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Abstract

Microswimmers play an important role in shaping the world around us. The squirmer is a sim-

ple model for microswimmer whose cilia oscillations on its spherical surface induce an effective

slip velocity to propel itself. The rapid development of computational fluid dynamics methods

has markedly enhanced our capacity to study the behavior of squirmers in aqueous environments.

Nevertheless, a unified methodology that can fully address the complexity of fluid-solid coupling at

multiple scales and interface tracking for multiphase flows remains elusive, posing an outstanding

challenge to the field. To this end, we investigate the potential of the smoothed particle dynam-

ics (SPD) method as an alternative approach for simulating squirmers. The Lagrangian nature of

the method allows it to effectively address the aforementioned difficulty. By introducing a novel

treatment of the boundary condition and assigning appropriate slip velocities to the boundary

particles, the SPD-squirmer model is able to accurately represent a range of microswimmer types

including pushers, neutral swimmers, and pullers. We systematically validate the steady-state ve-

locity of the squirmer, the resulting flow field, its hydrodynamic interactions with the surrounding

environment, and the mutual collision of two squirmers. In the presence of Brownian motion, the

model is also able to correctly calculate the velocity and angular velocity autocorrelation functions

at the mesoscale. Finally, we simulate a squirmer within a multiphase flow by considering a droplet

that encloses a squirmer and imposing a surface tension between the two flow phases. We find that

the squirmer within the droplet exhibits different motion types. Since the proposed method is ap-

plicable to a wide range of complex scenarios, it has implications for a number of areas, including

the design and application of micro/nano artificial swimmers, flow manipulation in microfluidic

chips, and drug delivery in the biomedical field.

I. INTRODUCTION

In examining the microscopic realm of life, it is crucial to acknowledge the minuscule

yet profoundly influential entities known as microorganisms. Although their existence is

largely invisible to the naked eye, they are found in astonishing diversity and abundance

throughout the world. From the depths of marine ecosystems to the inner workings of the
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human gut, these microorganisms utilize their unique motility to navigate and reproduce

in their environments. They also play a critical role in energy flow, matter cycling and

the complex interplay between health and disease [1–3]. The movement of microorganisms

in aqueous environments is dominated by viscous forces rather than inertial force due to

their small size [4], which has led to the evolution of specialized locomotive structures such

as flagella and cilia [5]. These organelles, which are characterized by a 9+2 microtubule

arrangement, enable microorganisms to navigate and sense their surroundings effectively [6].

Flagella are typically long and sparsely distributed, such as in Escherichia coli, Sperm cells

and Chlamydomonas [7, 8]. Cilia, on the other hand, are relatively short and densely packed,

often covering the entire surface of the microorganism. For example, Opalina, Paramecium,

and certain green algae move forward by the coordinated beating of their cilia [9–11]. In

these organisms, each cilium performs an effective stroke followed by a recovery, collectively

forming a metachronal wave that generates propulsive force [12–14]. The morphologies of

motile microorganisms are diverse, ranging from a few micrometers to several millimeters

in size, and their motility behavior can also change in response to environmental variations.

Mathematical modeling of these microorganisms poses a formidable challenge, requiring the

development of simplified models for study.

In the early 1950s, mathematical modeling of low-Reynolds-number swimmers began

to emerge. Taylor demonstrated through the propulsion mechanism of a long sperm tail

that an infinitely deformable sheet immersed in a viscous fluid can propel itself to the

left by generating small-amplitude transverse waves that propagate to the right, with the

propulsion velocity proportional to the square of the wave amplitude [15]. Subsequently,

Lighthill introduced an idealized model for a finite body: the spherical squirmer [16], where

he envisioned a sphere with a deformable surface and hypothesized small-amplitude radial

and tangential, axisymmetric, and periodic motions of the surface elements. Blake further

developed the squirmer model and applied it to the study of ciliate motility, considering the

deformable and stretchable surface of the sphere as the envelope of the cilia tips during their

beating motion [17]. The squirmer model allows an effective slip velocity directly on the

surface of the sphere to represent the flow induced by the cilia, which has been widely used to

analyze various behaviors and properties of microswimmers. For example, Magar et al. [18]

used this model to analyze the nutrient uptake characteristics of solitary swimmers. Over

the past decade, researchers have employed the model for a plethora of studies, including the
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analysis of swimming efficiency [13, 19], the motion characteristics of squirmers in confined

geometries, such as near walls [20] and free surfaces [21], as well as hydrodynamic interactions

between two swimmers [22, 23]. In addition, the motion of swimmers in complex fluids has

been studied, including their motion in density gradients [24], viscosity gradients [25], and

non-Newtonian fluids [26, 27]. Furthermore, to gain a deeper understanding of the collective

dynamics of microswimmers, the group behaviors of numerous squirmers have also been

studied [28–30].

The rapid development of computational fluid dynamics methods has greatly facilitated

the simulation of microswimmers. Popular methods include lattice Boltzmann method [31,

32], dissipative particle dynamics [33, 34], finite volume method [20, 23], and multi-particle

collision dynamics [35–37]. Each of these approaches has distinct advantages and has indi-

vidually achieved considerable success. Despite these collective advances, a unified method-

ology that effectively addresses the complexity of fluid-solid coupling at multiple scales and

interface tracking for multiphase flows remains elusive. This gap presents a formidable chal-

lenge that requires innovative solutions. In direct response to this challenge, we apply the

smoothed particle dynamics (SPD) method to model microswimmers. Capitalizing on the

Lagrangian framework inherent in SPD, this approach presents a unified and potent strategy

to overcome the previously described complexity.

SPD refers to either smoothed particle hydrodynamics (SPH) or smoothed dissipative

particle dynamics (SDPD), which are utilized to solve either macroscopic or mesoscopic

flow problems, respectively. The Lagrangian characteristic of SPD is advantageous for han-

dling complex interfaces, including fluid-solid coupling with moving boundaries and interface

tracking. Originally developed to simulate phenomena in astrophysics, SPH has since been

extensively applied to a range of flow problems [38–40]. In the past few decades, SPH

has been effectively employed to tackle complex flow problems, particularly those involv-

ing multiphase flow [41–43] and particle suspensions [44–46]. SDPD, proposed by Español

and Revenga [47], introduces stochastic forces into SPH within the GENERIC framework

of thermodynamics [48], making it an effective solver for the Landau-Lifshitz-Navier-Stokes

equations [49–52]. It has been widely applied to study the physics of various mesoscopic

flows [41, 44, 53–55]. Building on our previous work on the slip boundary condition [56], we

model the dynamics of squirmers for a variety of fluid dynamics problems ranging from the

macroscopic to the mesoscopic scale, and from single phase to multiple phases.
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The structure of the paper is as follows: in section II we present the continuous and

discrete forms of the fluid dynamics equations and provide a detailed exposition on how to

construct the squirmer model within the SPD method. In section III we demonstrate the

accuracy and versatility of the model through several flow problems. Finally in section IV

we summarize this work.

II. THE METHOD

A. The squirmer model

The squirmer is a simple model for microswimmer, originally used to model the locomo-

tion and hydrodynamics of swimming ciliated microorganisms. Lighthill [16] first introduced

the Squirmer model, which describes the locomotion of a deformable body swimming for-

ward through small oscillations at low Reynolds numbers. Subsequently, Blake [17] refined

this model by approximating the flow induced by the periodic oscillation of cilia enveloping

the sphere’s surface with an effective slip velocity. In this theoretical setup, the trajectory of

a particle on the surface of a squirmer is defined by the tips of the cilia. The flow adjacent to

the surface can be characterized as an effective slip velocity vs directly on the surface of the

sphere. The slip velocity can be written as an infinite series of eigenfunctions of the Stokes

equation describing arbitrary time-dependent squirming velocities [3]. For axisymmetric

flows, the surface velocity field with the polar angle θ and time t is simplified in spherical

coordinates as

vs(θ, t) = vθ(θ, t)eθ + vr(θ, t)er. (1)

Here, the polar angle θ is defined by the direction of the head e and the radial vector rs from

the center of the sphere to the point on the surface. vθ and vr correspond to the velocity

components in the directions tangential and radial to the surface, respectively.

The original squirmer model did not constrain the nature of the surface velocity. However,

for the sake of simplicity, subsequent research often assumes a time-independent, axisym-

metric and tangential surface velocity. For an accurate representation of the flow field, it is

sufficient to consider only the first two modes of the tangential velocity, B1 and B2 [17]. In

this simplified framework, the surface velocity, which manifests exclusively in the tangential
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direction on the sphere, can be described by

vs(θ) = vθ(θ)eθ = B1(sinθ + βsinθcosθ)eθ. (2)

where β represents the squirmer parameter, defined as

β =
B2

|B1|
, (3)

which quantifies the leading-order flow field: pushers (β < 0), pullers (β > 0), and neutral

swimmers (β = 0). Eq. (2) has another form:

vs(rs, e) = B1

[
1 + β

(
e · rs

R

)] [(
e · rs

R

) rs
R

− e
]
, (4)

where R = |r| is the radius of the sphere.

For this model the velocity of the swimmer U0 in bulk is solely determined by the first

mode B1 as [17]

U0 =
2

3
|B1|. (5)

Considering the translation and rotation of the squirmer, the absolute velocity on the

surface of the sphere is given by

v = U0 +Ω0 × rs + vs(rs, e), (6)

where U0, Ω0 are the translation and angular velocity of the sphere, respectively.

The kinematics of the squirmer is governed by the principles of rigid body dynamics. Its

translational and rotational movements are described by the classical Newton’s second law

and Euler’s equations of motion, as follows:

F = MU̇0 (7)

T = I · Ω̇0 +Ω0 × [I ·Ω0] (8)

Here, F and T denote the net force and torque acting on the squirmer, respectively. M

represents the total mass of the squirmer, while I signifies the inertia tensor that encapsulates

the distribution of mass relative to the squirmer’s center of mass.
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B. Lagrangian hydrodynamic equations

The equations of isothermal Newtonian fluid in a Lagrangian description are

dρ

dt
= −ρ∇ · v, (9)

ρ
dv

dt
= −∇p+∇ · [η(∇v +∇vT )]− 2

3
∇(η∇ · v) + ρg + Fs, (10)

where ρ, v, p, η, and g are material density, velocity, pressure, dynamic viscosity and body

force per unit mass, respectively. An equation of state (EOS) relating the pressure to the

density is necessary to provide a closure for a weakly compressible description, and it can

be expressed as:

p = c2sρ0

[(
ρ

ρ0

)
− 1

]
+ χ, (11)

where ρ0 is the equilibrium density. An artificial sound speed cs is chosen based on a scale

analysis [57] such that the pressure field reacts strongly to small deviations in the density,

and therefore a quasi-incompressibility is fulfilled. In this case, the third term on the rhs.

of Eq. (10) may be negligible. Here, χ is a positive constant introduced to enforce the

non-negativity of pressure on discrete SPD particles.

Fs in Eq. (10) represents a surface force which acts at the surface between two immiscible

fluid phases as follows

Fs = ακn, (12)

where α, κ, n are the surface tension coefficient, the curvature of the interface and the

unit normal vector at the interface, respectively. The normal vector can be obtained using

n = ∇C
|∇C| , where C is a colour function that has a unit jump across the interface. The

curvature can be calculated using κ = ∇ · n. According to the continuous surface model

(CSF) method [58] and its remedies [41, 42, 59], the surface force can be written as a tensor

form Fs = ∇ · Π, where the surface stress is computed as

Π = α(
1

3
E− nn), (13)

where E is the identity matrix.
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C. Smoothed particle dynamics

For convenience, we define some simple notations as reference

rij = ri − rj, (14)

vij = vi − vj, (15)

eij = rij/rij, rij = |rij| , (16)

where ri, vi are position and velocity of SPD particle i; rij, vij are relative position and

velocity of particles i and j; rij is the distance of the two and eij is the unit vector pointing

from j to i. Each particle’s position is updated according to

dri
dt

= vi. (17)

The density field is computed as [47]

σi =
ρi
mi

=
∑
j

W (rij) =
∑
j

Wij, (18)

where σ is number density defined as the ratio of ρ and particle mass m (constant). Note

that the density summation in Eq. (18) together with the position update in Eq. (17) al-

ready account for the continuity equation in Eq. (9), which does not need to be discretized

separately [47]. The weight function W (r), also known as kernel, has at least two properties:

lim
h→0

W (r− r′, h) = δ (r− r′) (19a)

∫
W (r− r′, h) dr′ = 1, (19b)

where h is quoted as smoothing length. This indicates that any kernel adopted should

converge to the Dirac delta function δ as h → 0 and its integral must be normalized.

To balance the computational efficiency and accuracy, a finite support domain described

by a cutoff radius rc is usually adopted. When two particles’ distance is larger than rc,

W (rij ≥ rc, h) = 0 and there is no direct contribution to each other’s dynamics. In this

work we adopt the quintic spline function with rc = 3h, which has been proven to be

accurate [57]:

8



W (s, h) = Cd
1
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(3− s)5 − 6(2− s)5 + 15(1− s)5, 0 ≤ s < 1;

(3− s)5 − 6(2− s)5, 1 ≤ s < 2;

(3− s)5, 2 ≤ s < 3;

0, s ≥ 3.

(20)

Here s = rij/h and d is the number of dimension. The normalization coefficients are C2 =

7/478π, and C3 = 3/359π in two and three dimensions, respectively. We use h = 1.2∆x,

where ∆x is the distance between initial neighboring particles. The squirmer particles are

initially on a spherical coordinate system and other particles are on the cubic lattice.

The momentum equation of every SPD particle can be expressed succinctly as follows

mi
dvi

dt
=

∑
j

(FC
ij + FD

ij + FA
ij + FR

ij + FS
ij). (21)

Here FC
ij and FD

ij are conservative and dissipative forces between a pair of adjacent particles,

the sum of which corresponds to a discretization of the forces due to pressure and viscous

stress in the Navier-Stokes equations in Eq. (10). FA
ij is the additional term to minimise

numerical errors due to irregular distributions of particles [60] and appears only in macro-

scopic flow problems. FR
ij is the random force used for mesoscopic flow problems [47]. FS

ij

represents the surface force acting only on the surface in multiphase flow. There are a vari-

ety of formulations for the pairwise forces with different combinations [41, 44, 47, 60]. The

proposed squirmer model is not restricted to any particular force formulation. In this work,

we propose a unified discrete approach that can address the complexity of fluid-solid cou-

pling at multiple scales and interface tracking for multiphase flows, while ensuring angular

momentum conservation.

The conservative and dissipative terms are discretised as follows

FC
ij = −(

1

σ2
i

+
1

σ2
j

)
ρjpi + ρipj
ρi + ρj

∂W

∂rij
eij, (22)

FD
ij = (d+ 2)

(
1

σ2
i

+
1

σ2
j

)
2ηiηj
ηi + ηj

∂W

rij∂rij
eij · vijeij, (23)

where the particle-averaged pressure and viscosity are employed, which are suitable for

handling multiphase problems.

The additional term is discretized as

FA
ij =

1

2
(
1

σ2
i

+
1

σ2
j

)(Ai +Aj) ·
∂W

∂rij
eij, (24)
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where A = ρv(ṽ − v) s a tensor from the dyadic product of the two vectors. Furthermore,

v is the velocity for momentum and force calculations, while ṽ is the modified transport

velocity for updating the position of each fluid particle. The discrete form of ṽ is calculated

as

ṽi = vi(t) + δt(
dvi

dt
− χ

mi

∑
j

(
1

σ2
i

+
1

σ2
j

)
∂W

∂rij
eij). (25)

where δt is the time step, and the positive constant χ only appears here but not in the

momentum equation.

To have a local thermodynamic equilibrium at the mesoscopic scale, the pair of random

stress and dissipative stress are inherently related and must follow the fluctuation-dissipation

theorem. In a discrete setting, for a given expression of the dissipative force FD
ij , we may

resort to the GENERIC framework to obtain the corresponding random force FR
ij:

FR
ij =

(
−8(d+ 2)ηiηjkBT

ηi + ηj
(
1

σ2
i

+
1

σ2
j

)
∂W

rij∂rij

)1/2

dW ij · eij, (26)

where kB is the Boltzmann constant and T is the temperature. dW is a matrix of indepen-

dent increments of the Wiener process, and dW is the symmetric part of it

dW ij = (dWij + dW T
ij )/2. (27)

Furthermore, the following symmetry between particles i and j is preserved

dWij = dWji. (28)

The independent increments of the Wiener process satisfy the following mnemotechnical Itô

rules

dW αβ
ij dW κλ

kl = [δikδjl + δilδjk]δ
ακδβλdt. (29)

In case of single-phase flow, the dissipative force and random force are consistent with the

version of the angular momentum formula of the Ellero and Español [52].

In addition, the surface force is generated as follows [41]

FS
ij = (

Πi

σ2
i

+
Πj

σ2
j

)
∂W

∂rij
eij (30)
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where Π is the total surface stress of the particle of phase k from interacting with neighboring

particles of other phases l:

Π =
∑
l

Π
(1)
kl , l ̸= k. (31)

and the k − l phase interface stress is

Π
(1)
kl =

αkl

|∇Ckl|

(
E|∇Ckl|2

3
−∇Ckl∇Ckl

)
(32)

Here, αkl is surface tension coefficient between phase k and l. The gradient of a color index

C can be obtained as

∇Ckl
i = σi

∑
j

(
C l

i

σ2
i

+
C l

j

σ2
j

)
∂W

∂rij
eij. (33)

D. Modeling squirmers using SPD

We employ SPD boundary particles to represent any solid body, including the squirmer.

Once the boundary particles have been initialized, the boundaries are accurately delineated

throughout the simulation. SPD boundary particles possess identical mass and resolution

∆x as the fluid particles, ensuring that a fluid particle in proximity to the boundary has a

complete support domain. To satisfy the correct pressure gradient near the boundary, the

pressure of each boundary particle is interpolated from the surrounding fluid particles [61].

To obtain the flow field generated by the squirmer, we modify the dissipative forces

between the fluid and solid particles at the boundary, altering the velocity of the fluid near

the boundary to induce effective slip. We assume that the tangential velocity within the

solid adjacent to the interface is distributed linearly. Since the slip velocity at each point

on the interface is known, the task at hand is to calculate this artificial velocity of the solid

particle.

We define the normal distance from fluid particle A to the sphere’s boundary as dA, as

depicted in Fig. 1. This normal defines a tangent plane that is in contact with the sphere,

which in two dimensions is a tangent line. The intersection of the normal with the tangent

plane is denoted by point C. From this tangent plane, we can calculate the normal distance

for each solid particle B as dB. We can define a local coordinate system where n is the

normal direction, and τ and k lie within the tangent plane. In three dimensions, τ and k,

which are perpendicular to each other, can be arbitrary within the tangent plane. However,
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(a) Squirmer’s slip velocity distribution at

surface.

(b) Implementation of artificial velocities for

boundary particles in squirmer.

FIG. 1: Schematic of modeling a squirmer. To achieve the slip velocity of the squirmer in

(a), artificial velocities of the boundary particles are assigned in (b). Given a fluid particle

A, an interface plane tangential to the sphere is defined to be perpendicular to a line AC

of length dA, where C is the point of intersection on the surface. A Cartesian coordinate is

chosen such that the direction n is perpendicular to the interface plane, the direction τ is

on the interface plane and coplanar with the plane containing n and the direction of the

squirmer head e. B is an example of neighbouring boundary particles with dB away from

the interface plane. During the pairwise dissipative force calculation between A and B, an

artificial velocity vB is assigned to B so that the linear interpolation between vA and vB

has a tangential velocity vs + vτc at C and the other directions keep the original velocity

component. Given the same fluid particle A, all other nearby boundary particles follow the

same procedure of B.

for convenience, here τ is coplanar with the plane containing n and the direction of the

squirmer’s head e. The artificial velocity is assigned to the solid particles B on the sphere,

with the components in the normal and tangential directions specified as follows:

vτB = − dB
dA + αh

(vτA − vs − vτC) + vs + vτC

vnB = − dB
dA + αh

(vnA − vnC) + vnC

vkB = − dB
dA + αh

(vkA − vkC) + vkC (34)

where vB = (vτA, v
n
A, v

k
A) is the fluid velocity of particle A. The surface slip velocity in

tangential direction vs is defined in Eq. (2) or Eq. (4). The αh term is included to keep
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the denominator nonzero and a typical choice is α = 0.05. vC = (vτC , v
n
C , v

k
C) represents the

velocity of the intersection point on the surface

vC = Ω0 × rs +V0. (35)

Since the slip velicity vs(rs, e) in Eq. (4) only appears in the tangential direction, Eq. (34)

can be written as

vB = − dB
dA + αh

(vA − vs(rs, e)− vC) + vs(rs, e) + vC (36)

Then the relative velocity vAB between A and B can be directly involved in computing the

parawise dissipative force

vAB =
dA + αh+ dB

dA + αh
(vA − vs(rs, e)− vC) (37)

During the computation of the pairwise dissipative forces between particles A and B, an

artificial velocity vB is assigned to particle B. This ensures that the linear interpolation

between vA and vB satisfies the absolute velocity condition at the intersection point C,

as described by Eq. (6). For a given fluid particle A, any boundary particle within its

support domain follows the same procedure for B. And for the same boundary particle B,

the artificial velocities are different when it interacts with different fluid particles A. The

artificial velocity vB of a boundary particle is employed only in the calculation of dissipative

force FD
ij in Eq. (23), but not intended for the kinematics of the squirmer.

III. RESULTS

To illustrate the efficacy of the proposed methodology for the squirmer model, we conduct

a series of simulations, encompassing a range of scenarios, from relatively simple to highly

complex. In the absence of thermal fluctuations, we test a single squirmer at steady state,

and analyze the resulting flow field it generates. Subsequently, we examine the hydrodynamic

interactions between a squirmer and a wall, as well as between two squirmers. Afterwards,

we test the dynamics of a squirmer when thermal fluctuations of the fluid are present.

Finally, to expand the versatility of the model, we consider a squirmer in a multiphase flow

environment. Unless otherwise stated, the resolution of the SPD method is set such that the

spatial discretization, denoted by ∆x, is equivalent to R/10. This means that there are 10
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discrete particles uniformly distributed along the radius of the sphere. The resolution study

in the first subsection demonstrates that this resolution is sufficient, ensuring both accuracy

and computational efficiency.

A. A single squirmer

First, we study the motion of a single squirmer in fluid using SPD simulation. The radius

of the squirmer is taken to be unity (R = 1), which serves as the fundamental length scale for

our simulations. The computational domain is a cubic box with an edge length of L = 30,

using periodic boundary conditions to mimic an effectively infinite fluid environment. The

dynamic viscosity and density of the fluid are set to η = 1 and ρ = 1. The Reynolds number

of a squirmer in bulk is defined as

Re =
ρRU0

η
=

2ρRB1

3η
. (38)

We first extract the surface slip velocity generated by a single squirmer at steady state.

The squirmers are characterized by the first modes B1 = 0.015, which is equivalent to a

Reynolds number of 0.01. Fig. 2 illustrates the slip velocity distributions for three distinct

types of squirmers. The upper part of the figures indicate the slip velocity distribution of a

fluid particle within one SPD resolution (∆x) from the squirmer. The lower part shows the

variation of slip velocity with polar angle after interpolating the fluid particles to the surface

of the sphere by the quintic spline kernel function in Eq. (20). The results of the simulation

are in good agreement with the analytic solution for zero Reynolds number. We then check

the steady state velocities U0 of the squirmer for different values of squirmer parameter β, as

shown in Fig. 3. Two groups of squirmer’s first modes are chosen, B1 = 0.015 and B1 = 0.15,

corresponding to Reynolds numbers of Re = 0.01 and Re = 0.1, respectively. The black

dashed line represents the analytical velocity solution at zero Reynolds number, where the

steady-state velocity is independent of β, i.e. 3U0/2B1 = 1. The dashed lines indicate the

analytical results obtained using perturbation theory [62]. For pusher, both the simulation

and the perturbation theory are slight larger than the analytic solution for zero Reynolds

number, while for pullers the results are reversed. This implies that pushers accelerate and

pullers decelerate in the presence of inertia. The maximum relative error between the our

results and the perturbation theory is 0.1% for Re = 0.01 and 2% for Re = 0.1 at β = 5.
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FIG. 2: The distribution of the slip velocity on the squirmer surface. The results of the

SPD for Re = 0.01 are expressed as scatter points. The circle represent a resolution of

∆x = R/10, while the star denote ∆x = R/16. The analytic solution for Re = 0 is

expressed as lines. Top are the distribution of fluid SPD particles and their slip velocity

within one resolution from the squirmer.

Fig. 4 shows the velocity field generated by a pusher (β = −5), a neutral swimmer (β = 0)

and a puller (β = 5) in the frame moving with the swimmers. All swimmers move in the

positive direction of the x-axis. The first row shows the 3D streamlines and the second row

shows the streamlines in a tangent plane perpendicular to the z-axis and over the centre of

the sphere. The vortexes generated by the pusher is in front of the swimming direction, while

the vortexes generated by the puller is behind the swimming direction. Neutral swimmers

do not generate any vortexes.

To analyse the flow field quantitatively, we compare the velocities in three directions

generated by the swimmer with the theoretical solution in Eq. (A1). These directions are

path 1 along the negative swimming direction, path 2 along the positive flow direction and
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FIG. 3: The velocity magnitude of the squirmer with different β. The black dashed line

represents the analytical velocity solution at zero Reynolds number. The dashed line

results are from Eq. (40) in Khair&Chisholm [62].

path 3 perpendicular to the flow direction. Fig. 5 shows the velocity decay of the fluid field

generated by a puller with the Reynolds number of Re = 0.01 at different SPD resolutions.

The black solid line is the theoretical solution in Stokes flow, as detailed in Appendix A,

while the scattered points illustrate the results of the SPD simulation. Resolution study

shows that our results converge. And the high resolution results (∆x = R/16) agree with

the theoretical solution. The squirmer in the far field is consistent with an r−2 decay. Further

away the decay is faster due to periodic effects. This effect can be reduced by increasing

the simulation domain. See box size study in Appendix B. According to the results of the

resolution study, although the high resolution of ∆x = R/16 gives better results, considering

the simulation accuracy as well as the computational efficiency, it is sufficient to distribute

10 SPD particles on the radius in the 3D simulation.

B. Hydrodynamic interactions

The microorganisms may occur in multiples and are usually subject to geometric con-

straints. Hydrodynamic interactions between microorganisms and between microorganisms
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FIG. 4: The streamlines for a pusher (β = −5), a neutral squirmer (β = 0) and a puller

(β = 5 ) in the frame moving with the swimmer. The swimmers swim forward along the

x-axis. The upper part shows the streamlines in 3D and the bottom part shows a slice.

The arrows indicate the direction of certain stream lines.

and boundaries play a crucial role. Next, we validate the pairwise interactions of squirmers

as well as the dynamic behaviour of a squirmer near a wall. The radius of the squirmers are

all R = 1. The dynamic viscosity and density of the fluid are set to η = 1 and ρ = 1.

When multiple squirmers are in close proximity to each other or near a wall, the gaps

between them are often small. The resolution of the simulation may fails to capture the

dynamics within these gaps, potentially leading to unphysical SPD particle penetration. To

address this issue, we introduce short-range repulsive forces [20, 63, 64]:

fr =
Cm

ϵ

(
d− dmin − dr

dr

)2

er, (39)

where Cm =
MU2

0

R
is a scaling factor with the dimension of force, ϵ is a small positive number
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(a) Path 1 (b) Path 2 (c) Path 3

FIG. 5: Decay of the flow field. |v| is the velocity magnitude of the fluid. (a) Path 1 is

along the negative swimming direction, (b) path 2 is along the positive flow direction and

(c) path 3 is perpendicular to the flow direction. Black solid lines represent the analytic

solution of the velocity filed around a squirmer in bulk.

(a) Two squirmers interaction. (b) A squirmer near a wall.

FIG. 6: Schematic of the hydrodynamic interaction of the squirmer(s) at starting point.

(typically 10−4), d is the distance between two swimmers or the distance between the center

of a squirmer and the wall, and dmin = R or 2R is the corresponding minimum possible

distance. er is the direction of the repulsive force along the line connecting the centres of

the two squirmers or perpendicular to the wall. dr is the range of the force and in this work

is set to 0.5∆x.

First, we simulate the mutual collision of two squirmers. A schematic of this simulation
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(a) β = 5 (b) β = −5

FIG. 7: Comparison of the trajectories of two colliding microswimmers.

is shown in Fig. 6a. The computational region is a cubic box with side length L = 30,

surrounded by periodic boundary conditions. We consider the pairwise interactions of two

pushers (β = −5) and two pullers (β = 5). The initial configuration of the two squirmers

(represented by A and B) is that they are in the same plane (z = 0), with parallel head

directions and facing each other, swimming with a velocity U0 = 0.1. The corresponding

Reynolds number is Re = 0.1. The distances between their centers in the x- and y-directions

are dx = 5 and dy = 1 respectively. The paths of the two squirmers are shown in Fig. 7. The

lines represent the results of the present simulation, while the black scatter points represent

the reference solution. For pushers with β = 5, our results are consistent with those of

Ishikawa et al. [22] in Stokes flow. The two squirmers remain in the plane and separate

after approaching each other. For pullers with β = −5 our results agree with those of Li et

al. [23] where the two squirmers become entangled and leave the z plane after approaching

each other.

We then consider a squirmer swimming near a wall. Li et al. [20] identified three types

of motion for a single squirmer near a wall at a Reynolds number of 1: (1) for β ≤ 1, the

squirmer swims away from the wall at a positive angle; (2) for 2 ≤ β ≤ 5, the squirmer

oscillates near the wall and eventually swims along it at a constant distance and at a negative

angle; (3) for β ≥ 7, the squirmer bounces forward on the wall. We have verified these three
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(a) Trajectory of the squirmer. (b) Temporal evolution of orientation angle.

FIG. 8: Trajectory and temporal evolution of orientation angle θ for squirmers at Re = 1.

The squirmer initially is located at h = 2R, θ = π/4. The present results are shown as

lines, the results of Li et al. [20] as scatter.

types of motion separately, with β chosen to be 0, 3 and 7. Fig. 6b shows a schematic of

the squirmer near the wall at the initial time. The simulation region of the fluid is a cube

with side length L = 30, with periodic boundaries in the x and z directions and no-slip

walls in the y direction. The walls are composed of boundary particles. The squirmer is

close to the lower wall, and the effect of the upper wall on the squirmer can be assumed to

be negligible. The center of mass of the squirmer is at a height of h = 2R from the lower

wall, with its head swimming towards the wall at an angle of −45◦ degrees to the x axis.

Fig. 8a shows the trajectory of the squirmer’s movement, with the black point as its starting

point. Fig. (8b) shows the angle of the squirmer’s head with respect to the x-direction over

time. The lines are the results of our simulations and the scatter points are the reference

solutions. We reproduce the three motion types of the squirmer with three different β. The

trajectories and the temporal evolution of orientation angle are in good agreement with the

results of Li et al. The trajectories of the squirmer with β = 3 diverge slightly from the

reference solution in the second half of the simulation. This discrepancy may be attributed

to the boundary conditions of our simulation region differing from those employed by Li et

al.

20



C. A mesoscale squirmer with thermal fluctuations

In our investigation of the squirmer’s dynamics at the mesoscopic scale, we establish a

scenario where the thermal energy is quantified by the product of the Boltzmann constant

and temperature, kBT = 1. Considering the computational efficiency, the simulation is

conducted within a cubic domain with side length L = 15 along each side, with periodic

boundary conditions applied to encapsulate the system. The squirmer is characterized by a

unit radius, R = 1, navigating through the fluid with density of ρ = 1 and dynamic viscosity

of η = 15.

Our initial validation involves assessing the velocity autocorrelation function (VACF) for

a sphere that is not actively swimming (B1 = 0), thus having a swimming velocity of zero.

The VACF is mathematically expressed as CV (t) = ⟨U0(t)·U0(0)⟩, where the brackets denote

an ensemble average. Fig. 9a depicts the average result, which derived from 20 independent

simulation runs. At the initial moment t = 0, the VACF aligns with the equipartition

theorem from equilibrium statistical mechanics, which posits that CV (0) = 3kBT
M

, with M

representing the sphere’s mass. As time progresses, the VACF exhibits a characteristic decay

rate of −3/2.

We then test the effect of thermal fluctuations on the rotation of a single squirmer. Rota-

tional diffusion plays a crucial role in the behaviour of the squirmer. The rotational Péclet

number (Per) is a dimensionless parameter that determines the dominance of rotational

effects relative to advective effects. We define the rotational Péclet number of the squirmer

as

Per =
U0

2RDr

(40)

where U0 is the unperturbed steady-state velocity of the squirmer and Dr is the rotational

diffusion coefficient, defined as:

Dr =
kBT

8πηR3
(41)

In the case of the squirmer possessing an unperturbed steady-state velocity of U0 = 2, the

corresponding rotational Péclet number is calculated to be Per = 25.1. For this scenario,

the angular velocity autocorrelation function (AVACF) is measured, which is mathematically

formulated as CΩ(t) = ⟨Ω0(t) ·Ω0(0)⟩. The graphical representation of the average AVACF,
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(a) VACF of a passive sphere (Bn = 0). (b) AVACF of a squirmer (B1 = 3).

FIG. 9: VACF of a passive sphere and AVACF of a squirmer.

derived from an ensemble of 20 independent simulations with different seeds, is depicted in

Fig. 9b. This result demonstrates that at the initial moment t = 0, the AVACF aligns with

the principles of the equipartition theorem, specifically expressed as CΩ(0) = 3kBT
I

, with

I denoting the moment of inertia of the sphere. This agreement signifies the fundamental

relationship between the thermal energy and the rotational kinetic energy of the squirmer

at the outset of its motion.

D. Dynamics of squirmer in multi-phase flow

We extend the squirmer model to multi-phase flows, incorporating surface tension be-

tween different phases. In macroscopic or mesoscopic flows, the multiphase forces induced

by surface tension may be comparable to, or even dominate over, inertial forces, thus neces-

sitating the consideration of such forces. In this scenario, the squirmer navigates through a

multi-phase fluid environment, where we assume the squirmer constitutes a distinct phase

from the other two fluids, with thermal perturbation effects being neglected.

Initially, the squirmer is encapsulated in a droplet, surrounded by another fluid. Fig. 10

illustrates the initial configuration in our three-dimensional simulation setup. For clarity,

we denote the squirmer, droplet, and fluid with the letters s, d, and f , respectively. The

radius of the squirmer is Rs = 1. The swimming parameter is B1 = 0.75 and the steady
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velocity magnitude in the bulk is U0 = 0.5. The droplet is a sphere with a radius Rd. The

computational region is a cubic box with a side length of L = 20Rs and all boundaries are

periodic. The densities of the droplet, fluid, and squirmer are identical, set to ρd = ρf =

ρs = 1. The dynamics viscosities of the droplet and fluid are ηd = 0.25 and ηf = 0.5.

The surface tension coefficients between the phases are αdf = 10, αsf = 10, and αds = 5.

The corresponding Reynolds number for the squirmer moving in an undisturbed fluid is

Re = 1. We evaluated the squirmer for three different droplet sizes: large (Rd = 3), medium

(Rd = 2), and small (Rd = 1.5). The Capillary number is Ca =
2ηfB1

3αdf = 0.025.

Fig. 11 shows the types of motion of squirmers with different droplet sizes at steady

state. The orientation of the squirmer’s head is consistently aligned with the positive x-axis

direction. The droplet and squirmer eventually co-swim, which can be categorized into two

distinct co-swimming behaviors. The first behavior is observed with pusher and neutral

squirmers, which, irrespective of droplet size, co-swim in a direction opposite to the head’s

orientation. Upon initiating motion from rest, the squirmer initially moves in the positive

x-axis direction, aligning with the head’s direction. As it approaches the droplet’s edge, the

squirmer slows down and reverses direction, eventually moving in the negative direction of

the x-axis with the droplet. Throughout the motion, the squirmer never left the droplet.

The second type of motion is produced by the puller, which eventually aligns with the head

of the squirmer regardless of droplet size. Initially, the squirmer moves faster than the

droplet, then it punctures through the droplet, and subsequently drags the droplet along

the positive x-axis, with a part of its body still encapsulated within the droplet. Fig. 12

depicts the temporal variation of the squirmer’s velocity in the x direction for medium-sized

droplets with Rd = 2. The co-swimmer formed by the puller exhibits the greatest velocity

magnitude at steady state, while the pusher demonstrates a slightly faster swimming speed

than the neutral. The results converge as the resolution increases.

Fig. 13 illustrates the streamlines and velocity fields generated by squirmers and middle

droplets at steady state. There is less variation for the puller compared to the flow field in the

absence of droplets. For both the pusher and the neutral swimmer, the additional vortexes

are generated at the tail of the squirmer, within the droplet. Treating the swimmer-droplet

combination as a unified entity, the flow field structure suggests that the pusher-droplet

combination mimics a puller oriented with its head in the negative x-axis direction, the

neutral swimmer-droplet combination mimics a neutral squirmer also oriented negatively
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along the x-axis, and the puller-droplet combination mimics a neutral swimmer with its

head facing the positive x-axis direction.

IV. CONCLUSION

In this study, we apply the SPD method to model squirmer for the first time. The slip

velocity is incorporated at the interface between the fluid and the spherical particle, which

is realized by assigning appropriate artificial velocities to the boundary particles of SPD.

We accurately obtain the swimming velocity of a single squirmer at steady state and the

surrounding flow field it generates. The resolution study shows convergence of our results and

the flow field comply to the correct decay. Furthermore, we also simulate multi-squirmer

collisions and the motion of a squirmer near a wall, results of which are consistent with

the literature. At the mesoscopic scale, where thermal perturbations are present, we obtain

correct velocity and angular velocity autocorrelation functions. Finally, we extend the model

FIG. 10: Initial configuration in multiphase flow. A squirmer (white) with radius Rs is

encapsulated by a droplet (red) with a radius Rd. This combination is immersed in a

distinct fluid (blue).
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to multiphase flows by considering a squirmer wrapped around by a droplet and meanwhile

imposing a surface tension between the two flow phases. We find that the combination of a

squirmer and a droplet with different physics properties exhibits distinct dynamic patterns.

The proposed squirmer model has a potential to simulate a wide range of macroscopic and

mesoscopic scenarios.
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FIG. 11: Types of co-swimming motion of different squirmer with different droplet sizes at

steady state. The white sphere represent squirmer, the red represent the droplets. The

arrows indicate the direction of co-swimming of the droplet with the squirmer.
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(a) β = −5 (b) β = 0 (c) β = 5

FIG. 12: The evolution of the squirmer’s velocity in the x direction. The horizontal

coordinate is the dimensionless time t∗ = tU0/R. The initial radius of droplets is Rd = 2.

The velocity field at several moments is displayed at the top.

Appendix A: Velocity field around a squirmer

The velocity field around a squirmer of radius R at a position r in Stokes flow is [17, 22]

v = −1
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(A1)

where r = |r| is the distance from the center of the squirmer, e is the orientation of the

squirmer. Pn is the nth Legendre polynomial and Wn is defined by

Wn(cosθ) =
2

n(n+ 1)
P

′

n(cosθ) (A2)

Appendix B: Box size study

Periodic boundary conditions can influence the velocity decay of the flow field gener-

ated by an individual squirmer, causing an advance in the decay profile far away from the

squirmer. In this study, we examine the impact of the simulation box size on the veloc-

ity decay characteristics. Fig. 14 presents the results for different sizes of cubic simulation

boxes, with a constant simulation resolution of R/dx = 10 and a Reynolds number of 0.01.
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As the box size increases, the results demonstrate convergence.
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