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Abstract

Recent studies point out far-reaching connections between the topological characteristics of struc-

tural glasses and their material properties, paralleling results in quantum physics that highlight the

relevance of the nature of the wavefunction. However, the structural arrangement of the topological

defects in glasses has so far remained elusive. Here we investigate numerically the geometry and

statistical properties of the topological defects related to the vibrational eigenmodes of a proto-

typical three-dimensional glass. We find that at low-frequencies these defects form scale-invariant,

quasi-linear structures and dictate the plastic events morphology when the system is subjected

to a quasi-static shear, i.e., the eigenmode geometry shapes plastic behavior in 3D glasses. Our

results indicate the existence of a deep link between the topology of eigenmodes and plastic energy

dissipation in disordered materials, thus generalizing the known connection identified in crystalline

materials. This link is expected to have consequences also for the relaxation dynamics in the liquid

state, thus opening the door for a novel approach to describe this dynamics.
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INTRODUCTION

The vibrational and electronic energy spectrum of materials has been in the focus of in-

terest of many condensed matter physics studies since it is directly accessible in experiments,

while the properties of the wave-functions, especially their phase, have received much less

attention [1–3]. However, in recent times it has been realized that these functions, which are

by nature many-body quantities, contain important information about the interference and

superposition of quantum states which cannot be obtained from a traditional band-theory

description and thus allow to gain deep insight into the properties of condensed quantum

materials [4–7]. Interestingly this paradigm shift starts to occur also in the domain of glass

physics. While in the past many studies focused on characterizing the vibrational density of

states to rationalize the anomalous thermodynamic properties of glasses [8], only few inves-

tigations have looked into the nature of the eigenmodes. Most of these studies concentrated

on the question whether or not these modes are localized or extended, a problem which is

relevant for understanding the nature of the so-called boson-peak [9–15]. However, very re-

cently it has been suggested that also the topological properties of a glass can give important

insight into the thermodynamic and kinetic features of the material [16, 17]. One example

is the demonstration that in two dimensions the geometry of the topological defects of the

eigenvectors is closely correlated to the plastic response in amorphous matter [18], which has

recently been verified experimentally in a 2D colloidal glass [19]. Probing the topological

properties of disordered materials is thus a promising approach to advance our understand-

ing of these complex systems that have so far defied to reveal how their macroscopic behavior

is connected to their microscopic structure [20].

It is important to realize that for a glass there is no unique way to define topological

defects (TD) and so far it is not clear which definition is the most useful to gain insight

into a specific macroscopic property of the sample [18, 21–23]. TDs arise, e.g., in the fields

given by the vibrational eigenvectors as singularities in the phase when the amplitude of the

eigenfunction vanishes and hence its phase becomes undefined. Another example are TDs

occurring in the displacement field generated when the sample is sheared, since then the

trajectories of the particles can form loops around topological vertices that can be transient

or continuously reshaped by particle motion. For the cases of active matter and living

systems its has, e.g., been well documented that topological defects in the displacement
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fields can influence the dynamics or pattern formation of the systems [24–28]. Note that

these two types of TD, i.e., in eigenvectors or displacement fields, differ not only in the

nature of the field used to define them, but also by the fact that with the first definition

one considers a mechanically stable configuration, while the second one deals with an out-

of-equilibrium response. Understanding the relevance of these differences is therefore crucial

for exploring topological quantities in the study of amorphous matter.

In this study, we numerically investigate for a prototypical three dimensional glass the

geometry and statistical properties of eigenvectors associated with the vibrational eigen-

modes, with a special focus on the TDs generated by these modes. We find that at low

frequencies the spatial arrangement of these TDs form one-dimensional structures that have

a scale-invariant geometry with a power-law exponent around −5/3, a value that can be ra-

tionalized from the quasi-linear structure of the filaments formed by the TDs, and can hence

be expected to be universal. When subjected to quasistatic shear, the resulting plastic

events are strongly correlated with defects carrying a negative topological charge, revealing

a close connection between TDs and plastic yielding. Remarkably, the spatial distribution of

plastic events under shear mirrors the scaling behavior observed for the topological defects,

reinforcing the idea that the eigenmode geometry plays a fundamental role for the plastic

behavior of amorphous solids.

SYSTEM

We study a binary mixture of Lennard-Jones particles, using a model that has been exten-

sively investigated in the past [29], applying a small modification to avoid the crystallization

at the lowest temperatures [30]. In the following we will use reduced units, reporting length

and energy in terms of the size of the large particles and the well depth of the Lennard-

Jones potential, respectively. The system, containing N=800,000 particles in a box of size

(87.36)3, was equilibrated at a low temperature (T = 0.43), before it was cooled down to

zero temperature. More details on the model and simulations are given in the Methods

section.
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RESULTS

Topological defects

The first 10,000 vibrational normal modes of the system are obtained by diagonalizing the

Hessian matrix using ARPACK, see Methods for details. The highest frequency is thus 2.24,

slightly below the main peak in the vibrational density of states, see Figs. 1 and S1. To

identify the topological defects of a given eigenvector (exi , e
y
i , e

z
i ), i = 1, . . . N , we first define

a continuous vector field u⃗(R⃗) by interpolating between the positions of the particles:

u⃗(R⃗) =
∑

iw(R⃗− r⃗i)e⃗i/
∑

iw(R⃗− r⃗i) , (1)

where r⃗i is the location of particle i, e⃗i is the eigenvector component for particle i, and w

is a Gaussian weighting function, w(R⃗ − r⃗i) = exp(−|R⃗ − r⃗i|2/∆2), with a width of ∆ = 1.

The topology of this vector field is then analysed by projecting it on a cubic lattice of size

88×88×88 superimposed to the sample (the length of the unit cell is thus ≈ 1). This lattice

is subsequently used to identify the topological defects as follows: For each of the six square

sides of a cubic unit cell, we search for a signature of a topological defect by examining the

structure of the phase of the field u⃗(R⃗), after projection on the square, on the border of the

plaquette via a line integral. If this integral gives a net change of ±2π one has a vortex or

an anti-vortex, while a charge zero corresponds to a field with no singularity. In practice

we assign to each plaquette (having its corners at A, B, C, and D and being, e.g., in the

xy-plane) a winding number νx,y defined as

θD θC

θA θB

νx,y νx,y = [∆θA,B +∆θB,C +∆θC,D +∆θD,A] mod 2π . (2)

Here ∆θA,B is the change of the phase θ from point A to B, and the angle θA at point A

is given by θA = arctan(uy
A/u

x
A) ∈ (0, 2π]. Each plaquette contains either a vortex, an anti-

vortex, or it is neutral, if νx,y is equal to 1, −1, or 0, respectively. The search for topological

defects is done for each of the six faces of the cubes of the lattice. For each box that is

part of a vortex line, the vortex must enter from one face of the box and exit from another

face. Therefore, if the resolution of the discretization of the field u⃗(R⃗) is sufficiently high,

there will be two faces that display a net phase change of 2π (or −2π), i.e., knowledge of

whether two vortex points in neighboring planes form part of the same line is only limited
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by the spatial resolution. In the Supplementary Information (SI), this procedure is applied

to simple synthetic vector fields, showing that it does indeed allow to identify vortex or

antivortex lines.
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Fig. 1. Number of topological defects and vibrational density of states. Left scale: The

number of TDs per particle as a function of frequency. For this we mesh the sample with a grid

having a lattice size ≈ 1.0 and use it to identify the TD. See main text for details. The red and

black curve are the results from samples with N = 800, 000 and N = 32, 400, respectively, showing

that finite size effects are not important. Right scale: Vibrational density of states D(ω) divided

by ω2. D(ω) as obtained from the direct diagonalization of the Hessian matrix and from the time

Fourier transform of the velocity auto-correlation function are shown as black line with symbols

and green line, respectively. The horizontal blue dashed line denotes the Debye level calculated

from the elastic properties of the sample (see SI).

In Fig. 1 we show the number of topological defects per particle as a function of frequency

ω. We observe that, at low ω, i.e., in the Debye-regime up to ω ≈ 1.0, one has the same ω2-

dependence found in a 2D system [18]. This result indicates that as long as the system can

be considered as an elastic continuum, the ω2-scaling between number of TD and frequency

is independent of the system dimension. To rationalize this ω2-dependence we show in Fig. 2

the TD of the eigenmodes at different ω. For the lowest ω the eigenvectors are a superposition

of transverse plane waves and this gives rise to TDs that align in (windy) one-dimensional
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Fig. 2. Spatial arrangement of the topological defects. Topological filaments in a particular

normal mode at different frequencies ω. Blue and red dots represent, respectively, TDs with

winding number +1 and −1. Snapshots of the TD at higher frequencies are shown in Fig. S6 of

the SI, and Fig. S6 also shows a zoom of the snapshot for ω = 1.211.

structures, see SI, as can be recognized in the figure for ω = 0.28. (Note that at finite ω

it is the disorder of the system that makes that these plane waves couple with each other,

giving rise to the structures seen at low ω, see Fig. S5 for a snapshot of the eigenvectors.)

With increasing frequency the TD-lines become more and more complex and windy, but

positive and negative lines are still clearly separated, indicating that they repel each other.

At around ω = 0.567 one sees the appearance of some clusters, i.e., positive and negative TD

start to interfere with each other. Despite this interaction, the separation between positive

and negative TD lines can be seen even at frequencies as high as ω = 1.21, reflecting the

local geometry of the acoustic modes. This regularity leads to a distance between lines of

the order of the wavelength ∼ ω−1, and to a scaling of the line density of ω2, rationalizing

the ω2-dependence presented in Fig. 1, see also [18]. For the highest frequencies the TD no

longer form long lines but complex patterns since their mutual interactions becomes very

strong.
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Structure of topological defects in the eigenvectors

To quantify the spatial arrangement of the TD lines we define a spatial correlation function

of the topological defects of type α, β ∈ {±1} at a given ω as,

gαβ(r;ω) =
1

Nω

∑
κ

gκ,αβ(r)δ(ω − ωκ) . (3)

Here gκ,αβ(r) is the pair correlation function characterising the structure of TDs in each

eigenmode κ, and Nω is the number of modes in the system whose frequency lies in the

range ω±∆ω, using ∆ω = 0.086. Figure 3 demonstrates that, at fixed frequency, g++(r;ω)

and g−−(r;ω) are quite similar in that they display pronounced peaks at r = 1 and
√
2,

positions that are independent of ω since they are given by the lattice. These peaks become

less pronounced as the frequency increases (Fig. S7 shows these curves in a lin-lin plot)

and the ω-dependence of the height of the main peak, gmax
αβ , is presented in panel (d),

demonstrating that for low ω the data for ++ and −− track each other very well. Also

notable is the fact that at small frequencies the height of the first peak is very large and

seems to diverge for ω → 0, a consequence of the pronounced (quasi-linear) arrangement of

the TDs. One intriguing feature of g++(r;ω) and g−−(r;ω) is that the correlators exhibit

within a significant range of r a scale-invariant behavior, i.e., a power-law, with an exponent

around −5/3, independent of ω. Such a decay corresponds to a fractal dimension of df = 4/3

since the scaling of g(r) for a fractal object of fractal dimension df is g(r) ∝ rdf−d [20]. Since

the difference between 4/3 and 1.0 is not large, the data of g(r) indicates that in our 3D

system, the TD form quasi-one dimensional lines if ω is small, consistent with the snapshots

of Fig. 2. (See SI for additional tests on the decay behavior of gαβ(r;ω).) With increasing

ω the range of scale-invariant behavior decreases, as indicated by the leveling-off of the

correlation functions. The distance at which this leveling-off occurs defines a cross-over

length ξ and in Fig. 3e we present 1/ξ as a function of ω. One finds that for ω < 0.604, this

inverse length scale, which can be interpreted as a wave-vector characterizing the spacing

of the TD lines, is proportional to ω, in agreement with the presence of the acoustic modes

with the ω2-scaling of the defects, as discussed above. We note that the slope of this linear

part is given by the velocity of sound, see SI, supporting the view that at low ω this length

scales is directly related to the acoustic modes. For intermediate frequencies one finds a

much weaker dependence of ξ on ω, since in this ω-range one has a mixture between TDs

lines that are well separated and zones in which the TDs strongly interact (see Fig. 2).
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For ω > 1.5 the slope of the curve increases quickly, since the separation between the TD

becomes very small.

The behavior of the function g+−(r;ω) is different. The correlation at r = 1 is about

three times lower than the one of the TDs self-correlation, see panel (d), and also the

amplitude of the oscillations at short distance is smaller, i.e., the short-range order is less

pronounced. Interestingly the height of the correlator at small frequencies shows a weaker

ω-dependence than the one found for the two other correlators. Furthermore Fig. 3d reveals

a crossover behavior of gmax
−− (ω) at around ω=1.121 in that for low frequencies the quantity

tracks gmax
++ (ω) while at high frequency it follows the gmax

+− curve. This cross-over frequency

corresponds to the point in which the positive and negative TD start to interfere strongly,

thus affecting the total number of TD at a given frequency.
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Fig. 3. Spatial correlations of the topological defects. a-c: Pair correlation functions for

++, −−, and +− defect pairs at different values of ω. Curves for ω > 0.259 are shifted downward

by multiple factors of 0.25 for visibility. The straight dashed line in panels (a) and (b) is a power-

law with exponent df − d = −5/3, which gives for d = 3 a fractal dimension of df = 4/3. The

vertical dotted line shows the correlation hole which is located at r ≈
√
2/2. d The ω-dependence

of the height of the main peak in gαβ(r;ω). e Inverse of the position of the level-off ξ in g++(r;ω)

as a function of frequency. The data at low-frequency display the expected linear behavior (dashed

line) with a slope given by the average velocity-of-sound that can be calculated directly from the

elastic moduli, see SI.
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Structure of plastic events induced by shear

To probe the mechanical properties of the glass we have applied, at constant volume, an

athermal quasi-static simple shear (using a strain increment of ∆γ = 0.0005) and determined

the stress-strain curve, Fig. 4a. We note that this curve shows no drops before the very

sharp yielding point at around strain γ = 0.098 is reached, indicating that the sample is

large enough to avoid such finite size effects [31, 32]. Also included in the graph is the

result if the strain increment is doubled, and one sees no qualitative difference. Figure S12

demonstrates that the sharp drop at global yielding gives rise to the formation of a very

thin shear band, which indicates that the system is rather brittle.

For a sheared configuration at strain γ, we calculate the non-affine displacement D2
min [33]

of the particles between two consecutive configurations that have a difference in strain of

∆γ = 0.0005. For each particle i, we determine the largest non-affine displacement δmax
i (γ) =

max{D2
min(i,∆γ), D2

min(i, 2∆γ), D2
min(i, 3∆γ), . . . , D2

min(i, γ)} that was made by the particle

up to the strain γ. We then select the particles having the top 0.5% of δmax
i (γ) and define

them as plastic event (PE) particles at this γ. Figure 4b shows these PE particles for

three different γ, sheared parallel to the xy-plane. At small γ, the PE particles are highly

clustered, while with increasing strain, the distribution in space becomes more random.

(Note that once the system has yielded, the PE particles are concentrated in a shear band.)

In Fig. 4c we show the selected PE particles at strain γ=0.01 after shearing in three different

directions and one recognizes that the three sets of particles are spatially highly correlated.

This demonstrates that for this observable the strain direction is not a relevant parameter,

i.e., predicting the location of the PE can be done via a scalar quantity. This correlation

can be quantified via the pair correlation function gAB(r) for the particles in the three sets,

where A,B ∈ {x, y, z} represents the set of PE particles generated under different shear

directions, Fig. 4d. One recognizes that there is a strong spatial overlap between the PE

particles in the three sets in that the peak height at small r exceeds 2 · 103, confirming the

visual impression of panel (c). Interestingly one finds that this correlation function decays

at intermediate distances with a power-law with an exponent that is compatible with −5/3,

i.e., the value we found for the power-law decay of the TD, see Fig. 3. This hints that the

PE particles and the TD are correlated to each other, and below we will see that this is

indeed the case.

Further insight into the spatial arrangement of the PE particles can be obtained by
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Fig. 4. Spatial arrangement of the plastic events. a The athermal quasi-static stress-strain

curve. b Configurations of PE particles at strain γ=0.01, 0.02, and 0.08 after shearing the sample

parallel to the xy-plane. The particles are color-coded to distinguish those in the foreground

(bright) from those in the background (dark). c The configuration of PE particles at strain γ=0.01

after the sample has been sheared in the xy-, xz-, and yz-direction. The particles are colored in

red, blue, and yellow, respectively, and one sees that the 3 type of PEs form tight clusters. d

Spatial correlation between PE particles (γ = 0.01) generated by different shear direction. The

dashed lines indicate a power-law with exponent −5/3. e Center of mass (COM) correlation of the

PE clusters for different shear directions.

determining the center of mass of the clusters formed by these particles, and the resulting

radial pair correlation function of these centers. For the cluster analysis we use a cutoff

distance of 1.35, i.e., the location of the first minimum in the pair correlation function of the

particles. Remarkably one finds, see Fig. 4e, that this correlation function shows a power-

law decay and that the exponent is the same as the one obtained for the correlation between

the TD. This is thus strong evidence that the TD and PE particles are closely related to

each other and in the next section we will probe this connection in more detail.

Correlation between topological defects and plastic events

The location of the PE particles can be correlated with the position of the topological defects

in the eigenvectors by means of a corresponding radial distribution function gκ,αPE(r), where

κ denotes the mode and α ∈ {±1} the nature of the TD (gκ,αPE(r) is defined in Methods).
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In order to see how this spatial correlation function evolves with ω, we define an average

correlation gαPE(ω; r) as

gαPE(r;ω) =
1

Nω

∑
κ

gκ,αPE(r)δ(ω − ωκ) . (4)

Here Nω is the number of modes in the system whose frequencies are in the range ω ±∆ω

using ∆ω = 0.086. Figure 5a demonstrates that at low frequencies (ω ≤ 0.43) the PE

particles and the positive TDs are uncorrelated, while there is a noticeable short-range

correlation with the negative TDs, results that are compatible with earlier findings in a two-

dimensional systems [18]. This correlation increases with ω and shows a broad maximum

before peaking at around ω = 1.1, i.e., there is a strong correlation between PEs and −1

TDs in the frequency interval of 0.604 < ω < 1.294, see Fig. 5b. Interestingly, this range

coincides with the frequencies in which the TD lines start to fragment, i.e., where in Fig. 3e

the ω−dependence of the length scale characterizing the size of the TD lines becomes less

steep. We also note that at intermediate frequencies one observes a correlation between the

PE particles and the positive TDs, the origin of which is the spatial correlation between the

former and the −1 TDs, see Fig. 3c. For ω ≈ 0.6 the g+PE(r;ω) has a peak at around r ≈ 0.7,

signaling that +1 and −1 TD pair together and create a dipole structure, a phenomenon

also observed 2D [18]. In 3D, these dipoles correspond to a local structure of TDs where

two TDs with opposite topological charge occupy two different faces on the same unit cell

of the coarse-graining grid.

The ω-dependence of gmax
−PE suggests that the correlation between the TDs and the PE

particles can be revealed best by averaging gαPE(r) in the range 0.6 < ω < 1.3. For this we

weight the modes with 1/ω2, since this gives an equivalent weight to different frequencies.

The resulting correlation functions gav+PE(r) and gav−PE(r) (see Methods for a definition) are

shown in Fig. 5c and from this graph one clearly recognizes that at strain γ=0.01 the negative

TDs are significantly correlated with the PE in that the peak at small r rises above 2.1,

which means that there is a two-fold increase of the probability that a PE occurs close to

a TD as compared to a uniform distribution. Also included in Fig. 5c is the γ-dependence

of the correlation functions and one sees that at small γ the correlation is strong because

the weakest spots in the sample are plastically deformed, and that upon approaching the

yielding strain the correlation is lost since the TD determined at γ = 0 are no longer a good

predictor for the PEs.
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Fig. 5. Geometry of the eigenmodes shapes plasticity. a Spatial correlation functions

between plastic events at strain γ=0.01 and topological defects with positive charge (black curve)

and negative charge (red curve) for different frequencies. The PEs result from a shear in the xy-

plane. b The maximum of g−PE(r;ω) as a function of ω. c Weighted sums over ω of g+PE(r;ω)

and g−PE(r;ω) for four different strains γ. The weights are ω−2 and all modes in the range

0.6 < ω < 1.29 have been taken into account. Curves are shifted downwards by multiples of 0.2

for the sake of visibility. d A 3D view of the isosurface of the smoothed charge density field Ω(R⃗)

with a iso-level value of −1.25 · 10−4. Note the presence of large holes in the structure which

represent zones of little plastic activity. e Two slices to show the spatial correlation between PE

(white spheres) and regions with larger negative TD charge density. The colorbar range is from

-1.25·10−4 (blue) to 1.25·10−4 (red).

In Fig. 5d we show the smoothed 3D topological charge density field Ω(R⃗) (see Methods)

at which the charge density is smaller than −1.25 · 10−4. The snapshot shows the intricate

pattern the negative TDs form in space, indicating that the zones at which a plastic event

occurs is highly complex. (ig. S10 shows the same type of graph for the TD field with

high positive charge.) Figure 5e presents two representative slices from the corresponding

topological charge density field, allowing to get a visual impression of the correlation between

the location of the TDs and the PEs (marked as white spots superimposed to the maps).

The graph demonstrates the strong correlation between zones with a high density of −1 TDs

and the PEs.
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DISCUSSION AND PERSPECTIVES

In this work we have characterized the topology of vibrational eigenmodes in a three di-

mensional glass model. Our first important result is that the number of topological defects

scales, as in two dimensions [18], like ω2, which we relate to the fact that at low frequencies

these defects are closely related to acoustic modes that form a surprisingly regular structure.

Since well defined acoustic modes are present only in sufficiently large systems, this observa-

tion implies that the study of the geometrical arrangement of these topological defects, and

hence the correlation with the related plastic events, cannot be done in small systems. Fur-

thermore this insight suggests that in structural glasses plastic events cannot be understood

solely as a local phenomenon with a response à la Eshelby, but should include correlation

effects that are non-local, rationalizing the pronounced finite size effects found in the frac-

ture of glasses [31]. Second, we have shown that the geometry of the topological defects

displays scale-invariant behavior up to a frequency-dependent cutoff distance, with a fractal

exponent close to 4/3. While these features are obtained for the model glass investigated

here, we expect that they reflect universal properties of the eigenmodes in elastic disordered

systems since they are a direct consequence of the spatial structure of the acoustic modes.

This view is also supported by the fact that several of the features we have identified in the

current work, are compatible with the findings of Ref. [34] in which a very different definition

of the TD was used.

Based on this identification of topological defects related to the vibrational modes, and

inspired by previous studies in 2D [18], we have studied the correlation between the TDs

and the plastic events that occur under shear deformation. A strong correlation between

negative defects and plastic events is found, as in the case of 2D, and the spatial distribution

of the PEs shows the same power-law as the TDs, which indicates that plasticity is encoded

in the vibrational structure. Such a connection between quasi-linear topological defects and

plasticity is reminiscent of the case of plasticity in crystals. Dislocations in crystals, acting

as primary carriers of plastic deformation, result from distortions in the underlying order

parameter, i.e., crystalline symmetry, characterized by Burgers vectors and slip planes [35].

In contrast, the TDs related to the eigenmodes of glasses do not form a regular lattice and

arise from the superposition of acoustic waves (interacting with local disorder) rather than

from a broken translational symmetry. This irregularity of the spatial arrangement of the
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TDs implies that their dynamics (when the sample is a bit perturbed) and interactions is

more complex and less predictable than in crystalline systems.

In this context it will be important to investigate how the arrangement of the TDs is

related to the brittleness of the glass since this might allow to make prediction of this

important material properties directly from the unsheared sample. Furthermore it can be

expected that also the nature of the fracture occurring beyond the yielding point is related

to the presence of the TDs, with zones that have a high local density of positive TDs being

avoided by the fracture front since they are mechanically more stable. Also the evolution of

the geometrical arrangement of the TDs under cyclic shear is an important question, since

it should allow to gain important insight into the aging behavior of glasses under mechanical

stress.

We also point out that recent research on the generation of ultra-stable glasses [36],

utilizing techniques such as random pinning/bonding [37–40], highlights the important role

of quenched disorder in the vitrification process, see also Ref. [41, 42]. It is thus tempting to

speculate that the topological defects with positive charge can be considered to be a kind of

“quenched disorder” that is related to the slowing down of the dynamics of the glass-former

since these defects are in regions that are mechanically stable. This idea merits further

exploration, as it offers a potentially interesting novel approach to predict the phenomenon

of dynamic heterogeneity—one of the hallmark behaviors observed in supercooled liquids

approaching the glass transition, as well as the dynamic slowing-down.

The linear arrangement of TDs that we have documented here can be found also in other

fields of physics such as the vortex lines representing topological singularities in quantum

fluids/gases, where interference and phase factor of varying waves play an important role.

These features are robust and at the origin of energy cascades and dissipation processes that

exhibits a scale-invariant behavior [43, 44], making them a fundamental ingredient in wave-

based systems. The scale-invariance that we have identified in the spatial organization of our

TDs hints therefore at a possible universality regarding how defects organize and interact

across a wide range of physical systems. Scale invariance is a hallmark of critical phenomena,

and its presence in amorphous materials suggests that plasticity and deformation processes

might be related to critical-like/avalanche behavior [45–48] in which the system exhibits

self-similar organization across different length scales. This might imply that the plastic

behavior (or energy dissipation) of materials, whether crystalline [49], amorphous, or poly-
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crystalline, follows universal scaling laws that are independent of the specific material but

instead depend only on the topology and elastic properties of the system.

METHODS

MD Simulation. The simulations were carried out for a system with N=800,000 and

we used a potential that is a slight modification of the standard Kob-Andersen potential.

This modification (an addition of a linear term to the original portential) was proposed by

Schrøder and Dyre and has the effect that crystallization is (so far) completely avoided [30].

We equilibrated the system at T = 0.430 (TMCT=0.436) for 30 million steps (density was

1.200 and step size was 0.005) and then cooled the sample to T = 0 within 30 million time

steps.

Normal Modes. A conjugate gradient energy minimization process was used to get the

inherent structure of the configuration, and subsequently the vibrational normal modes were

obtained by diagonalizing the dynamical matrix D which is defined as

D =
1

√
mimj

∂2U(r⃗N)

∂r⃗i∂r⃗j
. (5)

Here U(r⃗N) is the total potential energy of the system and mi is the mass of particle i,

and all masses were set to 1.0. We calculated the first (lowest frequency) 104 eigenmodes

for the system with N = 800k with ARPACK. The vibrational density of states D(ω) were

calculated as

D(ω) = (1/3N)
∑

κδ(ω − ωκ) . (6)

Correlation function between the TDs and the PEs. For each eigenmode κ =

1, 2, ..., 3N , we define the radial pair correlation function gκ,αPE(r) between the TDs and

PEs, with α ∈ {−1,+1}, as

gκ,αPE(r) =
L3

4πr2NTDNPE

NTD∑
i=1

NPE∑
j=1

δ(r − |r⃗ij|) . (7)

Here NTD and NPE are the number of TDs of the mode κ and the number of particles

associated to PEs, respectively, and rij is the distance between the TD i and the PE j.
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Since the number of TDs increases quadratically with ω, the average correlation function

gavαPE(r) is then defined by

gavαPE(r) =

∑
κ gκ,αPE(r)/ω

2
κ∑

κ 1/ω
2
κ

, (8)

where the sum over κ runs over the ω-range defined in the main text.

Generating of 3D topological charge density field. To get more insight into the

geometry of the eigenmodes, it is useful to introduce a density field that is a weighted average

over the topological charges in the system. Since the TD are defined via the plaquettes given

in Eq. (2), i.e., they have orientational information on the eigenvector field, we keep track

of this information by taking the average only in the plane of the plaquette. The weighted

density field of the TDs at position R⃗ is thus given by Ω(R⃗) = Ωxy(R⃗) + Ωxz(R⃗) + Ωyz(R⃗),

where, e.g., the field Ωxy is defined by

Ωxy(R⃗) =
1

N

∑
κ

1

ω2
κ

∑
i(κ)

νi,xy

|r⃗i − R⃗|
Π(zi − Z) . (9)

(The fields Ωxz and Ωyz are defined analogously.) Here R⃗ = (X, Y, Z), N is the number of

particles contained in the system, ωκ is the frequency of mode κ and νi,xy is the topological

charge (+1 or −1) of the i-th TD, located at the point (xi, yi, zi), in the xy-plane of mode

κ. The function Π(zi − Z) is a rectangle function (with a width of the discretization of the

field) which assures that the TDs are only visible in the xy-plane, but not outside of this

plane. Thus essentially each TD is multiplied with a planar 1/r-type convolution kernel

function which smooths it spatially over some length scales in the plane it belongs to. This

smoothening process quantifies the influence of a topological charge ν placed at a distance

r, which in our case has the physical meaning of measuring how much the local orientation

of the field varies on a circular circuit of radius r around the defect core, hence taking into

account the “interference” effect between different TDs. In practice, we set the range of

action of the 1/r-kernel as 1 < |r| < L/2, where L is the size of the simulation box.
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I. Elastic constants and Debye level

Using the Voigt notation, the elastic tensor Cij can be obtained by performing six finite

distortions of the sample and deriving the elastic constants from these stress-strain rela-

tionships. Subsequently other elastic properties can be derived from the elastic constants

Cij, such as bulk modulus (B) and shear modulus (G). At zero temperature, it is easy to

estimate these derivatives by deforming the cubic simulation box in one of the six directions

using the change-box command of LAMMPS and measuring the change in the stress ten-

sor. A general-purpose script that does this is given in the examples/ELASTIC directory

described on the Examples doc page of LAMMPS. For our modified Kob-Andersen glass

with N = 800k at T = 0, the measured Cij matrix is:

Cij =



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


=



98.41639 59.91135 59.92890 0 0 0

59.91135 98.44813 59.98292 0 0 0

59.92890 59.98292 98.32296 0 0 0

0 0 0 19.32866 0 0

0 0 0 0 19.38436 0

0 0 0 0 0 19.28212


Obviously the small difference between, for example, C44 and C55 will vanish for a very

large sample. For an isotropic material, these elastic constants give the two independent

coefficients B and G using [1]:

B =
1

9
[(C11 + C22 + C33) + 2(C12 + C23 + C31)] (1)

G =
1

15
[(C11 + C22 + C33)− (C12 + C23 + C31) + 3(C44 + C55 + C66)] (2)

cT =
√

G/ρ, cL =
√
(B + 4/3G)/ρ (3)

A0 = (c−3
L + 2c−3

T )/6π2ρ (4)

1



where cT and cL are transverse and longitudinal velocity of sound, respectively, A0 is the

Debye level, and ρ is the number density. The result of these calculations for the N = 800k

sample at T = 0 are tabulated below, and A0 is also included in Figs. 1 and S1.

TABLE I. Bulk modulus (B), shear modulus (G), the number density ρ, cT /cL the transverse and

longitudinal velocity of sound, and the Debye level A0.

B G ρ cT cL A0

72.759 19.290 1.20 4.009 9.059 4.556E-04
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Fig. S1. The panels show (a) the reduced cumulative density of states I(ω)/ω3, and (b) the reduced

density of states D(ω)/ω2. The horizontal blue dashed line denotes the Debye level A0 calculated

from the elastic constants of the sample.
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II. Synthetic topological vortex lines

Fig. S2. Three TD unit building blocks in 3D. Left: TD with winding number +2π; middle:

TD with winding number −2π; right: TD in which the central cell has one face with a TD with

winding number +2π and one face with a TD with winding number −2π.

In this section we present vector fields with various geometries in order to check whether

the algorithm described in the main text is able to identify correctly the vortex lines. Possible

cases for the local topology are shown in Fig. S2. In the following Eqs. (5)-(9) we give

explicit expressions for the vector fields considered; the term “3D O(2)” refers to standard

terminology describing a 3D system with planar rotors.

Eq. (5): 3D O(2) vortices.

Eq. (6): 3D O(2) anti-vortices.

Eq. (7): Defects evolving in the z-direction, keeping winding number constant, changing

rotation (chirality) periodically controlled by the parameter L.

Eq. (8): Defects traveling in z-direction, changing its winding number (+1 or −1) periodi-

cally controlled by L.

Eq. (9): 3D O(2) vortices tilting in the x-and y-direction with an angle θ. This allows us to

test the performance of the algorithm in the case that the lines of TDs are not parallel to

the simulation box.

The following images display the mentioned fields and include also the location of the

TDs. One concludes that the algorithm used is indeed able to identify this location with

high accuracy.
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ux = −y/

√
x2 + y2

uy = x/
√
x2 + y2

uz = 0

(5)


ux = y/

√
x2 + y2

uy = x/
√

x2 + y2

uz = 0

(6)


ux = −y/

√
x2 + y2 ∗ cos(2π/L ∗ z)

uy = x/
√

x2 + y2 ∗ cos(2π/L ∗ z)

uz = sin(2π/L ∗ z)

(7)


ux = −y/

√
x2 + y2 ∗ cos(2π/L ∗ z)

uy = x/
√

x2 + y2

uz = x/
√

x2 + y2 ∗ sin(2π/L ∗ z)

(8)



x′ = x− tan θ ∗ z

y′ = y − tan θ ∗ z

ux = −y′/
√
x′2 + y′2

uy = x′/
√
x′2 + y′2

uz = 0

(9)
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Fig. S3. (a)-(b) Vector fields of vortex/anti-vortex evolving in z-direction. The fields were

generated by Eq. (7) and changing the negative sign of the term ux in Eq. (7) to a positive sign,

respectively. The red/blue line are the corresponding TD-output from our algorithm. (c) Two

evolving vortices meet but do not cross, based on Eq. (7). (d) Evolving vortex and anti-vortex

meet but do not cross, based on Eq. (7). (e) The crossing of two vortices, based on Eq. (7). (f) The

crossing of a vortex with an anti-vortex, based on Eq. (7). The two panels for a different choice of

paramter L in Eq. (7). (g) Defects moving in the z-direction while simultaneously changing their

winding number. The fields were generated based on Eq. (8).
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Fig. S4. (a) 3D O(2) vortices tilted in the x-and y-direction with an angle of θ = 21.8◦. The

vector field was generated based on Eq. (9). (b) 3D O(2) vortices tilted in the x-and y-direction

with an angle of θ = 21.8◦, and in this case to test the stability of the procedure to detect the TDs,

we have added some noise (±10%) to ux, uy, and uz, respectively. (c) Top view of the topological

defects shown in panel (b).
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III. Arrangement of the topological defects

To obtain a better understanding of the nature of the TD lines at low frequencies, we

present in Fig. S5 the mode for the frequency ω=0.567. Similar to what has been documented

for a 2D system [2], the vibrational mode forms a regular pattern, reflecting the strong

acoustic nature of this mode, giving rise to a topological-vortex-line lattice structure. Figure

S6 shows the TD for the eigenmodes with higher frequencies. The rightmost panel is a zoom

on the TD configuration at ω = 1.211 showing that even at this frequency many TDs align

in a quasi-1D manner.

Fig. S5. Ordering of the TDs at low frequencies into quasi-one-dimensional filaments. Also shown

is a thin slice of the corresponding eigenvector.

Fig. S6. Arrangement of the TD at intermediate frequencies. The four left panels show the entire

simulation box, while the rightmost panel is a zoom of the configuration at ω = 1.211 shown in

Fig. 2 of the main text.
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Structure factor: Inspired by the scaling behavior of g(r), we have determined the structure

factor for the TDs to check this scaling in reciprocal space. The corresponding Sαβ(q;ω) is

defined as,

Sαβ(q;ω) =
1

Nω

∑
κ

Sκ,αβ(q)δ(ω − ωκ) , (10)

where Sκ,αβ(q) (α, β ∈ {±1}) is calculated directly from the position of the TDs in each

eigenmode κ via S(q) = (1/N)⟨|
∑

j e
−iq·rj |2⟩ and Nω is the number of modes with fre-

quency ω. In Fig. S9, at frequencies up to ω = 0.604, for q < 1.1σ−1, S++(q) and S−−(q)

show a power-law dependence, q−1, suggesting a linear structure. This scaling seems to

contradict the power-law decay of gαβ(r) at intermediate r (exponent −5/3), see Fig. 3

and Fig. S8(a), which would correspond for Sαβ(q) to a power-law with exponent -4/3. Fig-

ure S8(b) demonstrates that the decay of Sαβ(q) is indeed better described by a q−1-law. We

therefore conclude that the q−range in which we see the decay of Sαβ(q) is not sufficiently

large to show a power-law that is compatible with the decay of gαβ(r) since the Fourier

transform (∼ |
∑

j e
−iq·rj |2) leads to a significant mixing of different length scales. We note,

however, that for the smallest q’s the Sαβ(q) is indeed compatible with an exponent −4/3,

see Fig. S8, i.e., on the largest length scales the decay behavior in real space is the same as

the one of reciprocal space.

As the frequency increases, the scattering intensity becomes flat, and a q0-regime emerges

at intermediate wave-vectors, indicating an absence of significant correlations on this scale.

This suggests that at intermediate distances there are no distinct structure or size correla-

tions, likely due to the TD lines being twisted and entangled without regular arrangement.

This observation aligns with the snapshots shown in Fig. 2 and Fig. S6 for frequencies above

ω=1.2. Meanwhile, for S+−(q) a power-law regime q−2 is observed at intermediate q-values,

and this range gradually shifts to higher q-values as ω increases, suggesting an underlying

developing of random walk statistics.

For ω above 1.2, Sαβ(q) is in the low q regime proportional to q−4, a behavior which

is reminiscent of Porod’s law observed in systems that have sharp interfaces. A Porod-

like behavior at these length-scales is typically associated with scattering from interfaces

or systems with pronounced density inhomogeneities. As we point out in the main text,

Fig. 2, above ω ∼ 1.2 the TDs form compact regions that have a high density of TDs and

the scattering from the boundaries of these regions are likely the origin of the observed q−4
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q−2, respectively.

regime.
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TD charge density field: In Fig. S10 we show two iso-surfaces of the 3D topological charge

density field Ω(R⃗) (see Methods). In analogy to Fig. 5d in the main text, the yellow parts

indicate regions of charge density greater than 1.25·10−4 while the blue ones indicate regions

with a topological charge density smaller than -1.25·10−4. The snapshot shows that the

positive and negative TDs form an intricate pattern.

Fig. S10. A 3D view of two isosurfaces of the smoothed topological charge density field Ω(R⃗) with

a iso-level value of 1.25·10−4 (yellow) and -1.25·10−4 (blue), respectively.
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IV. Stress-strain curve and shear band

We performed simple shear loading on the sample with N = 800k in three different

directions. Interestingly, we did not observe any noticeable drops in the stress-strain curve

before global yielding occurred. The final yielding was very sharp, closely resembling the

behavior of a stable glass. This is likely due to the fact that the sample is very well annealed

and also very large. From the point of view of the particles, the sharp drop during global

yielding corresponds to the formation of a very thin and localized shear band, see Fig. S12.
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Fig. S11. AQS stress-strain curves for three shear-directions and two strain step increases.
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Fig. S12. Formation of shear band, xy−loading, ∆γ = 0.0005. The configuration at γ = 0.098 is

the reference configuration for the calculation of the non-affine squared displacement D2
min shown

in the other panels.
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