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Multitask Learning for SAR Ship Detection with
Gaussian-Mask Joint Segmentation

Ming Zhao, Xin Zhang, André Kaup, Fellow, IEEE

Abstract—Detecting ships from synthetic aperture radar (SAR)
images is inherently subject to the limitations of SAR’s imaging
mechanism. SAR object detection technology has rapidly ad-
vanced in recent years due to deep learning based techniques
for detecting objects from optical images. SAR ship detection
still faces some challenges due to the strong speckle noise,
complex surroundings, and variety of scales. This paper proposes
a multitask learning framework for object detection (MLDet)
detect ships in SAR images. The proposed end-to-end framework
consists of object detection task, speckle supression task and
target segmentation task. Firstly, an angle classification loss with
aspect ratio weighting is explored during object detection to
improve the accuracy by making the detector sensitive to the
periodicity of angular and the aspect ratio of objects. Secondly,
the speckle supression task employs a dual-feature fusion at-
tention mechanism to suppress noisy background information
and fuse shallow features and denoising features, which helps
MLDet be more robust to speckle noise. Thirdly, the target
segmentation task with rotated Gaussian-mask is explored to
further help the detection network to extract the regions of
intersect from the cluttered background, as well as improving
the detection efficiency through pixel-by-pixel prediction. The
rotated Gaussian-mask for ship modeling ensures that the center
of a ship has the highest probablities to be labeled as an object,
and the probablities of the remaining regions are gradually
reduced under a Gaussian distribution. Assisted by these two
subtasks, the shallow level features are robust to speckle noise
and reliably support deep level feature learning. In addition, the
weighted rotated boxes fusion (WRBF) strategy is adopted to
combine the predictions of multi-direction anchors for rotated
objects, and eliminate the anchors beyond the boundary as
well as the anchors with high overlap rates but low scores. A
large number of experiments and comprehensive evaluations on
SAR ship detection datasets SSDD+ and HRSID have shown the
effectiveness and superiority of the proposed method. The code
is available from https://github.com/zx152/MLDet .

Index Terms—Ship detection, multitask learning, synthetic
aperture radar (SAR)

I. INTRODUCTION

SYNTHETIC aperture radars (SAR) can be used in all
weather conditions, both day and night, and are capable

of producing high-resolution images. Maritime surveillance,
ocean monitoring, and fishery control have benefited greatly
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from the rapid development of spaceborne SAR systems,
e.g., RADARSA T-2, TerraSAR-X, Sentinel-1, and Gaofen-
3. However, the special imaging mechanism inherent in SAR
imagery may make it difficult to identify targets of interest
in massive SAR images. Searching for targets by eye would
be time-consuming and impractical in such scenarios. It has
been the focus of research to discover and identify various
targets in SAR images as quickly and accurately as possible.
Specifically, SAR ship detection has become increasingly
popular due to its practical applications, including marine
monitoring, maritime management, and intelligence gathering
[1]. Therefore, Ship detection in SAR imagery has gained
increasing attention in recent years, and more and more
researches have been studies [2].

As a general rule, the traditional methods of ship detec-
tion rely primarily upon a statistical analysis of the image
pixels, which can be mainly divided into two groups [3] −
[5]. The first group is the threshold-based methods, which
firstly model the background clutter by the filtering theory
of constant false alarm rate (CFAR), and then adaptively
adjust the detection threshold to distinguish the ship objects
from the backgrounds [6], [7]. These threshold-based methods
perform well in offshore areas in SAR images, but easily fail
to distinguish between coast and ship in inshore areas. Besides
that, it is difficult to estimate parameters because of the
higher complexity and higher fitting accuracy for the modeling
process. The accuracy of background clutter modeling is often
weighed against the complexity of the computation by many
researchers [9], [10]. Li and Zelnio [11] proposed a SAR ob-
ject detection method based on the generalized-likelihood ratio
test, which statistically models both of the background clutter
and ship targets. As well as threshold-based methods, there
is another group methods based on geometric characteristics
of the targets and backgrounds, such as standard deviations
and non circularity [12], [13]. Principal component analysis
[14] and Bayesian theory [15] are often employed in these
methods to extract various statistical characteristics, i.e., shape,
area, size, and texture. After that, the strategy of template
matching is adopted to conduct the SAR ship detections. The
statistical characteristics of SAR images by these traditional
methods are fully exploited, and generally produce good
performance for some spescific scenes, particularly asisted
with prior information. However, their adaptability of manual-
designed features is insufficient, and cannot guarantee robust
performance for complex scenarios. Besides that, traditional
methods usually need complicated steps, and consequently can
not directly be applied to the real-time detections.

In recent years, there has been a significant amount of
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attention paid to the target detections for remote sensing
images based on convolutional neural networks (CNNs). In
comparison with traditional methods, CNN is capable of
learning the features from large amounts of image data and
determining the target locations with greater accuracy and
robustness. In general, CNN-based detection methods can
be divided into two groups based on the detection strategy,
i.e., one-stage methods and two-stage methods. The two-stage
methods firstly generate amounts of proposals to be classified
and regressed. R-CNN [16] is the first two-stage method to
be applied to the field of object detection. As an extension
of R-CNN [16] and SPPNet [23], Fast R-CNN [17] proposes
a region of interest (RoI) pooling layer to enhance the speed
and accuracy of detection. To extract region proposals, Faster
R-CNN [18] replaces the selective search by the proposed
region proposal network (RPN). Based on Faster R-CNN,
Mask R-CNN [25] adds a mask branch to predict an object
mask. The use of region-based fully convolutional networks
(R-FCNs) [26] has been shown the ability of significantly
accelerating the detection speed through sharing calculations
derived from Faster R-CNN. In addition, the feature pyramid
network (FPN) [27] also addresses the problems of multiscale
changes in object detection. Aiming at solving this prob-
lem, this network integrates multilayer feature information
that widely adopted by other algorithms. Libra R-CNN [28]
overcomes the imbalanced problem during training by using
IoU balanced sampling, balanced feature pyramids, as well as
the balanced first loss. By utilizing a multistage architecture,
Cascade R-CNN [34] avoids the problems associated with
overfitting during the training stage as well as the quality mis-
match during the inference stage. Besides that, it has become
increasingly necessary to improve deep learning models that
can be deployed in real-time scenarios or scenarios using as
few resources as possible. Ghosh et al. [29] examined pruning
to reduce the number of calculations and required weights by
employing deep learning models for object detection. Quast
et al. [30] further accelerated the object detection process by
utilizing parallel computing. Group Lasso [33] is an efficient
regularization to learn sparse structures. Liu et al. [31] utilized
group Lasso to constrain the structure scale of LRA. To adapt
DNN structure to different databases, Feng et al. [32] learned
the appropriate number of filters in DNN.

Even though two-stage methods are capable of obtaining
accurate detection results for remote sensing images, the high
time complexity makes them unsuitable for most realistic
applications. The one-stage methods are different from two-
stage methods in that the detection result is obtained directly
from the input image instead of generating candidate regions.
For instance, YOLO series algorithms [20]– [22], [35] treat
detection as a regression task and employ CNNs to achive
effective detections. The single-shot multibox detector (SSD)
[19] detects objects of different sizes assisted with the feature
maps of different scales. As an one-stage algorithm, RetinaNet
[24] alleviates the imbalance problem between the positive
samples and the negative samples by applying the focal loss.
In recent years, anchor-free models have come out, which
has no more need the designed anchors according to the
prior knowledge. The key-point based method CornerNet [36]

and the anchor-point-based methods, e.g., FCOS [37] and
CenterNet [38] are these representative anchor-free algorithm.

Even though the CNN-based detection algorithms perform
better than the above traditional methods [3]- [15], they cannot
be directly applied to SAR ship detection. Firstly, owing
to the unique nature of SAR imaging technology, there are
complex backgrounds with considerable noise in SAR images,
particularly in the shore areas, as shown in Fig. 1(a). Moreover,
ship detection in SAR images will produce unreliable false
alarms due to the presence of a wide range of disturbances,
including sea clutter, islands, and land. Secondly, as shown
in Fig. 1(b), due to the multi-resolution imaging modes and
different shapes of ships, SAR images often contain multiscale
targets. Upon mapping small targets to the final feature map,
little information is available to refine the location and classify
the objects, which causes high false negatives and low true
positives. Thirdly, the strong speckle noise presented in SAR
images hinders the learning of low-level semantic features for
the detection of objects at a higher level, as well as affecting
low-level feature extracting in shallow layers. For instance,
both ships inshore and buildings on the shore appear as the
bright white speckles as if they are floating in the water.
Therefore, the speckle noise will easily destroy the object
boundaries, which renders them difficult to learn.

 

(a)

 

(b)
Fig. 1. Examples of SAR images. (a) SAR images with complex backgrounds.
(b) SAR images with multiscale ship targets.

Aiming to solve the problems mentioned above, researchers
attempted to improve the performance for CNN-based SAR
ship detection. An et al. [46] firstly introduced CNNs to
segment land and sea, and then applied CFAR to detect ship,
which improved its performance at sea-land junctions. Faster
R-CNN combined with CFAR was improved by Miao et al.
[47]. As a result of the improved Faster R-CNN, small targets
can now be detected more effectively in the protection window
of CFAR. Increasingly, researchers are focusing on end-to-end
deep learning based methods for SAR ship detection, which
gets benefit from the good development for CNNs and the
rapid enrichment of SAR image datasets. According to Wang
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et al. [39], a two-stage detector extracts foreground proposals
and distinguishes objects from virtual shadows via coarse and
fine recognition stages. After introducing saliency information
into the feature extraction, the network proposed by Duet al.
[40] was able to focus on the object areas more effectively.
Zhao et al. [41] developed an attention receptive block applied
to SAR ship detection, and a fine-grained feature pyramid
was integrated into the attention receptive block for feature
extraction. Besides that, more and more single-stage detectors
are applied to SAR ship detection in place of two-stage
detectors on the advantage of the faster speed. A SAR ship
detector proposed by Deng et al. [42] learned from scratch,
and used positional score maps to encode the positional
information into ship proposals. Chen et al. [43] included a
deconvolution module as well as a prediction module based
on SSD. Yang et al. [44] proposed R-RetinaNet as a solution
to the problems of the feature scale mismatches, conflicting
subtasks of learning, as well as the unbalanced samples of
positive responses. Chen et al. [45] explored a novel attention
mechanism to improve the performance of detectors, which
combines knowledge distillation with attention mechanisms.

According to the related works mentioned above, it is
clear that the complex background, speckle noise, and the
diversity of ship scales impact on the feature learning of
objects in SAR images. Treating SAR ship detection as a
single problem will ignore the close connections between
denoising of speckles, target segmentation, and the detection
of objects. In this paper, motivated by the observation that
the cooperative evolution between the low-level features and
the high-level features contributes to feedback-driven feature
learning with the end-to-end frameworks, a multitask learning
ship detection (MLDet) framework is proposed. It consists of
three subtasks, i.e., an object detection module, a denoised
feature fusion module, and a target segmentation module. The
contributions of this work are as follows:

1) A novel multitask learning framework for SAR ship de-
tection, assisted with speckle supression task and target
segmentation is presented to solve the object detection
problem in SAR images. Compared to traditional single-
task learning, the multitask learning has more powerful
ability of learning features for ship detection in SAR
images.

2) An angle classification loss with aspect ratio weighting
is explored to improve the robustness of detections,
especially for SAR ships with the small aspect ratios.
This further improves the accuracy on the aspect of
making the detector more responsive to the periodicity
of angular angles and aspect ratios.

3) The denoised feature fusion (DFF) module is proposed
to reduce the interference of complex backgrounds and
enhance the salient features of target ships. A dual-
feature fusion attention mechanism is designed into
the DFF module to fuse the shallow features and the
denoised features, which effectively makes the networks
pay more attention to the feature extraction for targets.

4) A target segmentation module with rotated Gaussian-
mask is explored to furtherly help the detection network

to extract and propose the regions of intersect from the
cluttered background. Using a rotated Gaussian mask
for ship modeling ensures that the ship center is most
likely to be labeled as an object. The probabilities of
the remaining regions are gradually reduced according
to the distribution of Gaussian.

5) The commonly used fusion strategy non maximum sup-
pression (NMS) places too much emphasis on classifica-
tion confidence, but pays insufficient attention to local-
ization accuracy. In order to improve this, the weighted
rotated boxes fusion (WRBF) strategy is adopted to com-
bine the predictions of rotated object detection and target
segmentation, expecting to increase the generalization
ability of the SAR ship detector.

This paper is organized as follows: Section II introduces
the proposed method in detail, Section III provides the ex-
perimental results and the analysis, and Section IV draws the
conclusions.

II. METHODOLOGY

In order to realize the effective SAR ship detection with
cluttered backgrounds, speckle noise and a diversity of
ship scales, a multi-task learning detection framework called
MLDet is constructed in this paper. MLDet accomplishes
this goal by jointly learning object detection task, speckle
suppression task, and target segmentation task. As shown in
Fig. 3, the proposed MLDet consists of three modules, i.e.,
object detection module, denoised feature fusion module and
target segmentation module.

A. Object Detection Module

The features of the orginal image are extracted in the object
detection module, which provide important information for
simultaneously learning speckle suppression, target segmenta-
tion and object detection. This module consists of CSPDarknet
and a common block shared with the other two modules.
The proposed network structure is preserved by equipping
the common block with residual blocks of feature extractor,
instead of designing them separately. In particular, twenty-
three residual blocks are used in five residual stages denoted as
F1, F2, F3, F4 and F5 during feature extraction. The shallow
features may contain more spatial information conducive to
speckle suppression, while the deep features extracted in deep
layers contain less spatial information. Therefore, we choose
the first eleven convolutional layers in the object detection
module to compose the common block and make the feature
map F2 as the output of this module, as shown in Fig. 2.
The resulting feature map F2 is simultaneously delivered to
the DFF module for speckle suppression, and then delivered
to the dual-feature fusion attention mechanism (DFA) for the
fusion of two feature layers. The fused feature map F2cat is
then sent to the remaining residual blocks for remained feature
extraction.

Following the acquisition of the feature map, the prior
anchors are produced at a place corresponding to the anchor
point associated with each pixel in the feature map. The
intervals of the anchor points are dependent on the spatial
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Fig. 2. The architecture of the proposed MLDet including, object detection module, denoised feature fusion module, and target segmentation module.

connections between the original image and the corresponding
feature map, which is well explained and verified in the
previous researches. In most previous studies, anchors based
on horizontal bounding boxes (HBB) were used to detect ship
targets. However, recent researches have demonstrated that
oriented bounding boxes (OBB) can describe targets more
accurately by adding a new orientation angle parameter. It is
also important to note that the OBB can also be effective in
improving detection performance, due to the good adaptations
to densely arranged ships. The OBB for object detection
shown in Fig. 3 is defined by the following parameters, i.e.,
the coordinates of bounding box’s central point (x, y), the
bounding box’s height and width h and w, as well as the
rotation angle θ. As defined by the rotation angle θ of the
OBB, it is the angle between the horizontal axis and the long
axis of the OBB that ranged from −90◦ to 90◦.

(x,y)

X-axis

𝜃 ∈ [−90°, 90°]Y
-a
xi
s

Fig. 3. The definition of rotated rectangle θ .

Although this definition method avoids the exchangeabil-
ity of edges problem (EoE problem), it is not suitable for
square-like boxes demonstrated in Fig. 4. Fig. 4(a) and (b)

are the ground truth and candidate prediction bounding box
respectively, while the correponding yellow labeled square-
like boxes have the same height h as well as width w. Both
of the aspect ratio between square-like boxes are close to 1,
but their angles are −70.6◦ and 19.7◦ respectively. As a result
of calculating Intersection-over-Union (IoU) and regression or
classification loss, the training produces relatively high loss
values by these square-like boxes, although the IoU between
the predicted bounding box and the ground truth is close
to 1. Thus, the prediction bounding box shown in Fig. 4(b)
increases the difficulty when it comes to predict objects with
small aspect ratios.

In this paper, we propose to solve this problem by adding
a periodic trigonometric function to the long-side definition
method in order to define square-like boxes. As the aspect
ratio increases, this phenomenon becomes less noticeable. We
define an angle classification loss with aspect ratio weighting
(ARW) as follows:

Lθ

(
θ, θ̂

)
=

∣∣∣sin(α(
θ − θ̂

))∣∣∣× Lsmoothl1

(
θ, θ̂

)
α =

{
1, (h/w) > r
2, otherwise

(1)

where h and w are the values of the long side and the short
side of the ground truth respectively. r is the threshold of
the aspect ratio, which is set as 1.5 in this paper. α is the
aspect ratio weighting. Lsmoothl1 is the smooth L1 loss [17].
θ and θ̂ are the rotation angles of ground truth and predition
respectively. If the object has a certain aspect ratio, the period
of

∣∣∣sin(α(
θ − θ̂

))∣∣∣ is set to 180◦, α = 1; Otherwise, if
the object is square-like, the period is refined as 90◦, α = 2.
Therefore, the model is capable of solving periodicity of angle
(POA) problems and adjusting the strategy of trainings more
flexibly for bounding boxes with different aspect ratios.
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𝜃

(a)

𝜃

(b)
Fig. 4. A demonstration of the limitations of the long-edge definition method
for square-like boxes, which have a high IoU but a large training loss due to
their angle mismatch. (a) Ground truth. (b) Prediction boxes.

The loss function of target detection is defined as follows:

Lobject =
1

N

N∑
n=1

∑
j∈{x,y,h,w}

Lreg

(
tnj , t̂nj

)
+

1

N

N∑
n=1

Lθ

(
θn, θ̂n

)
+

1

N

N∑
n=1

Lcls (pn, p̂n)

(2)

where N denotes the number of the predicted anchors. tnj is
the targets vector of ground truth, and t̂nj denotes the predicted
offset vectors. pn and p̂n is the gournd truth and the probability
distribution of various classes respectively. The regression loss
of detectors Lreg is the smooth L1 loss, while the classification
loss of detectors Lcls is the focal loss [24].

B. Denoised Feature Fusion Module

The noises in SAR images can disrupt the features extracted
by traditional blocks from the input images, thereby making
object detection less accurate. The strong speckle noise existed
in SAR images affects the feature learning by shallow layers,
and also hinders the semantic feature learning by higher layers.
The detection performance of SAR ship detection can be
improved by the denoised feature maps. However, the feature
information of the input image is significantly reduced by
denoising, especially for small scale targets. Directly applying
the denoised feature map to the following detection module
does not perform well on small scale ships, as well as en-
countering an incorrect detection and missed detection in SAR
target detection. Therefore, the denoised feature fusion module
(DFF) is proposed to obtain the features, which can better
represent the target information. This module can produce
noise-free images directly, but its purpose is not to produce
the noise-free image as the input for the segmentation and
detection modules, but rather to fusing the original feature
map with the denoised feature map.

In general, the DFF module consists of down-sampling
convolution, up-sampling convolution and dual-feature fusion
attention mechanism. The down-sampling process is composed
of six convolutional layers and two max-pooling layers that
each reduces the resolution by a factor of two. Then, in the
up-sampling stage, the feature map is up-sampled to the size
of the original image by the transpose convolution. When the

size of the feature map becomes the same as F2, these feature
maps are delivered to the DFA mechanism for fusion.

The dual-feature fusion attention mechanism is illustrated in
Fig. 5. Take the feature layer F ∈ RH×W×C as an example. In
feature layer F , different channels represent different features,
and each channel contributes differently to the final detection
result. Firstly, two identical average pools are used to compress
the spatial dimension of the two feature layers in parallel,
obtaining two channel-attention vectors, respectively. Then,
these vectors are sent to a sigmoid function to generate the
weight map of channels M2 and M2de. Thirdly, the refined
feature maps FC2 and FC2de are generated by multiplying the
input F2, F2de, and channel-weight maps M2, M2de element
by element respectively. Finally, the two feature maps are
concatenated and the feature map is obtained with more promi-
nent target information F ′

2 ∈ RH×W×C by 1*1 convolution
operation. The process can be described as:

F ′
2 = f1∗1 ⊗ (M2 ⊗ F2⊕M2de ⊗ F2de) (3)

where f1∗1 is the convolutional layer with 1*1 filters. σ de-
notes the sigmoid function, ⊗ is element-wise multiplication,
and ⊕ denotes the concatenation of two feature layers.

F2

M2

M2de

F2de FC2de

FC2

F2cat
F’2

Addition Avgpooling+sigmoid

Multiplication Convolution block

Fig. 5. Illustration for dual-feature fusion attention mechanism

The fused features are restored to the same size of the
original image by deconvolution. The denoised image is ob-
tained after activating by the sigmoid function. To train clarity
enhancement, the denoised feature fusion task adopted the
mean square error (MSE) loss is formulated as follows:

Ldenoise =
1

W

1

H

W∑
i=1

H∑
j=1

∣∣∣∣∣∣Yij − Ŷij

∣∣∣∣∣∣2 (4)

where Ŷij is the estimated denoised image, and Yij is the
corresponding ground truth.

C. Target Segmentation Module

Since ships have a large aspect ratio, representing ship
objects with an oriented bounding box (OBB) often includes a
great deal of background information. Accordingly, the pixels
of the background are distributed at the boundary of the
OBB, while the pixels of foreground are concentrated on the
center of the OBB, which has a significant impact on ship
identification and network convergence.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

To assist the detection network in extracting the intersection
regions from the cluttered background of SAR images, a target
segmentation module with rotated Gaussian-mask is presented
for ship modeling based on the geometric characteristics. The
ship modeling is conducted by assigning the centers of the
OBB as the ship centers with the highest confidence, while
other pixels are filled according to the gaussian distribution.
The covariance of confidence distribution is dependent on
the aspect ratio of the ships. As illustrated in Fig. 6, the
horizontal bounding boxes of the ships are extracted firstly,
and meanwhile the long sides and short sides of the ships are
respectively defined as the height and width for each bounding
box. Then, according to the Gaussian distribution rule, the
confidence of each pixel in the rotated Gaussian mask can be
calculated as follows:

g(i, j) = exp

(
−
(
λw

(ih − x)2

2w2
+ λh

(jh − y)2

2h2

))
[

i− x
j − y

]
=

[
cos θ − sin θ
sin θ cos θ

]
∗
[

ih − x
jh − y

] (5)

where (x, y) denotes the coordinate of ship center. h and w
respectively represent the height and width of the ship objects.
θ is rotation angle. λw and λh are the covariance control
factors. Depending on the rotation angle θ of the ship, the
coordinate transformation is applied to the coordinates of the
horizontal Gaussian mask (ih, jh) and the rotated Gaussian
mask (i, j).

The semantic features are provided by incorporating lower-
level feature maps with location information and higher-
level feature maps with context information as the outputs of
the DFF module. The dilated convolution offers an efficient
mechanism for controlling the field of view, which finds
the best balance between accurate localization and context
assimilation. Therefore, we firstly use two 3*3 convolution
layers with different dilated rates to obtain the paired feature
maps < F41, F42 >,< F51, F52 >. Then, the small feature
map F51 and F41 are deconvoluted and fused with the large-
scale feature map F42 and F52 by 1*1 convolution to obtain
the feature map F3cat and F4cat. The same deconvolution and
fusion operation is performed on pairs of < F3cat, F4cat >
to obtain Fse. Finally, the final segmented target is obtained
through a series of transpose convolution and sigmoid func-
tions.

As a result of the semantic feature-learning task, the learned
features are integrated into the perception of object semantics,

thus improving the performance of recognition. The target
segmentation loss is formulated as follows:

Lsegment =
1

W

1

H

W∑
i=1

H∑
j=1

gij (1− p̂ij)
γ
log (p̂ij)

p̂ij =

{
pij , yij = 1

1− pij , otherwise

(6)

where pij ∈ {0, 1} is the estimated probability of different
classes for the location (i, j), yij ∈ {0, 1}. yij = 0 represents
the background, and yij = 1 represents the ship. gij is the
weight map obtained by the rotated Guassion mask to reduce
the background pixel contributions. γ is the hyperparameter
of the focal loss.

D. Weighted and Rotated Boxes Fusion

As shown in Fig. 7, compared with the original horizontal
anchors, the anchors with multiple directions at the same
anchor point duplicate by many times, and meanwhile these
anchors are in an overlapped arrangment. As well as anchors
beyond the boundary, anchors with low scores as well as
high overlap rates also need to be eliminated. Non-maximum
suppression (NMS) is one of the most commonly used fusion
strategies, but it places too much emphasis on classification
confidence without considering the accuracy of localization.
Even though the improved soft-NMS [24] can alleviate the
existing problem to some extent, many false alarms still occur
due to the retention of redundant boxes.

Fig. 7. Illustration for anchors overlapped with each other.

Guassian maskSAR image

 Hoizaontal bounding 
box with Rotation Make guassian 

Two Dimensional 
Gaussian Kernel

patch map

Fig. 6. Detailed process of the rotation Gaussian-mask ship labeling.
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In this paper, expecting to improve the generalization capa-
bility of SAR ship detectors, WRBF is adopted to combine
the predictions of object detection and target segmentation
to simultaneously take the confidence of classification as
well as the accuracy of localization into account. The target
segmentation task is not able to directly form the final object
OBBs for the following predictions. To identify the oriented
rectangle with the minimum region that encloses the mask
region, the topological structural analysis algorithm [53] is
applied.

Weighted rotate

boxes fusion

Groud truth

Prediction of target segmention

Prediction of object detection

Fused boxes

(x,y)

(x,y)

(x,y)

(x,y)

(x,y)

Fig. 8. Illustration of the WRBF strategy.

According to the WRBF strategy, the confidences of the
predicted boxes are used in order to update the predictions
of localizations as shown in Fig. 8. To be more specific, the
predicted boxes with a higher classification confidence will
contribute more proportionately to the final averaged boxes.
The WRBF strategy is illustrated as Algorithm 1.

The joint training loss is given as inluding the losses for
denoise, segmentation, detection and classification.

Ltotal = λ1 ∗ Ldenoise + λ2 ∗ Lsegment + λ3 ∗ Lobject (9)

where λ1, λ2, λ3 are the hyper-parameters of object detection
subtask, denoising subtask and target segemention subtask
respectively.

III. EXPERIMENTS

A. Experimental Data and Platform

In this experiment, the performance of our proposed method
is evaluated and analyzed using two representative SAR ship
datasets, i.e., SAR ship detection dataset+ (SSDD+) and High-
Resolution SAR Images Dataset (HRSID). SSDD+, which is
a multisensor, multiresolution, and multisize dataset provided
by Li et al. [49]. There are 1160 images in the SSDD dataset
and 2456 ships ranging in scale from 7 × 7 to 211 ×
298. These images are available in the following polarization
modes: HH, HV, VV, and VH, with the different resolution
from 1 to 15 meters. The HRSID provided by Wei et al.
[52] is established by images from 36 TerraSAR-X images,
99 Sentinel-1B images, and 1 TanDEM-X image for ship
instance segmentation and ship detection. As a result of the
cropping process, these large-scale images have been cropped
out into 800 × 800 pixels. Consequently, it includes 16951
ships distributed in 5604 SAR images in total. These cropped
images are divided into the training set, the validating set,

Algorithm 1 Weighted and Rotated Boxes Fusion Strategy.
Input: Bob and Bse are the predicted boxes of object detec-

tion task and target segmentation task, respectively. thr is
the threshold of IoU.

Output: LF is the fusion boxes.
1: L ← Bob Bse

2: Initial: LE: a set of boxes for box clusters. LF: a box on
the location.

3: while L is not empty do
4: IoU is calculated between a box in LF and the

boxcurrent in L
5: if IoU < thr then
6: Lend

E ← boxcurrent, Lend
F ← boxcurrent

7: else
8: Lcur

E ← boxcurrent, Lcur
F is updated by Lcur

E

C =

∑T
n=1 Cn

T
(7)



x̂n, ŷn =

∑T
n=1 Cn × x̂n, ŷn∑T

n=1 Cn

ĥn, ŵn =

∑T
n=1 Cn × ĥn, ŵn∑T

n=1 Cn

cos θ̂n, sin θ̂n =

∑T
n=1 Cn × cos θ̂n, sin θ̂n∑T

n=1 Cn

(8)

9: end if
10: end while

and the testing set with the proportion of 7:2:1. As for the
benchmark, the images in two datasets are resized to 320 ×
320 pixels, which serves as the inputs of detectors. In the
denoising task, since that there are usually no corresponding
noise-free images for real SAR images, we adopt the training
idea in [56] and [57] to treat the two corresponding SAR
images with the same scene and different polarization methods
as the label pairs for denoising network training. 137327 pairs
of corresponding HH and HV images are selected as the
training set for DDF module.

B. Evaluation Metrics

Precision, recall and F1 scores are employed to evaluate the
performance of SAR ship detectors. The definition of these
evaluation metrics is given as follows:

Precision =
NTP

NTP +NFP
(10)

Recall =
NTP

NTP +NFN
(11)

where NTP (true positives), NFP (false positive), and NFN

(false negative) refer to the numbers of correctly detected
ships, false alarms, and missing ships respectively. A predicted
bounding box is considered as a true positive if its IoU
with the ground truth is higher than a given IoU threshold,
i.e., 0.5 in this paper. Otherwise, it is regarded as a false
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TABLE I
ABLATION STUDIES OF MLDET ON SSDD+

DFF Module TS Module ARW loss Precision Recall F1-score Ap50 AP75

% % % 0.839 0.825 0.832 0.847 0.475
" % % 0.853 0.866 0.859 0.893 0.502
% " % 0.916 0.895 0.905 0.917 0.579
% % " 0.855 0.830 0.842 0.864 0.492
" " % 0.933 0.945 0.939 0.947 0.567
" % " 0.872 0.888 0.880 0.918 0.540
% " " 0.937 0.940 0.939 0.939 0.565
" " " 0.941 0.946 0.943 0.953 0.601

TABLE II
ABLATION STUDIES OF MLDET ON HRSID

DFF Module TS Module ARW loss Precision Recall F1-score Ap50 AP75

% % % 0.817 0.810 0.813 0.814 0.452
" % % 0.856 0.837 0.847 0.855 0.492
% " % 0.909 0.876 0.892 0.883 0.521
% % " 0.838 0.820 0.829 0.824 0.438
" " % 0.910 0.902 0.906 0.917 0.556
" % " 0.884 0.862 0.873 0.868 0.515
% " " 0.916 0.903 0.909 0.896 0.524
" " " 0.931 0.915 0.923 0.928 0.534

positive. Moreover, the predicted bounding boxes with the
highest confidence score are seen as the true positive, if the
IoU of several ones with the ground truth are all higher than
the threshold.

F1-score is a comprehensive evaluation metric for the quan-
titative performance of different models by simultaneously
considering the precision rate and recall rate.

F1-score =
2× Precision × Recall

Precision + Recall
(12)

Additionally, the average precision (AP) metric is the most
frequently used metric to evaluate the performance of a
detector. This paper only calculates the AP of the ships to
assess the ability of our method. AP is defined as the area
under the precision–recall curve as follows:

AP =

∫ 1

0

P (R)dR (13)

If AP is calculated at the IoU threshold of 0.5, it can be
defined as AP50. Similarly, AP75 denotes the AP calculated
at the IoU threshold of 0.75, which needs higher localization
accuracy to further evaluate the detection ability. AP75 is an
evaluation indicator for the MS COCO dataset [61].

C. Experiment Settings

The experiments are conducted using the Pytorch frame-
work with Ubuntu 16.04 and Python 3.5. A NVIDIA
RTX2080Ti GPU and 128GB memory are included in the
experimental hardware platform. Throughout this paper, the
ablation experiments and parameter analysis have been con-
ducted using the SAR datasets mentioned above. The network
architecture CSPDArknet in the single-stage yolo series is

selected as the backbone to effectively extract features. Pre-
processing the dataset is important to save memory and
speed up training while improving training accuracy. For both
datasets, some pre-processing skills are used in experiments
on different models, including scaling the images to the same
size, normalising the pixel values, data enhancement.

Training a detection model can be done without the need for
large amounts of data and pre-trained models [62], especially
for the modified structures of pre-trained models and specific
image datasets. Therefore, our model is trained from scratch,
meaning that no pre-trained weights are loaded. The training
process consists of two stages. In the first training stage,
the proposed network is initialized using Gaussian random
variables, and the DDF module is independently trained by
the dataset SSDD+. In this stage, the initial learning rate is
set as 0.001, and the momentum is set as 0.9. The weight decay
and the training epoch are respectively set as 0.0005 and 50.
The training speed and accuracy of the model are very easily
affected by the learning rate setting. Therefore, the learning
rate scheduling strategy with cosine annealing is employed as
the learning rate adjustment method [62]. The learning rate
is scaled according to the cosine function value from 0 to
PI, making the training more stable. λ1 is set to 1, while λ2

and λ3 are set to 0 for the loss function to train the DDF
module individually. In the second training stage (the latter
50 epochs during the unfrozen training in our experiment),
the parameters in the DDF module is freezed, and a lower
learning rate is initialized as 0.0001. The other settings in
the second traning stage are as the same as the first stage.
λ1, λ2 and λ3 in the loss function are set as 0, 1, and 1
respectively. The parameters of the OB module and the TS
module are learned simutanously in the second training stage.
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Meanwhile, the commonly used training techniques such as
batch normalisation, residual concatenation, dropout are also
adopted in experiments on different model training, which help
the models to fit the dataset better.

D. Evaluation of Our Proposed Method

To demonstrate the effectiveness for each modification, a
range of ablation experiments will be conducted to quantify
the impact of each improvement on SSDD+ and HRSID. A
detailed analysis of each improvement for the network is then
conducted following the discussion.

1) Ablation Experiments Results: Since a number of im-
provements have been made to the model design and training
process, it is necessary to examine the actual effects of each
improvement in the context of each other. Different combi-
nations of these improvements were tested, and the results of
these experiments are presented in Tables I and Table II respec-
tively. Based on the experimental results, the following aspects
can be summarized. Firstly, it can be observed from Table I
and Table II that the resutls of applying each improvement
of our method individually demonstrates the effectiveness
with respect to the benchmark model. Secondly, as shown
in Fig. 9, compared with the experiments including only one
improvement, experiments including multiple improvements
demonstrate a significant cumulative performance gain with a
small overlap between them.

Fig. 9. Comparison of experiments containing multiple improvements on
HRSID (left) and SSDD+ (right). The blue, orange, grey and yellow bar charts
represent the experimental results (Ap50) of baseline, baseline with DDF
module, baseline with DDF module and TS module, and MLDet (baseline
with DDF module, TS module and ARW loss), respectively.

Compared with the baseline, MLDet achieves 10.6% higher
AP50 on SSDD+ and 11.4% higher AP50 on HRSID re-
spectively. In addition, when the accuracy for localization
increases and the IoU threshold is set to 0.75, the AP75 gains
a larger improvement of 12.5% on SSDD+ and 10.2% on
HRSID, which indicates that the bounding boxes predicted
by the MLDet are more accurate. The performance of each
component will be discussed in detail as the followings.

2) Effect of The Denoised Feature Fusion Module: Speckle
noise existed in the area of the port is very likely to cause
the false alarms than the speckle noise existed in the area
of the sea. The bright speckles on the port are easily to

be mistakenly identified as ships by many detection models.
Although denoising mechanism can filter the redundant in-
formation, the small ship targets including fewer pixels may
be filtered out during speckle suppression. In the proposed
method, the attention mechanism is adopted into the DFF
module to simultaneously integrate the denoised features and
original features, which benefits the subsequent detection task
and segmentation task, especially for the small ship targets.
The dual-feature fusion attention mechanism is based on the
binary classification of the ship class and background class,
by using CAM (class activation map) [59]. The feature map
obtained by DFF module does not only eliminate the features
of speckle noise, but also preserves the features of small
targets. Besides that, it can be seen from the comparisons in
Fig. 10, the dual-feature fusion attention mechanism greatly
activates attention to the ship regions.

Fig. 10. The results of the dual-feature fusion attention mechanism enables
our MLDet to focus on both inshore and offshore ships. The left is the
original image, the middle is the heat map without dual-feature fusion attention
mechanism, and the right is the heat map after dual-feature fusion attention
mechanism.

In order to demonstrate the effectiveness to speckle noise,
we selected a large number of SAR images from SSDD+
dataset. The denoised feature learning task assists MLDet in
learning more discriminative targets and features, and also
enables our method to recognize the targets from the severe
speckle noise SAR images with a higher degree of confidence.
As shown in the first and the second row of Table I and
II, DFF module achieves 89.3% on AP50 and improves the
baseline by approximately five points on SSDD+, and achieves
85.5% on AP50. As a result, the modified network exhibits a
higher level of adaptive feature selection, as well as a higher
complementarity between features.

3) Effect Of The Target Segmentation Module: Assisted by
the rotated Gaussian-Mask, we observe 8% and 6.9% increase
in AP50 as shown in the third row of Table I and Table
II respectively. By solving the problem of mislabeling, the
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discriminative capability of the detector is enhanced, which
has a great impact on achieving better detection accuracy.
Furthermore, assited with utilizing the context information,
7% and 6.6% improvement on recall is obtained, respectively.
With adaptive coordinate attention, TS module is able to
extract more precise information spatial locations, as well as
obtain much more representative feature maps. Therefore, the
network is able to pay more attention on the ship objects
amidst the interference of the complex backgrounds.

Furthermore, the WBRF strategy adjusts both the confidence
of the predicted boxes as well as their positions, so as to
improve the accuracy of localizations. As shown in Table
III and Table IV, 3.6% and 2.5% improvements on Ap50
are obtained by utilizing the WBRF strategy, respectively. In
essence, the TS module is capable of reducing the impact of
complex backgrounds on detection performance and enabling
accurate target positioning. Additionally, the ablation study
also confirms the effectiveness of this procedure.

TABLE III
ABLATION STUDIES OF WBRF STRATEGY ON SSDD+

Methods Precision Recall F1-score Ap50 Ap75

baseline 0.839 0.825 0.832 0.847 0.475
MLDet-w/o WBRF 0.884 0.873 0.878 0.881 0.593
MLDet-w WBRF 0.916 0.895 0.905 0.917 0.625

TABLE IV
ABLATION STUDIES OF WBRF STRATEGY ON HRSID

Methods Precision Recall F1-score Ap50 Ap75

baseline 0.817 0.810 0.813 0.817 0.452
MLDet-w/o WBRF 0.864 0.868 0.866 0.858 0.513
MLDet-w WBRF 0.909 0.876 0.892 0.883 0.548

4) Effect of the ARWS Loss: The periodicity of angular
problem increases the difficulty of rotating object detection.
A sharp increase in the loss value will be caused in the
case that the aspect ratio between the ground truth and the
candidate prediction bounding boxes is close to 1, which also

brings difficulties for the network trainings. Compared with
the baseline, the mAP value of the ship targets is obviously
improved by the proposed ARWS loss, especially for square-
like boxes. The ARWS loss function yields a higher Ap50 and
AP75 than the traditional loss function on SSDD+ and HRSID.
As a result, our regression method is capable of effectively
avoiding a sharp increase in the loss value during the network
training, which is advantageous to the detection performance.

E. Comparison With Other Denoised Methods

We evaluated the performance of the proposed method and
recent state-of-the-art methods on real SAR images, including
SAR-BM3D [55], Trans-SAR [57] and SAR-ON [54]. Visual
inspection is an important way to qualitatively evaluate the
performance of denoising methods in the cases that noise-free
references are unavailable. The denoising results correspond-
ing to the real images are shown in Fig. 11 and Fig. 12. These
results demonstrate that our MLDet method can achieve much
better performance on suppressing the speckle noise for SAR
images.

TABLE V
ESTIMATED ENL VALUES ON REAL SAR-1 IMAGES

Method region1 region2 region3 region4

SAR-BM3D 74.89 85.96 10.59 11.73
Trans-SAR 81.39 85.26 184.69 212.95
SAR-ON 106.64 137.14 178.32 250.10
MLDet (Ours) 167.63 197.24 262.08 263.83

TABLE VI
ESTIMATED EPD-ROA VALUES ON REAL SAR-2 IMAGES

Method region5 region6
HD VD HD VD

SAR-BM3D 0.8778 0.6800 0.731 0.7123
Trans-SAR 0.8342 0.8923 0.9123 0.9314
SAR-ON 0.6523 0.7631 0.752 0.826
MLDet (Ours) 0.9742 0.9134 0.9532 0.9515

Real SAR image SAR-BM3D Trans-SAR SAR-ON MLDet
Fig. 11. Qualitative results of different despeckling methods on real SAR-1 images. The area represented by the blue rectangle in the first row is marked
as region 1, the green rectangle is marked as region 2, the area represented by the blue rectangle in the second row is marked as region 3, and the green
rectangle is marked as region 4.
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Real SAR image SAR-BM3D Trans-SAR SAR-ON MLDet
Fig. 12. Qualitative results of different despeckling methods on real SAR-2 images. Other methods over-smooths the SAR image, destroying edges and
structural details. The area represented by the blue rectangle in the first row is marked as region 5, and the green rectangle is marked as region 6.

In addition, we select several indicators that do not re-
quire noise-free images as reference for evaluation, namely
equivalent number of looks (ENL) [58], edge preservation
degree based on the ratio of average (EPD-ROA) in the
horizontal direction (HD) and vertical direction (VD) [60].
ENL is used to measure the relative strength of the speckle
noise in images and filter performance. The larger the ENL
value, the smoother the homogeneous area, and the better
the filtering effect. EPD-ROA is used to measure the detail
preservation ability of denoised images. When the denoising
method preserves much more details, the value EPD-ROA of
the denoised image is much closer to 1. The ENL values
are estimated from the homogeneous regions (shown with
blue and green boxes in Fig. 11). The ENL results are also
tabulated in Table V. It can be observed from these results
that the proposed MLDet outperforms the others compared
methods in all four homogeneous regions and signifies the best
despeckling performance out of the considered approaches.
It also can be seen from Fig. 12 and Table VI that, other
methods over-smooth the SAR image, destroying edges and
structural details to some extent. Ours method retains more
textural details while minimizing distortions in homogeneous
regions.

F. Comparison With No Interactions Between Tasks

The three tasks of the proposed method have positive inter-
actions between each other. As shown in Fig.2, the detection
module consists of CSPDarknet and a common block shared
with the other two modules by equipping with residual blocks
of feature extractor, instead of designing them separately. DFF
module integrates the denoising feature map with the original
feature map by the proposed dual-feature fusion attention
mechanism (descripted in Section II-B), which can not only
eliminate the speckle noise, but also preserve the features
of small targets. Besides of sharing the same backbone to
ensure the consistent of feature extraction, the segmentation
task also employs the rotated Gaussian mask (descripted as
Fig.6) based on the same ground-truth with object detection
task. Finally, WRBF is adopted to combine the predictions of
object detection and the target segmentation, which is more
conducive to the location of the target center point and the
target direction.

In order to prove the effectiveness of the interactions
between the three tasks, we implement experiments on per-
forming the three tasks in a sequential form, i.e, the denoising
task, the segmentation task and the target detection task are

(a) (b) (c)
Fig. 13. Comparison of representative detection results by the proposed
MLDet and the MLDet in sequential form. (a) The ground-truth. (b) MLDet
(our method). (c) MLDet in sequential form. Note that the blue boxes are true
positive ship targets, the red boxes are false positive ship targets, and green
boxes are missed ship targets.

executed separately as shown in Fig.14. Specifically, we firstly
perform the denoising task with the L2 loss function to denoise
SAR images. Then, we use the two independent backbone
networks without sharing weights to extract features from the
denoised images seperately, and perform target detection and
segmentation tasks respectively without interaction between
each other. Finally, the WRBF strategy is applied to fuse the
detection and segmentation task results according the different
confidence of target boxes.

The comparison results of the proposed MLDet and MLDet
in sequential form are provided in Table VII, which indicates
that the proposed MLDet is superior to the sequential form
in all indicators, including Precision, Recall, F1-score, Ap50
and Ap75. Fig.13 demonstrates some representative detection
results by the proposed MLDet and MLDet in the sequential
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Fig. 14. MLDet in sequential form. Firstly, it performs the denoising task, use the L2 loss function to process the Sar image with strong multiplicative noise,
and get a relatively clean image, then use the backbone network that does not share the weight, execute detection task and segmentation task respectively,
and finally use the WRBF strategy to fuse the different task results according to different weights to get the final result.

(a) SSDD+ (b) HRSID
Fig. 15. Precision-recall curves of six methods: Faster R-CNN, RetinaNet, Oriented R-CNN, CenterNet, YOLOX and MLDet on (a) SSDD+ and (b) HRSID
under the metric of Ap50

form. On the premise of adopting the same WRBF strategy, the
predicted orientation angle and center points of the bounding
boxes by our proposed MLDet are more accurate than the
results predicted in the sequential form, as shown from the
first and the second visualizatin results in Fig.13. This is on
account of the interactions between object detection module
and segmentation module, including sharing the same of
feature extraction layers, and deriving segmentations labels
from the same ground-truth as the detection labels during
training. Besides that, the features of small objects are easily
reduced during denoising by the denoised module in sequential
form, which is unfavourable to the subsequent target detection
and segmentation tasks. That is the reason why there are a
large number of false and missed targets existed in the results
of MLDet in sequential form, as shown in the third and the
fourth visualizatin results of Fig.13.

G. Comparison with Other CNN-based Detection Methods

To verify the generalization abilities and feasibility of our
method, we implement experiments on two datasets of SSDD+
and HRSID. The recall rate, precision rate, F1-score, AP50,

TABLE VII
ABLATION STUDIES OF DIFFERENT NETWORK FORMS ON

SSDD+

Methods Precision Recall F1-score Ap50 Ap75

MLDet in sequential form 0.934 0.918 0.926 0.928 0.593
MLDet(Ours) 0.941 0.946 0.943 0.953 0.601
increment 0.7% 2.8% 1.7% 2.5% 0.8%

AP75 are employed to compare the performance with different
methods, i.e., Faster R-CNN [47], RetinaNet [24], Oriented
R-CNN [50], CenterNet [38], and YOLOX [51]. The results
in Table VIII indicate that our method MLDet outperforms
other comparison methods mentioned above, achieving the
state-of-the-art performance for both inshore and offshore ship
detection. Fig. 15 demenstrates the precision-recall curves of
ship detection results obtained by all of the compared methods.
The purple curve in Fig. 15 illustrates that our method is more
precise than the other five CNN-based methods under different
recall rates. An analysis of the experimental results is provided
below.
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(a) (b) (c) (d) (e) (f) (g)
Fig. 16. Comparison of detection results of different methods on SSDD+. (a) The ground truth. (b) Faster RCNN. (c) RetinaNet. (d) Oriented RCNN. (e)
CenterNet. (f) YOLOX. (g) MLDet (our method). The first line shows the detection results under complex background, the second line shows the detection
results under densely arranged ships, the third line shows the detection results for small ships, and the fourth line shows the detection results for multiscale
ships. Note that the blue boxes are true positive ship targets, the red boxes are false positive ship targets, and green boxes are missed ship targets.

1) Comparison of Offshore Scene: As evidenced by our
experimental results on SSDD+, our method is competitive
and outperforms other classical methods for the detection of
offshore vessels. As shown in Table VIII, our proposed method
achieves improvements of 15.03%, 8.74%, 3.4%, 4.61% and
2.86% over Faster R-CNN, RetinaNet, Oriented R-CNN, Cen-
terNet and YOLOX on Ap50, respectively, which benefits
from the proposed DFF module and TS module. HRSID
has a more complicated background and a large number
of small ship objects in images, so that it is very suitable
for evaluating the effectiveness of our proposed method for
complex scenes. Similarly, the proposed method outperforms
other five compared methods, achieving the improvements of
11.1%, 10.68%, 7.45%, 3.091% and 5.05% over Faster R-
CNN, RetinaNet, Oriented R-CNN, CenterNet and YOLOX on
Ap50, respectively. The results in Table VIII indicate that our

MLDet reaches the highest precision rate and recall rate under
offshore scenes. As a result of extracting more characteristic
features, the DFF module is robust to speckle noise. It con-
centrates more on significant features and establishes stronger
links among context information features of ships than other
methods. In addition, by capturing context information for
multiscale objects, particularly small objects, the TS module
alleviates the challenge of multiscale objects. In general, the
proposed method achieves the best performance compared
with other existing network models.

2) Comparison of Inshore Scene: Using deep learning
technology to detect a ship target in an inshore scene is
more challenging than detecting a ship target in an offshore
scene due to the interference caused by the inshore area. The
detectors are very easily to incorrectly identify inferences in
the scene of inshore as ships as well as causing the false
alarms. Under different model configurations, the detection
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(a) (b) (c) (d) (e) (f) (g)
Fig. 17. Comparison of some detection results of different methods on HRSID. (a) The ground-truth. (b) Faster RCNN. (c) RetinaNet. (d) Oriented RCNN. (e)
CenterNet. (f) YOLOX. (g) MLDet (our method). The first line shows the detection results under complex background. The second line shows the detection
results under densely arranged ships. The third line shows the detection results for small ships. The fourth line shows the detection results for multiscale
ships. Note that the blue boxes are true positive ship targets, the red boxes are false positive ship targets, and green boxes are missed ship targets.

accuracy of offshore scenes was found to be significantly
higher than that of inshore scenes, as shown in Table VIII.

Detection recall rates for offshore scenes are much higher
than those for the scenes of inshore with different configura-
tions of models. In order to evaluate a detector, it is important
to consider the detection performance of inshore vessels. It
can be observed from Table VIII that our method obtains
an obvious improvement in the inshore scenes. Specifically,
compared to the state-of-the-art methods, our method can
increase the Ap50 by ranging from 1.04% to 11.2% on
SSDD+ and ranging from 1.84% to 8.7% on HRSID in the
inshore scene, which is mainly because Use DFF modules
can reduce the impact of complex backgrounds on ship object
detection to some extent, resulting from the better detection
performance of densely arranged ships. At the same time,
the TS module concentrates more on significant features and
establishes stronger links among context information features
of ships than other methods. Our method MLDet enhances
the precision rate for the detection of inshore ships by a
considerable margin, and also significantly reduces the number
of false alarms. MLDet also achieves a much higher Ap75 than
other methods, indicating that it is capable of achieving more
accurate localization.

3) Visual Results and Insight: Fig. 16 and Fig. 17 demon-
strate some representative visualization results of the six
compared methods in different cases, i.e., under complex back-
ground, small objects, densely arranged ships, and multiscale

and small object detection. As shown in the first row and third
row of Fig. 16 and Fig. 17, the proposed method is superior
to other methods for densely arranged ship detection under
complex background. It indicates intuitively that the TS mod-
ule can achieve the accurate ship locations and recognitions
in complex scenes. Moreover, the proposed method is also
effective for detecting the densely arranged ships, as shown
in the second row of Fig. 16 and Fig. 17. Compared to the
other five methods, our method does not produce any false
positives or any false negatives. The fouth row in Fig. 16 and
Fig. 17 shows the detection results for multiscale and small
objects. In the inshore area, there are many bright areas that
are similar to ship objects, which is likely to cause severe false
alarms. According to the comparisons, MLDet performs better
than all other methods, especially for densely docked vessels.
This validates that multitask learning is able to enhance the
representation ability of our proposed network and effectively
overcome false alarms in complex scenarios. By capturing
multiscale context information, our method provides good
detection results. The visualization results indicate that our
method can effectively resolve the major problems associated
with ship detection in SAR images.

4) Comparison of Time and Model Complexity: Table VIII
presents the running time, parameter size, and model volumes
of the six CNN-based methods verified. As presented in
Table VIII, compared with the anchor free method CenterNet,
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TABLE VIII
COMPARISON WITH OTHER DEEP LEARNING BASED METHODS ON SSDD+ AND HRSID

Dataset Methods inshore offshore
Precision Recall F1-score Ap50 Ap75 Runtime(ms) Precision Recall F1-score Ap50 Ap75 Runtime(ms) Params(M)) Volume(MB)

SSDD+

Faster R-CNN 0.801 0.880 0.839 0.823 0.530 21.4 0.902 0.893 0.897 0.811 0.502 49.3 58.5 181.5
RetinaNet 0.856 0.816 0.836 0.849 0.552 11.3 0.794 0.848 0.820 0.874 0.580 35.2 48.1 103.6
Oriented R-CNN 0.900 0.836 0.867 0.881 0.591 45.1 0.906 0.895 0.900 0.927 0.643 74.3 63.5 206.4
CenterNet 0.943 0.899 0.920 0.895 0.613 23.4 0.879 0.893 0.886 0.915 0.653 52.7 25.8 83.3
YOLOX 0.942 0.898 0.919 0.925 0.645 10.3 0.917 0.922 0.920 0.932 0.674 29.7 50.4 130
MLDet (Ours) 0.953 0.945 0.949 0.935 0.689 14.2 0.936 0.948 0.942 0.961 0.704 30.4 53.5 152.8

HRSID

Faster R-CNN 0.807 0.831 0.819 0.814 0.514 34.1 0.832 0.810 0.821 0.839 0.533 64.5 58.5 181.5
RetinaNet 0.812 0.821 0.816 0.824 0.529 20.1 0.832 0.832 0.832 0.842 0.561 45.7 48.1 103.
Oriented R-CNN 0.871 0.796 0.832 0.830 0.531 60.4 0.858 0.850 0.854 0.874 0.581 90.2 63.5 206.4
CenterNet 0.846 0.882 0.864 0.897 0.695 30.1 0.940 0.852 0.894 0.918 0.658 69.6 25.8 83.3
YOLOX 0.906 0.873 0.889 0.883 0.601 15.3 0.871 0.858 0.865 0.898 0.625 38.5 50.4 130
MLDet (Ours) 0.911 0.904 0.907 0.901 0.667 19.4 0.927 0.920 0.924 0.949 0.695 42.9 53.5 152.8

there is a slight increase in both of the model parameters
and the inference time per image by the proposed MLDet,
which achieves remarkable detection accuracy. Region pro-
posal causes the waste of storage and computing resources, and
also increases the computational complexity of the network
models. Therefore, compared with two-stage methods such as
Faster RCNN and Oriented R-CNN, MLDet has less model
parameters and inference time. In spite of the fact that the
proposed method does not inference as quickly as YOLOX,
it can fully meet the requirements of real-time detection, and
meanwhile achieves remarkable accuracy of ship detections.
Besides that, the detection results of the proposed MLDet
on multiple datasets demonstrate its fine generalizability for
different image data.

IV. CONCLUSION
A novel multitask learning framework MLDet for SAR ship

detection is proposed in this paper, which consists of a main
detection module and two auxiliary task learning modules.
Specifically, speckle supression and target segmentation are
advantageous for enhancing the detection quality for SAR
images. By embedding a denoising feature fusion module, the
backbone is robust to speckle noise and focuses on feature
extraction for ship targets. A target segmentation module is
proposed to help the network to extract the object regions
of intersect from the cluttered background and improve the
detection efficiency through pixel-by-pixel predictions. The
ARWS loss function in object detection can effectively avoid
a sharp increase in the loss on the network training. Besides
that, a WRBF strategy is adopted to combine the predictions
of rotated object detection and target segmentation, which
improves the generalization ability of SAR ship detectors.
Experimental results on SSDD+ and HRSID datasets prove
that the proposed method outperforms all the compared meth-
ods. As future work, we consider the method of parameter
pruning and sharing to reduce redundant parameters insensitive
to performance for convolution layer and full connection layer.
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