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ABSTRACT
Large language models are revolutionizing every aspect of human life. However, the unprecedented power comes
at the cost of significant computing intensity, suggesting long latency and large energy footprint. Key-Value
Cache and Semantic Cache have been proposed as a solution to the above problem, but both suffer from limited
scalability due to significant memory cost for each token or instruction embeddings. Motivated by the observations
that most instructions are short, repetitive and predictable by LLMs, we propose to predict user-instructions by an
instruction-aligned LLM and store them in a predictive cache, so-called InstCache. We introduce an instruction
pre-population algorithm based on the negative log likelihood of instructions, determining the cache size with
regard to the hit rate. The proposed InstCache is efficiently implemented as a hash table with minimal lookup
latency for deployment. Experimental results show that InstCache can achieve up to 51.34% hit rate on LMSys
dataset, which corresponds to a 2x speedup, at a memory cost of only 4.5GB.

1 INTRODUCTION

Recently Large Language Models (LLMs) as well as their
multi-modal equivalents have become the essential driver
of a new wave of technology innovation, revolutionizing
every aspect of human life. The unprecedented power of
LLMs, however, comes at the price of unparallel scale of
computation, which incurs a series of challenges. One pri-
mary challenge is the energy footprint, which is dominantly
consumed by GPUs and other AI acceleration hardware. It
is estimated that by 2026 the total energy consumption of
AI computation will amount to 5% of US electricity produc-
tion(Aschenbrenner, 2024) and the number will reach 20%
in 2028. Another challenge is the latency of LLM response,
which hinders a much wider application of LLM in live
situations.

A large body of research has been dedicated to addressing
the LLM computation bottleneck by data reusing. Among
these works, Key-Value (KV) Cache(Kwon et al., 2023;
Zheng et al., 2023) lowers the amount of GPU computation
without the loss of LLM inference performance by trading
computation for memory according to the auto-regressive
nature of the decoder. Semantic Cache(Bang, 2023) of-
fers reuse opportunities by searching and retrieving similar
queries3 stored in a database. While enabling significant
savings in power consumption and latency, both methods
are challenged by the scalability. For instance, key-value
states of each token takes approximately a few megabytes of
storage(Gao et al., 2024), which limits KV Cache to reusing

1Tsinghua University 2DiDi Global Inc. Correspondence to:
Yangdong Deng <dengyd@tsinghua.edu.cn>.
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Figure 1. Analysis of instructions shows that most queries are short,
repetitive and predictable with LLMs. The analysis of frequency
and probability distribution is conducted on ShareGPT, with prob-
abilities of tokens evaluated using Llama3-8B.

only the common instruction prefix or previous rounds of
a dialogue(Zheng et al., 2023). On the other hand, Se-
mantic Cache can reuse entire queries. However, scaling
Semantic Cache remains challenging, as it requires search-
ing for similar instructions by evaluating similarity between
the embedding of incoming queries and stored instructions.
Generating embedding and searching similar instructions in-
curs significant lookup latency and storage cost. Moreover,
simple data reuse does not fully unlock the potential of data,
particularly in the era of LLM.

This work is inspired by the observation that a significant
portion of instructions to LLMs consists of short instruc-

3We refer the user input text to LLM as instruction, query and
request interchangeably.
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InstCache: A Predictive Cache for LLM Serving

tions, as shown in Figure 1 (a). Furthermore, as illustrated
in Figure 1 (b) and (c), these queries are often repetitive
and predictable. Based on these observations, we propose
an efficient LLM caching system, InstCache, for LLM in-
ference. The basic idea is to predict user-instructions by
an instruction-aligned LLM and store them as a predic-
tive cache. Specifically, we introduce a negative log like-
lihood (NLL) based instruction pre-population algorithm
and establish the relationship between NLL, hit rate and
the number of instructions, enabling both hit rate and cache
size to be predictable. By leveraging the astounding se-
mantic understanding capability of LLMs, InstCache can
predict potential instructions that have not yet been issued,
offering functionality beyond traditional caching mecha-
nisms. While pre-population, a tree structure is employed
to search all possible instructions, where each node is a
token and each path is an instruction and its corresponding
answer. To maximize the efficiency while inference, after
pre-population, InstCache will be flattened into a hash table,
mapping hashed instructions to their answers. The hash
table minimizes the lookup complexity to nearly O(1). Ex-
perimental results demonstrate that InstCache can achieve
a hit rate of up to 51.34% on LMSys dataset by using ap-
proximately 4.5GB of CPU memory, indicating that half of
user instructions can be processed using only a CPU and
its memory, saving significant energy footprint. When de-
ploying InstCache with existing LLM serving systems, such
as vLLM(Kwon et al., 2023), we observe up to 2x average
speedup on LMSys datasets.

Our contributions are as follows: (1) we propose InstCache
which contains predictive user instructions from an LLM,
providing the capability exceeding traditional cache mech-
anism which only reuse requested instructions. (2) We
provide the guarantee of hit rate and cache size through
modeling the negative log likelihood distribution of instruc-
tions. (3) InstCache is organized as a hash table while
inference, which minimizes the lookup complexity to nearly
O(1), incuring minimal additional latency to existing LLM
serving systems.

2 BACKGROUND

2.1 Language Model

In this section, we briefly introduce the concept of a Lan-
guage Model (LM) and the negative log likelihood (NLL)
metric. We explain the basic mechanism of an LM and how
it can be used to predict all possible sentences.

Large Language Models (LLMs) are designed to autore-
gressively predict the next token in a sequence based on the
preceding tokens. For an LM with a vocabulary size of v, the
model processes a sequence of tokens {t1, t2, ..., tn−1} and
predicts the probability distribution p over possible tokens

in the vocabulary, as described in Eq. 1.

p(tn = Vi|t1, t2, ..., tn−1) = LM(t1, t2, ..., tn−1) (1)

where Vi represents the ith token in the vocabulary.

For a sentence s of length n, the NLL, which quantifies the
impossibility of the sentence, can be computed as shown in
Eq. 2.

NLL(s,LM) = − ln(

n∏
i=1

p(ti|t1, t2, ..., ti−1)) (2)

Generally, LLMs are trained by padding each passage with
special tokens that mark the beginning and end of the pas-
sage, such as <bos> and <eos>. Starting with a begin-
of-sentence token, an LLM predicts tokens step-by-step,
forming possible sequences. The autoregressive scheme
enables the prediction of all valid sentences with an NLL
below a certain threshold, as required by the proposed work
elaborated in Section 3.

2.2 Analysis of User Instructions to LLM

In this section, we analyze real-world user instructions and
identify common patterns, namely, shortness, repetitiveness,
and predictability. Due to the scarcity of public datasets of
human instructions, we used all available datasets(Liu et al.,
2024), LMSys(Zheng et al., 2024) and ShareGPT(Team,
2023), for analysis. LMSys is a large-scale, real-world
conversation dataset collected from the Vicuna demo and
the Chatbot Arena website(Chiang et al., 2024). The dataset
is unfiltered and rich of simpler questions. ShareGPT is
derived from conversations shared by GPT users. While
capturing more realistic dialogues, ShareGPT has a bias
towards harder questions since users often prefer sharing
complex and interesting interactions. Although there are
various supervised finetuning datasets, such as Moss(Sun
et al., 2024), they are primarily consist of human instructions
and synthetic instructions. To avoid contamination, we do
not use these datasets in this study. Our experiments focus
on first-turn instructions, while instructions in more turns
follow similar patterns in general.

2.2.1 Shortness

We first analyze the length distribution of instructions in
each dataset. As shown in Figure 1 (a), the majority of user
instructions are relatively short, with most containing fewer
than 100 tokens. This is consistent with intuitions, as LLM
services are often used in chatbot scenarios(OpenAI, 2022),
where users interactively input instructions, typically word
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Figure 2. Analysis of Frequencies on LMSys and ShareGPT
datasets shows that a large portion of instructions repeat at least
once. The cumulative distribution function of the negative log
likelihood of instructions indicates that the majority of instructions
are possible to be predicted by LLMs.

by word. When not requiring specific tasks such as text
rewriting, users tend to minimize the length of their inputs.

While LMSys and ShareGPT datasets may exhibit biases,
we believe that short questions still constitute a significant
portion of real-world instructions. Optimizing the process-
ing of short instructions can free system resources, thus
improving overall system performance. Consequently, in
this work, we focus our efforts on optimizing for these short
instructions.

2.2.2 Repetitiveness

Figure 2 (a) illustrates the repetition rates of instructions
across datasets. In LMSys dataset, at least 50% of instruc-
tions are repeated at least once, while in ShareGPT, approx-
imately 30% are repeated. These findings suggest that users
frequently submit similar instructions, which underscores
the potential benefits of caching frequent instructions to
reduce computational overhead.

2.2.3 Predictability

To measure the predictability of user instructions, we com-
pute the negative log likelihood (NLL) of instructions from
both datasets using Llama3-8B(Dubey et al., 2024) and plot
the cumulative distribution functions. As shown in Figure
2 (b), the NLLs of most instructions saturate fast with rela-
tively small values, indicating that such instructions can be
easily predicted by LLMs. Moreover, as demonstrated in
Figure 5 (a), finetuning the LLM on instructions in training
set can shift the NLL cumulative distribution further left,
improving the predictability of user instructions.

Based on these observations, we propose to predict short
instructions using an instruction-aligned LLM. By leverage
the semantic capability of LLMs, we can predict potential
instructions rather than reuse issued instructions, providing
significent enhancement to the traditional caching mecha-
nism.

3 INSTCACHE

3.1 Overview

In this section, we outline InstCache, an efficient caching
system for LLM inference. As depicted in Figure 3, Inst-
Cache will be pre-populated with LLM-predicted instruc-
tions and then deployed with existing LLM serving systems.
In the remaining part of this section, we describe the cache
structure in Section 3.2 and detail the approach to control
the hit rate and cache size by a given negative log likelihood
(NLL) threshold σ in Section 3.3. Cache pre-population
method is described in Section 3.4, and the deployment of
InstCache along with existing LLM serving systems is in
Section 3.5.

3.2 Cache Structure

As shown in Figure 3, during pre-population, we employ a
tree to search potential instruction, where each node repre-
sents a token and each path corresponds to an instruction
and its answer. Paths start from begin-of-sentence token
<bos> and end with end-of-sentence token <eos>. An-
swers are stored following the <eos> token of each path.
After LLM tree search, each instruction and its correspond-
ing answer will be stored in a hash table, which minimizes
the lookup complexity to nearly O(1), facilitating the de-
ployment phase. As for implementation, we use the dic-
tionary in Python as the hash table during deployment and
serialize it to disk with Pickle.

3.3 Cache Sizing

Cache size, which can be roughly represented as the num-
ber of cached instructions, is a critical parameter. In this
sub-section, we develop theoretic analysis on how to de-
termine the cache size. The motivation to pre-populate the
cache with LLM-predicted instructions having NLLs below
a selected threshold σ is to make the cache size and hit rate
predictable, by modeling the relationship between NLL, hit
rate and the number of instructions.

The cache containing all LLM-predicted instructions with
NLL ≤ σ can be formulated as an instruction set C =
{s : NLL(s,LM) ≤ σ, s ∈ S}, where s represents
an instruction, S is the instruction space and LM is the
language model. Given an instruction designated with
random variable S and its corresponding NLL variable
N = NLL(S,LM), the hit rate of the cache can be derived
as:

Hit Rate = P (S ∈ C)

= P (N ≤ σ)

= FN (σ) (3)
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Figure 3. Unlike traditional caches that populate with incoming requests while being deployed, InstCache decouples the population
phase and deployment phase. During pre-population, InstCache will be populated with all LLM-predicted instructions with negative
log likelihood below a selected threshold σ. The hit rate and cache size can be accurately determined by the threshold σ. We search
these instructions by generating next tokens with an LLM step by step , forming a tree structure, as depicted on the right of figure. The
Inst-Aligned LLM is an LLM finetuned with instruction in the training set. After pre-population, each path of the tree will become
an instruction stored in hash table with corresponding answer. Lastly, InstCache will be deployed with existing LLM serving systems,
accelerating the inference process.

where FN is the cumulative distribution function (CDF) of
the NLLs over the instruction space S. The CDF can be
measured by evaluating NLLs of instructions on a large val-
idation set using an LLM. Figure 2 (b) has shown the NLL
CDF of the ShareGPT dataset with Llama3-8B, indicating
that NLLs of most instructions saturate fast with relatively
small values. Therefore, it’s possible to build a cache with
all instructions having NLLs below a threshold.

Furthermore, based on the observation that the number of
instructions predicted by an LLM with NLL ≤ σ grows
exponentially with respect to σ, we propose to model the
number of instructions N as an exponential function of the
NLL, as shown in Eq. 4.

N = a(ebσ − 1) (4)

where a and b are function parameters and can be estimated
by preliminary pre-populations under two small σ values. In
Figure 5 (a), we show that this exponential model accurately
captures the growth of instructions as a function of NLL.
Although the number of instructions grows exponentially,
pre-populating a cache with high hit rate does not require
too many instructions as the NLL CDF is fast saturated.
Since the cache sizing is not accurately while hit rate is, we
do not modeling the relationship between hit rate and cache
size directly.
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Algorithm 1 LLM Tree Search

Input: LLM, Max NLL σ, Max Depth d
Initialize an empty queue Q
Initialize root r with <bos>token
Enqueue r into Q
while Q is not empty do

Dequeue a node u from Q
Generate next tokens T for u with an LLM
for each token t of T do

if Length from r → u ≤ d and NLL from r → t ≤
σ then

Add t as a child of u
end if
Enqueue children of u into Q

end for
end while

3.4 Cache Pre-population

3.4.1 Pre-Population Algorithm

Unlike traditional caches that are populated with incom-
ing requests, InstCache is pre-populated by LLM-predicted
instructions with NLL values below a selected threshold.
Pre-population involves predicting all possible instructions
with NLL ≤ σ by exploring all paths in a tree that starts with
the <bos> token and ends with <eos> token. As illustrated
in Figure 3 and Algorithm 1, we use an instruction-aligned
LLM to predict the next token at each node of the tree, ex-
panding the tree step by step. If a path fails to reach <eos>
in maximum allowed depth, it will be pruned. Since NLL is
the cumulative negative log probability of tokens along the
path, we can optimize the search by stopping the expansion
if the cumulative NLL exceeds σ, reducing computational
cost. This allows us to predict all potential instructions
within the desired threshold efficiently.

To further optimize the process, we limit the number of
tokens generated per node during pre-population. For nodes
with a depth of 10 or less, we restrict the number of gener-
ated tokens to 5,000. For nodes with a depth of up to 100,
the limit is reduced to 1,000 tokens. These restrictions sig-
nificantly reduce overhead, particularly when selecting top-k
tokens from a large vocabulary, with a minimal influence on
hit rate.

3.4.2 Distributed Implementation

Given the exponential growth rate of instructions under
increasing NLL, Algorithm 1 alone is not scalable for con-
structing a cache with a high hit rate. We then proposed
a parallel solution for instruction pre-population. We first
construct a base tree with a limited depth less than maximal
depth and the same maximal NLL value σ in master server.
Note that we do not prune paths that do not end before lim-

Master

Remote 
Storage

Message Queue
base tree

paths

Merge subtrees to base tree

Slave 1

Slave 2

Figure 4. Distributed Cache Pre-population. Master server build
the base tree with a limited depth less than maximal depth. Each
path of base tree serves as the starting nodes for subtrees generation
in slaves. Subtrees are iteratively merged with based tree, forming
new base tree for subsequent pre-population, until the maximum
depth is reached.

ited depth, since they serve as starting nodes for subtrees.
For each path of the base tree, we pre-populate a corre-
sponding subtree using Algorithm 1 in slave servers, with
the path from base tree serving as the root of the correspond-
ing subtree. As illustrated in Figure 4, we employ a message
queue and remote storage to manage the distributive execu-
tion of pre-population. The subtrees are iteratively merged
with the base tree, forming new base tree for subsequent
pre-population until the maximum depth is reached.

3.5 Cache Deployment

To further decrease the lookup latency of InstCache, we
store pre-populated instructions and corresponding answers
as a hash table. Upon cache hits, InstCache works as a hash
table that maps instructions to their corresponding answers .
InstCache can be integrated with existing LLM serving sys-
tems such as vLLM(Kwon et al., 2023) and SGLang(Zheng
et al., 2023), as depicted in Figure 3. When an instruction is
found in the cache, the corresponding response is immedi-
ately returned to the user. If a cache miss occurs, the instruc-
tion is forwarded to the LLM serving system for processing.
The additional latency introduced by InstCache is negligi-
ble as the lookup complexity is near O(1). By leveraging
distributive key-value database, such as Redis, InstCache
is also well-suited for distributive deployment, which can
further increase the hit rate through pre-populating more
instructions in distributed storage.

4 EXPERIMENT

4.1 Settings

Datasets We use LMSys(Zheng et al., 2024) and
ShareGPT(Team, 2023) as our evaluation datasets. LMSys
is collected from the Vicuna demo and the Chatbot Arena
website(Chiang et al., 2024), encompassing approximately
1 million unfiltered conversations. ShareGPT consists of
100,000 realistic conversations shared by GPT users. Both
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datasets are multilingual. Although there are many super-
vised finetuning datasets, such as Moss(Sun et al., 2024),
they are primarily consist of human instructions and syn-
thetic instructions. To avoid contamination, we do not use
these datasets in this work. Unless otherwise specified,
following experiments are conducted on instructions with
token lengths below 100 and focus on the first turn of con-
versations.

Baselines We compare InstCache with ExactCache and
GPTCache(Bang, 2023). ExactCache matches incoming
requests exactly with cached ones, using a Least Recently
Used (LRU) policy for cache update. GPTCache compares
instruction embeddings for matching and thus serves as a
Semantic Cache. We do not compare with KV-Cache as
it is focused on lower level decoding operations and thus
orthogonal to our work. Previous work(Li et al., 2024) used
OpenAI’s embedding API with GPTCache, determining
that a similarity threshold of 0.9 was required on real-world
datasets. However, deploying GPTCache with the OpenAI
embedding API is impractical in real-world applications due
to the excessive economic cost. Thus, we use the provided
Albert-small(Reimers & Gurevych, 2019) embedding model
for GPTCache with a 0.95 similarity threshold. Since the
Albert-small embedding model only supports English, we
limit GPTCache evaluations to the English samples, while
ExactCache and InstCache are evaluated on the full multi-
lingual datasets. Lastly, although GPTCache is based on
similar searching, we directly compare its hit rate with that
of ExactCache and InstCache, disregarding cases where
similar matches may not be consistent.

Hit Rate Measurement As short instructions have limited
tokens and the number of samples is constrained, for exam-
ple, 100,000 conversations in ShareGPT. For InstCache, we
split each dataset into 80% training to fine-tune the LLM
better, leaving 10% for validation and 10% for test sets. As
presented in Figure 7 (b), we observe that 10% is enough
to represent the instruction distribution and evaluate the hit
rate accurately. We also vary the training size for InstCache
and traditional caches from 10% to 80%. The results show
that InstCache consistently outperforms baselines across
various training size, demonstrating that the performance
improvement comes from the capability of LLMs instead of
larger training sets. We lowercase all instructions for both
LLM training and deployment, minimizing the complexity
of instructions while maintaining most information. We
fine-tune Llama3-8B on the training set and pre-populate
InstCache with it. After that, we depict the relationship be-
tween hit rate, cache size and negative log likelihood (NLL)
on the validation set and determine the NLL threshold σ
accordingly. Finally, we evaluate the hit rate of InstCache
on the test set, which serves as a representative subset of
the instruction space and reflects the incoming instruction

distribution.

Previous works of semantic cache evaluated hit rates on
LLM-synthetic datasets, employing rephrased sentences as
similar instructions and others as irrelevant. However, this
approach does not accurately reflect the hit rate under real-
world instructions. In this study, we measure hit rates of
ExactCache and GPTCache in a simulated scenario. For
a given cache size, we warm up the cache with twice the
number of instructions and measure the hit rate on an ad-
ditional 3x cache size of instructions. In Section 4.3, we
progressively increase the size for both warm-up and evalu-
ation of GPTCache and ExactCache, observing that the hit
rate remains consistent. In contrast, the increasing training
samples for InstCache gradually enhances its performance,
demonstrating the effectiveness of data reuse by LLMs.

Pre-Population Settings Our preliminary experiments re-
vealed that using a base model outperforms models that have
undergone supervised finetuning (SFT) and reinforcement
learning with human feedback (RLHF), likely due to the
alignment tax(Askell et al., 2021). To balance capability
with cache pre-population speed, we use a relatively small
LLM, i.e. LLaMA3-8B(Dubey et al., 2024). We fine-tune
all parameters of the model for two epochs with a batch
size of 256, a maximum sequence length of 100 tokens,
a weight decay of 0.1, and a learning rate of 2e-5 across
both datasets. Note that no data deduplication is performed,
as retaining repeated examples allows the model to learn
instruction frequency distribution.

Additionally, since user instruction datasets are often com-
posed of multi-turn conversations, we suggest that not all
follow-up instructions are context-dependent. For instance,
users might ask unrelated questions within the same session
for convenience. Therefore, we include instructions from
all conversation turns during LLM training and prepend a
system prompt <turnN> after <bos>, where N is the turn
index, starting from 1. For cache pre-population, we use
<turn1> prompts to predict context-independent instruc-
tions. We evaluate the effectiveness of this approach for
processing multi-turn conversations in Section 4.5. Our
experiments demonstrate that incorporating multi-turn in-
structions enhances the ability of InstCache for multi-turn
conversations while keeping a close performance on instruc-
tions from first-turn.

Given that InstCache can be pre-populated with a vast num-
ber of instructions, it is too resource consuming to produce
all possible answers for these instructions. For fairness, we
compare InstCache with baselines based on the number of
cached instructions, disregarding the actual storage size, yet
still reflecting relative size. Additionally, the answers for In-
stCache can be generated incrementally during the server’s
off-peak times or upon system requests. We provide the
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Figure 5. Solid lines and dotted lines in Subfigure (a) represent the estimated hit rate and the number of instrcutions, respectively. The ”x”
mark indicates the actual hit rate and cache size evaluated with pre-populated InstCache, demonstrating the effectiveness of the profile
for hit rate and the number of instructions. Subfigure (b) and (c) show hit rates of InstCache and baselines on LMSys and ShareGPT
datasets. Black vertical lines indicate the dataset size. InstCache consistently outperforms both baselines. Notably, since pre-populated
with predicted instructions from finetuned Llama3-8B, the hit rate of InstCache continues to grow beyond the limitation of the dataset size,
resulting in a significantly higher level of performance.

storage size consisting of both instructions and answers for
InstCache with relatively small thresholds in Section 4.2.4,
showing that InstCache incurs minimal storage overhead.

Hardware Platform For cache pre-population, we em-
ploy a master server with 512GB memory and slave servers
with a totally of up to 64 NVIDIA A100 GPUs and NVIDIA
A6000 GPUs. During performance evaluation, we use the
master server as the cache server of cache systems and an-
other machine with one NVIDIA A100 GPU as the LLM
Server.

4.2 Evaluation

4.2.1 Cache Sizing

As illustrated in Figure 5 (a), after evaluating the NLL of
each instruction in validation sets and estimating function
parameters in Eq. 4 with σ = 10, 11, we can profile the hit
rate and the number of instruction for InstCache. The figure
demonstrates that the NLL saturates quickly, indicating that
achieving a high hit rate requires a relatively small number
of instructions.

According to the profile, We pre-populate InstCache with
NLL thresholds up to σ = 19 and 18 on LMSys and
ShareGPT datasets, respectively. Moreover, as depicted
in Figure 5 (a), the hit rate and cache size of pre-populated
cache accurately follow the prediction of modeling, indicat-
ing the effectiveness of our pre-population algorithm.

4.2.2 Hit Rate

As shown in Figure 5 (b) and (c), InstCache consistently
outperforms both ExactCache and GPTCache. Notably, by

pre-populated with potential instructions using an LLM, the
hit rate of InstCache keeps growth and breaks the limitation
of dataset size, achieving significantly better performance.
Both ExactCache and GPTCache stop growing before the
size of dataset since we need 5x samples to evaluate their
performance. The size of GPTCache is more limited be-
cause GPTCache is evaluated on English-only samples. In
addition, the hit rates for ShareGPT dataset are relatively
lower than that of LMSys dataset, due to less repetitiveness
and longer lengths of instructions.

4.2.3 Speedup

0 10 20 30 40 50

Average Latency Saving Ratio (%)

ShareGPT

LMSys

InstCache GPTCache ExactCache

Figure 6. Average ratios of latency saving on LMsys and ShareGPT
datasets. InstCache outperforms GPTCache and ExactCache on
both datasets, achieving up to 2x speedup for LLM serving.

We measure the speedup by evaluating 1,000 samples under
the optimal settings for InstCache and baselines. We de-
ploy the cache system with vLLM on NVIDIA A100 GPU,
running Llama3-8B-Instruct as the serving model. Samples
are sent to the serving system one by one and the average
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Figure 7. Effect of training size and test size on hit rates, measured
across various traininig and test ratios of ShareGPT dataset, with
all cache sizes limited to 1,000. The results indicate that hit rates
of GPTCache and ExactCache remain consistent, while the hit
rate of InstCache continues to increase with higher training ratios,
benefiting from the capability of LLM. Moreover, subfigure (b)
illustrates that a small proportion of data is enough for the evalua-
tion of InstCache and baselines.

per token latency is measured. Answers have an average
length of 200 tokens. As shown in Figure 6, InstCache
saves up to half of average latency, accelerating the serving
system significantly. Moreover, due to additional latency
incurred by embedding instructions, the latency saving ratio
of GPTCache is worse than ExactCache.

4.2.4 Cost of Pre-Population, Memory and Storage

Table 1. Cost of pre-population, memory and storage across vari-
ous NLLs on LMSys dataset.

Max NLL Number of Pre-Population Mem Storage
(σ) Instructions GPU Time (s) (KB) (KB)
9 105 88 117 103
10 338 128 378 332
11 1,319 420 1,502 1,327
12 8,058 2,148 9,515 8,394

In Table 1, we present the costs associated with pre-
population, memory and storage. The cost values are
measured from the distributive pre-population utilizing 4
NVIDIA A100 GPUs. Costs for larger σ are not included, as
they were pre-populated using a dynamic cluster of GPUs,
making time cost estimation challenging. We generate an-
swers of average 200 tokens in length for each instruction
to evaluate the memory and storage costs of the cache. The
length of 200 tokens is derived from the average answer
length in the LMSys dataset(Zheng et al., 2024). As shown
in the Table 1, both pre-population times, memories and stor-
age sizes exhibit a linear increase with the number of instruc-
tions and, remaining relatively modest. Notably, InstCache
with σ = 19 and 51.34% hit rate on LMSys dataset com-
prises 4,253,981 instructions and corresponding answers,
resulting in an approximate memory cost of 4.5GB, which
is manageable on a personal computer.
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Figure 8. Subfigure (a) indicates the effect of instruction lengths.
Subfigure (b) shows hit rates of InstCache on different turns with or
without training with multi-turn instructions. The results illustrate
that fine-tuning with multi-turn instructions enhance the perfor-
mance of InstCache on multi-turn instructions, while keeping close
performance on instructions of first-turn

4.3 Effect of Data Scale on Hit Rate

4.3.1 Effect of Training Size

For convenience, we refer the size of warm-up for GPT-
Cache and ExactCache as their training sizes. As shown
in Figure 7 (a), the hit rates of GPTCache and ExactCache
remain consistent with increasing training size, while per-
formance of InstCache progressively enhances with larger
training size, indicating that simple data reuse cannot fully
exploit the potential of requested data. In contrast, leverag-
ing an LLM to learn patterns from existing data and predict
possible instructions can unlock the full potential.

4.3.2 Effect of Test Size

We designate the evaluation size for GPTCache as test size.
We evaluate the effect of test ratios for InstCache based on
training ratio of 40%. Figure 7 (b) illustrates that varying the
size of validation set does not impact hit rates of InstCache,
GPTCache and ExactCache. Consequently, we select a
10% ratio for both validation and test sets for InstCache,
allowing the majority of the data to be used for training,
which produces better-aligned LLMs.

4.4 Effect of Instruction Length

We evaluate the hit rate for instructions within various length
ranges. As shown in Figure 8 (a), InstCache achieves
higher hit rates for shorter instructions since cumulative
pre-population produce more short instructions than longer
ones. Hit rates remains consistent for longer instructions.

4.5 Multi-Turn Instructions

As mentioned in Pre-Population Settings, we include in-
structions beyond the first-turn to predict those context-
independent instructions across multi-turns. As shown in
Figure 8 (b), incorporating these instructions does not nega-
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tively impact the hit rate of InstCache on first-turn instruc-
tions and enhances the capability of InstCache to hit instruc-
tions in multi-turn scenarios.

5 RELATED WORK

LLM serving systems receive an overwhelming number of
requests daily. Several caching systems have been proposed
to efficiently process these requests.

Semantic Cache In the Semantic Cache, as proposed in
GPTCache(Bang, 2023), each instruction is embedded as a
vector, which is stored in a database along with the instruc-
tion and answer. Semantic Cache retrieves answers for an
incoming instruction by searching for the most similar ones
in the database and reuses the answer of the previously query
upon a hit. Following the same idea, MeanCache(Gill et al.,
2024) introduces a user-centric semantic caching system that
preserves privacy of users. MeanCache also employs fed-
eral learning to build different embedding models locally to
enhance the performance. There are also methods(Li et al.,
2024; Mohandoss, 2024) aiming to improve the embedding
quality through preprocessing instructions. Notably, dif-
ferent from previous methods evaluated on LLM-synthetic
datasets(Bang, 2023; Rasool et al., 2024), SCALM(Li et al.,
2024) proposes to evaluate the effectiveness of semantic
cache on real-world datasets, such as LMSys dataset. While
semantic cache saves computational resources, it introduces
a dilemma between accuracy and embedding latency. For
instance, GPTCache incurs an additional latency of approxi-
mately 0.3 seconds(Bang, 2023) for embedding and cache
lookup, which is considerable.

KV Cache Key-Value Cache (KV Cache) reuses the key-
value states of previous tokens to accelerate the genera-
tion of subsequent tokens. For typical LLMs like Llama-
65B, one key-value state requires a 2.5MB of space(Gao
et al., 2024), quickly exhausting memories of GPU and
CPU. To address this challenge, several works have been
proposed. PageAttention(Kwon et al., 2023) suggests to
manage the KV Cache by virtual memory management,
minimizing the overhead of memory allocation. Other
works, such as H2O(Zhang et al., 2023) and Attention-
Sink(Xiao et al., 2024), focus on discarding key-value states
of less important tokens. To further minimize storage re-
quirements, SGLang(Zheng et al., 2023) and ChunkAtten-
tion(Ye et al., 2024) propose to share common prefix KV
Caches. Multi-Head Latent Attention(DeepSeek-AI et al.,
2024) compresses the key-value states by low rank projec-
tion, reducing the storage cost. Additionally, Attention-
Store(Gao et al., 2024) suggests to store the KV Cache
in multi-level storage systems. Despite of these advance-
ments in managing KV Cache storage, scaling the number
of cached instructions remains a challenge. Additionally,

since KV-Cache focuses on lower level decoding operations,
it’s orthogonal to InstCache proposed in the work.

Search Engine Cache Caching systems for search engine
share many characteristics with LLM Cache. As search
engine process keyword queries and return links to web-
pages that potentially meet users’ needs, the web cache
saves results according to certain policies. Various works
have been proposed to provide efficient caching system for
web searching(Saraiva et al., 2001; Lempel & Moran, 2003;
Baeza-Yates & Saint-Jean, 2003; Long & Suel, 2005; Fagni
et al., 2006; Zhang et al., 2008; Marı́n et al., 2010). Notably,
Probability Driven Cache (PDC)(Lempel & Moran, 2003),
which is the most similar one to our work, assigns priorities
to cached results based on the probabilistic model of users.
In this work, we propose to determine which instruction is
more likely to be requested using an LLM. By leveraging
the LLM, we are capable of directly modeling the probabil-
ity of instructions, instead of modeling the probability from
other characteristics as in PDC.

6 DISCUSSION

When the dataset size is sufficiently large, InstCache can
accurately profile the distribution of instructions by fine-
tuning LLMs and ensures a reliable hit rate. However, un-
like traditional caches, the population phase and serving
phase of InstCache are decoupled and following different
mechanisms. Therefore, gradual shifts in the instruction
distribution can lead to a decline in hit rates over time. To
tackle this challenge, we need to fine-tune LLMs periodi-
cally to maintain an up-to-date modeling of the instruction
distribution. As shown in Table 1, the pre-population can
be performed with a relatively short period, thereby regular
pre-population will not incur significant overhead. In ad-
dition, existing instructions and answers can be leveraged
to reduce the cost of next pre-population, facilitating the
process of next pre-population.

7 CONCLUSION

In this paper, we propose InstCache, an efficient predictive
cache system for LLM inference serving. Pre-populated
with predicted instructions from an LLM, InstCache can
hit unseen instructions. Moreover, the hit rate and cache
size can be accurately determined through the relationship
between negative log likelihood, hit rate and the number
of instructions, allowing InstCache to deliver a predictable
level of performance. Experimental results justify the ef-
fectiveness of InstCache. In the future, we will develop a
distributed implementation of the cache system on larger
computer clusters to further performance enhancement.
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