

>

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
Dγ(s)ϕε

(
γ̇(s)

)
−H

(
γ(s), Dγ(s)ϕε

)
+ c0

)
ds

>

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
dϕε

dt

(
γ(s)

)
− ε

)
ds

= ϕε

(
γ(0)

)
− e−λ

∫ 0

−t
a(γ(τ))dτϕε

(
γ(−t)

)
− α(λ, γ, t)

∫

TM

(
λa(x)ϕε(x) + ε

)
dµ̃γ

t

> ϕε

(
γ(0)

)
− α(λ, γ, t)

∫

TM

(
λa(x)ϕε(x) + ε

)
dµ̃γ

t ,

where
∫

TM

f(x, v)dµ̃γ
t (x, v) :=

∫ 0

−t
e−λ

∫
0

s
a(γ(τ))dτ f

(
γ(s), γ̇(s)

)
ds

α(λ, γ, t)
, ∀f ∈ Cc(TM).

We recall that α(λ, γ, t) :=
∫ 0

−t
e−λ

∫
0

s
a(γ(τ))dτds. Now let ε→ 0+ to get

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds > ϕ

(
γ(0)

)
− λα(λ, γ, t)

∫

TM

a(x)ϕ(x)dµ̃γ
t .

Sending t→ +∞ we get

lim sup
t→+∞

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds > −

(
1 + A(0)‖a‖∞

)
‖ϕ‖∞.

The bound from below readily follows from this by definition of Vλ. The last assertion is
a consequence of Proposition 3.12 and of what we have just shown above. �

We now proceed to show that the value function is Lipschitz continuous. This is indeed

a consequence of this more general result.

Proposition 3.14. Let w : M → R be a bounded function. Assume that w satisfies the
Dynamic Programming Principle, i.e., for each absolutely continuous curve γ : [−t, 0] →
M , we have

w
(
γ(0)

)
− e−λ

∫ 0

−t
a(γ(τ))dτw

(
γ(−t)

)
6

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds. (DPP)

Then w is Lipschitz continuous, with a Lipschitz constant that only depends on L, diam(M)

and ‖w‖∞.

7We recall that λ(1) ∈ (0, 1) is the value obtained according to Lemma 3.7 with p = 1 and C = Ĉ+
v ,

where Ĉ+
v is the constant provided by Lemma 3.5.
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Proof. Pick x, y ∈ M . Let ζ : [−d, 0] → M be a geodesic with ζ(−d) = y and ζ(0) = x,

where d := d(x, y). By (DPP) we have

w(x)− w(y) 6 −w(y)
(
1− e−λ

∫ 0

−d
a(ζ(τ))dτ

)
+
∫ 0

−d
e−λ

∫ 0

s
a(ζ(τ))dτ

(
L
(
ζ(s), ζ̇(s)

)
+ c0

)
ds.

There is τ0 ∈ (−d, 0) such that
∫ 0

−d
a
(
ζ(τ)

)
dτ = a

(
ζ(τ0)

)
d. If a

(
ζ(τ0)

)
> 0, we have

0 6 1− e−λa(ζ(τ0))d 6 eλa(ζ(τ0))d − 1 6 eλ‖a‖∞d − 1.

If a
(
ζ(τ0)

)
< 0, we have

0 > 1− e−λa(ζ(τ0))d > 1− eλ‖a‖∞d.

Then

w(x)− w(y) 6 λ‖w‖∞
eλ‖a‖∞d − 1

λ
+ CL

∫ 0

−d

e−λ‖a‖∞sds 6 (‖a‖∞‖w‖∞ + CL)
eλ‖a‖∞d − 1

λ‖a‖∞
.

Since λ ∈ (0, 1) and d 6 D, there is CD > 0 such that eλ‖a‖∞d − 1 6 CDλd̃. Exchanging
the role of x and y, we get the conclusion. �

As a consequence of the previous proposition and Proposition 3.13, we derive the

following information.

Corollary 3.15. There is κ > 0 independent of λ such that the functions {Vλ : λ ∈
(0, λ̄)} are κ-Lipschitz continuous.

Next, we show that the value function is a viscosity subsolution of the equation (HJλ).

Indeed, the following result holds.

Proposition 3.16. Let w ∈ C(M). Then w is a subsolution of (HJλ) if and only if

(DPP) holds for every absolutely curve γ : [−t, 0] →M and every t > 0.

Proof. Let us first assume that w is a viscosity subsolution of (HJ0). By Proposition

1.4, we derive that w is Lipschitz continuous. Using Theorem 1.15, we take a sequence
wn ∈ C1(M) such that ‖wn − w‖∞ 6 1/n and

λa(x)wn(x) +H
(
x,Dxwn

)
6 c0 +

1

n
for all x ∈M.
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For γ : [−t, 0] → M , we have, performing the now usual integration by parts and the

Fenchel inequality (1.2),

wn

(
γ(0)

)
− e−λ

∫
0

−t
a(γ(τ))dτwn

(
γ(−t)

)
=

∫ 0

−t

d

ds

(
e−λ

∫
0

s
a(γ(τ))dτwn

(
γ(s)

))
ds

=

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
λa

(
γ(s)

)
wn

(
γ(s)

)
+Dγ(s)wn

(
γ̇(s)

))
ds

6

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
λa

(
γ(s)

)
wn

(
γ(s)

)
+H

(
γ(s), Dγ(s)wn

)
+ L

(
γ(s), γ̇(s)

))
ds

6

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
c0 +

1

n
+ L

(
γ(s), γ̇(s)

))
ds

6
1

n

∫ 0

−t

e−λ‖a‖∞sds+

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

=
eλ‖a‖∞t − 1

n‖a‖∞λ
+

∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds.

The assertion follows by sending n→ +∞.

Conversely, let us assume that w satisfies (DPP). According to Proposition 3.14, w is
Lipschitz continuous. We only need to check if w is a subsolution where w is differentiable,

thanks to Proposition 1.4. Let w be differentiable at x. We take a C1 curve γ : [−t, 0] → M
with γ(0) = x and γ̇(0) = v. Then

w
(
γ(0)

)
− e−λ

∫
0

−t
a(γ(τ))dτw

(
γ(−t)

)

t
6

1

t

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds.

Letting t→ 0+, we get

λa(x)w(x) +Dxw(v)− L(x, v) 6 c0.

Taking the supremum with respect to v, we get, thanks to (1.3),

λa(x)w(x) +H(x,Dxw) 6 c0,

which implies that w is a subsolution. �

We proceed to show that the value function is the maximal viscosity subsolution of

(HJλ), and hence a solution by maximality. We need an auxiliary lemma first.

Lemma 3.17. Let λ > 0 and let γ : (−∞, 0] → M be an absolutely continuous curve. Let
us assume that

sup
t>0

α(λ, γ, t) < +∞. (3.9)

Then e−λ
∫ 0

−t
a(γ(τ))dτ → 0 as t→ +∞.

Proof. We argue by contradiction. Assume there exist an increasing sequence tn → +∞
and a δ ∈ (0, 1) small enough such that

e−λ
∫ 0

−tn
a(γ(τ))dτ

> δ for all n ∈ N.
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Then, for all t ∈
(
tn, tn +

ln(δ−1)
λ‖a‖∞

)
, we have

−λ
∫ −tn

−t

a
(
γ(τ)

)
dτ > −λ‖a‖∞|t− tn| > ln δ,

hence

e−λ
∫
0

−t
a(γ(τ))dτ = e−λ

∫
−tn

−t
a(γ(τ))dτ e−λ

∫ 0

−tn
a(γ(τ))dτ

> δ2, for all n ∈ N.

Let us pick r > 0 with r 6
ln(δ−1)
λ‖a‖∞

. Up to extracting a subsequence, we can assume that

r 6 |tn+1 − tn| for all n ∈ N. Let us set t0 := 0. We have
∫ 0

−tn

e−λ
∫ 0

s
a(γ(τ))dτds >

n−1∑

i=0

∫ −ti

−ti−r

e−λ
∫ 0

s
a(γ(τ))dτds > rδ2n→ +∞

as n→ +∞, which contradicts (3.9). �

Let us prove the result announced above. We recall that the λ̄ appearing in the next
two statements is the real number in (0, 1) provided by Proposition 3.13.

Proposition 3.18. For every fixed λ ∈ (0, λ̄), the value function Vλ is the maximal

subsolution of (HJλ). In particular, it is a viscosity solution of (HJλ).

Proof. Let w be a subsolution of (HJλ). Let us fix x ∈ M . By definition, for all ε > 0,

there is γ ∈ Γ such that

Vλ(x) + ε > lim sup
T→+∞

∫ 0

−T

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

=

∫ 0

−t

e−λ
∫
0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

+ e−λ
∫ 0

−t
a(γ(τ))dτ lim sup

T→+∞

∫ 0

−T

e−λ
∫ 0

s
a(ξ(τ))dτ

(
L
(
ξ(s), ξ̇(s)

)
+ c0

)
ds,

where ξ(s) := γ(s− t) for s 6 0. By Proposition 3.16, we have
∫ 0

−t

e−λ
∫ 0

s
a(γ(τ))dτ

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds > w(x)− e−λ

∫ 0

−t
a(γ(τ))dτw

(
γ(−t)

)
.

By the definition of Vλ, we have

e−λ
∫
0

−t
a(γ(τ))dτ lim sup

T→+∞

∫ 0

−T

e−λ
∫
0

s
a(ξ(τ))dτ

(
L
(
ξ(s), ξ̇(s)

)
+ c0

)
ds > e−λ

∫
0

−t
a(γ(τ))dτVλ

(
γ(−t)

)
.

Combining all the above inequalities, we conclude

Vλ(x) + ε > w(x) + e−λ
∫ 0

−t
a(γ(τ))dτ

(
Vλ

(
γ(−t)

)
− w

(
γ(−t)

))
.

We know that sup
t>0

α(λ, γ, t) < +∞, cf. proof of Proposition 3.13. By Lemma 3.17, we

derive that e−λ
∫ 0

−t
a(γ(τ))dτ → 0 as t → +∞. By finally sending ε → 0+ we conclude

that Vλ(x) > w(x). This, together with Propositions 3.4 and 3.16, proves the asserted
maximality of Vλ.

Now we show that Vλ is a viscosity solution of (HJλ). Since Vλ is the maximal sub-
solution, we only need to show that it is a supersolution. The argument is standard and
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depends on the bump construction. We give it below for the reader’s convenience. Assume,

by contradiction, that the supersolution test fails at some point z ∈M . This means that

there is a strict subtangent φ ∈ C1(M) of Vλ at z 8 such that

λa(z)Vλ(z) +H
(
z,Dzφ

)
< c0.

Up to adding a constant to φ, we can assume that Vλ(z) = φ(z). Let Br(z) be the open

ball centered at z with the radius r. Let us choose r > 0 and ε > 0 small enough so that

φ+ ε < Vλ on ∂Br(z) and λa(x)(φ(x) + ε) +H
(
x,Dxφ

)
< c0 ∀x ∈ Br(z). (3.10)

Set

Ṽλ(x) :=

{
max{Vλ(x), φ(x) + ε} if x ∈ Br(z).

Vλ(x) if x ∈M \Br(z)

Due to (3.10), the function Ṽλ is a subsolution of (HJλ) in Br(z) as the maximum of

two subsolutions in that open ball, and it agrees with Vλ in an open neighborhood of

M \Br(z). This readily implies that Ṽλ is a subsolution of (HJλ) on the whole M . Yet, we

have Ṽλ(z) = ϕ(z) + ε > Vλ(z), contradicting the fact that Vλ is the maximal subsolution

of (HJλ). This shows that Vλ is indeed a solution to (HJλ) in M . �

From now on, we denote by uλ(x) the value function Vλ(x), since it is the maximal
solution.

Proposition 3.19. There exists λ0 ∈ (0, λ̄) such that, for every fixed x ∈ M and λ ∈
(0, λ0), we can find a curve γxλ : (−∞, 0] → M with γxλ(0) = x such that

uλ(x) =

∫ 0

−∞

e−λ
∫ 0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds.

Furthermore, the curve γxλ is κ̂-Lipschitz continuous, for some constant κ̂ > 0 independent
of λ ∈ (0, λ0) and x ∈M .

Proof. Let us fix λ ∈ (0, λ̄). According to Proposition 3.18, uλ is a viscosity, hence a weak
KAM, solution of

λa(x)uλ(x) +H(x,Dxu) = c0 in M.

By Lemma 2.9, we know that, for every fixed x ∈ M , there is a Lipschitz curve γxλ :

(−∞, 0] →M with γxλ(0) = x such that

uλ
(
γxλ(b2)

)
− uλ

(
γxλ(b1)

)
=

∫ b2

b1

[
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0 − λa

(
γxλ(s)

)
uλ

(
γxλ(s)

)]
ds (3.11)

for all b1 < b2 6 0. The above equality with b1 = −t and b2 = 0 can be restated as

u(t) = u(0) +

∫ t

0

h(s)u(s)ds+

∫ t

0

ℓ(s)ds for all t > 0, (3.12)

where

u(s) := −uλ
(
γxλ(−s)

)
, h(s) := λa

(
γxλ(−s)

)
, ℓ(s) := L

(
γxλ(−s), γ̇xλ(−s)

)
+ c0.

8Meaning that Vλ − φ has a strict local minimum at z.
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Note that the function u and h are in L∞
(
[0, t]

)
. Since ℓ is uniformly bounded from below,

this implies, in view of (3.12), that ℓ is in L1
(
[0, t]

)
. The operator T defined by

T f(t) = u(0) +

∫ t

0

h(s)f(s)ds+

∫ t

0

ℓ(s)ds

is a contraction when λ‖a‖∞t < 1, in particular there is a unique fixed point of T . This

gives the existence of the local unique solution of (3.12), which is defined, for example,

on [0, t0] with t0 = 1
2λ‖a‖∞

. Since the time of local existence is independent of the initial

data, the maximal solution is defined for all t > 0, and is given by

u(t) = u(0)e
∫
t

0
h(s)ds +

∫ t

0

ℓ(s)e
∫
t

s
h(τ)dτds,

as an explicit computation shows. This gives directly

uλ(x) = e−λ
∫ 0

−t
a(γx

λ
(τ))dτuλ

(
γxλ(−T )

)
+

∫ 0

−t

e−λ
∫ 0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds (3.13)

for all t > 0. Due to the fact that the functions (uλ)λ∈(0,λ) are equi-bounded and equi-

Lipschitz, this implies that the curve γxλ is κ̂-Lipschitz, with a Lipschitz constant κ̂ that
is independent of λ ∈ (0, λ) and x ∈M , see Lemma 2.9.

We want to show that there exists λ0 ∈ (0, λ̄] such that e−λ
∫
0

−t
a(γx

λ
(τ))dτ → 0 as t→ +∞

whenever λ ∈ (0, λ0). According to Lemma 3.17, it suffices to show that there exists a

λ0 ∈ (0, λ̄] such that

sup

{
λα(λ, γ, t) : λ ∈ (0, λ0), γ ∈ C

x
λ , x ∈M, t > 0

}
< +∞, (3.14)

where we have denoted by C x
λ the family of absolutely continuous curves γ : (−∞, 0] → M

with γ(0) = x that satisfy (3.11). Notice in fact that (3.14) implies in particular that, for

every fixed λ ∈ (0, λ0), condition (3.9) in Lemma 3.17 is met. We argue by contradiction.
Let us assume the claim false. Then there exist sequences λn → 0+, tn ∈ (0,+∞), xn ∈M

and γn ∈ C
xn

λn
such that λnα(λn, γn, tn) → +∞ as n→ +∞. Notice that the latter implies

that tn → +∞ and αn := α(λn, γn, tn) → +∞ as n → +∞. Let µ̃n be the probability

measure defined in (⋆). Then (3.13) can be restated as

∫

TM

(
L(x, v) + c0

)
dµ̃n(x, v) =

1

αn

(
uλn

(
γn(0)

)
− e−λn

∫
0

−tn
a(γn(τ))dτuλn

(
γn(−tn)

))
(3.15)

for all n ∈ N. With the aid of Lemma 3.6, it is easy to check that the right-hand side
of (3.15) goes to 0 as n → +∞. We can therefore apply Lemma 3.7 to infer that, up to

extracting a subsequence, µ̃n weakly converges to a Mather measure µ̃.
Now we choose a subsolution ϕ 6 −1 of (HJ0). For ε > 0, we take ϕε ∈ C∞(M)

satisfying ‖ϕε−ϕ‖∞ 6 ε and H
(
x,Dxϕε

)
6 c0+ ε for all x ∈M , given by Theorem 1.15.
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For ε small enough, we have ϕε < 0. By (3.15) we get

1

αn

(
uλn

(
γn(0)

)
− e−λn

∫
0

−tn
a(γn(τ))dτuλn

(
γn(−tn)

))
=

∫

TM

(
L(x, v) + c0

)
dµ̃n

>

∫

TM

(
Dxϕε(v)−H

(
x,Dxϕε

)
+ c0

)
dµ̃n >

∫

TM

(
Dxϕε(v)− ε

)
dµ̃n

=
ϕε

(
γn(0)

)
− e−λn

∫ 0

−tn
a(γn(τ))dτϕε

(
γn(−tn)

)

α(λn, γn, tn)
− λn

∫

TM

a(x)ϕε(x) dµ̃n − ε

>
ϕε

(
γn(0)

)

αn

− λn

∫

TM

a(x)ϕε(x) dµ̃n − ε,

where for the first inequality we have used Fenchel’s inequality (1.2) and for the subsequent
equality an integration by parts. Let ε→ 0+ to get

1

αn

(
uλn

(
γn(0)

)
− e−λn

∫
0

−tn
a(γn(τ))dτuλn

(
γn(−tn)

))
>
ϕ
(
γn(0)

)

αn

− λn

∫

TM

a(x)ϕ(x) dµ̃n.

Now we divide by λn, we use the fact that λnαn → +∞ and Lemma 3.6 to get
∫

TM

a(x)ϕ(x) dµ̃(x, v) > −‖a‖∞‖uλ‖∞.

Since for, all m > 0, ϕ − m 6 0 is also a subsolution of (HJ0), we get, by applying the

previous inequality to ϕ−m, that

‖ϕ‖∞ >

∫

TM

a(x)ϕ(x) dµ̃(x, v) > m

∫

TM

a(x) dµ̃(x, v)− ‖a‖∞‖uλ‖∞, ∀m > 0,

which implies that
∫
TM

a(x) dµ̃ 6 0. This leads to a contradiction with (a1) being µ̃ a
Mather measure, as we recalled above.

Let us fix λ ∈ (0, λ0) and x ∈ M . By sending t→ +∞ in (3.13) and by exploiting the
information just gathered, we derive that

uλ(x) = lim
t→+∞

∫ 0

−t

e−λ
∫
0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds.

We conclude that

uλ(x) = lim
t→+∞

∫ 0

−t

e−λ
∫
0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds (3.16)

=

∫ 0

−∞

e−λ
∫ 0

s
a(γx

λ
(τ))dτ

(
L
(
γxλ(s), γ̇

x
λ(s)

)
+ c0

)
ds.

Indeed (3.14) means that the positive function s 7→ e−λ
∫
0

s
a(γx

λ
(τ))dτ is in L1

(
(−∞, 0]

)
.

Furthermore, the fact that the curve γxλ is Lipschitz implies that the function s 7→
L
(
γxλ(s), γ̇

x
λ(s)

)
is in L∞

(
(−∞, 0]

)
. Equality (3.16) follows from this by making use of

the Dominated Convergence Theorem. �
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3.2. Diverging families of solutions. We have seen in Theorem 3.1 that, under the

assumption (a1), the maximal solution uλ of (HJλ) uniformly converges as λ → 0+ to a

critical solution u0. In this section, we will show that if we furthermore assume

(a2) there is a point x0 ∈M such that a(x0) < 0;

(a3) a(x) > 0 in an open neighborhood U of the projected Aubry set A,

then there exists a family of solutions to (HJλ) that uniformly diverges to −∞. Further-

more, when condition (a3) is reinforced in favor of the following one

(a3′) a(x) > 0 on A,

then all solutions to (HJλ) different from the maximal ones uniformly diverge to −∞ as
λ→ 0+. We summarize all this in the following statement. We refer the reader to Section

1.3 for the definition of the projected Aubry set. We underline that, in view of Theorem
1.9, condition (a3) is stronger than the integral condition (a1). Throughout this section,

we will denote by uλ the maximal solution of (HJλ).

Theorem 3.20. Let us assume (a2).

(i) If (a3) holds, there is a family of solutions (vλ)λ∈(0,λ̂) of (HJλ) for some λ̂ ∈ (0, 1)

uniformly diverging to −∞ as λ→ 0+.

(ii) If (a3 ′) holds, then any family of solutions (vλ)λ∈(0,λ′) of (HJλ) with λ′ ∈ (0, 1)

satisfying vλ 6= uλ for all λ ∈ (0, λ′) uniformly diverges to −∞ as λ→ 0+.

Proof. By Theorem 1.6, there is a subsolution ϕ of (HJ0) which is C∞ and strict inM \A.
Therefore, for every open neighborhood U of A there is a δ = δ(U) > 0 depending on U

such that

H
(
x,Dxϕ

)
6 c0 − δ < c0 for all x ∈M \ U .

Let us prove (i). Let U be the open neighborhood of A given by condition (a3). Define

ϕλ := ϕ− 1√
λ
.

For λ̂ > 0 small enough, we have ϕλ < 0 for all λ ∈ (0, λ̂). Up to choosing a smaller λ̂ > 0
if necessary, we have

λa(x)ϕλ +H(x,Dxϕλ) 6 λa(x)ϕλ(x) + c0 6 c0 a.e. in U ,

and

λa(x)ϕλ +H(x,Dxϕλ) 6 λ‖a‖∞‖ϕ‖∞ + ‖a‖∞
√
λ+ c0 − δ < c0 in M\U ,

for all λ ∈ (0, λ̂). Therefore, ϕλ is a subsolution of (HJλ). Now we denote by T λ,−
t (resp.

T λ,+
t ) the Lax-Oleinik semigroup defined in (1.8) (resp. the forward semigroup defined in

(1.9)) associated to L(x, v)− λa(x)u. Define

v+λ := lim
t→+∞

T λ,+
t ϕλ, vλ := lim

t→+∞
T λ,−
t v+λ ,

By Lemma 1.16, v+λ 6 ϕλ, in particular v+λ uniformly diverges to −∞ as λ → 0+. By
Lemma 1.17, vλ is a solution of (HJλ), and there is a point xλ ∈ M such that vλ(xλ) =

v+λ (xλ) for each λ ∈ (0, λ̂). We derive that vλ(xλ) → −∞ as λ→ 0+. By Proposition 2.16,
we conclude that vλ uniformly diverges to −∞ as λ→ 0+.



CONVERGENCE/DIVERGENCE OF DISCOUNTED SOLUTIONS 43

Let us prove (ii). From assumption (a3′) we infer that there is an open neighborhood

U of A and θ > 0 such that a(x) > θ for all x ∈ U . One can easily check that there exist

λ′ ∈ (0, 1) small enough and ε > 0 such that

λa(x)ϕλ +H(x,Dxϕλ) 6 λa(x)ϕλ(x) + c0 6 λ‖a‖∞‖ϕ‖∞ −
√
λ θ + c0 6 c0 − ε a.e. in U

and

λa(x)ϕλ +H(x,Dxϕλ) 6 λ‖a‖∞‖ϕ‖∞ + ‖a‖∞
√
λ+ c0 − δ 6 c0 − ε in M\U ,

for all λ ∈ (0, λ′). Therefore, ϕλ is a strict subsolution of (HJλ).

Claim: Let λ ∈ (0, λ′). There is no solution vλ 6= uλ of (HJλ) satisfying ϕλ 6 vλ 6 uλ in

M .

We argue by contradiction. Assume there is such a solution vλ. We have

T λ,−
t ϕλ 6 T λ,−

t vλ 6 T λ,−
t uλ = uλ ∀t > 0.

Since ϕλ is a strict subsolution of (HJλ), by Lemma 1.17,

lim
t→+∞

T λ,−
t ϕλ = uλ.

We get

lim
t→+∞

T λ,−
t vλ = uλ,

which contradicts the fact that vλ is a fixed point of T λ,−
t .

Therefore, for each solution vλ of (HJλ), there is a point xλ ∈M such that

vλ(xλ) 6 ϕλ(xλ) → −∞ as λ→ 0+.

By Proposition 2.16, vλ uniformly converges to −∞ as λ→ 0+. �

Remark 3.21. We note that the proof above also shows that the solutions vλ diverge to

−∞ with speed (at least) of order −1/
√
λ.
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Mathématiques Pures et Appliquées, 181 (2024), pp. 22–57.

[8] G. Contreras, A. Figalli, and L. Rifford, Generic hyperbolicity of Aubry sets on surfaces,
Invent. Math., 200 (2015), pp. 201–261.

[9] G. Contreras and R. Iturriaga, Global minimizers of autonomous Lagrangians, 22o Colóquio
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imizing measures and Mañé’s critical values, Geom. Funct. Anal., 8 (1998), pp. 788–809.
[11] A. Davini, A. Fathi, R. Iturriaga, and M. Zavidovique, Convergence of the solutions of the

discounted equation: the discrete case, Math. Z., 284 (2016), pp. 1021–1034.
[12] , Convergence of the solutions of the discounted Hamilton-Jacobi equation, Invent. Math., 206

(2016), pp. 29–55.
[13] A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of

solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), pp. 478–502.
[14] A. Davini, A. Siconolfi, and M. Zavidovique, Random Lax-Oleinik semigroups for Hamilton-

Jacobi systems, J. Math. Pures Appl. (9), 120 (2018), pp. 294–333.
[15] A. Davini and L. Wang, On the vanishing discount problem from the negative direction, Discrete

Contin. Dyn. Syst., 41 (2021), pp. 2377–2389.
[16] A. Davini and M. Zavidovique, Weak KAM theory for nonregular commuting Hamiltonians,

Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 57–94.
[17] , Convergence of the solutions of discounted Hamilton-Jacobi systems, Advances in Calculus of

Variations, 14 (2019), pp. 1–15.
[18] I. C. Dolcetta and A. Davini, On the vanishing discount approximation for compactly supported

perturbations of periodic Hamiltonians: the 1d case, Comm. Partial Differential Equations, 48 (2023),
p. 576–622.

[19] A. Fathi, Weak KAM from a PDE point of view: viscosity solutions of the Hamilton-Jacobi equation

and Aubry set, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), pp. 1193–1236.
[20] A. Fathi and E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlinear

Differential Equations Appl., 14 (2007), pp. 1–27.
[21] A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians,

Calc. Var. Partial Differential Equations, 22 (2005), pp. 185–228.
[22] D. A. Gomes, Generalized Mather problem and selection principles for viscosity solutions and

Mather measures, Adv. Calc. Var., 1 (2008), pp. 291–307.
[23] D. A. Gomes, H. Mitake, and H. V. Tran, The selection problem for discounted Hamilton-Jacobi

equations: some non-convex cases, J. Math. Soc. Japan, 70 (2018), pp. 345–364.
[24] H. Ishii, The vanishing discount problem for monotone systems of Hamilton-Jacobi equations. Part

1: linear coupling, Mathematics in Engineering, 3 (2021), pp. 1–21.
[25] H. Ishii and L. Jin, The vanishing discount problem for monotone systems of Hamilton-Jacobi

equations. Part 2: nonlinear coupling, Calc. Var., 59 (2020), pp. 1–28.



CONVERGENCE/DIVERGENCE OF DISCOUNTED SOLUTIONS 45

[26] H. Ishii, H. Mitake, and H. Tran, The vanishing discount problem and viscosity Mather measures.

Part 1: The problem on a torus, J. Math. Pures Appl., 108 (2017), p. 125–149.
[27] , The vanishing discount problem and viscosity Mather measures. part 2: Boundary value prob-

lems, J. Math. Pures Appl., 108 (2017), pp. 261–305.
[28] H. Ishii and A. Siconolfi, The vanishing discount problem for Hamilton-Jacobi equations in the

Euclidean space, Comm. Partial Differential Equations, 45 (2020), pp. 525–560.
[29] R. Iturriaga and H. Sánchez-Morgado, Limit of the infinite horizon discounted Hamilton-

Jacobi equation, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), pp. 623–635.
[30] L. Jin, J. Yan, and K. Zhao, Nonlinear semigroup approach to the Hamilton-Jacobi equation—a

toy model, Minimax Theory Appl., 8 (2023), pp. 61–84.
[31] N. R. Kocherlakota, On the ‘discount’ factor in growth economies, Journal of Monetary Eco-

nomics, 25 (1990), pp. 43–47.
[32] P.-L. Lions, G. Papanicolaou, and S. Varadhan, Homogenization of Hamilton-Jacobi equation.

unpublished preprint, 1987.
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