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ABSTRACT

We study structural clustering on graphs in dynamic scenarios, where the graphs can be updated
by arbitrary insertions or deletions of edges/vertices. The goal is to efficiently compute structural
clustering results for any clustering parameters ε and µ given on the fly, for arbitrary graph update
patterns, and for all typical similarity measurements. Specifically, we adopt the idea of update
affordability and propose an a-lot-simpler yet more efficient (both theoretically and practically)
algorithm (than state of the art), named VD-STAR to handle graph updates. First, with a theoretical
clustering result quality guarantee, VD-STAR can output high-quality clustering results with up to
99.9% accuracy. Second, our VD-STAR is easy to implement as it just needs to maintain certain sorted
linked lists and hash tables, and hence, effectively enhances its deployment in practice. Third and most
importantly, by careful analysis, VD-STAR improves the per-update time bound of the state-of-the-art
from O(log2 n) expected with certain update pattern assumption to O(log n) amortized in expectation
without any update pattern assumption. We further design two variants of VD-STAR to enhance its
empirical performance. Experimental results show that our algorithms consistently outperform the
state-of-the-art competitors by up to 9,315 times in update time across nine real datasets.

1 Introduction

Graph clustering is a fundamental problem that aims to group similar vertices of a graph into clusters. Various
clustering schemes were proposed and have been widely studied, such as modularity-based clustering [1] and spectral
clustering [2]. In this paper, we focus on a popular scheme named Structural Clustering [3] that groups the vertices
based on their structural similarity in the graph. An important feature of Structural Clustering is that it identifies not
only clusters of the vertices but also different roles for the vertices (i.e., cores, hubs, and outliers) in the clustering result.

Structural Clustering. Given an undirected graph G = ⟨V,E⟩, a specified similarity measurement σ between the
neighborhoods of vertices, a similarity threshold parameter 0 < ε ≤ 1 and an integer parameter µ ≥ 1, the process
of structural clustering starts with identifying a set of special vertices known as the core vertices. A core vertex is a
vertex u ∈ V with at least µ similar neighbors, and a similar neighbor is a neighbor vertex of u with a similarity score
≥ ε. The core vertices, and the edges to their similar core neighbors, collectively form connected components (CCs),
where each CC serves as a primitive cluster. The non-core vertices are then assigned to the corresponding primitive
clusters of their similar core neighbors. For each vertex u ∈ V which does not belong to any cluster, if u connects to
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Figure 1: A Structural Clustering Example (ε = 0.5 and µ = 5)

Table 1: Comparison with SOTA Methods, where n is the number of vertices, m is the number of edges, dmax is the
maximum degree, and mcr is the number of edges in the clustering result graph

Algorithm Features Our VD-STAR BOTBIN [4] DynELM [5] GS*-Index [6]

Update running time Arbitrary update O(log n) amortized expected O(dmax log n) O(log2 n) amortized O(d2max log n)
Uniformly at random O(log n) amortized expected O(log2 n) expected O(log2 n) amortized O(d2max log n)

Similarity measurement
Jaccard similarity ✓ ✓ ✓ ✓
Cosine similarity ✓ X ✓ ✓
Dice similarity ✓ X ✓ ✓

Query running time for ε and µ given on the fly O(mcr) O(mcr) O(m log2 n) running from scratch O(mcr)

neighbors from two or more clusters, then u is categorized as a hub, in a sense that u serves as a bridge connecting
multiple clusters. Otherwise, u is considered as an outlier.

Figure 1 shows an example of structural clustering results with ε = 0.5, µ = 4, using Jaccard similarity as the similarity
measurement between vertices. Vertices v1 and v8 are core vertices (solid lines indicate edges connecting similar
neighbors) and hence, each of them itself forms a primitive cluster. Vertices {v1, v2, v3, v4, v5} form a cluster, while
{v8, v9, v10, v11, v12} form another. Both v7 and v6 belong to none of the clusters – v7 is a hub as it connects to
neighbors belonging to two different clusters, while v6 is an outlier.

Applications. Structural clustering is widely applied in genomics and biomarker discovery [7], and over other biology
data such as clinical data [8] and protein-protein interaction networks [9]. Another important application is community
detection over social networks [10, 11, 12], to unveil community structures, offering insights into the relationships and
interactions among social network users. Similarly, in the context of web data [13, 14], structural clustering contributes
to the identification and analysis of interconnected communities, enhancing the comprehension of web structures and
user behaviors. Structural clustering has also been used for fraud detection [15, 16] since block-chain became a heat.
Recently, the AI community has turned its attention to structural clustering for improving model training [17, 18].
Among these applications, dynamic scenarios are particularly significant, as graphs can rapidly expand over time, as
seen in clinical data, social networks, web-page hyperlinks, and blockchain, to name a few.

Related Work and Limitations. Structural clustering was first proposed by Xu et al. [3]. Since then, it has opened a
line of studies. Among these, pSCAN [19] is the state-of-the-art (SOTA) exact algorithm for static graphs G, where no
updates to G are allowed. The running time complexity of pSCAN is bounded by O(m1.5), where m is the number of
edges. As shown by Chang et al. [19], this O(m1.5) bound is indeed worst-case optimal.

When the graphs are dynamic, where the graphs can be updated by insertions or deletions of edges, structural clustering
becomes even more challenging. GS*-Index [6] is the SOTA for Dynamic Structural Clustering, which can return
the exact clustering result with respect to parameters ε and µ given on the fly for each query. However, it takes
O(d2max · log n) worst-case time to process each update, where dmax is the maximum degree and n is the number of
vertices in the current graph.

DynELM [5] and BOTBIN [4] are two SOTA approximate algorithms, yet BOTBIN can only work for Jaccard similarity.
DynELM can process each update in O(log2 n) amortized time for pre-specified parameters ε and µ. In contrast,
BOTBIN supports queries with ε and µ given on the fly, and can process each update in O(log2 n) time in expectation
under the assumption that the updates are uniformly at random within each vertex’s neighborhood. This assumption,
however, may not always hold for real-world applications, e.g., people tend to follow big names in social networks. If
this is the case, the per-update complexity of BOTBIN degenerates to O(dmax · log n).
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Our Method. Given the importance of structure clustering, we propose an ultimate algorithm, called Versatile Dynamic
Structural Clustering (VD-STAR), which unifies the state of the art and addresses all their limitations. Specifically, we
use a sampling method to estimate the similarity which we show to work on all three similarity measurements (Jaccard,
Cosine, and Dice) suggested by Xu et al. [3] (Section 4). Inspired by the idea of update affordability (Section 3) which
is not affected by the update pattern, we propose a bucketing technique to handle multiple update affordability for a
neighborhood in a more efficient way that improves the complexity bound. Here, the update affordability indicates how
many updates can an edge afford before it can possibly affect the clustering results; this concept will be detailed in
Section 3.1. Additionally, we propose an algorithm to track the update affordability for each edge, which is easy to
implement yet efficient (Section 3.2). Last but not least, we propose a unified framework (Algorithm 1) for GS*-Index,
BOTBIN, and our VD-STAR, with which users just need to implement the specified interfaces to obtain the algorithms.
This also provides flexibility for customization, that is, users can swap the implementations between different algorithms
to make their own “new” solutions. As we will see in Section 5, this is actually what we did to design the two variants
of VD-STAR. To summarize, as shown in Table 1, our VD-STAR advances the SOTA in the following aspects:

• It supports all three similarity measurements, whereas the SOTA method, BOTBIN [4], is designed to support Jaccard
similarity only.

• It improves the per-update time complexity of the SOTA methods, BOTBIN and DynELM, from O(log2 n) expected
to O(log n) amortized in expectation.

• It supports arbitrary update patterns lifting BOTBIN’s strong assumption that the updates have to be uniformly
random.

Overall, we make the following contributions:

• We propose a novel algorithm, called VD-STAR, which addresses all the aforementioned challenges, and hence,
overcomes all the limitations of the SOTA algorithms, and most importantly, is even more efficient in processing
updates!

• While the theoretical analysis is technical, our VD-STAR can be easily implemented in practice, as our novel algorithm
design consists mainly of fundamental data structures: maintaining and scanning a number of sorted lists and hash
tables.

• We conduct extensive experiments on nine real-world graph datasets with up to 117 million edges to compare our
algorithms with GS*-Index and BOTBIN, in terms of update efficiency (with varying update distributions), clustering
quality (under different similarity measurements), and query efficiency. The experimental results show that our
proposed algorithms outperform SOTA algorithms by up to 9, 315× regarding update efficiency.

2 Preliminaries

2.1 Problem Formulation

Consider an undirected graph G = ⟨V,E⟩, where V is a set of n vertices and E is a set of m edges. Vertices u ∈ V
and v ∈ V are neighbors if and only if there exists an edge (u, v) ∈ E. The neighborhood of u, denoted by N(u), is
the set of all u’s neighbors, namely, N(u) = {v ∈ V |(u, v) ∈ E}, and the degree of u is defined to be du = |N(u)|.
Moreover, we use N [u] = N(u) ∪ {u} to denote the inclusive neighborhood of u and let nu = |N [u]|.
Similarity Measurement. The similarity between vertices u and v is denoted by σ(u, v). Specifically, σ(u, v) = 0
if there is no edge between u and v; otherwise, depending on the application needs, σ(u, v) is calculated as one of
the following three popular similarity measurements, where I(u, v) = |N [u] ∩N [v]| and U(u, v) = |N [u] ∪N [v]| =
nu + nv − I(u, v):

• Jaccard similarity: σ(u, v) = I(u,v)
U(u,v) =

I(u,v)
nu+nv−I(u,v) , or

• Cosine similarity: σ(u, v) = I(u,v)√
nu·nv

, or

• Dice similarity: σ(u, v) = I(u,v)
(nu+nv)/2

.

And σ(u, v) can be computed in O(1) time with I(u, v), nu and nv .

Similar Neighbors, Edge Labels and Core Vertices. Given a similarity threshold 0 < ε < 1, vertices u and v are
ε-similar neighbors if σ(u, v) ≥ ε. An edge (u, v) is labelled as an ε-similar edge if u and v are ε-similar neighbors;
otherwise, it is labeled as a ε-dissimilar edge. A vertex u is a (ε, µ)-core vertex if u has at least µ ε-similar neighbors;
otherwise, u is a non-core vertex with respect to ε and µ.
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In the rest of this paper, when the context of the parameters ε and µ is clear, we use sim-edges to refer to ε-similar
edges, and core vertices to refer to (ε, µ)-core vertices, respectively.

Core Sim-Graph. An edge (u, v) is a core sim-edge if (u, v) is a sim-edge and both u and v are core vertices. The
core sim-graph of G is defined as Gcore = ⟨Vcore, Ecore⟩, where Vcore is the set of all the core vertices and Ecore is the set
of all core sim-edges.

Structural Clusters and the Clustering Result. Each connected component (CC) of Gcore is defined as a primitive
(structural) cluster. And each primitive cluster C, along with the set of all the non-core vertices that are similar
neighbors of some core vertex in C, is defined as a structural cluster (“cluster” for short). The collection of all these
clusters represents the Structural Clustering Result (“clustering result” for short) on G with respect to the parameters ε
and µ.

Clustering Result Graph. Given ε and µ, let Ecr be the set of all the sim-edges that are incident on at least one core
vertex. Denote by Gcr = ⟨Vcr, Ecr⟩ the induced sub-graph of G by Ecr, where Vcr is the set of all the end-vertices
of the edges in Ecr. Gcr is called the Clustering Result Graph of G with respect to ε and µ. Moreover, we define
ncr = |Vcr| and mcr = |Ecr|.
Observation 1. Given the clustering result graph Gcr with respect to the given parameters ε and µ, the structural
clustering result on G can be computed in O(mcr) time.

Proof. By scanning Gcr, the core sim-graph Gcore can be obtained, as Gcore is a sub-graph of Gcr. As a result, all the
primitive clusters (i.e., the connected components of Gcore) can be computed in O(|Vcore|+ |Ecore|) time. Finally, for
each edge (u, v) ∈ Ecr that is incident on a non-core vertex v, assign v to the cluster of the core vertex u. The overall
running time is bounded by O(mcr).

Problem Definition. We consider structural clustering on graph G which evolves over time. The problem is defined as
follows.
Definition 1. Consider a pre-specified similarity measurement σ(·, ·) (either Jaccard, Cosine or Dice); given an
undirected graph G = ⟨V,E⟩ that can be updated by arbitrary insertions or deletions of edges, the Dynamic Structural
Clustering for All Parameters (DynStrClu-AllPara) problem asks to:

• (i) support updates efficiently, and

• (ii) return the clustering result upon request in O(mcr) time with respect to the parameters ε ∈ (0, 1) and µ ≥ 1
given on the fly.

Affecting Updates and Affected Edges. Observe that an update (either an insertion or a deletion) of an edge (u, v)
changes the degrees of both u and v, and hence, the similarities of all the edges incident on u or v are affected. These
edges incident on u or v are called affected edges of the update (u, v), and this update (u, v) is an affecting update to
these edges. A main challenge in DynStrClu-AllPara is that for an udpate (u, v), there can be O(du + dv) ⊆ O(n)
affected edges. Thus, maintaining the similarities of these affected edges can be expensive. As we shall see, how
to overcome this technical difficulty is the main distinction among the state-of-the-art solutions and our proposed
algorithms.

ρ-Absolute-Approximation. We exploit the notion of ρ-absolute approximation for DynStrClu-AllPara.
Definition 2 (ρ-Absolute-Approximation). Given a constant parameter ρ ∈ (0, 1) and the similarity threshold
parameter ε, the label of an edge (u, v) is decided as follows:

1. if σ(u, v) > ε+ ρ, (u, v) must be considered as similar;

2. if σ(u, v) < ε− ρ, (u, v) must be considered as dissimilar;

3. otherwise, i.e., ε− ρ ≤ σ(u, v) ≤ ε+ ρ, (u, v) can be considered as either similar or dissimilar.

Once the edge labels are decided according to the above ρ-absolute-approximation, all the other definitions introduced
in this section, immediately follow. Moreover, it is shown [4] that clustering result under the notion of ρ-absolute-
approximation provides a “sandwich” guarantee on the result quality compared to the exact clustering result with the
same parameters ε and µ.
Fact 1 ([5, 4]). Given parameters ε, µ, and ρ, let Cε,µ denote the exact clustering result, and let Cρε,µ denote the
clustering result satisfying the ρ-absolute-approximation. We have the following properties:

• for every cluster C+ ∈ Cε+ρ,µ, there is a cluster C̃ ∈ Cρε,µ such that C+ ⊆ C̃;

• for every cluster C̃ ∈ Cρε,µ, there is a cluster C− ∈ Cε−ρ,µ such that C̃ ⊆ C−.
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Proof. Let Gcr+ = ⟨Vcr+, Ecr+⟩ , Gcr− = ⟨Vcr−, Ecr−⟩, and Gcrρ = ⟨Vcrρ , Ecrρ⟩ be the clustering results graphs
Cε+ρ,µ, Cε−ρ,µ, and Cρε,µ, respectively for given µ, ε, and ρ. For an edge (u, v) ∈ Ecr+, we have σ(u, v) ≥ ε + ρ,
hence u and v are considered similar under the ρ-absolute-approximation. Additionally, as (u, v) ∈ Ecr+, at least one
of u and v must be a core vertex in Gcr+. Without loss of generality, we assume u to be a core vertex in Gcr+. Then,
u is also a core vertex in Gcrρ based on the ρ-absolute-approximation. This is because u can only have more similar
neighbors under a more relaxed threshold. Therefore, (u, v) must be in Ecrρ , and hence Ecr+ ⊆ Ecrρ . Symmetrically,
for an edge (u, v) ∈ Ecrρ , it has σ(u, v) ≥ ε − ρ, hence u and v are considered similar in Gcr−. Similarly, a core
vertex in Ecrρ must be a core vertex in Gcr−, and we have Ecrρ ⊆ Ecr−.

Let V+ and E+ be the vertex and edge sets of C+ ∈ Cε+ρ,µ, respectively. We have E+ ⊆ Ecr+ ⊆ Ecrρ as verified
above. Therefore, there is a cluster C̃ ∈ Cρε,µ that contains all the vertex in V+, and hence C+ ⊆ C̃. This proves the
first bullet point. For the second bullet point, let Vρ and Eρ be the vertex and edge sets of C̃ ∈ Cρε,µ, respectively. We
have Eρ ⊆ Ecrρ ⊆ Ecr−. Therefore, there exists a cluster C− ∈ Cε−ρ,µ that contains all the vertex in Vρ, and hence
C̃ ⊆ C−.

2.2 A Unified Algorithm Framework

For ease of presentation, we introduce a unified algorithm framework for solving DynStrClu-AllPara, which is shown in
Algorithm 1. The SOTA exact and approximate algorithms discussed in this paper, as well as our solutions, can work
under this framework. At a high level, these algorithms implement the following data structures:

• Sorted Neighbor Lists: for each vertex u ∈ V , a non-increasing sorted list of u’s neighbors by their similarities to u;
with a slight abuse of notation, we simply use N(u) to refer to this sorted list, and each neighbor v of u in this list is
stored along with its similarity to u.

• EdgeSimStr: a data structure for maintaining the (approximate) similarities for all the edges; there are five functions:
– update((u, v), op): given an update of edge (u, v), where op indicates whether this is an insertion or a deletion,

update the information maintained in EdgeSimStr accordingly;
– insert((x, y)): insert an edge (x, y) to EdgeSimStr;
– delete((x, y)): delete an edge (x, y) from EdgeSimStr;
– find((u, v), op): return a set F of all the affected edges whose similarities are considered “invalid” and thus need

to be re-computed;
– cal-sim((x, y)): given an edge (x, y), return σ(x, y);

• CoreFindStr: a data structure for finding core vertices; it has two functions:
– update(u): given a vertex u ∈ V , update CoreFindStr;
– find-core(ε, µ): return the set Vcore of all the core vertices with respect to the given parameters ε and µ;

Running Time Analysis. Let costEU, costEI, costED, costEF and costEC denote the running time cost of each invocation
of the functions update, insert, delete, find and cal-sim in EdgeSimStr, respectively; and costCF and costCU denote the
running time cost of the functions find-core and update in CoreFindStr, respectively.

Query Running Time. By Observation 1, the running time cost for each query is bounded by O(costCF +mcr).

Per-Update Running Time. In the Update Procedure in Algorithm 1, Line 2 takes O(costEU) time and Lines 3-9
takes O(costEC + costEI + costED + log n) time, where O(log n) is the maintenance cost for the sorted neighbor
lists. Furthermore, the running time cost of Line 10 is bounded O(costEF) while that of Lines 11-15 is bounded by
O(|F | · (costEC + costEI + costED + log n)). Finally, Lines 17 - 18 can be performed in O(|F | · costCU) because
|S| ∈ O(|F |). Summing all these up, the overall running time of each update is bounded by

O (costEU + costEF + (|F |+ 1) · (costEC + costEI + costED + logn+ costCU)) .

With this algorithm framework, one can just focus on the implementations for EdgeSimStr and CoreFindStr of different
algorithms. Substituting the corresponding costs to the above analysis, the query and per-update running time bounds
follow.

2.3 A SOTA Exact Algorithm

The GS*-Index [6] is a state-of-the-art exact algorithm for DynStrClu-AllPara. It implements EdgeSimStr and Core-
FindStr as follows.
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Algorithm 1: A Unified Algorithm Framework
1 Update Procedure:

Input: an update of (u, v) flagged by op ∈ {ins, del}
2 EdgeSimStr.update((u, v), op);
3 if op == ins then
4 EdgeSimStr.cal-sim((u, v));
5 EdgeSimStr.insert((u, v));
6 insert (u, v) to E and maintain N(u) and N(v);
7 else
8 EdgeSimStr.delete((u, v));
9 remove (u, v) from E and maintain N(u) and N(v);

// identify all the “invalid” edges
10 F ← EdgeSimStr.find((u, v), op);
11 for each (x, y) ∈ F do
12 EdgeSimStr.delete((x, y));
13 EdgeSimStr.cal-sim((x, y));
14 EdgeSimStr.insert((x, y));
15 maintain N(x) and N(y);
16 S ← {end-vertices of all the edges in F} ∪ {u, v};
17 for each x ∈ S do
18 CoreFindStr.update(x);

19 Query Procedure:
Input: parameters 0 < ε < 1 and µ ≥ 1
Output: a clustering result with respect to ε and µ

20 Vcore ← ∅, Ecr ← ∅;
21 Vcore ← CoreFindStr.find-core(ε, µ);
22 for each u ∈ Vcore do
23 for each v ∈ N(u) do
24 if σ(u, v) ≥ ε, add (u, v) to Ecr; otherwise, break;

25 return the clustering result from Gcr induced by Ecr;

0.6 0.75

0.8

0.2
0.6 0.75

(a) A graph example (b) GS*-Index example (c) BOTBIN example

Figure 2: Index schema examples

The Implementation of EdgeSimStr. For each vertex u ∈ V , the EdgeSimStr, maintain du, the degree of u, and
I(u, x), the intersection size of N [u] and N [x], for each neighbor x ∈ N(u). And the functions are implemented as
follows:

• update((u, v), op): maintain the counters du and I(u, x) for each x ∈ N(u) according to the given update. Perform
the same maintenance symmetrically for the end-vertex v. Therefore, costEU ∈ O(du + dv) ⊆ O(dmax), where dmax

is the largest degree of G.

• find((u, v), op): return the set of all the affected edges of the update (u, v). Hence, |F | ∈ O(du + dv) and hence,
costEF ∈ O(dmax).

• cal-sim((x, y)): compute σ(u, v) with I(u, v), du and dv . Thus, costEC ∈ O(1).

• neither insert((x, y)) nor delete((x, y)) is used in GS*-Index; hence, costEI = 0 and costED = 0.
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The Implementation of CoreFindStr: The GS*-Index implements the CoreFindStr as a µ-Table, denoted by T , which
is essentially an array of dmax sorted lists. Specifically, for integer 1 ≤ i ≤ dmax, T [i] stores a sorted list of all the
vertices u (with degrees du ≥ i) in a non-increasing order by the ith largest similarity of u to its neighbors, denoted by
εu,i.

• find-core(ε, µ): retrieve all the core vertices by scanning the vertices in the sorted list T [µ] until the first vertex x
such that εx,µ < ε is met or the entire list has been retrieved. costCF ∈ O(|Vcore|+ 1).

• update(x): maintain the sorted lists T [1], · · · , T [dx] for x accordingly. This takes costCU ∈ O(dmax · log n) time
because the maintenance on each of these sorted lists takes O(log n) time.

Fact 2. The GS*-Index can answer each query in O(mcr) time and can handle each update in O(d2max · log n) time
with space consumption bounded by O(n+m) at all times.

2.4 A SOTA Approximate Algorithm

While the space consumption and the query time complexity of GS*-Index are good, Unfortunately, the O(d2max · log n)
per-update time of GS*-Index is prohibitive as dmax can be as large as n. To remedy this, BOTBIN [4] adopts the
notion of ρ-absolute-approximation for DynStrClu-AllPara. It improves the per-update cost from O(d2max · log n) to
roughly O(log2 n) in expectation assuming that the updates are uniformly at random within the neighborhood of each
vertex. However, BOTBIN only works for Jaccard similarity measurement and this expected update bound only holds
under an assumption that the updates on G are uniformly at random.

The Implementation of EdgeSimStr. BOTBIN maintains a bottom-k signature, denoted by s(u), for each vertex
u ∈ V for some integer parameter k. An ρ-absolute-approximate Jaccard similarity, denoted by σ̃(u, v), between any
two vertices u and v can be computed with their signatures s(u) and s(v). Specifically, it first generates and stores a
fixed random permutation π of V . For each vertex u ∈ V , if du ≥ k, then the signature of u, denoted by s(u), is the set
of the k smallest neighbors in N [u] according to the permutation order π; otherwise, s(u) = N [u]. With the bottom-k
signatures, an ρ-absolute-approximate Jaccard similarity, denoted by σ̃(u, v), between any two vertices u and v can be
computed with s(u) and s(v). is computed as σ̃(u, v) = |s(u)∩s(v)∩s({u,v})|

k , where s({u, v}) is the k smallest vertices
in s(u) ∪ s(v) according to the permutation π; if |s(u) ∪ s(v)| < k, then s({u, v}) = s(u) ∪ s(v).

• update((u, v), op): update the signatures s(u) and s(v) with respect to the update of (u, v) accordingly; it is known
that this can be achieved in O(log n) time. Thus, costEU ∈ O(log n).

• find((u, v), op): if the signature s(u) is changed due to this given update of (u, v), add all the edges incident on u
to F ; and perform the same symmetrically for v. As a result, either s(u) or s(v) changes, then costEF ∈ O(dmax);
otherwise, costEF ∈ O(1).

• cal-sim((x, y)): return σ̃(x, y) as the similarity of x and y. This can be done in O(k) time.
• neither insert((x, y)) or delete((x, y)) is used in BOTBIN; hence, costEI = 0 and costED = 0.

The Implementation of CoreFindStr. BOTBIN implements CoreFindStr as an array, called ∆-Table and denoted by
T∆, of ⌈ 1

∆⌉ sorted list of vertices, where 0 < ∆ < 1 is a constant. Specifically, the parameter ∆ partitions value range
of ε into ⌈ 1

∆⌉ intervals, where the ith interval is [i∆, (i + 1)∆) for i = 0, · · · , ⌈ 1
∆⌉ − 1. T∆[i] is a sorted list of all

vertices u ∈ V in non-increasing order by µu,i, where µu,i is the number of neighbors of u have similarities to u at
least i∆.

• find-core(ε, µ): identify i∗ = ⌊ε/∆⌋; retrieve all the core vertices by scanning and reporting the vertices in the sorted
list T∆[i

∗] until the first vertex x such that µx,i∗ > µ or the entire list has been retrieved. Thus, costCF ∈ O(|Vcore|+1).
Note that ∆-Table introduces an additive ∆ error to the overall approximation.

• update(x): maintain the ⌈ 1
∆⌉ ∈ O(1) sorted lists in T∆ for x. This takes costCU ∈ O(⌈ 1

∆⌉ · log n) = O(log n) time.

A Running Example. Figure 2c shows a running example of ∆-Table with ∆ = 0.2. Take [0.2, 0.4) for instance, where
µv1,1 = 5 meaning that v1 has 5 similar neighbors when 0.2 ≤ ε < 0.4. Given a query with ε = 0.3 and µ = 4, we
know that v1 and v3 are core vertices as only µv1,1 and µv3,1 are greater than or equal to 4 in the corresponding sorted
linked list.

Theoretical Analysis. [4] showed that by setting k ∈ O( 1
ρ2 · log(n ·M)) = O(log(n ·M)) and ∆ = 1

2ρ, BOTBIN
guarantees to return a valid ρ-absolute-approximate clustering result with high probability, specially at least 1− 1

n , for
every query. This guarantee holds for up to M updates.

Query Running Time. Since costCF in bounded by O(|Vcore|+1), the running time of each query is bounded by O(mcr).
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Per-Update Running Time. Substitute the running time cost of each function in the above implementation to Expres-
sion (2.2), the per-update running time of BOTBIN is thus bounded by O(|F | · log(n ·M)) ⊆ O(dmax · log(n ·M)).
While this per-update bound is still prohibitive, [4] proved that, as long as the M updates happen uniformly at random
in the neighborhood of each vertex, then the signature of a vertex u changes with probability k

du
. Therefore, the

expected size of the “invalid” affected edge set F is bounded by O( k
du
· du) = O(log(n ·M)). As a result, the expected

per-update cost is bounded by O(log2(n ·M)).

Space Consumption. It can be verified that the space consumption of BOTBIN is bounded by O(n+m) at all times.
Fact 3. BOTBIN can return a valid ρ-absolute-approximate clustering result (under Jaccard similarity only) in O(mcr)
time with high probability, at least 1 − 1

n , for each query, and this holds for up to M updates. Furthermore, it can
handle each update in O(dmax · log(n ·M)) time and the space consumption is bounded by O(n+m) at all times.

When the M updates occur uniformly at random in the neighborhood of each vertex, then the per-update time is
bounded by O(log2(n ·M)) in expectation.
Remark. As discussed earlier, BOTBIN has two main limitations:

• BOTBIN can handle Jaccard similarity only.

• The O(log2(n ·M)) per-update expected running time bound of BOTBIN holds only for random updates. As a result,
for repeated insertion and deletion of a critical edge which changes the signatures of its two end-vertices, BOTBIN
has to pay O(dmax · log(n ·M)) cost for each such update.

3 Our Versatile DynStrClu Algorithm

Next, we introduce our solution, called Versatile Dynamic Structural Clustering (VD-STAR), which not only overcomes
all the aforementioned limitations of BOTBIN, but also improves the per-update running time cost to O(log n+ logM)
amortized in expectation.

Let n0 and m0 be the number of vertices and edges in the graph at the current moment. Without loss of generality, we
assume that the number of updates M ≤ n2

0 since now, because, otherwise, when M = n2
0, we can rebuild everything

from scratch in O((n0 +m0 +M) · log n) = O(M · log n) expected time. Hence, each of such M updates is charged
a O(log n) amortized expected cost which does not affect the per-update running time bound. Moreover, it is worth
mentioning that the randomness in the running time of VD-STAR only comes from the use of hash tables. In this and the
next section, we prove this theorem:
Theorem 1. Our VD-STAR algorithm supports all three similarity measurements (Jaccard, Cosine, Dice). It can
return an ρ-absolute-approximate clustering result with high probability, at least 1− 1

n , for each query, and can handle
each update in O(log n) amortized expected time. The space consumption of VD-STAR is bounded by O(n+m) at all
times.

Our VD-STAR also works under the unified algorithm framework (Algorithm 1). Specifically, the implementation of
VD-STAR for CoreFindStr follows that of BOTBIN, i.e., the ∆-Table. Therefore, we will focus on our implementation
for EdgeSimStr.

3.1 Update Affordability and Background

We adopt the notion of ρ-absolute-approximation. Thanks to the approximation, VD-STAR is allowed to just maintain
approximate rather than exact similarities. It thus creates room for efficiency improvements. First, the similarity can
now be estimated (within an ρ-absolute error) via certain sampling techniques efficiently. Second, each edge can now
afford a certain number of affecting updates before its estimated similarity exceeds the ρ-absolute-error range from the
last estimation. Such a number of affecting updates is called the update affordability of the edge.
Definition 3 (Update Affordability). For any edge (u, v), consider the moment when an 1

2ρ-absolute-approximate
similarity σ̃(u, v) is just computed; the update affordability of (u, v) is a lower bound on the number of affecting
updates, denoted by τ(u, v), such that σ̃(u, v) remains a valid ρ-absolute approximation to the exact similarity, in the
sense that |σ̃(u, v)− σ(u, v)| ≤ ρ, at any moment within τ(u, v) affecting updates.

The concept of update affordability was first proposed and exploited in [5] for solving the DynStrClu problem with
pre-specified parameters ε and µ. We borrow this concept and extend it to work for versatile similarity measurements
(Jaccard, Cosine, and Dice). As we show in Section 4.4, the extension of the concept of update affordability from
Jaccard to Cosine similarity is challenging and non-trivial, mainly because of the non-linear denominator

√
nu · nv in

Cosine similarity. To avoid distraction, we defer the proof of the following claim to Section 4.4.
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Claim 1. For any edge (u, v) with nu ≤ nv , the update affordability τ(u, v) ≥ 1
4ρ

2nv ∈ Ω(dmax(u, v)) holds for any
of Jaccard, Cosine and Dice similarity measurements, where dmax(u, v) = max{du, dv}.

By the definition of update affordability, when an approximate similarity σ̃(u, v) of an edge (u, v) is just computed,
σ̃(u, v) will remain valid for the next at least τ(u, v) − 1 affecting updates. And hence, in order to ensure a valid
ρ-absolute-approximate similarity for every edge, one may need to re-compute σ̃(u, v) no later than the arrival of the
τ(u, v)th affecting update for each (u, v) ∈ E.

However, observe that (i) the update affordability can be different for different edges, and (ii) an update of edge (u, v)
would “consume” one affordability for each of its du + dv ∈ O(dmax) affected edges. Therefore, simply tracking the
“remaining” update affordability for each affected edge can be as expensive as Ω(dmax). It is challenging to identify the
set F of all invalid edges when an update arrives, without touching each of the affected edges.

Ruan et al. [5] overcome this technical challenge by adopting the Distributed Tracking technique [20, 21, 22] to track
the exact moment when the τ(u, v)th affecting update for each edge occurs. They proved that their algorithm can achieve
an O(log2 n) amortized time for processing each update. Next, we show a simpler yet more efficient solution to identify
the invalid edge set F just in O(1) amortized expected time for each update.

3.2 Our Implementation of EdgeSimStr

Rationale of Our Algorithm. The basic idea of our solution for identifying invalid edges is as follows. For each edge
(u, v) ∈ E, once σ̃(u, v) is just computed, we compute its update affordability τ(u, v). Instead of tracking the exact
moment when the τ(u, v)th affecting update arrives, our algorithm aims to just identify an arbitrary moment when
there have been at least 1

4⌊τ(u, v)⌋2 affecting updates, where ⌊τ(u, v)⌋2 is the largest power-of-two integer that is no
more than τ(u, v), namely, ⌊τ(u, v)⌋2 = 2⌊log2 τ(u,v)⌋. And such a moment is called a checkpoint moment of edge
(u, v). Clearly, ⌊τ(u, v)⌋2 ≥ 1

2τ(u, v). When a checkpoint moment of (u, v) is identified, there must have been at least
1
8τ(u, v) ∈ Ω(τ(u, v)) affecting updates, which is already “good enough” for our theoretical analysis.

To capture the checkpoint moments, our algorithm, for each edge (u, v), allocates an affordability quota, denoted
by q(u, v) = 1

4⌊τ(u, v)⌋2, to the vertices u and v. Once an arbitrary moment when at least q(u, v) affecting updates
incident on either u or v are “observed” since the quota is allocated, (u, v) is then reported as an invalid edge. The
challenge is how to capture a checkpoint moment for each edge (u, v) before its ρ-absolute-approximate σ̃(u, v)
becomes invalid, without touching each of the affected edges for every affecting update.

The Data Structure for EdgeSimStr. For each u ∈ V , VD-STAR maintains the following information for EdgeSimStr:

• a counter cu that records the number of affecting updates incident on u up to date; initially, cu ← 0;
• a sorted bucket linked list B(u), where:

– each bucket Bi has a unique index i (for 0 ≤ i ≤ ⌈log2 n⌉);
– bucket Bi stores all the neighbors w ∈ N(u) such that the affordability quota q(u,w) = 2i;
– all the non-empty buckets Bi (which contain at least one neighbor w ∈ N(u)) are materialized in the sorted

linked list B(u) in an increasing order by their indices i.
– each non-empty bucket Bi ∈ B(u) maintains a counter c̄u(Bi) that records the counter value cu of u when Bi is

last visited; initially, c̄u(Bi) is set as the value of cu when Bi is materialized and added to B(u);

Implementation of EdgeSimStr.update. In our VD-STAR, the update function of EdgeSimStr just increases the
counters cu and cv by one, respectively, i.e., cu ← cu + 1 and cv ← cv + 1, recording that there is one more affecting
update on them.

Implementation of EdgeSimStr.insert. The detailed implementation is shown in Algorithm 2. To insert an edge
(u, v) to EdgeSimStr, our algorithm first computes the affordability quota q(u, v), and then inserts v (resp., u) into the
corresponding bucket in B(u) (resp., B(v)). If the bucket does not exist, then a bucket is created and inserted into the
sorted bucket linked list accordingly.

Implementation of EdgeSimStr.delete. This function removes v (resp., u) from its corresponding bucket in B(u)
(resp., B(v)). If the bucket becomes empty, then the bucket is removed from the bucket list. The pseudo code is shown
in Algorithm 3.

Implementation of EdgeSimStr.find. Algorithm 4 gives implementation details. Observe that all the neighbors w of u
are stored in a sorted list of power-of-two buckets of their corresponding affordability quotas. When the counter cu is
increased by one, it suffices to scan the sorted bucket list to check all the non-empty buckets Bi such that the current
cu has passed across their corresponding power-of-two values 2i, because they were last visited when cu = c̄u(Bi)
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Algorithm 2: Our Implementation of EdgeSimStr.insert
Input: an insertion of edge (u, v) to EdgeSimStr

1 τ(u, v)← 1
4ρ

2 max{nu, nv};
2 q(u, v)← 1

4 · ⌊τ(u, v)⌋2;
3 i← log2(q(u, v));
4 if Bi does not exist in B(u) then
5 create Bi and insert Bi to B(u);
6 set c̄u(Bi)← cu;
7 insert v to Bi;
8 perform the above steps for v symmetrically;

Algorithm 3: Our Implementation of EdgeSimStr.delete
Input: a deletion of edge (u, v) from EdgeSimStr

1 remove v from its corresponding bucket Bi;
2 if Bi becomes empty then
3 remove Bi from B(u);
4 perform the above steps for v symmetrically;

(see Line 4 in Algorithm 4). For each of such buckets Bi, our algorithm reports and adds the edge (u,w) to F for
each w ∈ Bi such that w is visited in Bi for the second time. The same process is performed for v symmetrically. The
correctness of this implementation is proved in Section 4.1.

Implementation of EdgeSimStr.cal-sim. See Algorithm 5.

A Running Example. Figure 3 shows a running example of the maintenance of our implementation for EdgeSimStr. At
the current status, the affecting update counter of u, cu = 15 and there are three non-empty buckets B2, B3 and B5 in
the sorted bucket list B(u), where c̄u(B2) = 12 indicates that when B2 was last visited, the value of the counter cu
was 12. Moreover, there are two neighbors w1 and w2 in B2, where w1 has not yet been visited while w2 has been
visited for once. When an update incident on u occurs, cu is increased by one to cu = 16 and then EdgeSimStr.find
(Algorithm 4) is invoked and it scans B(u) from the first bucket B2. Since ⌊ 164 ⌋ > ⌊

12
4 ⌋ (Line 4), the contents of B2

are checked, where the flag of w1 is set to 1 indicating that now w1 has been visited once, while the edge (u,w2) is
added to F because w2 is visited for the second time now. Finally, c̄u(B2)← 16 recording that the “time” when B2

was last visited. This completes the process for B2. As ⌊ 168 ⌋ > ⌊
8
8⌋, similarly, (u,w3) is added to F and c̄u(B3)← 16.

The algorithm stops the scanning at B5 because ⌊ 1632⌋ = ⌊
2
32⌋. Next, EdgeSimStr.delete (Algorithm 3) is invoked for

(u,w2) and (u,w3) in F , and it removes w1 and w2 from B2 and B3, respectively (Line 1). As B3 becomes empty,
it is then removed from B(u) (Lines 2-3). After the re-calculation of the similarities for (u,w2) and (u,w3) with
EdgeSimStr.cal-sim (Algorithm 5), EdgeSimStr.insert (Algorithm 2) is invoked to insert w2 and w3 to buckets B4 and
B2 in B(u), respectively.

Figure 3: A Running Example of Our EdgeSimStr
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Algorithm 4: Our Implementation of EdgeSimStr.find
Input: either an insertion or a deletion of edge (u, v)
Output: a set F of potentially invalid edges

1 F ← ∅;
2 Bi ← the first bucket in B(u), where i is the index of B;
3 while Bi is not NULL do
4 if ⌊ cu2i ⌋ > ⌊

c̄u(Bi)
2i ⌋ then

// check this bucket Bi

5 for each w ∈ Bi do
6 if w is visited in Bi for the second time then
7 add (u,w) to F ;
8 else
9 flag w as it has been visited for once;

10 c̄u(Bi)← cu; Bi ← Bi.next;
11 else
12 stop the scan of B(u) and break;

13 perform the steps from Line 2 for v symmetrically;
14 return F as the set of invalid edges

Algorithm 5: Our Implementation of EdgeSimStr.cal-sim
Input: an edge (x, y)
Output: an 1

2ρ-absolute-approximate similarity σ̃(x, y)

1 if nx ≤ 1
4ρ

2ny or ny ≤ 1
4ρ

2nx then
2 return σ̃(x, y) = 0;

3 L← the number of samples as required by Lemma 1;
4 X ← 0;
5 for i = 1, 2, · · · , L do
6 flip a coin z such that Pr[z = 1] = nx

nx+ny
and Pr[z = 0] = nx

nx+ny
;

7 if z = 1 then
8 uniformly at random pick a vertex w ∈ N [x];
9 else

10 uniformly at random pick a vertex w ∈ N [y];
11 if w ∈ N [x] ∩N [y] then
12 X ← X + 1;

13 X̄ ← X/L;
14 return

σ̃(x, y) =


X̄

2−X̄
for Jaccard similarity

nx+ny

2
√
nx·ny

· X̄ for Cosine similarity

X̄ for Dice similarity

4 Theoretical Analysis

In this section, we prove the correctness of VD-STAR, analyze the amortized per-update running time and the space
consumption. Putting these results together constitutes a proof for Theorem 1.

4.1 Correctness

Theorem 2. Before and after any update, VD-STAR maintains a proper ρ-absolute-approximate similarity σ̃(u, v) for
every edge (u, v) ∈ E with high probability at least 1− 1

n .

11



To prove Theorem 2, it suffices to show these two lemmas:
Lemma 1. By setting L = 1

2r2 ln(4n
4), where r = 1

4ρ for Jaccard, r = 1
4ρ

2 for Cosine and r = 1
2ρ for Dice similarity,

the approximate similarity σ̃(u, v) returned by Algorithm 5 satisfies |σ̃(u, v)− σ(u, v)| ≤ 1
2ρ with probability at least

1− 1
2n4 .

Lemma 2. For any (u, v) ∈ E, its approximate similarity σ̃(u, v) must be recomputed by Algorithm 5 before its update
affordability τ(u, v) is fully consumed, that is, before the arrival of its τ(u, v)th affecting update, since σ̃(u, v) was last
computed.

Proof of Theorem 2. Suppose Lemmas 1 and 2 hold; by the definition of update affordability, we have that σ̃(u, v) is a
correct ρ-absolute-approximation of σ(u, v) before and after any update for all edges (u, v) ∈ E. To see the success
probability, as each update can affect at most 2n edges, it can trigger at most 2n invocations of Algorithm 5. Moreover,
there are at most M ≤ n2 updates. Therefore, Algorithm 5 is invoked for at most 2n3 times. According to Lemma 1,
each invocation fails with probability at most 1

2n4 . Thus, the whole process succeeds with probability at least 1− 1
n .

Proof of Lemma 1. Consider an edge (u, v) ∈ E; without loss of generality, we assume that nu ≤ nv .
Observation 2. For any edge (u, v) with nu = β · nv , where 0 < β ≤ 1, we have:

• Jaccard(u, v) = I(u,v)
nu+nv−I(u,v) ≤

β·nv

nv
= β;

• Cosine(u, v) = I(u,v)√
nu·nv

≤ nu√
1/β·nu

=
√
β;

• Dice(u, v) = I(u,v)
(nu+nv)/2

≤ β·nv

nv/2
= 2β.

Substituting β = 1
4ρ

2 to Observation 2, that is, nu ≤ 1
4ρ

2nv, then the Jaccard, Cosine and Dice similarities of (u, v)
are all ≤ 1

2ρ for any constant 0 ≤ ρ ≤ 1. Therefore, for any of the above similarity measurements, σ̃(u, v) = 0 is a
correct 1

2ρ-absolute-approximate similarity, thus, Lines 1-2 in Algorithm 5 are correct.

Next, we consider the case that nv ≥ nu > 1
4ρ

2nv holds. In fact, a proof of this lemma for Jaccard similarity is given
in [5] by Ruan et al.. We extend their proof to Cosine and Dice similarity. For completeness, we prove all of them in
the following.

Let Xi ∈ {0, 1} be a random variable for the ith iteration in the for-loop in Lines 5 - 12 in Algorithm 5. Specifically,
Xi = 1 if X is increased by one in Line 12; otherwise, Xi = 0. Therefore, Pr[Xi = 1] = Pr[Xi = 1 ∧ z =

1] + Pr[Xi = 0 ∧ z = 0] = nu

nu+nv
· I(u,v)nu

+ nv

nu+nv
· I(u,v)nv

= 2I(u,v)
nu+nv

. Furthermore, since X̄ = X
L =

∑L
i=1 Xi

L , we

have the expectation E[X̄] = E[Xi] =
2·I(u,v)
nu+nv

. Thus, we have the following for each of the similarity measurements.

For Jaccard similarity, we have Jaccard(u, v) = E[X̄]
2−E[X̄]

, and by Line 15 , σ̃(u, v) = X̄
2−X̄

. Thus, Pr[|σ̃(u, v) −

Jaccard(u, v)| > 1
2ρ] = Pr[ 2·|X̄−E[X̄]|

(2−X̄)(2−E[X̄])
> 1

2ρ] ≤ Pr[|X̄ − E[X̄]| > 1
4ρ], where the last inequality is by both X̄

and E[X̄] are values in [0, 1].

For Cosine similarity, we have Cosine(u, v) = nu+nv

2
√
nu·nv

· E[X̄], and by Line 16, σ̃(u, v) = nu+nv

2
√
nu·nv

· X̄ . Thus,

Pr[|σ̃(u, v) − Cosine(u, v)| > 1
2ρ] = Pr[ nu+nv

2
√
nu·nv

· |X̄ − E[X̄]| > 1
2ρ] = Pr[|X̄ − E[X̄]| > 2

√
nu·nv

nu+nv
· 1

2ρ] ≤

Pr[|X̄ − E[X̄]| > 2
√

1/4ρ2nv·nv

2·nv
· 1

2ρ] = Pr[|X̄ − E[X̄]| > 1
4ρ

2], where the last inequality is by the fact that
nv ≥ nu > 1

4ρ
2nv .

For Dice similarity, we have Dice(u, v) = E[X̄] and by Line 17, σ̃(u, v) = X̄ . Therefore, Pr[|σ̃(u, v)−Dice(u, v)| >
1
2ρ] = Pr[|X̄ − E[X̄]| > 1

2ρ].

According to the Hoeffiding Bound [23], by setting L = 1
2·r2 ln

2
δ , we have Pr[|X̄ − E[X̄] > r] ≤ δ. As a result, by

setting δ = 1
2n4 , rj = 1

4ρ, rc = 1
4ρ

2, and rd = 1
2ρ, respectively for Jaccard, Cosine and Dice similarities, we can get

the corresponding number of samples L to achieve σ̃(u, v) being a correct 1
2ρ-absolute approximation to σ(u, v) with

high probability at least 1− 1
2n4 .

Proof of Lemma 2. Recall that for each edge (u, v) right after σ̃(u, v) is computed, (u, v) allocates an affordability quota
q(u, v) = 1

4⌊τ(u, v)⌋2 to an entry in a bucket Bi with index i = log2 q(u, v) in both the sorted linked bucket lists B(u)
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and B(v). According to Algorithm 4, (u, v) is reported as an invalid edge in F when the entry in either the bucket in B(u)
or B(v) is visited for the second time. As a result, the entry of edge (u, v) can be checked for at most three times in total,
because at that time, the entry in either bucket must be checked for twice. Moreover, since each checking of the bucket
Bi is triggered by at most q(u, v) affecting updates, there can be at most 3 ·q(u, v)+q(u, v)−1 < ⌊τ(u, v)⌋2 ≤ τ(u, v)
affecting updates happened. Lemma 2 thus follows.

By Theorem 2 and the fact that VD-STAR adopts the ∆-Table for CoreFindStr, this theorem immediately follows, which
completes the correctness proof for VD-STAR.
Theorem 3. VD-STAR returns a (ρ+∆)-absolute-approximate clustering result, with high probability at least 1− 1

n ,
for any query with respect to the given parameters ε and µ.

Remark. Given any constant target overall approximation parameter ρ∗, by setting ρ = ∆ = 1
2ρ

∗, VD-STAR can
achieve ρ∗-absolute approximation without affecting its theoretical bounds.

4.2 Running Time Analysis

Query Running Time. As our VD-STAR adopts the ∆-Table technique for CoreFindStr, the query running time bound
follows immediately from the analysis in Section 2. Thus, we have:
Lemma 3. VD-STAR can answer each query in O(mcr) time.

The Maintenance Cost of an Edge. We first analyze the maintenance cost of each edge (u, v), denoted by ℓ(u, v),
between two consecutive approximation similarity calculations for (u, v). Consider the moment when the similarity
of an edge (u, v) needs to be computed; according to Algorithm 1, the maintenance for (u, v) involves the following
operations:

• a similarity calculation (Algorithm 5) which takes costEC;
• an invocation of Algorithm 3 to remove the “old” quota entries of (u, v) from the buckets in B(u) and B(v); this

takes costED;
• an invocation of Algorithm 2 to insert the “updated” quota entries of (u, v) to buckets in B(u) and B(v); this takes

costEI;
• the maintenance of the sorted neighbor lists of u and v due to the change of σ̃(u, v); this maintenance takes O(log n)

time;
• the maintenance of ∆-Table for u and v due to the change of their sorted neighbor lists; as discussed in Section 2,

this cost is bounded by O( 1
∆ · log n) = O(log n) since ∆ is a constant;

• at most three times of visits of the entries of (u, v) in the corresponding buckets before getting reported as an invalid
edge; this cost is just O(1).

Summing these costs up, the maintenance cost of (u, v) is:

ℓ(u, v) ∈ O(costEC + costED + costEI + log n) . (1)
Next, we analyse costEC, costED and costEI, respectively. For the cost of similarity calculation, costEC, by Algorithm 5,

by Lemma 1, we know that L ∈ O(log n) samples suffice. Each sample checks if a neighbor w is in N [u] ∩N [v]. By
maintaining a hash table of N [u] and N [v], each of this checking can be performed in O(1) expected time. Therefore,
costEC is bounded by O(L) = O(log n) in expectation.

To bound the costs costEI and costED of Algorithms 2 and 3, observe that inserting and removing an entry from a bucket
can be done in O(1) time. This can be achieved simply by recording the locations (e.g., the indices in arrays) of the
entries in the corresponding buckets. The remaining cost are from the operations on the sorted bucket lists B(u) and
B(v) which include: (i) checking if a bucket exists or not, (ii) inserting a new bucket, and (iii) removing an existing
bucket. According to the following Fact 4, each of this operation can be performed in O(1) expected time. And
therefore, costEI + costED is bounded by O(1) in expectation.
Fact 4 ([24]). The sorted linked list B(u) can be maintained with O(|B(u)|) space and support the following in O(1)
expected time:

• an insertion or deletion of a bucket to or from B(u), and

• return the pointer of the largest bucket Bi ∈ B(u) with index i ≤ j, for any given integer index 0 ≤ j ≤ ⌈log2 n⌉.

Putting all the above cost bounds to Expression (1), we thus have:
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Lemma 4. The maintenance cost of each edge (u, v) between two consecutive similarity calculations of it, ℓ(u, v), is
bounded by O(log n) in expectation.

Amortized Per-Update Cost. Next, we analyze the amortized running time for each update. Observe that, for an
update of edge (u, v), according to Algorithm 1, the running time cost of processing this update consists of:

• a maintenance cost of ℓ(u, v) for the update;
• a cost of Algorithm 4, costEF, to find a set F of invalid edges;
• a maintenance cost of ℓ(x, y), for each edge (x, y) ∈ F .

By Lemma 4, the update cost of an edge (u, v) is bounded by O(log n + costEF + |F | · log n) in expectation. As in
the worst case, the number of invalid edges, |F |, can be as large as O(n), and the update cost can be as expensive as
O(n log n+ costEF) in expectation.

Fortunately, by update affordability, there must have been a certain number of affecting updates to trigger an edge(x, y)
being reported as invalid. Therefore, we can charge the costs of O(costEF) and O(|F | · log n) respectively to those
updates which had contributed to them. The key question is how to make the charging argument for these costs,
specifically, which update is charged at what cost.

For simplicity, for the current update of edge (u, v), we only analyze the part of u, because the analysis for the part of v
is symmetric.

Amortize costEF to Updates. According to Algorithm 4, we know that costEF consists of two parts: (i) the bucket
scanning cost, and (ii) the invalid edges reporting cost which is bounded by O(|F |). Let K be the number of buckets
that are checked (satisfying the if-condition in Line 4 of Algorithm 4). Clearly, the scanning cost is O(K + 1), where
the “+1” term comes from the last bucket which does not satisfy the if-condition. We thus charge this “+1” cost to the
current update (u, v). Since, for each of the K checked buckets, it must have at least one neighbor w ∈ N(u) visited.
If w is visited for the first time, this bucket checking cost can be charged to the maintenance cost ℓ(u,w). Otherwise, if
w is visited for the second time, this bucket checking cost can be charged to the reporting cost O(|F |), which, in turn,
can also be further charged to the maintenance cost of the edges in F , as we analyze next.

Amortize the Maintenance Cost of an Edge to Updates. For each edge (u,w) reported from a bucket Bi in B(u), ac-
cording to Line 6 in Algorithm 4, w is visited for the second time in Bi. Hence, there must have been at least q(u,w)
affecting updates incident on u since w was inserted to bucket Bi. Therefore, ℓ(u,w), the maintenance cost of edge
(u,w), can be charged to those at least q(u,w) affecting updates, each of which is charged by a cost at most ℓ(u,w)

q(u,w) .

Consider the current moment when an update of edge (u, v) arrives; this update (u, v) is then charged (from the part of
u) by at most

∑
w∈N(u)

ℓ(u,w)
q(u,w) .

Let q(u,w∗) be the update affordability quota value in the smallest non-empty bucket B∗ in B(u) at the current moment,
and w∗ ∈ N(u). Consider the retrospective degree of u, denoted by dret

u , when w∗ was inserted to B∗, that is, when
q(u,w∗) was allocated. The degree, du, of u at the current moment satisfies: du ≤ dret

u + 2 · q(u,w∗). This is because,
otherwise, w∗ must have been visited twice in B∗, and hence, the edge (u,w∗) must have been reported as invalid.
This is contradictory to the fact that w∗ is still in B∗, and that (u,w∗) is still considered as valid since q(u,w∗) was
allocated.

Furthermore, since q(u,w∗) ≥ 1
8τ(u,w

∗) (see Line 2 in Algorithm 2) and by Claim 1, we have q(u,w∗) ∈
Ω(max{dret

u , dret
w }). Thus, dret

u ∈ O(q(u,w∗)); and it turns out that: du ≤ dret
u +2 · q(u,w∗) ∈ O(q(u,w∗)). Therefore,

the current update (u, v) is charged by at most∑
w∈N(u)

ℓ(u,w)

q(u,w)
≤ du

q(u,w∗)
·O(log n) = O(log n) in expectation.

Putting the above-charged costs and the maintenance cost of the update (u, v) itself together, we have:
Lemma 5. The amortized cost of each update is bounded by O(log n) in expectation.

4.3 Space Consumption

For each u ∈ V , the space consumption of (i) the date structures in EdgeSimStr and CoreFindStr with respect to u,
(ii) the hash table of N [u] for similarity calculation, and (iii) the auxiliary data structure for maintaining B(u) are all
bounded by O(nu). Hence, we have:
Lemma 6. The overall space consumption of VD-STAR is bounded by O(n+m) at all times.
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4.4 Proof of the Last Missing Piece: Claim 1

Next, we give proof for Claim 1 to complete our theoretical analysis. To show this claim, it suffices to prove that
the update affordability satisfies τ(u, v) ≥ t = 1

4ρ
2nv ∈ Ω(dmax(u, v)), for any edge (u, v) with nu ≤ nv. More

specifically, in the following, we prove that σ̃(u, v) remains a valid ρ-absolute approximation to the exact similarity
σ(u, v) at any moment within t arbitrary affecting updates since the last moment when σ̃(u, v) was computed.

In fact, Ruan et al. [5] give proof for a lemma similar to our Claim 1 for Jaccard similarity only. Unfortunately, their
proof is not immediately applicable to Cosine similarity. As we show below, overcoming this technical difficulty of
proving Claim 1 for Cosine similarity requires a more sophisticated analysis.

First, we identify the cases when the similarity has the largest increment or decrement on the exact similarity for an
affected update. Consider an update of edge (u,w) and an affected edge (u, v), there are four cases for each similarity
measurement:

For Jaccard similarity,

• (u,w) is an insertion,

– if w ∈ N(v), σ(u, v) is increased to I(u,v)+1
nu+nv−I(u,v)

– if w /∈ N(v), σ(u, v) is decreased to I(u,v)
nu+nv−I(u,v)+1

• (u,w) is a deletion,

– if w ∈ N(v), σ(u, v) is decreased to I(u,v)−1
nu+nv−I(u,v)

– if w /∈ N(v), σ(u, v) is increased to I(u,v)
nu+nv−I(u,v)−1

For Cosine similarity,

• (u,w) is an insertion,

– if w ∈ N(v), σ(u, v) is increased to I(u,v)+1√
(nu+1)·nv

– if w /∈ N(v), σ(u, v) is decreased to I(u,v)√
(nu+1)·nv

• (u,w) is a deletion,

– if w ∈ N(v), σ(u, v) is decreased to I(u,v)−1√
(nu−1)·nv

– if w /∈ N(v), σ(u, v) is increased to I(u,v)√
(nu−1)·nv

For Dice similarity,

• (u,w) is an insertion,

– if w ∈ N(v), σ(u, v) is increased to I(u,v)+1
(nu+nv+1)/2

– if w /∈ N(v), σ(u, v) is decreased to I(u,v)
(nu+nv+1)/2

• (u,w) is a deletion,

– if w ∈ N(v), σ(u, v) is decreased to I(u,v)−1
(nu+nv−1)/2

– if w /∈ N(v), σ(u, v) is increased to I(u,v)
(nu+nv−1)/2

Through factorization, it is not difficult to prove that the first case has the largest increment and the third case has the
largest decrement for all three similarity measurements. With this, we now prove Claim 1 for the following two cases
separately.

Case 1: nu ≤ 1
4ρ

2nv . According to Algorithm 5, we set σ̃(u, v) = 0 for all three similarity measurements in this case.
By Observation 2 in the proof of Lemma 1, we know that the exact similarities can be upper bounded by a function of
β = nu

nv
for the three measurements. Specifically, Jaccard(u, v) ≤ β, Cosine(u, v) ≤

√
β and Dice(u, v) ≤ 2β. At

the moment when σ̃(u, v) is set to 0, we know that the value of β ≤ 1
4ρ

2. Next, we show that after t = 1
4ρ

2nv arbitrary
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affecting updates, the value of β cannot be greater than 1
2ρ

2. And thus, by Observation 2, the exact similarities are
still no more than ρ for all the three similarity measurements, and therefore, σ̃(u, v) = 0 is still a valid ρ-absolute
approximation.

It suffices to consider those affecting updates that increase the value of β only. Since nu ≤ nv , without loss of generality,
we assume that there are 0 ≤ b ≤ t decrements on nv while t − b increments on nu. Let n′

u = nu + (t − b) and
n′
v = nv − b. After such t updates, we have: ρ2n′

v = 2
4ρ

2nv +
2
4ρ

2nv − ρ2b ≥ 2nu +2t− 2b = 2n′
u . Therefore, after

these t = 1
4ρ

2nv updates, the value of β =
n′
u

n′
v
≤ 1

2ρ
2 holds. This completes the proof of Claim 1 for Case 1.

Case 2: nv ≥ nu > 1
4ρ

2nv. Again consider the moment when a 1
2ρ-absolute-approximate σ̃(u, v) is computed and

the exact similarity at this moment denoted by σ∗(u, v). Next, we examine after t = 1
4ρ

2nv affecting updates, the
value of σ(u, v) cannot be increased nor decreased by more than 1

2ρ. And therefore, σ̃(u, v) remains a valid ρ-absolute
approximation to the exact similarity at the current moment.

We first show the increment case. As verified above, affecting updates of edges that increase the intersection size I(u, v)
of N [u] and N [v] is the most effective way to increase the exact similarity σ(u, v). Without loss of generality, suppose
that nu and nv are increased by t− b and b, respectively, after t affecting updates.

For Jaccard similarity, with t = 1
4ρ

2nv ≤ 1
2ρnv, the increased exact similarity becomes σ(u, v) =

I(u,v)+t
(nu+t−b)+(nv+b)−(I(u,v)+t) ≤ σ∗(u, v) + t

nu+nv−I(u,v) ≤ σ∗(u, v) +
1
2ρnv

nu+nv−I(u,v) ≤ σ∗(x, y) + 1
2ρ.

For Cosine similarity, with t = 1
4ρ

2nv, the increased exact similarity becomes σ(u, v) = I(u,v)+t√
(nu+t−b)·(nv+b)

<

σ∗(u, v) + t√
nu·nv

< σ∗(u, v) + 1/4·ρ2nv√
1/4·ρ2nv·nv

= σ∗(u, v) + 1
2ρ.

For Dice similarity, with t = 1
4ρ

2nv ≤ 1
4ρnv, the increased exact similarity becomes σ(u, v) = I(u,v)+t

(nu+nv+t)/2 ≤
σ∗(u, v) + t

(nu+nv)/2
≤ σ∗(u, v) + 1/4ρnv

nv/2
= σ∗(u, v) + 1

2ρ.

For the decrement case, affecting updates of edges that decrease the intersection size I(u, v) of N [u] and N [v] is the
most effective way to decrease the exact similarity σ(u, v). Without loss of generality, suppose that nu and nv are
decreased by t− b and b, respectively, after t affecting updates.

For Jaccard similarity, with t = 1
4ρ

2nv ≤ 1
2ρnv, the decreased exact similarity becomes σ(u, v) =

I(u,v)−t
(nu−t+b)+(nv−b)−(I(u,v)−t) ≥ σ∗(u, v)− t

nu+nv−I(u,v) ≥ σ∗(u, v)−
1
2ρnv

nu+nv−I(u,v) ≥ σ∗(u, v)− 1
2ρ.

For Cosine similarity, with t = 1
4ρ

2nv, the decreased exact similarity becomes σ(u, v) = I(u,v)−t√
(nu−t+b)·(nv−b)

>

σ∗(u, v)− t√
nu·nv

> σ∗(u, v)− 1/4·ρ2nv√
1/4·ρ2nv·nv

= σ∗(u, v)− 1
2ρ.

For Dice similarity, with t = 1
4ρ

2nv ≤ 1
4ρnv, the decreased exact similarity becomes σ(u, v) = I(u,v)−t

(nu+nv−t)/2 ≥
σ∗(u, v)− t

(nu+nv)/2
≥ σ∗(u, v)− 1/4ρnv

nv/2
= σ∗(u, v)− 1

2ρ.

Therefore, for any of these similarity measurements, the update affordability τ(u, v) ≥ t = 1
4ρ

2nv ∈ Ω(dmax(u, v))
holds for Case 2. This completes the whole proof for Claim 1.

5 Optimizations

We introduce two optimizations to enhance the practical performance of our VD-STAR. The idea stems from a crucial
observation – the CoreFindStr is designed for finding core vertices efficiently in O(|Vcore|+1) time to achieve the target
query time complexity O(mcr). If we relax this query bound, then it is not necessary to implement the CoreFindStr. In
this way, we can considerably improve the update efficiency by not only shaving the maintenance cost for CoreFindStr
but also, importantly, releasing the “approximation budget”: recall that VD-STAR uses a ∆-Table which introduces a ∆-
absolute error in the approximation. Hence, we can set a larger ρ for EdgeSimStr that achieves the same approximation
guarantee.
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5.1 VD-STAR with No CoreFindStr

Consider an implementation of our VD-STAR without CoreFindStr. When a query with parameters ε and µ arrives,
to identify all the core vertices, it suffices to check for each vertex u ∈ V whether u is a core vertex with u’s sorted
neighbor linked list N(u). This can be achieved by scanning N(u) from the beginning and checking whether the
similarity between u and the µth (largest) neighbor is ≥ ε or not. The time complexity is clearly bounded by O(µ)
for each vertex u, and hence, the overall running time of identifying all the vertices is bounded by O(µ · n). If the
sorted neighbor list N(u) is maintained with a binary search tree, finding the µth largest similarity can be achieved in
O(log dmax) time. In this case, the core vertex identification cost is bounded by O(n · log n). Therefore, without the
CoreFindStr, our VD-STAR can answer each query in O(min{µ, log n} · n+mcr) time.

Note that, in practice, this query time complexity is acceptable because: (i) the parameter µ in practice is often a small
constant for which µ · n ∈ O(n) often holds, and (ii) for reasonable clustering parameters, mcr often dominates the
term O(min{µ, log n} · n). If either of these cases happens, the query time complexity is still bounded by O(mcr) the
same as before with CoreFindStr. As we will see in experiments, VD-STAR with no CoreFindStr, which is named
Ours-NoT, significantly improves the update efficiency with just a negligible sacrifice in the query efficiency.

5.2 VD-STAR with a Small µ-Table

Recall that CoreFindStr can be implemented with a µ-Table which is used in GS*-Index and does not “consume” any
approximation budget. Inspired by this, our other version of VD-STAR is to implement CoreFindStr with a small
µ-Table. In the sense that, we do not implement the µ-Table in full to capture all possible values of the given parameter
µ. Instead, we just implement it partially for the µ values up to a small constant, say 15. As a result, the maintenance of
the small µ-Table would not affect the update time complexity of VD-STAR. In addition, it releases the approximation
budget consumed by the ∆-Table implementation, and hence, we can increase the value of ρ for the EdgeSimStr
accordingly.

To answer a query with parameters ε and µ, if µ is captured by the small µ-Table, then we use the µ-Table to retrieve all
the core vertices in O(|Vcore|+ 1) and hence, the query time complexity is bounded by O(mcr) as desired. Otherwise,
we just run the above version of VD-STAR with no CoreFindStr to answer the query.

6 Experiments

6.1 Experimental Settings

Datasets. We evaluate our algorithms on nine real-world datasets from the Stanford Network Analysis Project [25] and
Network Repository [26] which are also used in the baseline papers [5, 4, 6]. Following previous works [5, 4], we treat
all graphs as undirected and remove all self-loops. Table 2 summarizes the dataset.

Competitors. We study the performance of our three algorithms: VD-STAR, VD-STAR-NoT (Section 5.1) and VD-
STAR-µT (Section 5.2), which are respectively denoted by Ours, Ours-NoT and Ours-µT for short. We compare these
algorithms with the SOTA exact and approximate algorithms GS*-Index [6] and BOTBIN [4]. In Ours-µT, only a
µ-Table with µmax = 15 is constructed.

Experiment Environment. All experiments are conducted on a Ubuntu virtual server with a 2 GHz CPU and 1 TB
memory. All source codes are in C++ and compiled with -O3 turned on. The source code of our implementations can
be found in [27].

Default Parameter Settings. By default, the target overall approximation budget, denoted by ρ∗, is set as ρ∗ = 0.02.
For BOTBIN, we set ∆ = 0.01 by default as suggested in its paper. Since the use of ∆-Table would introduce a ∆
error, we set ρ = ρ∗ −∆ = 0.01 for the EdgeSimStr in BOTBIN to achieve an overall ρ∗-approximation. We set the
same ∆ and ρ for Ours. As both Ours-NoT and Ours-µT do not adopt the ∆-Table, we set ρ = ρ∗ for fair comparison.

Update Generation. To simulate graph updates in real-world applications, we randomly generate a sequence of edge
insertions and deletions for each dataset. To testify different scenarios, we vary the ratio η of #deletion to #insertion by
setting the probabilities of an insertion and a deletion to 1

1+η and η
1+η , respectively. To perform an edge deletion, we

uniformly at random choose an existing edge and delete it. To perform an edge insertion, we employ three strategies:

• random-random (RR): a non-existent edge is randomly added.

• degree-random (DR): Each vertex u has a probability of du

2m to be chosen, where du is the degree of u and m is the
number of edges in the current graph. Once u is chosen, the second vertex, v, is randomly chosen from those vertices
not yet linked to u.
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Figure 4: Update processing performance results

• degree-degree (DD): Vertex u is chosen as in DR; vertex v is chosen from the vertices not yet linked to u with dv

2m
probability.

By default, we set η = 1
10 . For each dataset and a configuration of η and update generation strategy, we generate

M = 2m∗ updates, where m∗ is the number of edges in the initial graph.

Query Simulation. To simulate the query process in real-world applications, we randomly generate a query after every
20 updates, with ε ∈ [0.1, 0.5] and µ ∈ [2, 2d̄] of each graph (d̄: the average degree). With a total of M = 2m∗ updates,
0.1m∗ queries are tested.

6.2 Study on Update Efficiency

6.2.1 Average Update Time with Default Parameters.

We first study the average running time of processing updates. As shown in Figure 4a, we have the following observations:
(1) Ours-NoT consistently achieves the best update efficiency. Particularly, it accelerates update processing by as much
as 9,315 times (on wiki-Talk) compared with GS*-Index and 647 times (on as-skitter) compared with BOTBIN.
GS*-Index uses exact similarity calculation such that it has the highest update time. (2) Ours is up to 18 times faster in
update processing (on soc-LiveJournal1) compared to BOTBIN which also uses a ∆-table. (3) Ours-µT achieves a
significant improvement in updating speed, while maintaining competitive query time, as elaborated later in Section 6.3.
It outperforms SOTA methods by up to 193 times on soc-Friendster vs. GS*-Index.

Table 2: Dataset Summary
Datasets n(×106) m(×106) d̄ Domain

web-Google 0.88 4.32 9.86 Website hyperlink
wiki-topcats 1.79 25.44 28.38 Website hyperlink
soc-Pokec 1.63 22.30 27.36 Social network
as-skitter 1.70 11.10 13.06 Traceroute graph
wiki-Talk 2.39 4.66 3.90 Interaction graph
soc-Orkut 3.07 117.19 76.22 Social network
soc-LiveJournal1 4.85 42.85 17.69 Social Network
soc-Friendster 65.61 1,806.07 55.13 Social network
web-2012 90.32 1,940.85 42.91 Website hyperlink

6.2.2 Memory Consumption.

As shown in Figure 4b, all methods exhibit minor differences in memory consumption owing to that their space
consumption are all linear to the graph size. Ours-NoT has the smallest memory consumption because it has no
implementation for CoreFindStr. Ours consumes slightly less memory compared with BOTBIN possibly because
maintaining B(u) might be more space-efficient than maintaining the bottom-k signatures.

6.2.3 Impact of Target Overall Approximation ρ∗.

To test how ρ∗ affects the update time, we vary ρ∗ from 0.001 to 0.1. GS*-Index is excluded from this experiment as
it is an exact algorithm. As shown in Figure 5, the update time decreases when ρ∗ grows, as expected. A larger ρ∗
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Figure 5: Average update running time vs. ρ∗

value leads to smaller sample sizes for similarity estimation and larger update affordability (τ ) for our algorithms. As
expected, Ours-NoT has the lowest update time under all ρ∗ values tested, with speedups reaching up to 700 times over
BOTBIN (on as-skitter when ρ∗ = 0.01).

Compared with BOTBIN, Ours-µT and Ours are also about an order of magnitude faster. Remarkably, even with
ρ = 0.001, our Ours-NoT achieves an average update time of 69× 10−6 second on a graph with 1.9 billion edges. For
BOTBIN and Ours, ∆ is set to 0.01 except for ρ∗ = 0.01 and ρ∗ = 0.001 where ∆ is set as half of ρ∗ to satisfy the
ρ∗-absolute-approximation for these two algorithms.

6.2.4 Impact of Update Distributions

As shown in Figure 6, the average update times of all algorithms increase as updates follow more skewed distributions
(from RR to RD and to DD). This trend primarily arises because inserting or deleting a neighbor for a vertex of a larger
degree takes a longer time (i.e., O(log nu)). Additionally, vertices of larger degrees appear more frequently in the
µ-Table. Despite these challenges, our algorithms consistently outperform all competitors, with speedups of up to 6,098
times on RR, 9,315 times on DR, and 4,857 times on DD.

6.2.5 Impact of Deletion-to-Insertion Ratio

Next, we vary deletion-to-insertion ratios, and Figure 7 reports the results. We observe the following: (1) The average
update times increase with insertions occurring more frequently across all algorithms and datasets. This is expected since
the number of edges grows with an increase in insertions, and the growth accelerates when the deletion-to-insertion ratio
η decreases. (2) Across all settings tested, all our algorithms outperform the SOTA algorithms, with Ours-NoT having
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Figure 6: Average update time vs. update distribution

the lowest update times. (3) When η = 0, all updates are insertions. In this case, Ours-NoT amplifies the speedup from
up to 9,315 times to 11,959 times (vs. GS*-Index), and from up to 647 times to 805 times (vs. BOTBIN), compared
with η = 1

10 . This reaffirms the robustness of our algorithms in terms of scalability.

6.3 Study on Query Efficiency

The query efficiency results are shown in Figure 8. Several observations are made: (1) GS*-Index, BOTBIN, and Ours
exhibit similar query times as their query time are all bounded by O(mcr), linear to the size of the clustering result graph.
Ours-µT, utilizing a fixed-size µ-table (in Section 5.2), only incurs a cost bounded by O(min{µ, log n} · n +mcr)
when the input µ exceeds a certain threshold µmax which is set as 15 in this experiment. In practice, it can still achieve
performance similar to O(mcr) methods, as evidenced by the results showing very similar query times. (2) Across all
datasets, our Ours-NoT algorithm’s query times are within the same magnitude as the other algorithms. Notably, on
web-Google and web-topcats, Ours-NoT has a lower query time. This is because the size of the clustering result
graph is large in these datasets, and hence, O(mcr) dominates the query time, making the query overhead of Ours-NoT
negligible. (4) In structural clustering problems, the number of the clustering result vertices (ncr) has substantial
practical implications. If ncr is small, the structural clustering results may lose significance because most vertices are
excluded. In cases where ncr approaches n, Ours-NoT introduces a negligible overhead in queries while accelerating
updates by over 100 times.

6.4 Study on Clustering Quality

We look into the clustering quality of both our algorithms and BOTBIN, in terms of the mislabeled rate (MLR) and
adjusted rand index (ARI) [28]. MLR is calculated as dividing the number of incorrectly labeled edges by the number
of edges, m, of the current graph. ARI is widely used to evaluate the clustering quality which outputs a value from 0 to

20



Ours Ours-NoT Ours- T BOTBIN GS*-Index

1:2 1:5 1:10 1:100 0
101

102

103

104

Average update time (×10 6 second)

(a) Google

1:2 1:5 1:10 1:100 0101

102

103

104

Average update time (×10 6 second)

(b) Topcats

1:2 1:5 1:10 1:100 0101

102

103

104

Average update time (×10 6 second)

(c) Pokec

1:2 1:5 1:10 1:100 0
101

102

103

104

105
Average update time (×10 6 second)

(d) Skitter

1:2 1:5 1:10 1:100 0

102

103

104

105

Average update time (×10 6 second)

(e) Talk

1:2 1:5 1:10 1:100 0

102

103

104

105 Average update time (×10 6 second)

(f) Orkut

1:2 1:5 1:10 1:100 0
101

102

103

104

Average update time (×10 6 second)

(g) LiveJournal

1:2 1:5 1:10 1:100 0

102

103

104

105

Average update time (×10 6 second)

(h) Friendster

1:2 1:5 1:10 1:100 0

102

103

104

105

Average update time (×10 6 second)

(i) WebFigure 7: Average update time vs. η

1, where 1 means that the clusters are exactly the same as the ground truth. We evaluate the result quality using the
default ρ∗ = 0.02 and a larger ρ∗ = 0.1. Note that here ρ∗ represents an absolute error, and 0.1 is already a relatively
large error value. Both MLR and ARI are measured for each query as described above and their average values are
reported in Table 3.

Both BOTBIN and Ours have high-quality results, leveraging error bounds to their advantage. Notably, Ours outperforms
BOTBIN on more datasets. When ρ∗ = 0.02, Ours achieves MLR of less than 0.7% across all datasets, with ARI
values ranging from 0.9926 to 0.9996. Even with ρ∗ = 0.1, Ours maintains an average ARI of at least 0.9548 (on
soc-Orkut) and MLR of at most 9.91% (on web-2012). Ours-µT and Ours-NoT have similar results to Ours. For
brevity, they are not detailed here. These results again underscore the practical significance of theoretical error bounds
with a high success rate on real datasets.

6.5 Experiments on Cosine and Dice Similarities

Cosine. As Figure 9a shows, the comparative pattern in update running time is similar to that observed under the
Jaccard similarity setting (Figure 4a above). However, the update time of Ours-NoT shows a slight increase compared
with the Jaccard similarity setting (Figure 4a above) due to larger constant factors in the sample size for similarity
estimation and smaller constant factors in τ for update affordability to ensure the complexity bounds, as described in
Section 4.1 and Section 4.4.
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Figure 8: Query processing performance results
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Figure 9: Average update running time on Cosine and Dice

The clustering quality results are shown in Table 4. Our algorithms also show solid results for Cosine similarity-based
structural clustering. Compared with exact algorithms like GS*-Index (whose ARI is 1 and MLR is 0 and are omitted
from the table), our algorithm can achieve up to 0.9843 average ARI (on soc-LiveJournal1) and as low as 0.07%
MLR (on wiki-topcats).

Dice. The results of Dice similarity are shown in Figure 9b (update running time) and Table 4 (clustering quality). As
expected, our algorithms show similar performance as that on Jaccard.

7 Conclusion

We proposed an algorithm called VD-STAR for the problem of Dynamic Structural Clustering for All Parameters.
Our VD-STAR algorithm can return an ρ-absolute-approximate clustering result with high probability for every query
in O(mcr) time, and can process each update in O(log n) amortized expected time, while its space consumption is
bounded by O(n+m) at all times. The algorithm works well with Jaccard, Cosine and Dice similarity measurements
and supports arbitrary updates. VD-STAR significantly improves the state-of-the-art approximate algorithm BOTBIN
which achieves O(log2 n) expected time per-update for random updates under Jaccard similarity only. We evaluate our
algorithm on nine real datasets, which shows strong empirical results in terms of update and query efficiency, clustering
result quality, and robustness in handling various update distributions.
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Table 3: Clustering quality results
ρ = 0.02 ρ = 0.1

BOTBIN Ours BOTBIN Ours
ARI ↑ MLR ↓ ARI ↑ MLR ↓ ARI ↑ MLR ↓ ARI ↑ MLR ↓

web-Google 0.9991 0.14% 0.9990 0.14% 0.9695 5.52% 0.9701 5.50%
wiki-topcats 0.9990 0.06% 0.9996 0.06% 0.9896 0.86% 0.9887 0.92%
soc-Pokec 0.9957 0.18% 0.9955 0.17% 0.9676 5.32% 0.9653 5.33%
as-skitter 0.9995 0.19% 0.9996 0.19% 0.9826 6.38% 0.9842 6.34%
wiki-Talk 0.9987 0.45% 0.9989 0.44% 0.9716 7.29% 0.9722 7.30%
soc-Orkut 0.9946 0.12% 0.9954 0.12% 0.9548 4.38% 0.9548 4.40%
soc-LiveJournal1 0.9998 0.12% 0.9995 0.12% 0.9975 4.56% 0.9982 4.56%
soc-Friendster 0.9944 0.64% 0.9947 0.69% 0.9636 6.73% 0.9673 6.40%
web-2012 0.9928 0.60% 0.9926 0.56% 0.9609 9.79% 0.9607 9.91%

Table 4: Clustering quality results on all three measurements (The result of Jaccard Similarity with ρ = 0.02 is copied
and pasted from Table 3 to here for easy comparison.)

Jaccard Cosine Dice
Datasets ARI ↑ MLR ↓ ARI ↑ MLR ↓ ARI ↑ MLR ↓
web-Google 0.9991 0.14% 0.9599 0.29% 0.9990 0.14%
wiki-topcats 0.9990 0.06% 0.9700 0.07% 0.9999 0.06%
soc-Pokec 0.9957 0.18% 0.9609 0.23% 0.9958 0.15%
as-skitter 0.9995 0.19% 0.9806 0.28% 0.9996 0.13%
wiki-Talk 0.9987 0.45% 0.9672 0.53% 0.9989 0.42%
Orkut 0.9946 0.12% 0.9673 0.14% 0.9958 0.13%
soc-LiveJournal1 0.9998 0.12% 0.9843 0.18% 0.9994 0.12%
soc-Friendster 0.9947 0.69% 0.9653 0.94% 0.9937 0.62%
web-2012 0.9926 0.56% 0.9551 1.00% 0.9958 0.57%
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