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Abstract

Modern day Language Models see extensive use
in text classification, yet this comes at significant
computational cost. Compute-effective classification
models are needed for low-resource environments,
most notably on edge devices. We introduce Adapt-
able Embeddings Networks (AEN), a novel dual-
encoder architecture using Kernel Density Estima-
tion (KDE). This architecture allows for runtime
adaptation of classification criteria without retrain-
ing and is non-autoregressive. Through thorough
synthetic data experimentation, we demonstrate our
model outputs comparable and in certain cases supe-
rior results to that of autoregressive models an order
of magnitude larger than AEN’s size. The architec-
ture’s ability to preprocess and cache condition em-
beddings makes it ideal for edge computing applica-
tions and real-time monitoring systems.

1 Introduction

Many modern-day AI tasks utilize auto regressive
language models (LMs), most notably, Generative
Pretrained Transformers (GPT) have taken the world
by storm(Naveed et al. [2024]). LMs are notable
for their flexibility, often requiring minimal fine-
tuning for task adaptation. Additionally, their ease
of access, facilitated by open-source availability and

∗loosmore@usc.edu
†publications@theinvivogroup.com

through API services, makes them practical for
widespread use (Brown et al. [2020]).

LMs demonstrate strength in text classification
tasks, determining if input text corresponds to spe-
cific labels (Lepagnol et al. [2024]). For GPT mod-
els, this typically involves evaluating the text through
a single prompt combing both classification require-
ments and said text within a single prompt, as seen
in applications like sentiment analysis Kheiri and
Karimi [2023]. A notable subset of these classification
tasks focus on prompt engineering detecting specific
entities or topics within text also known as Name
Entity Recognition or NER Wang et al. [2023]. Con-
sider, for instance, analyzing a corpus to determine
whether it contains references to ”Thermodynamics.”
This application requires two primary components:
the target corpus for analysis and the evaluation cri-
terion, which takes the form of a binary (yes/no) as-
sessment regarding the presence of a particular topic
or concept.

The evaluation criteria or ’natural language if
statement’ becomes particularly useful when exam-
ining constantly updating data, such as a real-time
transcript. In such scenarios, it’s valuable to con-
tinuously evaluate the incoming text against specific
criteria.
For example, in a live speech transcription:

We might want to know if the speaker has men-
tioned a key topic. We could check if certain com-
mitments or promises have been made. We may need
to flag when sensitive information is discussed.
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At each update of the transcript, an ideal model
generates boolean values indicating satisfaction of
specific conditions. An efficient classifier enables real-
time monitoring beyond speech analysis. Modern
LMs used for this task often incur high computa-
tional costs. This makes it impractical for resource-
constrained, quick-paced environments like edge com-
puting, mobile devices, or environments requiring
many criteria to be evaluated simultaneously.
Embedding models, especially transformer-based

ones, have demonstrated superior performance in
classification tasks, offering both high accuracy and
significantly greater efficiency compared to decoder-
based transformers at lower parameter counts (Tun-
stall et al. [2022]). Decoder-based transformers are
not the only models capable of capturing seman-
tic relationships dynamically. Embedding architec-
tures produce vector representations of complex, non-
numeric data such as text or images, capturing the
semantic relationships within the data. Sentence
Transformers, a type of attention based embedding
model, typically achieve this by mean pooling the
representations of attended tokens from a fine-tuned
Bidirectional Encoder Representations from Trans-
formers (BERT) model (Devlin et al. [2019], Reimers
and Gurevych [2019]). Recent methods, such as
transforming pre-trained auto-regressive LMs to em-
bedding models, have also shown promise (Bauer
et al. [2024]).
Embedding proves usefulness through relativity.

The similarity between embeddings can be mathe-
matically quantified using techniques such as Cosine
Similarity or Euclidean distance, producing a con-
tinuous value that represents their degree of likeness
Levy et al. [2024]. Embedding models have seen less
use in classification as training involves producing
continuous scores rather than discreet one. Train-
ing most typically uses contrastive loss , clustering
similar labeled embeddings close to each other, or
regressive loss aimed at approximating a similarity
score (Reimers and Gurevych [2019], Bauer et al.
[2024]). Additionally, traditional feed-forward neural
networks, which typically rely on fixed input-output
mappings, lack capacity to use a ”prompt” to classify
inputs. They do not inherently possess the mecha-
nisms to adapt what they are classifying or account

for nuanced differences in input text post training,
making them less suitable for tasks that require a
flexible, context-aware approach (Goodfellow et al.
[2016])

To address these challenges, we introduce Adapt-
able Embeddings Networks (AEN), a novel and
computationally efficient method for classifying text
based on natural language criteria specified at run-
time. AEN leverages a dual-encoder architecture: A
query encoder for processing the input text, and a cri-
terion encoder for interpreting the classification rules.
These encoders feed into a hierarchical networks com-
bining both inputs to create a highly adaptable classi-
fier. Our approach significantly outperforms leading
Small Language Models (SLMs) in efficiency, often by
orders of magnitude, while maintaining comparable
accuracy in binary text classification tasks.

This paper presents a novel approach to network
architecture and efficient prompting for resource-
constrained environments.

2 Related Work

In this section we give a brief overview of embed-
ding techniques, most notably Sentence Transform-
ers. Then we discuss synthetic and augmented data
as a means of generating additional data when little
to none exists.

2.1 Embedding Techniques

2.1.1 Training Methods

After obtaining a strong pre-trained LM, comes the
process of fine-tuning to produce meaningful embed-
dings. Prominent fine-tuning approaches/network
architectures include Siamese, Triplet, Cross En-
coders Reimers and Gurevych [2019].

Siamese Networks (Bi-encoders): These net-
works, also referred to as bi-encoders, use two mir-
rored encoders joined by one or more linear layers to
predict the similarity between inputs, generally pro-
ducing a score between zero and one. The encoder is
fine-tuned based on this similarity measure (Conneau
et al. [2018]).
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Triplet Networks: This architecture employs
three identical encoders processing three distinct text
inputs: two semantically similar texts and one dis-
similar text. The network learns by minimizing the
distance between similar text embeddings while max-
imizing the distance between dissimilar pairs, en-
abling more nuanced differentiation in the latent
space (Ein Dor et al. [2018], Schroff et al. [2015]).

Cross Encoders: This network utilizes a single
encoder to process two concatenated sentences simul-
taneously (Devlin et al. [2019]). While Cross En-
coders capture the relationships between the two in-
puts effectively, they are unable to generate individ-
ual embeddings (Reimers and Gurevych [2019]). If
used with attention based these models incur addi-
tional computational cost due to its quadratic com-
plexity.

2.1.2 Embedding with Transformers

The Universal Sentence Encoder was first embedding
model to utilize the transformer architecture (Cer
et al. [2018]). More recently, Reimers and Gurevych
[2019] proposed Sentence Transformers, an extension
of the Bidirectional Encoder Representations from
Transformers, (BERT) architecture. Base BERT
trains transformers on predicting hidden or masked
words, and next sentence prediction; one sentence
logically following another Devlin et al. [2019]. BERT
performs well on these task. However BERT, lacks
the ability to encode meaningful fixed length repre-
sentations from a variable input length, motivating
(Reimers and Gurevych [2019]) to create Sentence
BERT (SBERT). Created through tuning BERT us-
ing triplet and siamese architectures, SBERT pro-
duced meaningful embeddings.

2.2 Low Data Environments

To overcome the challenges presented by environ-
ments with low data two main techniques: augmen-
tation and synthetic data creation.

2.2.1 Augmented Data

Augmenting data is the practice of manipulating
existing data creating additional high quality data
(Wang et al. [2024]). Using augmentation requires
a existing unlabeled data. When a small amount of
labeled data exists, it is generally used to train a la-
beling model for the rest of the data. In the case
of SBERT researches developed Augmented SBERT
(AugSBERT). If labeled ”gold” data is available a
cross-encoder model is fine-tuned on this high-quality
labeled data. The fine-tuned cross-encoder is then
used to label additional unlabeled data. If no labeled
data is available one would use a pre-trained model
to label the data. For AugSBERT they present a
pre-trained cross-encoder model used directly to la-
bel unlabeled data. This labeled data is then used to
train downstream Thakur et al. [2020]).

2.2.2 Synthetic Data

Synthetic Data, commonly referring to data produced
by a model or algorithm rather then from observation
or humans (Bauer et al. [2024],) is employed when
little to no data exsist unlabeled or otherwise. In
particular synthetic data has shown promise in train-
ing language models (Li et al. [2023]). Companies
have also used synthetic data to adjust embeddings
to reflect the world more accurately (Martens [2024]).

2.3 Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE) is one of the most
widely regarded methods for estimating probability
distributions from datasets. Its popularity arises
from its ability to create smooth, continuous prob-
ability density estimates without assuming a specific
parametric form (like normal or exponential) Chen
[2017]. KDE leverages existing data points by plac-
ing a kernel function at each observation and sum-
ming these kernels to construct a probability density
function, as illustrated in Figure 1. The general form
of a kernel density estimator is given by Equation 1:

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(1)
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Figure 1: 1D Kernel Density Estimation showing in-
dividual kernels (dashed lines) and their sum (solid
line)

where f̂(x) is the estimated density at point x, n is
the number of observations in the dataset, h is the
bandwidth (smoothing parameter), K(·) is the kernel
function, and xi are the individual data points. The
kernel function K(·) is typically a symmetric proba-
bility density function, with the Gaussian kernel be-
ing a common choice, as shown in Figure 1. The
Gaussian kernel is defined in Equation 2:

K(u) =
1√
2π

e−
u2

2 (2)

Several methods exist for bandwidth estimation, with
Scott and Silverman’s notable approaches calculating
bandwidth as a function of both the standard devia-
tion and the number of datapoints used to create the
KDE (Wells and Ting [2017]). The choice of band-
width, significantly affects the smoothness of the re-
sulting density estimate.

3 Methods

In this section we first discuss our data gathering and
generation methods, then our training process and
Model Architectures.

3.1 Data

Our research requires a specific type of format: a
statement, and condition, with a binary label. We

index specifically for a transcript like data where if
one had access to the transcript they could use it to
perform actions. This section details how and why
we gather data of this format.

3.1.1 Motivation for Synthetic Data

To our knowledge, no existing datasets combine nat-
ural language statements and classification criteria
in the specific format required for this task. While
existing conversational datasets could theoretically
be adapted through human annotation, the scale re-
quired for effective model training would make this
approach prohibitively resource-intensive. Further-
more, using large language models to transform ex-
isting datasets would likely introduce similar biases
and artifacts as our synthetic generation approach,
while adding unnecessary complexity to the pipeline.
Therefore, we opted for direct synthetic data gener-
ation, allowing us to precisely control the data dis-
tribution and maintain consistent evaluation criteria
throughout our experiments.

We generate statements, conditions, and labels
synthetically through a multi-step pipeline utilizing
OpenAI’s batch API using GPT 4o-Mini unless oth-
erwise specified. This approach offers several advan-
tages:

1. Control over syntax and format: Synthetic gen-
eration allows us to shape the linguistic structure
and format of the data precisely to our needs,
ensuring consistency across data points for ideal
manipulation.

2. Scalability: We can generate large volumes of
data quickly and in a cost effective manner, es-
sential for robust pre-processing.

3. Customization: We can tune the generation
pipeline to cover a varying scenarios and edge
cases potentially underrepresented in real-world
datasets.

4. Ethical considerations: Synthetic data mitigates
privacy concerns that might arise from using
real-world conversational data.
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Synthetic data also comes with drawbacks. Stud-
ies show LM inaccurately represent real world data
through presenting unrealistic scenarios and addi-
tional bias incurrent in training Veselovsky et al.
[2023]. We tackle this issue through employing ro-
bust prompting and format cleaning methods.

3.1.2 Data Generation Process

Figure 2: Data Generation Process

Generating synthetic data through LMs presents
a significant challenge: ensuring both data diversity
and maintaining coherence (Veselovsky et al. [2023]).
In our approach, we prioritized diversity of potential
transcripts while implementing controlled patterns
that allow us to prove convergence on data meeting
our defined requirements. These patterns are further
detailed below. We leave the expansion to broader
domains of data for future work.

We aimed to generate diverse data while focusing
on a defined information subset exhibiting repeatable
patterns: contextual and linguistic. This strategy al-
lowed us to focus converging on a manageable set
of data that meets our defined requirements, rather
than attempting to cover the entire spectrum of pos-
sible outputs.

We implemented a multi-shot approach with care-
fully engineered prompts to optimize data generation
(examples can be found in Appendix A). By invest-
ing significant effort in prompt design and provid-
ing plausible examples to the model, we guided out-
puts toward our desired format and content. This
methodology maximized the efficiency of API calls
by enabling us to utilize all parsable outputs from
each batch, making the most of our computational
resources.

Statement Generation Approach The final
data must contain labeled statement and condition
pairs. The challenge lies in ensuring a balanced dis-
tribution of labels.

We considered two potential approaches:

1. Generate statements and conditions separately,
then attempt to match them.

2. Generate statements first, then use them to in-
form the generation of appropriate conditions.

We found that generating them sequentially
yielded a class imbalance of 1 to 6 compared a signif-
icantly higher proportion then in parallel. Therefore
we choose generating the data sequentially. This ap-
proach allows us to use the content and context of
each statement informing the generation of the con-
dition. By doing so, we not only increase the likeli-
hood of creating logically consistent and meaningful
statement-condition pairs but also maintain a more
balanced dataset suitable for effective model training.

Statement Generation Implementation We
encouraged data variety through creating a prompt
template taking in two inputs:

“Generate a conversation 25 statements
long set in the context of {context}.
During the conversation someone should
{action data} and perform any other rele-
vant software actions.”

Context Generation: The {context} input
comes from a list of thousands of different settings in
which the conversation may occur. We create this list
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through transforming a subset of Wikipedia Articles
into potential settings/enviroments through OpenAI
GPT calls. Here we take inspiration from (Bauer
et al. [2024]) prompting:

“What group activity
{random.choice(verb list)} the noun?
Respond with one in 5 or less tokens.
Respond explicitly (don’t use the word it).”

Action Data Generation: The {action data},
a list of potential actions, is derived from a similar
process. Instead of Wikipedia Articles we use the top
1000 websites by traffic, picking actions that can be
performed on each of these websites. We include ac-
tions in prompt because the primary use case through
conversation is to monitor if someone expresses in-
terest in an action. However, we create non-action
oriented conditions for more generalizability; more
about this in the next section.
This approach leads to tens of millions of possi-

ble prompts for statement generation. Additionally,
we maintain a set of slightly differently worded in-
struction prompts and a set of curated examples to
ground the model for more real-world results. We
decide to generate whole conversations (25+ state-
ments per call) so we can reap the benefits of a de-
veloping story rather than individual statements from
a speaker. We found that generating one off state-
ments/ paragraphs from GPT calls limited the di-
versity of responses. The condensed form provides
additional benefits when creating statements.
For the Language Model settings at the statement

generation stage, we use a temperature of 1.6 and
a Top P of 0.85. These settings encourage creativ-
ity and diversity in the generated statements while
maintaining a reasonable level of coherence.

Condition Generation Following the generation
of statements, we proceed to create conditions that
these statements might satisfy.
Our condition generation process follows these

steps:

1. Transcript-Specific Condition Generation:
We use each transcript (a set of 25+ statements)
to inform the generation of a set of conditions

(3+). By making a separate condition API call
for each transcript, we virtually guarantee ev-
ery transcript will contain statements that sat-
isfy the generated conditions.

2. Database Storage: We save every generated
condition to a database. This allows us to main-
tain a diverse pool of conditions for continued
use and analysis.

3. Cross-Pollination: To increase data diversity,
we cross-pollinate transcript-specific conditions
with other transcript data groups. This means
that conditions generated for one transcript are
also paired with statements from other tran-
scripts. This process helps to:

• Increase the variety of statement-condition
pairs

• Reduce potential biases arising from always
pairing conditions with their original tran-
scripts

• Introduce comparisons between topics
other wise unrelated. We allow sparse parts
of the vector space to interact with each
other increasing model robustness.

For the condition generation stage, we set the Lan-
guage Model parameters as follows: a temperature of
1 and a Top P of 1. These settings allow for creativity
in condition generation while maintaining coherence.
The higher temperature compared to statement gen-
eration (1 vs 1.6) ensures more focused conditions,
crucial for the desired evaluation specifications.

Our approach to condition generation comple-
ments our statement generation process, resulting in
a dataset of statement-condition pairs suitable for
training and evaluation.

Labeling Generation The final step in our data
generation pipeline involves labeling the statement-
condition pairs. A transcript comes with at least 75
(25*3) distinct statement condition pairs . This pro-
cess presented unique challenges:

• Large language models GPT-4o and its mini
version struggled with labeling entire transcript
datasets efficiently.
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• Labeling each statement condition pair proved
cost-inefficient.

To address these challenges, we developed the fol-
lowing approach:

1. We pair each statement with the full set of gen-
erated conditions.

2. For each statement, we make a single API call
to label it against all conditions.

3. This method balances efficiency and cost-
effectiveness, allowing us to generate a compre-
hensive set of labels without excessive API us-
age.

For the labeling process, we set the Language
Model parameters as follows: a Temperature of 0
and a Top P of 1. These settings prioritize deter-
ministic outputs, ensuring consistency in the labeling
process. The low temperature (0) minimizes random-
ness, needed for reliable binary classification.
This labeling strategy completes our data genera-

tion pipeline striking the balance between diversity
and determinism.

3.2 Model and Training

In this section, we outline our training and modeling
methods culminating in the Adaptable Embeddings
Networks (AEN), a compute-efficient zero-shot clas-
sifier designed to determine if a given text meets spec-
ified semantic criteria. AEN utilizes a dual-encoder
architecture: one for processing input text and an-
other for interpreting classification rules. We opted
for a non-mirrored Siamese architecture with a bi-
nary classification head for training (Figure 3), as it
better suits our binary classification task compared
to alternatives like cross-encoders or triplet networks
Reimers and Gurevych [2019], Schroff et al. [2015].
This approach allows for preprocessing of conditions
and single-pass processing of new statements, op-
timizing computational efficiency for real-time ap-
plications (Figure 4). The following section details
our methodology for processing embedding vectors
to produce classifications.

Figure 3: AEN General training architecture

3.2.1 Data Preparation

Our data preparation process involves two main
steps:

Batching Strategy To optimize processing effi-
ciency, we batch each statement by token length.
This approach minimizes the total padding required,
ensuring that statements with similar padding are
grouped within the same batch.

Condition Preprocessing Every condition in our
dataset initially starts with the phrase ”When some-
one”. This standardization was helpful for GPT
when it was labeling the statement-condition pairs.
However, for our model input, we remove these two
words from every condition. This streamlined prepa-
ration process ensures our data is consistently for-
matted and optimized for our model architecture.
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Figure 4: AEN runtime architecture for constant
data evaluation

3.2.2 Training Methodology

We train on a NVIDIA RTX 4090. Data points,
Learning Rate and Batch size, all varied from 50k to
5M points, 1e-5 to 1e-6 and 64 to 256 respectively. We
employ the all-MiniLM-L6-v2 and all-mpnet-base-v2
models from the SBERT library on Hugging Face,
based on the work by Reimers and Gurevych [2019].
These models are trained use mean pooling so we pri-
marily adopt the same operation, however make some
changes depending on the concatenation method.

3.2.3 Exploration of Model Architectures

We explored three main model routing architectures.
This section provides a qualitative discussion of each
approach, culminating in our final AEN model.

Feed Forward Networks Our initial approach in-
volved generating separate embeddings from the en-
coders and using these as inputs to a Neural Net-
work (NN). The input vector shape consisted of some
factor of the output embedding vector length. For
outputs U and V from each encoder, we tested var-

ious input combinations: (U, V ), (U, V, |U − V |),
(U, V, U · V ), and (U, V, U · V, |U − V |). These in-
puts were then fed into a hidden network, converging
at a soft-max output for classification.

Cross encoder to Feed Forward: In our second
approach, we combined elements of Siamese networks
and Cross Encoders. This hybrid method began by
generating bi-encoder outputs for both statements
and condition. These outputs were then concate-
nated and fed into a transformer-based cross-encoder.
To maintain the distinction from statements and con-
dition, we inserted [SEP] tokens and used attention
masks when passing information through the cross
encoder. We crafted these attention masks through
retaining the original separate encoder masks and
concatenating them for the combined input into the
cross encoder. Finally, these split the outputs back
into different vectors and feed both into a Neural Net-
work for classification. This approach allowed us to
leverage the contextual understanding capabilities of
the cross-encoder architecture while still maintaining
the separate representations needed for our classifi-
cation task.

Final Model, AEN with KDE: Our final ap-
proach, Adaptable Embeddings Network (AEN) with
Kernel Density Estimation (KDE), deviates from tra-
ditional mean pooling methods. For a set of at-
tended tokens with N dimensions and M tokens,
we transform one set of mean-pooled tokens into N
non-parameterized Kernel Density Functions. The
other embedding is mean-pooled conventionally. We
then evaluate the probability of each dimension of the
mean-pooled output with respect to its corresponding
density function. In essence, each dimension of the
embedding is treated as its own distribution. Every
token adds an additional kernel to each distribution
such that we create N 1D distributions with M ker-
nels per distribution. For a KDE 1D visualization
refer to 1.
This method was motivated by our hypothesis that
individual embedding dimensions represent distinct
attributes of the input. By translating these di-
mensions into probability distributions, we enable a
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more nuanced comparison between corresponding at-
tributes from different inputs. This probabilistic ap-
proach allows us to evaluate how likely the attributes
of one input are with respect to the distribution of at-
tributes in another, potentially capturing more sub-
tle relationships than traditional vector comparison
methods such as Cosine Similarity. This method
seemed to both show a more consistent increase in
performance on test data while requiring less param-
eters then the other models at similar performance.
We arrived at Kernel Density Estimation after an-
alyzing the statistical properties of embedding dis-
tributions. Using 100 sentences randomly sampled
fromWikipedia, we embedded each sentence and per-
formed Kolmogorov-Smirnov tests on their attended
token distributions across corresponding embedding
dimensions. The results showed a striking pattern:
while the mean p-value was approximately 0.1, the
median p-value fell below 0.001, indicating that most
dimensions strongly rejected the hypothesis of com-
ing from the same parametric distribution. This
right-skewed distribution of p-values suggests that
while some dimensions might be well-approximated
by parametric distributions, the majority require
non-parametric density estimation approaches like
KDE rather than parametric alternatives such as
GMMs. This statistical evidence guided our choice
of KDE as a flexible, non-parametric method capa-
ble of handling both well-behaved and more complex
distributional patterns across embedding dimensions.

Hyper parameters: Our hyperparameter explo-
ration covered several crucial aspects of the model.
We tested different pretrained encoder models to find
the most effective base for our task. To address class
imbalance, we experimented with various weight pe-
nalization techniques. We also investigated the im-
pact of training data volume on model performance.
The architecture of the final feed-forward neural net-
work (FFNN) was another key area of exploration,
where we tested different configurations of layers and
neurons. For our final AEN model with KDE, we
additionally explored which embedding to transform
into a probability distribution and the type of prob-
ability density function (PDF) to apply. These hy-

perparameters were systematically varied to optimize
our model’s performance across different architec-
tural approaches.

4 Results

4.1 Hyperparameter Comparison

To determine the best model model we examine each
hyper parameter of our models and take the highest
performing option of each. We perform these experi-
ments utilizing different Model architectures in each
all other parameters are consistent.

4.1.1 Datapoints/Batch Size

One of the first test we ran examined results through
varying access to data points and batch size. We
therefore ran these experiments with the feed forward
head atop both encoders.

For these experiments, we maintained consistent
hyperparameters: learning rate of 2e-5, MiniLM-L6-
v2 as the pre-trained encoder, 12 training epochs,
class weighting of 6, and a feed-forward neural net-
work with batch normalization and ReLU activation.

Datapoints Batch Size F1 Score Loss
50k 64 0.644 1.235
250k 128 0.704 1.203
1.2m 256 0.732 0.933
2.5m 256 0.752 0.781

Table 1: Model Performance on Test Data with In-
creasing Datapoints and Varying Batch Sizes

Although each of them saw gains in F1 they all
had there lowest test loss at the first epoch. The
loss increased less as data points scaled to where the
2.5 million case only had an .001 increase from 6.000
to 6.001. We learned from these experiments data
quantity was a key factor in model success.

4.1.2 Pretrained Encoder

To assess encoder performance, we compared two pre-
trained models (sentence-transformers/all-MiniLM-
L6-v2 and sentence-transformers/all-mpnet-base-v2)
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while maintaining other hyperparameters from the
previous experiment (learning rate of 2e-5, 12 train-
ing epochs, class weighting of 6, and a feed-forward
neural network with batch normalization and ReLU
activation, trained on 2.5M datapoints).
Mpnet-base tended to over fit quicker so we evalu-

ate the effectiveness of these models with 2.5 million
data points in there fourth epoch.

Model Params Test Loss Test F1
MiniLM 22.7M 0.654 0.749
mpnet-base 109.0M 0.800 0.758

Table 2: Model Performance Comparison

To get the best results on mpnet-based we hypoth-
esize additional data would improve the model as ob-
served with MiniLM in the previous section.

4.1.3 Learning Rate

To evaluate learning rate sensitivity in our Cross
Encoder To Feed Forward architecture, we tested
rates between 2e-6 and 2e-5 while maintaining consis-
tent parameters (all-mpnet-base-v2 as base encoders,
albert-base-v2 as cross encoder, 128 training epochs,
2.5M datapoints, and a loss weight of 6).

Run Epoch Test Loss Test F1

2e-5 LR
1 0.734 0.616
2 1.237 0.363
3 1.224 0.369

2e-6 LR
1 0.566 0.736
2 0.596 0.755
3 0.688 0.760

Table 3: Comparison of Test Metrics Across Training
Runs

Here we find dropping the LR significantly in-
creases performance demonstrating superior learning.
Note however that loss continued to increase after
epoch 2 with the decreased learning rate.
We also tested a varied learning rate on the AEN

architecture. Hyperparamters included the MiniLM,
Gaussian KDE, 2.5 million datapoints, 8 epochs and
a simple weight matrix to transpose the out coming

probabilities from the KDE into one number so that
a softmax operation could be perfomed.

Learning Rate Loss F1
0.000002 0.618 0.637
0.00001 0.57 0.665

Table 4: Comparison of Test Metrics Across Learning
Rates

Both models showed consistent improvement
throughout the eight epochs, with decreasing loss and
increasing F1 scores. While the higher learning rate
model demonstrated superior performance, its F1
scores were relatively lower compared to other archi-
tectures. However, the AEN model’s steady improve-
ment in both loss and F1 metrics, without plateau-
ing at the end of training, suggests robust learning
rather than over-fitting. This consistent progression
provides strong evidence for AEN’s effectiveness.

4.1.4 Loss Weight

To investigate the impact of class weighting on
our AEN architecture, we tested weights ranging
from 1 to 6 while maintaining consistent parameters
(MiniLM encoder, Gaussian KDE, 2.5M datapoints,
4 training epochs, 2-e6 learning rate and a weight
matrix for KDE probability transformation).

Because the data discrepancy in 1:6 for most mod-
els we use 6 as the loss weight to penalize positive
class classification more heavily.

Weight Loss F1
6 0.696 0.584
3 0.486 0.654
1 0.260 0.692

Table 5: Impact of loss weights on model performance
metrics

The discrepancy in the F1 scores can be attributed
to the difference in precision and recall based on the
weight. The larger the weight the more precision and
less recall the model has initially as shown in 6.
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Epoch
Weight = 1 Weight = 6

Precision Recall Precision Recall
1 0.685 0.475 0.367 0.929
2 0.736 0.512 0.402 0.934
3 0.661 0.686 0.408 0.944
4 0.691 0.678 0.426 0.945

Table 6: Comparison of Test Precision and Recall
across Epochs for Different Loss Weights

4.1.5 KDE bandwidth

We test two different methods of bandwidth estima-
tion, Scott and Silverman. For all other KDE tests
we use Scott exclusively. Hyperparameters included
the MiniLM, Gaussian KDE, 2.5 million data points,
8 epochs and a simple weight matrix to transpose the
KDE results.

Bandwidth Estimation Methods Both Scott’s
and Silverman’s rules provide data-driven approaches
for selecting the kernel bandwidth as a function of
total kernels. For our implementation where we
analyze each embedding dimension independently,
Scott’s rule is defined as:

h = n−1/5σ

where n is the sample size (number of tokens), and
σ is the standard deviation. Note that d = 1 in our
case as we perform separate univariate KDEs for each
embedding dimension. Silverman’s rule, also for uni-
variate data, is given by:

h = (4/(3n))1/5σ

Scott’s rule typically produces slightly larger band-
widths than Silverman’s, resulting in more conserva-
tive smoothing of the probability density estimates.

Performance Analysis We find that Scott per-
forms better as shown in Table 7. The superior per-
formance of Scott’s rule (F1: 0.637 vs 0.607) can be
attributed to several factors:

• Its larger bandwidths help prevent overfitting to
individual token embeddings aiding generaliza-
tion

Model Test Loss F1 Score
Silverman 0.660 0.607
Scott 0.618 0.637

Table 7: Bandwith Performance Comparison

• More robust kernel estimation across each of the
384 dimensions of our embedding space

• Better performance when dealing with non-
Gaussian distributions in individual embedding
dimensions

Theoretical Implications The performance dif-
ference between these methods reveals important
characteristics of our embedding space:

• While both rules are designed for univariate
data, Scott’s more conservative bandwidth esti-
mation appears to better capture the underlying
token distribution in each dimension

• The performance gap suggests our embed-
ding distributions may be multimodal or non-
Gaussian as Scott’s rule does a better job of gen-
eralization

4.1.6 KDE Function

To evaluate different kernel density estimation
methods, we compared three functions (Gaussian,
Epanechnikov, and Triangular) while maintaining
consistent parameters (MiniLM encoder, 2.5M dat-
apoints, 8 training epochs, 2-e6 learning rate, and a
weight matrix for probability transformation).

The kernel functions are defined as Chung [2004],
Epanechnikov [1969], Richardson [2023], Raza-
karivony and Barrau [2020]:

KGaussian(u) =
1√
2π

e−u2/2

KEpanechnikov(u) =
3

4
(1− u2)1|u|≤1

KTriangular(u) = (1− |u|)1|u|≤1
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where u = x−xi

h for a given point x and kernel cen-
ter xi, with bandwidth h. 1 represents the indicator
function.
Each kernel contains distinct distribution proper-

ties:

• Gaussian: Non-zero probability across all real
numbers, though quickly approaching zero

• Epanechnikov: Zero probability beyond dis-
tance of one bandwidth unit from center

• Triangular: Linear decrease to zero at one
bandwidth unit from center

KDE Function Test F1 Test Loss
Gaussian 0.637 0.618
Epanechnikov 0.611 0.664
Triangular 0.600 0.679

Table 8: Comparison of KDE estimation functions
and their performance metrics

We find that considering dimensions as Gaussian
Probability Density Function produces the most ef-
fective results as shown in Figure 8. We see at-
tributed several factors potentially contributing:

• The non-zero probability at all distances allows
every token to contribute to the density esti-
mate, though distant tokens have negligible im-
pact

• Smooth derivatives enable more stable gradient
flow during training

• The gradual exponential decay better captures
semantic relationships between tokens compared
to kernels with hard cutoffs

4.1.7 KDE Application

When using a KDE function in this manner one of the
encoders will output a mean pooled fixed vector and
the other will produce a function determined by all
embedding output tokens. We test applying the KDE
to both the Conditions and Statements. Parameters
include MiniLM encoder, 2.5M datapoints, 4 training

epochs, and a weight matrix for probability transfor-
mation. We find there is little difference and elect to
apply the KDE to the statements as they have more
tokens so create a more complete distribution.

KDE transform Test Loss Test F1
Caption 0.618 0.637
Threshold 0.613 0.636

Table 9: Comparison of which set of output tokens
are transformed into a set of Probability Density
Functions

We attribute the marginal performance increase to
statements containing more tokens on average, allow-
ing for more robust density estimation across each
embedding dimension.

4.1.8 Additional Hyper parameters

We test several additional hyper parameters worth
briefly discussing.

Head Network Parameters Across all architec-
tures we test a variety of network heads balancing
parameters with over fitting. In the end we elect for
a small dense network with few layers, batch norm
and RELU activations.

Concatenation method We found in our experi-
ments that concatenation methods for the Bi-encoder
feed forward and the bi-encoder/cross-encoder feed
forward networks mirrored similar relative perfor-
mance of the SBERT paper Reimers and Gurevych
[2019]. In the end this information did not prove rel-
evant for the AEN model.

4.2 SLM Comparison

To evaluate the effectiveness of our AEN model, we
compared its performance against a state-of-the-art
small language model, LLaMA 3.2 3B. We conducted
this comparison across several key metrics: Precision,
Recall, F1, and computational efficiency using 5000
additional sampled generated.
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Model Acc. Prec. Rec. F1
AEN .88 .63 .90 .74
LLaMA-3.2-3B (16-bit quantization)
COT .43 .24 .90 .38
Plain .49 .27 .95 .42
MultiShot .84 .69 .31 .43

Phi-3.5-mini-instruct(8-bit quantization)
COT .71 .38 .90 .54
Plain .65 .34 .88 .49
MultiShot .75 .42 .78 .54

Table 10: Comparison of AEN and LLaMA Variants

We select the largest quantized model below 10GB
of storage for each of these models to reflect low re-
course environment conditions.

COT performed poorly because it predicted the
positive class incorrectly most of the time. We hy-
pothesize the model looked for any possible reason to
find a connection rather then looking for full satisfac-
tion in the condition.

Model Params
FLOPs
/Pass

Input

AEN 219M 22.4B bs=1, len=128

LLaMA-3.2-3B 3.2B 360.9B bs=1, len=128

Phi-3.5-mini 3.82B 464.0B bs=1, len=128

Table 11: Computational requirements for AEN and
LLaMA-3.2-3B models. Note both encoders receive
the input dimensions in the AEN. BS stands for batch
size and len is the sequence length in terms of tokens.

5 Applications

5.1 Edge Computing

The computational efficiency demonstrated by AEN
makes it ideal resource-constrained edge environ-
ments. Our experimental results, showing significant
reductions in both parameter count and FLOPs rela-
tive to SLMs suggest viability in real-time monitoring
applications. One implementation involves position-
ing AEN downstream of speech-to-text systems for

real-time text classification. This configuration offers
several advantages:

• Local Processing: On device inference elimi-
nates the need for continuous cloud transmission
of sensitive conversational data.

• Conditional Data Transfer: Binary classifi-
cations can serve as triggers for selective cloud
uploads, implementing efficient data triage based
on semantic criteria.

• Dynamic Criterion Updates: The separation
of statement and condition encoders in our ar-
chitecture allows for criterion pre-processing, re-
ducing runtime computational requirements and
parameter storage by approximately 50%. The
efficiency gain stems from the model’s ability to
compute and cache condition embeddings prior
to deployment, requiring only the statement en-
coder and classification head to process incom-
ing text at runtime (as shown in Figure 4).
This architectural choice effectively halves the
inference-time compute expense relative to pro-
cessing both inputs simultaneously.

The architecture’s ability to process multiple cri-
teria simultaneously through the condition encoder
further enhances an already compelling edge com-
pute case. To illustrate this in practice, consider
AEN’s deployment on a wearable device interfacing
with ambient audio. In this paradigm, the AEN
could be seeded with multifaceted classification cri-
teria encompassing emergency detection, informa-
tion retrieval, and intentionality recognition. For in-
stance, when a colleague expresses interest in conven-
ing and the wearable user acquiesces, the AEN could
identify this concordance and flag it for a subordinate
scheduling agent—exemplifying the system’s capac-
ity for semantic triage.

5.2 Decision Trees

AEN’s binary classification architecture extends to
decision tree implementations, where some tradi-
tional boolean operators could be replaced with nat-
ural language criteria. Leveraging our model’s ability
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to evaluate semantic conditions efficiently, the result-
ing tree could potentially discern additional insights.

Several challenges also emerge in this applica-
tion. Primary among these is optimal criterion selec-
tion - determining which natural language conditions
best partition the semantic space at each decision
node. We hypothesize this challenge might be ad-
dressed through language models incorporation into
the training process to generate branching criteria.
This approach could automate the construction of
semantic decision trees while maintaining AEN’s effi-
ciency advantages. We leave the exploration of these
methods to future work.

6 Conclusion and Discussion

6.1 Theoretical Analysis of KDE in
Embedding Comparison

Distribution-based Representation: Unlike
point-based measures like cosine similarity, KDE cre-
ates a continuous probability distribution for each
embedding dimension. This allows for:

• Capturing uncertainty in embedding representa-
tions

• Consideration of the full token distribution
rather than just mean pooling

• More nuanced comparison of semantic relation-
ships

Individual Dimension Treatment: By treating
each embedding dimension as its own distribution,
the KDE method provides several key benefits:

• The model captures different scales of variation
across semantic dimensions

• Local patterns in specific semantic aspects are
preserved

• The architecture becomes more robust to outlier
tokens in individual dimensions

Crucially, for an embedding of dimension d, KDE
transforms the input into d separate probability dis-
tributions. Each distribution represents the likeli-
hood of a particular semantic feature being present.
This differs fundamentally from traditional similarity
measures which collapse the comparison into a single
scalar value. The output can therefore be processed
by additional network layers before final classifica-
tion, allowing the model to learn complex relation-
ships between semantic features.

6.2 Data

Data generation emerged as a primary challenge in
our research. Our experimental results with varying
dataset sizes (Table 1) suggest significant potential
for performance improvements with increased data
volume. The consistent gains in F1 score observed
when scaling from 50k to 2.5M datapoints (0.644 to
0.752) in our classical FFNN implementation indi-
cate that further scaling by orders of magnitude could
yield additional performance improvements.

Several key areas for improvement in our data
pipeline emerge:

• Real-world Alignment: The scarcity of pub-
licly available transcript data necessitated our
synthetic generation approach. Future work
could benefit from partnerships providing access
to authentic conversational data, improving the
model’s generalization to real-world scenarios.

• Labeling Enhancement: While GPT-4o-mini
demonstrated reasonable performance in our la-
beling pipeline, human evaluation revealed ac-
curacy gaps suggesting two potential paths for
improvement:

– More sophisticated language models for la-
beling

– A ensemble model consensus labeling ap-
proaches

• Synthetic Data Filtering: Implementation of
quality control mechanisms to identify and filter
highly synthetic examples could improve dataset
quality while maintaining the advantages of our
generation pipeline described in Section 3.1.
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These improvements would likely yield superior
model alignment and performance.

6.3 Pre-trained embedding selection

While our experimental results demonstrate strong
performance using all-mpnet-base-v2 and all-
MiniLM-L6-v2 as foundation models (Table 11),
these approaches do not leverage recent advances
in embedding techniques. State-of-the-art methods
such as LLM2VEC BehnamGhader et al. [2024]
offer potential improvements through their enhanced
natural language understanding capabilities and
more sophisticated semantic representations. We
opted against using LLM2VEC models since their
derivation from billion-parameter language models
would negate the computational efficiency advan-
tages offered by our chosen lightweight embedding
approaches.

6.4 Fine-tuning Techniques

Our approach could benefit from the implementation
of sophisticated fine-tuning methods such as Low-
Rank Adaptation (LoRA) Hu et al. [2021]. LoRA
could provide easier domain implementation. We
opted against using LoRA due to potential minor
degradations in model performance.

6.5 Conclusion

The AEN serves as a efficient multi-input classifier
build on foundational embedding models. Data col-
lection of device serves an integral purpose in the
modern age. We created the AEN as a means of nu-
merically understanding incoming natural language.
Our contribution notably uses Kernel Density Func-
tions as a method of comparing sentence level embed-
dings. Utilizing a KDE proved as effective if not more
so then feeding in standard concertinaed outputs into
a network head. To out knowledge, we achieved the
first natural language adaptable binary classifier.
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Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Al-
lie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical re-
port, 2023. URL https://arxiv.org/abs/2309.

05463.

Scott Martens. When ai makes ai: Synthetic
data, model distillation, and model col-
lapse, 2024. URL https://jina.ai/news/

when-ai-makes-ai-synthetic-data-model-distillation-and-model-collapse/.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muham-
mad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian.
A comprehensive overview of large language mod-
els, 2024. URL https://arxiv.org/abs/2307.

06435.
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A Prompting Techniques

Below details a subset of multi shot examples we used
at each stage of synthetic generation. Examples are
randomly selected per datapoint.

A.1 Statements

Here we detail two of the 16 different examples we
used in the Multishot generation.

Example 1: Party Planning Discussion

Charlotte: Hey Sarah, I was thinking
about throwing a big 4th of July party this
year. Would you want to help me plan it?

Sarah: Yeah, that sounds awesome! I love
4th of July parties. Where were you think-
ing of having it?

Charlotte: I was thinking we could do it
at my place, since I have that big backyard
with plenty of space for people to hang out.

Sarah: Ooh perfect, your yard would be
great for that. We could set up some lawn
games and maybe even a little dance floor
area.

Charlotte: I like the way you think! And
of course we’ll need to grill up a ton of
food. Burgers, hot dogs, maybe some BBQ
chicken?

Sarah: Definitely, it wouldn’t be a 4th of
July party without a big cookout. And we
can ask people to bring side dishes potluck
style.

Charlotte: Good call. Hey, what do you
think about setting up a Facebook event to
invite people and coordinate everything?

Sarah: Hmm, I’m not really a fan of using
Facebook for stuff like this. I feel like it’s
hard to keep things organized there.

Charlotte: Really? I’ve found Facebook
events pretty helpful for parties in the past.
But I’m open to other ideas if you have a
better suggestion!

Sarah: What about a shared Google Doc
instead? We can make different sections for
the guest list, food sign-ups, supplies we
need, a schedule for the day, etc.

Charlotte: Okay, I can see that working
well. We can share the Doc link on the ac-
tual invite.

Sarah: Yeah, an email invite with the Doc
link is perfect. We can make it really festive
and Fourth of July themed.

Charlotte: Sounds great. And I’ll start
brainstorming ideas for decorations and ac-
tivities. Maybe we could even put together
little welcome bags for everyone with mini
flags and sparklers and stuff.

Sarah: Ooh I love that! Very festive. I’ll
add a section for welcome bag ideas to the
Doc too. This is going to be such a fun
party!

Example 2: Vacation Planning

Olivia: I’ve been thinking about our next
vacation. How about a trip to the moun-
tains?

Ethan: I don’t know. The mountains can
be so cold and remote. Why not a beach
destination instead?

Olivia: I get that, but the mountains offer a
peaceful retreat. We could do some hiking,
enjoy the fresh air, and get away from the
crowds.

Ethan: But what if we want some activities
and nightlife? The beach has so much more
to do.

Olivia: True, but the mountains have their
own charm. Think about the cozy cabins,
the beautiful sunsets, and maybe even a bit
of snow. Plus, we can still find local events
and things to do in the nearby town.

Ethan: Hmm, I hadn’t thought about it
that way. A cabin sounds nice. We could
use this trip to really unplug and relax.
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Olivia: Exactly! And we can always check
out nearby attractions if we get bored. I’ll
look up some cabin rentals and send you the
links.

Ethan: Alright, you’ve convinced me.
Let’s go for it! I’ll start packing some warm
clothes.

Olivia: Great! I’ll handle the bookings and
share the details with you later.

Ethan: I hope we can find a cabin with a
fireplace. That would be perfect for chilly
evenings.

Olivia: I’ll make sure to find one. We can
also plan some fun activities like skiing or
snowboarding if there’s enough snow.

Ethan: That sounds exciting! Maybe we
can also find a local spa for a relaxing day.

Olivia: Definitely! A spa day would be a
nice treat. I’ll look for cabins near a good
spa.

Ethan: This trip is shaping up to be a
perfect blend of adventure and relaxation.
Can’t wait!

Olivia: Me neither. Let’s finalize every-
thing by the end of the week so we can start
counting down the days.

A.2 Conditions

These examples expand upon the conversations pre-
sented in the previous statements section. Each ex-
ample demonstrates multiple instances where specific
thresholds are met within natural dialogue.

A.2.1 Example 1 Cont.

• When someone asks for planning help

• When someone mentions using Facebook events
or Google Docs

• When someone suggests an actionable planning
item

A.2.2 Example 2 Cont.

• When someone discusses vacation planning

• When someone talks about booking accommo-
dations

• When someone mentions looking up local attrac-
tions

Each conversation is designed to contain 2-4 dis-
tinct thresholds that may be triggered multiple times
throughout the dialogue.

A.3 Labels

Last we present examples showing how the model
evaluates individual statements against a set of con-
ditions.

Example 1: Using Digital Assistants

Input Statement:

“Jamie: I use Siri all the time to set re-
minders and check the weather. It’s so con-
venient.”

Conditions Tested:

1. When someone orders food using a food delivery
app

2. When someone expresses excitement about im-
proving workflow and productivity

3. When someone discusses the impact of AI on
daily activities

4. When someone talks about using AI-powered as-
sistants

5. When someone suggests joining a fitness chal-
lenge using a fitness tracking app

Classification Results: [0, 0, 1, 1, 0]
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Example 2: Scientific Observation

Input Statement:

“David: Speaking of observation, have you
ever used a time-lapse camera to record the
feeding behavior of the octopuses?”

Conditions Tested:

1. When someone offers assistance with art supplies

2. When someone reflects on emotions tied to a
place or experience

3. When someone plans a scientific observation
project

4. When someone proposes recording footage for re-
search purposes

5. When someone talks about analyzing animal be-
havior

Classification Results: [0, 0, 0, 1, 1]
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