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Abstract

In this paper, we focus on (no)existence and asymptotic behavior of solutions for the dou-

ble critical Maxwell equation involving with the Hardy, Hardy-Sobolev, Sobolev critical expo-

nents. The existence and noexistence of solutions completely depend on the power exponents

and coefficients of equation. On one hand, based on the concentration-compactness ideas,

applying the Nehari manifold and the mountain pass theorem, we prove the existence of the

ground state solutions for the critical Maxwell equation for three different scenarios. On the

other hand, for the case λ < 0 and 0 ≤ s2 < s1 < 2, which is a type open problem raised by

Li and Lin. Draw support from a changed version of Caffarelli-Kohn-Nirenberg inequality, we

find that there exists a constant λ∗ which is a negative number having explicit expression, such

that the problem has no nontrivial solution as the coefficient λ < λ∗. Moreover, there exists

a constant λ∗ < λ∗∗ < 0 such that, as λ∗∗ < λ < 0, the equation has a nontrivial solution

using truncation methods. Furthermore, we establish the asymptotic behavior of solutions of

equation as coefficient converges to zero for the all cases above.
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1 Introduction

In the present paper we focus on the double critical Maxwell equation

∇× (∇× u) =
|u|4−2s1u

|x|s1
+ λ

|u|4−2s2u

|x|s2
in R

3, (1.1)

where ∇×(∇×·) is the curl-curl operator, u : R3 → R
3 is a vector function, 0 ≤ si ≤ 2(i = 1, 2)

are constants, the number 2∗(s) := 6− 2s is named as the Hardy (resp. Hardy-Sobolev, Sobolev)

critical exponent as s = 2 (resp. 0 < s < 2, s = 0) due to a reason that the only continuous

embedding

D1,2(R3) →֒ L2∗(s)(R3; |x|−s), (1.2)

which is noncompact. The general version of the Maxwell equation is formulated as














∂tB +∇× E = 0 (Faraday′s Law),
∇×H = J + ∂tD (Ampere′s Law),
div (D) = ρ (Gauss′ Electric Law),
div (B) = 0 (Gauss′ Magnetic Law)
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with the electric field E , the electric displacement field D, the magnetic field H, the magnetic

induction B, the current intensity J and the scalar charge density ρ. These fields are related

by the constitutive equations determined by the material. Considering the constitutive relation

D = ǫE +PNL(x, E),B = µH−M, where ǫ = ǫ(x) ∈ R
3×3 is the (linear) permittivity tensor of

the material, PNL is the nonlinear part of the polarization, µ = µ(x) ∈ R
3×3 denotes the magnetic

permeability tensor and M the magnetization of the material. Suppose that there are no currents,

charges nor magnetization, i.e. J = 0, ρ = 0,M = 0. Then combining with Faraday’s law and

Ampere’s Law, we can obtain the nonlinear electromagnetic wave equation of the form

∇× (µ−1∇× E) + ǫ(x)∂2t E + ∂2t PNL(x, E) = 0. (1.3)

The equation (1.3) is particularly challenging and in the literature there are several simpli-

fications relying on approximation of the nonlinear electromagnetic wave equation. The most

prominent one is the scalar or vector nonlinear Schrödinger equation. In order to justify this ap-

proximation one assumes that the term ∇(div (E)) in ∇ × (∇ × E) = ∇(div (E)) − ∆E is

negligible, and that one can use the so-called slowly varying envelope approximation. However,

this approach may produce non-physical solutions. We can establish the time-harmonic Maxwell

equation by

E(x, t) = v(x)eωt for x ∈ R
3 and t ∈ R (1.4)

with frequency ω > 0. We consider a special case in (1.3) with

PNL(x, E) = −
|v(x)|4−2s1

|x|s1
E − γ

|v(x)|4−2s1

|x|s1
E , µ = I, ǫ = 0.

Then (1.3) reduces to the curl-curl equation of the type

∇× (∇× v) = ω2 |v|
4−2s1v

|x|s1
+ γω2 |v|

4−2s2v

|x|s2
in R

3. (1.5)

The curl operator ∇ × · is challenging from the mathematical point of view and is important in

mathematical physics: such an operator also appears in the Navier-Stokes equations. Such an

operator has several essential features. The kernel of ∇× · is of infinite dimensional, which makes

that the corresponding energy functionals of the equation (1.1) or (1.5)

Jω,γ(v) =
1

2

∫

R3

|∇ × v|2dx−
ω2

6− 2s1

∫

R3

|v|6−2s1

|x|s1
dx−

γω2

6− 2s2

∫

R3

|v|6−2s2

|x|s2
dx

is strongly indefinite, i.e. unbounded from above and below, even on the subspaces of finite codi-

mension, and its critical points have infinite Morse index. Besides, the Fréchet differential of the

functionals Jω,γ(v) is not sequentially weak-to weak∗ continuous, which leads to the limit point of

a weakly convergent sequence need not to be a critical point of Jω,γ(v).

It is not difficult to see that using the scaling transformation u = ω
2

4−2s1 v, the equation (1.5)

can be reduced to

∇× (∇× u) =
|u|4−2s1u

|x|s1
+ γω

2
s2−s1
2−s1

|u|4−2s2u

|x|s2
in R

3, (1.6)
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which is precisely the equation (1.1) with λ = γω
2
s2−s1
2−s1 . We denote that

Jλ(u) = J1,λ(u).

As far as we know, the initial works researching the exact solutions of the Maxwell’s equation

are [33, 43]. To the best of our knowledge, the first work dealing with the Maxwell’s equation

using the variational methods is due to Benci and Fortunato [9], they introduced a series of brilliant

ideas, such as splitting the function space into a divergence-free subspace and a curl-free subspace.

The second attempt to tackle the Maxwell’s equation is due to Azzollini, Benci, D’Aprile and

Fortunato [3], they used two group actions of SO := SO(2) × {I} to simplify the curl-curl

operator ∇ × (∇ × ·) to the vector Laplacian operator −∆·. The methods used in [3] are to find

cylindrically symmetric solutions to (1.5). Let F be the space of the vector fields u : R3 → R
3

such that

u =
u

|x′|





−x2
x1
0



 , x = (x1, x2, x3) ∈ R
3 and |x′|2 = x21 + x22, (1.7)

where u : R3 → R is a SO-invariant scalar function. Let DF := D1,2(R3,R3)∩F . From a direct

computations we observe that u ∈ DF solves the equation

∇× (∇× u) = |u|4u in R
3, (1.8)

which is exactly the equation (1.1) with s1 = 0 and λ = 0, if and only if the function φ(x) :=
u(|x′|, x3) solves the equation

−∆φ+
φ

|x′|2
= |φ|4φ in R

3.

Surprisingly, the existence of solutions of the equation (1.8) have been proved by Esteban and Li-

ons in [18]. We refer to [5–8, 10, 11, 34–38, 41, 52] for the works on the Maxwell’s equation and

the references therein. Gaczkowski, Mederski and Schino [20] established a ground state solution

in DF of the equation (1.8). Mederski and Szulkin [39] innovatively established the optimal con-

stants of Sobolev-type inequality for Curl operator and found the ground state solution without any

symmetry assumptions.

The equation

−∆u =
|u|2

∗(s1)−2u

|x|s1
+ λ

|u|2
∗(s2)−2u

|x|s2
in R

N , N > 3, (1.9)

on scalar fields has been researched widely with the Hardy(resp. Hardy-Sobolev, Sobolev) critical

exponents 2∗(s) := 2(N−s)
N−2 of the embedding

D1,2(RN ) →֒ L2∗(s)(RN ; |x|s), N ≥ 3 (1.10)

as s = 2 (resp. 0 < s < 2, s = 0), we refer to [2, 13, 16, 17, 19, 22, 24–27, 30, 42, 46, 48–50]. The

authors [21–23, 28, 31] considered (1.9) in the half space R
N
+ . In [31], Li and Lin gave an open

problem about (1.9) in the half space R
N
+ , which has not been fully resolved yet and which is the

spindle of problems what has been studied in [50] and we partially answered this question.
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The authors [4, 15, 32, 40, 44, 45, 47] studied the equation

−∆u =
|u|2

∗(s1)−2u

|x̄|s1
+ λ

|u|2
∗(s2)−2u

|x̄|s2
in R

N , N ≥ 3 (1.11)

with the so-called Hardy-Maz’ya(resp. Hardy-Sobolev-Maz’ya, Sobolev) critical exponent 2∗(s) :=
2(N−s)
N−2 of the embedding

D1,2(RN ) →֒ L2∗(s)(RN ; |x̄|s),

as s = 2(resp. 0 < s < 2, s = 0), where x = (x̄, x̃) ∈ R
k × R

N−k, 1 ≤ k ≤ N .

For the equation (1.1), based on the transformation (1.7), a direct computations we observe that

u ∈ DF solves (1.1) if and only if u ∈ XSO solves

−∆u+
u

|x′|2
=

|u|4−2s1u

|x|s1
+ λ

|u|4−2s2u

|x|s2
in R

3, (1.12)

x := (x′, x3) ∈ R
2 ×R, x′ := (x1, x2) ∈ R

2, x3 ∈ R, (1.13)

where XSO is the closed subspace of the function space X defined by

X =

{

u ∈ D1,2(R3)
∣

∣

∣

∫

RN

|u|2

|x′|2
dx <∞

}

consisting of the functions invariant under the usual group action of SO := O(2) × {I} ⊂ O(3).
Note that this is equivalent requiring that such functions be invariant under the action of O(2)×{I}
because for every ξ1, ξ2 ∈ S

1, there exists g ∈ SO(2) such that ξ2 = gξ1, where SO(2) ⊂ O(2)
stands for the special orthogonal group in R

2. The space X is a Hilbert space endowed with the

scalar product

〈u, v〉 ∈ X ×X 7→

∫

R3

∇u · ∇v +
uv

|x′|2
dx

and the corresponding norm

‖u‖ := 〈u, u〉1/2.

We remark that, for any u ∈ DF , on the sense of (1.7) with u ∈ XSO, there holds that

∫

R3

|∇ × u|2dx =

∫

R3

|∇u|2 +
|u|2

|x′|2
dx =: A(u),

∫

R3

|u|6−2s1

|x|s1
dx =

∫

R3

|u|6−2s1

|x|s1
dx =: B(u),

∫

R3

|u|6−2s2

|x|s2
dx =

∫

R3

|u|6−2s2

|x|s2
dx =: C(u).

(1.14)

We define the corresponding functional of the equation (1.12) as

Iλ(u) =
1

2

∫

R3

|∇u|2 +
|u|2

|x′|2
dx−

1

6− 2s1

∫

R3

|u|6−2s1

|x|s1
dx−

λ

6− 2s2

∫

R3

|u|6−2s2

|x|s2
dx
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and define the corresponding Nehari manifold

N :=
{

u ∈ XSO | 〈I ′
λ(u), u〉 = 0

}

.

According (1.14), we see that Jλ(u) = Iλ(u) under the transformation (1.7), for more information

and related derivation process one sees [20]. Thus, we will achieve the solvability of the equation

(1.1) in DF by researching the equation (1.12) in XSO. The ground state solutions of the equation

(1.12) are the extremal functions of

mλ := inf
u∈N

Iλ(u).

We define a number as

λ̄ := inf
u∈XSO

∫

R3 |∇u|2 +
|u|2

|x′|2dx
∫

R3
|u|2

|x|2dx
, (1.15)

Remark 1.1 It follows from the Hardy inequality that λ̄ ≥ 1
4 . And it is open that whether the best

constant λ̄ is achieve.

For the critical equation with one Sobolev critical exponent, the case that λ = 0 and s = 0, the

existence of ground state solutions of (1.1) in DF has been obtained in [20]. Applying the quotient

methods, we obtain a result as follows for the critical equation with one Hardy critical exponent

and one Hardy-Sobolev critical exponent, the case that 0 < s1 < 2, s2 = 2,

Theorem 1.2 Assume that λ < λ̄, s2 = 2 and 0 < s1 < 2. Then the equation (1.1) has a

nontrivial ground state solution in DF .

For each λ < λ̄ fixed,

‖u‖λ :=

(
∫

R3

|∇u|2 +
|u|2

|x′|2
− λ

|u|2

|x|2
dx

)1/2

defines an equivalent norm to ‖u‖ on XSO.

For the double critical equations, the case λ 6= 0, we obtain the following results in the cases

that λ > 0 and λ < 0.

Theorem 1.3 Assume that λ > 0, 0 ≤ s1 < s2 < 2. Then the equation (1.1) has a nontrivial

ground state solution in DF .

Theorem 1.4 Assume that λ < 0, 0 < s1 < s2 < 2. Then the equation (1.1) has a nontrivial

ground state solution in DF .

Define a real number

λ∗ := −
2− s1
2− s2

S̄6−2s1

(

s1 − s2
2− s2

S̄6−2s1

)

(2−s1)(s1−s2)

(2−s2)
2

,

where S̄ is a best constant of Caffarelli-Kohn-Nirenberg type inequality, see Lemma 3.2 in Section

3. We have the following nonexistence and existence results of the nontrivial solutions of (1.1) in

the case λ < 0.
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Theorem 1.5 Assume that λ < λ∗, 0 ≤ s2 < s1 < 2. Then the equation (1.1) has only zero

solution in DF .

Theorem 1.6 Assume that 0 ≤ s2 < s1 < 2. Then there exists a λ∗∗ ∈ (λ∗, 0) such that the

equation (1.1) has a nontrivial solution in DF as λ∗∗ < λ < 0.

It follows from results above, we summarize the solvability of the equation (1.1) as follows.

λ s1, s2 Does the equation (1.1) have nontrivial solutions in DF

λ = 0 s1 = 0 Yes(see [20])

λ < λ̄ 0 < s1 < 2, s2 = 2 Yes(see Theorem 1.2)

λ > 0 0 ≤ s1 < s2 < 2 Yes(see Theorem 1.3)

λ < 0 0 < s1 < s2 < 2 Yes(see Theorem 1.4)

λ < λ∗
0 ≤ s2 < s1 < 2 No(see Theorem 1.5)

λ∗∗ < λ < 0 0 ≤ s2 < s1 < 2 Yes(see Theorem 1.6)

Remark 1.7 According to the table above, it is not difficulty to find that the solvability of the

equation (1.1) in DF remains unsolved under the following cases,

• λ ≥ λ̄, 0 ≤ s1 < 2, s2 = 2,

• λ < λ̄ and λ 6= 0, s1 = 0, s2 = 2,

• λ < 0, 0 = s1 < s2 < 2.

Now, we investigate the asymptotic behavior of the solutions of (1.1) as λ→ 0.

Theorem 1.8 Assume that 0 < s1 < 2 and s2 = 2. Then there exist a sequence {λn < λ̄} and

u ∈ DF , a ground state solution of (1.1) in DF with λ = 0, such that the solution sequence

{un} ⊂ DF of (1.1) corresponding to the sequence {λn < λ̄}, satisfies that un → u in DF as

λn → 0.

Theorem 1.9 Assume that 0 < s1 < s2 < 2, λ > 0. Then there exist a sequence {λn > 0}
and u ∈ DF , a ground state solution of (1.1) in DF with λ = 0, such that the solution sequence

{un} ⊂ DF of (1.1) corresponding to the sequence {λn > 0}, satisfies that un → u in DF as

λn → 0+.

Theorem 1.10 Assume that 0 < s1 < s2 < 2, λ < 0. Then there exist a sequence {λn < 0}
and u ∈ DF , a ground state solution of (1.1) in DF with λ = 0, such that the solution sequence

{un} ⊂ DF of (1.1) corresponding to the sequence {λn < 0}, satisfies that un → u in DF as

λn → 0−.

Theorem 1.11 Assume that 0 ≤ s2 < s1 < 2, λ < 0. Then there exist a sequence {λn < 0}
and u ∈ DF , a ground state solution of (1.1) in DF with λ = 0, such that the solution sequence

{un} ⊂ DF of (1.1) corresponding to the sequence {λn < 0}, satisfies that un → u in DF as

λn → 0−.

6



Remark 1.12 As arguments above, let F be the space of the vector fields u : R3 → R
3 such that

u =
u

|x′|





−x2
x1
0



 , x = (x1, x2, x3) ∈ R
3 and |x′|2 = x21 + x22, (1.16)

where u ∈ XSO and DF := D1,2(R3,R3)∩F , from a direct computations we observe that u ∈ DF

solves (1.1) if and only if u ∈ XSO solves

−∆u+
u

|x′|2
=

|u|4−2s1u

|x|s1
+ λ

|u|4−2s2u

|x|s2
in R

3. (1.17)

Thus, the proofs of Theorems 1.2–1.11 depend on the corresponding results about the equation

(1.17). For more information one can refer to the important paper [20].

Furthermore problems

In this subsection, we give two related problems, based on the proceed of this paper, we can get the

similar results of Theorems 1.2–1.11.

Let N ≥ 3, k ≥ 2, we denote

x := (x̄, x̃) ∈ R
k × R

N−k, x̄ = (x1, x2, · · · , xk) ∈ R
k, x̃ = (xk+1, · · · , xN ) ∈ R

N−k. (1.18)

The first problem is the following

(P1) The double critical Maxwell equation in higher dimensions.

Consider the case k = 2 in (1.18). In order to find a suitable counterpart for the curl-curl operator

∇× (∇× ·) in higher dimensions, we can use the identity

∇× (∇× u) = ∇(∇ · u)−∆u, u ∈ C2(RN ;RN )

to research the equation

∇× (∇× u) =
|u|2

∗(s1)−2u

|x|s1
+ λ

|u|2
∗(s2)−2u

|x|s2
in R

N , (1.19)

where 2∗(s) := 2(N−s)
N−2 is the critical exponent of the embedding (1.10). We can find a solution of

(1.19) in DF , where DF := D1,2(RN ,RN )∩F , F is the space of the vector fields u : RN → R
N

such that

u =
u

r





−x2
x1
0



 , x = (x1, x2, x̃) ∈ R
N and r2 = x21 + x22 (1.20)

for some SO := O(2) × {IN−2}−invariant scalar function u : RN → R and u ∈ XSO, where

XSO is the subspace of

X :=

{

u ∈ D1,2(RN )
∣

∣

∣

∫

RN

|u|2

r2
dx <∞

}

7



consisting of the functions invariant under the usual action of SO. Then, u ∈ DF solves (1.19) if

and only if u ∈ XSO solves

−∆u+
u

r2
=

|u|2
∗(s1)−2u

|x|s1
+ λ

|u|2
∗(s2)−2u

|x|s2
in R

N . (1.21)

It is worth mentioning that Schino [41, Corollary 4.1.4] researched (1.19) with s1 = 0 and λ = 0.

The second problem is the following

(P2) The double critical semilinear equation in higher dimensions

Consider the double critical equation

−∆u+
u

|x̄|2
=

|u|2
∗(s1)−2u

|x|s1
+ λ

|u|2
∗(s2)−2u

|x|s2
in R

N . (1.22)

As the case k = 2 in (1.18), the equation (1.22) turns into the equation (1.21). Indeed, based on

the proceed of the present paper, we are able to verify the similar results of Theorem 1.2-1.11 for

the equation (1.22) in the following function space X, without the restriction that the functions are

invariant under the usual action of SO := O(2)× {IN−2},

X =

{

u ∈ D1,2(RN )
∣

∣

∣

∫

RN

|u|2

|x̄|2
dx <∞

}

.

Since the quantity
|φ|2

|x̄|2 need not be integrable for φ ∈ C∞
0 (RN ), C∞

0 (RN ) 6⊂ X. Thus we can not

find a solution of the equation (1.22) in D1,2(RN ) in the methods in the present paper.

For the case k > 2 in (1.18). On one hand, we also prove the similar results of Theorems

1.2–1.11 for the equation (1.22) in the function space

X =

{

u ∈ D1,2(RN )
∣

∣

∣

∫

RN

|u|2

|x̄|2
dx <∞

}

.

On the other hand, since, see [4],

∫

RN

|u|2

|x̄|2
dx ≤

(

2

k − 2

)2 ∫

RN

|∇u|2dx, ∀ u ∈ D1,2(RN ),

the norm

(∫

R3

|∇u|2 +
|u|2

|x̄|2
dx

)
1
2

of the function space

X =

{

u ∈ D1,2(RN )
∣

∣

∣

∫

RN

|u|2

|x̄|2
dx <∞

}

.

and the norm
(∫

R3 |∇u|2dx
) 1

2 of D1,2(RN ) are equivalent. Therefore, for k ≥ 3, we can prove the

existence of solutions for the equation (1.22) in D1,2(RN ).

8



Finally, we remark that, for the case λ = 0, N ≥ 3, k ≥ 2 with s := s1, the equation (1.22)

becomes

−∆u+
u

|x̄|2
=

|u|2
∗(s)−2u

|x|s
in R

N . (1.23)

The similar result of Theorem 1.2 for the equation (1.23) is new, to the best of our knowledge,

none consider the case that different effective dimensions of weight functions, that is, the effective

dimensions of the terms 1
|x̄|2 and 1

|x|s may be different.

The structure of the paper

In Section 2, we prove Theorem 1.2 by applying the quotient methods and concentration compact-

ness ideas. In Section 3, the existence of the ground state solutions of (1.1), that is the proofs of

Theorems 1.3 and 1.4 is confirmed. In Section 4, we focus on the similar open problem raised by

Li and Lin [31], we prove the nonexistence (see subsection 4.1) and existence (see subsection 4.2)

of nontrivial solutions contained in Theorems 1.5 and 1.6. In the final section, we establish the

asymptotic behavior of solutions of (1.1), which is the proofs of Theorems 1.8, 1.9, 1.10 and 1.11.

Now we give some notations description.

• Set BR(0) is a ball with center 0 ∈ R
N and radius R in R

N , specifically, as N = 1 and

0 ∈ R, BR(0) := (−R,R).

• According to the markings (1.13), 0 := (01, 02, 03) ∈ R
3 and 0′ := (01, 02) ∈ R

2.

• Set b > a > 0,

– Ba,b(0) := Bb(0
′)×Bb(03) \Ba(0

′)×Ba(03).

– Ba,b(0
′) := Bb(0

′) \Ba(0
′).

– Ba,b(03) := Bb(03) \Ba(03).

2 Proof of Theorem 1.2

In this section, we focus on the proof of Theorem 1.2, that is the equation (1.1) with λ < λ̄, where

λ̄ is in (1.15), to simplify notation we write s in place of s1, we consider the equation

∇× (∇× u)− λ
u

|x|2
=

|u|4−2su

|x|s
in R

3. (2.1)

The existence of ground state solution of (2.1) in DF has been obtained in [20] as s = 0, λ = 0.

Next, we will prove the result for the case 0 < s < 2, λ < λ̄.

Proof of Theorem 1.2 We observe that u ∈ DF solves (2.1) if and only if u ∈ XSO solves

−∆φ+
u

|x′|2
− λ

u

|x|2
=

|u|4−2su

|x|s
in R

3.

We define

Sλ,s(R
3) = inf

u∈XSO\{0}

∫

R3 |∇u|
2 + |u|2

|x′|2 − λ |u|2

|x|2dx
(

∫

R3
|u|6−2s

|x|s

)
1

3−s

. (2.2)
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Let {ũn} ⊂ XSO be a minimizing sequence for Sλ,s(R
3) such that

∫

R3

|ũn|
6−2s

|x|s
dx = 1, lim

n→∞

∫

R3

|∇ũn|
2 +

|ũn|
2

|x′|2
− λ

|un|
2

|x|2
dx = Sλ,s(R

3).

For any n, there exists rn > 0 such that

∫

Brn(0
′)×Brn (03)

|ũn|
6−2s

|x|s
dx =

1

2
.

Define un(x) = r
1
2
n ũn(rnx), then un ∈ XSO, and we have

lim
n→∞

∫

R3

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2
dx = Sλ,s(R

3). (2.3)

lim
n→∞

∫

R3

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2
dx = 1,

∫

B1(0′)×B1(03)

|un|
6−2s

|x|s
dx =

1

2
. (2.4)

We first claim that, up to a subsequence,

lim
R→∞

lim
n→∞

∫

BR(0′)×BR(03)

|un|
6−2s

|x|s
dx = 1, (2.5)

Indeed, for n ∈ N and r > 0, we define

Qn(r) :=

∫

Br(0′)×Br(03)

|un|
6−2s

|x|s
dx.

Since 0 ≤ Qn ≤ 1 and r 7→ Qn(r) is nondecreasing for all n ∈ N , then up to a subsequence, there

exists Q : [0,+∞) → R nondecreasing such that Qn(r) → Q(r) as n→ +∞ for a.e. r > 0. Set

α = lim
r→∞

Q(r).

It follows from (2.3) and (2.4) that 1/2 ≤ α ≤ 1. Up to taking another subsequence, there exist

{rn}n, {r̄n}n ⊂ (0,+∞) satisfying











2rn ≤ r̄n ≤ 3rn for any n ∈ N
+,

lim
n→∞

rn = lim
k→∞

r̄n = +∞,

lim
n→∞

Qn(rn) = lim
n→∞

Qn(r̄n) = α.

In particular,

lim
n→∞

∫

Brn (0
′)×Brn (03)

|un|
6−2s

|x|s
dx = α and lim

n→∞

∫

R3\Br̄n (0
′)×Br̄n (03)

|un|
6−2s

|x|s
dx = 1− α. (2.6)

We claim that

lim
n→∞

r−2
n

∫

Brn (0
′)×Brn (03)

u2ndx = 0. (2.7)
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Indeed, for all x ∈ Brn,r̄n(0), we have rn ≤ |x′| ≤ 2rn. Therefore, Hölder’s inequality yieds

∫

Brn,r̄n(0)
u2ndx ≤ Cr2n

(

∫

Brn,r̄n (0)

|un|
6−2s

|x|s
dx

) 1
3−s

for all n ∈ N , conclusion (2.7) then follows from (2.6).

We now let ϕ1 ∈ C∞
0 (R2), ϕ2 ∈ C∞

0 (R) and

ϕ1(x) :=

{

1 for x ∈ B1(0
′),

0 for x ∈ R
2 \B2(0

′).
ϕ2(x3) :=

{

1 for x3 ∈ B1(03),
0 for x3 ∈ R \B2(03).

For n ∈ N , we define ϕn(x) = ϕ1n(x
′)ϕ2n(x3), where

ϕ1n(x
′) := ϕ1

(

|x′|

r̄n − rn
+
r̄n − 2rn
r̄n − rn

)

for x′ ∈ R
2,

ϕ2n(x3) := ϕ2

(

|x3|

r̄n − rn
+
r̄n − 2rn
r̄n − rn

)

for x3 ∈ R.

One can easily check that ϕnun, (1− ϕn)un ∈ XSO. It follows that

∫

R3

|ϕnun|
6−2s

|x|s
dx ≥

∫

Brn (0
′)×Brn (03)

|un|
6−2s

|x|s
dx = α+ o(1),

∫

R3

|(1− ϕn)un|
6−2s

|x|s
dx ≥

∫

R3\Br̄n (0′)×Br̄n (03)

|un|
6−2s

|x|s
dx = 1− α+ o(1)

as n→ ∞. The Hardy-Sobolev inequality and (2.7) implies that, as n→ ∞,

Sλ,s(R
3)

(
∫

RN

|ϕnun|
6−2s

|x|s
dx

)
1

3−s

≤

∫

R3

|∇(ϕnun)|
2 +

|ϕnun|
2

|x′|2
− λ

|ϕnun|
2

|x|2
dx

≤

∫

R3

ϕ2
n

(

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2

)

dx+ o(1).

Similarly,

Sλ,s(R
3)

(
∫

R3

|(1− ϕn)un|
6−2s

|x|s
dx

)
1

3−s

≤

∫

R3

(1− ϕn)
2

(

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2

)

dx+ o(1)

as n→ ∞. Therefore, we have that

∫

R3

|ϕnun|
6−2s

|x|s
dx ≥

∫

Brn (0
′)×Brn (03)

|un|
6−2s

|x|s
dx = α+ o(1).
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∫

R3

|(1− ϕn)un|
6−2s

|x|s
dx ≥

∫

R3\Br̄n (0
′)×Br̄n (03)

|un|
6−2s

|x|s
dx = 1− α+ o(1).

To sum up we know,

Sλ,s(R
3)
(

α
1

3−s + (1− α)
1

3−s + o(1)
)

≤ Sλ,s(R
3)

(

(∫

R3

|ϕnun|
6−2s

|x|s
dx

)
1

3−s

+

(∫

R3

|(1 − ϕn)un|
6−2s

|x|s
dx

)
1

3−s

)

≤

∫

R3

(

ϕ2
n + (1− ϕn)

2
)

(

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2

)

dx+ o(1)

=

∫

R3

(1− 2ϕn(1− ϕn))

(

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2

)

dx+ o(1)

≤ Sλ,s(R
3) + 2|λ|

∫

R3

ϕn(1− ϕn)
|un|

2

|x|2
dx+ o(1)

≤ Sλ,s(R
3) + r−2

n

∫

R3

u2ndx+ o(1)

= Sλ,s(R
3) + o(1)

as n → ∞. Hence α
1

3−s + (1 − α)
1

3−s ≤ 1, which implies that α = 1 since 1
2 ≤ α ≤ 1. This

proves the claim in (2.5).

We now claim that there exist u∞ ∈ XSO satisfying un ⇀ u∞ in XSO as n→ ∞ and x0 6= 0
such that

either lim
n→∞

|un|
6−2s

|x|s
dx =

|u∞|6−2s

|x|s
dx and

∫

RN

|u∞|6−2s

|x|s
dx = 1, (2.8)

or lim
n→∞

|un|
6−2s

|x|s
dx = δx0 and u∞ = 0. (2.9)

Arguing as above, we get that for all x ∈ R
N , we have that

lim
r→0+

lim
n→∞

∫

Br(x′)×Br(x3)

|un|
6−2s

|x|s
dx = αx ∈ {0, 1}.

Then follows from the second identity of (2.4) that α0 ≤ 1
2 and therefore α0 = 0. Moreover, it

follows from the first identity of (2.4) that there exists at most one point x0 ∈ R
3 such that αx0 = 1.

In particular x0 6= 0 since α0 = 0. It then follows from Lions’s second concentration compactness

lemma that, up to a subsequence, there exist u∞ ∈ XSO, x0 ∈ R
3 \ {0} and ν ∈ {0, 1} such that

un ⇀ u∞ weakly in XSO and

lim
n→∞

|un|
6−2s

|x|s
dx =

|u∞|6−2s

|x|s
dx+ νδx0 in the sense of measures.

In particular, due to (2.4) and (2.5), we have that

1 = lim
n→∞

∫

R3

|un|
6−2s

|x|s
dx =

∫

R3

|u∞|6−2s

|x|s
dx+ ν.
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Since ν ∈ {0, 1}, the claims in (2.8) and (2.9) follow.

We now assume that u∞ 6= 0, and we claim that limn→∞ un = u∞ strongly in XSO and that

u∞ is an extremal for Sλ,s(R
3).

Indeed, it follows from (2.8) that
∫

R3
|u∞|6−2s

|x|s dx = 1, hence

Sλ,s(R
3) ≤

∫

R3

(

|∇u∞|2 +
|u∞|2

|x′|2
− λ

|u∞|2

|x|2

)

dx. (2.10)

Moreover, since un ⇀ u∞ weakly as n→ ∞, we have that

∫

R3

(

|∇u∞|2 +
|u∞|2

|x′|2
− λ

|u∞|2

|x|2

)

dx

≤ lim inf
n→∞

∫

R3

(

|∇un|
2 +

|un|
2

|x′|2
− λ

|un|
2

|x|2

)

dx

= Sλ,s(R
3).

(2.11)

Hence, combining with (2.10) and (2.11), u∞ is an extremal for Sλ,s(R
3) and boundedness yields

the weak convergence of un to u∞ in XSO, furthermore, the fact limn→∞ un = u∞ strongly in

XSO holds. This proved the claims.

We now assume u∞ ≡ 0. According to the fact un ⇀ u∞ ≡ 0 weakly in XSO as n → ∞,

then for any 1 ≤ q < 2∗(0), un → 0 strongly in Lq
loc(R

3) when n → ∞. It follows from s > 0
that 2∗(s) < 2∗(0), for x0 6= 0, we have that

lim
n→∞

∫

Bδ(x
′
0)×Bδ(x03)

|un|
6−2s

|x|s
dx = 0

for δ > 0 small enough, contradicting (2.9). As a result that u∞ 6= 0.

Based on the proof above, it can be concluded that there exists a uλ,s ∈ XSO such that

Sλ,s(R
3) =

∫

R3 |∇uλ,s|
2 +

|uλ,s|
2

|x′|2 − λ
|uλ,s|

2

|x|2 dx
(

∫

R3

|uλ,s|6−2s

|x|s

) 1
3−s

.

According to (1.14), there exists a uλ,s ∈ DF define by (1.16) replacing u with uλ,s above such

that

∫

R3 |∇ × uλ,s|
2 − λ

|uλ,s|
2

|x|2 dx
(

∫

R3

|uλ,s|6−2s

|x|s

)
1

3−s

= Sλ,s(R
3) = inf

u∈DF

∫

R3 |∇ × u|2 − λ |u|2

|x|2dx
(

∫

R3
|u|6−2s

|x|s

)
1

3−s

.

Making a scaling for uλ,s, we get a nontrivial ground state solution of (1.1). �

3 The case λ ∈ R \ {0}, 0 ≤ s1 < s2 < 2

In this section, we main consider the case 0 ≤ s1 < s2 < 2, λ ∈ R \ {0} and prove the Theorems

1.3 and 1.4 based on the Nehari manifold and the results for the case of λ = 0 in Theorem 1.2. Let

us simply denote S0,s(R
3) as Ss. We first establish the key lemma which is important to show that

the least energy is equal to the level of the mountain pass.
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Lemma 3.1 Assume 0 ≤ s1 < s2 < 2, λ ∈ R \ {0} hold. For each u ∈ XSO \ {0}, there exists

a unique tu > 0 such that tuu ∈ N and Iλ(tuu) = maxt>0 Iλ(tu). The function u 7→ tu is

continuous and the map u 7→ tuu is a homeomorphism of the unit sphere in XSO with N .

Proof. For any u ∈ XSO \ {0}, t > 0,

dIλ(tu)

dt
= tA(u)− t5−2sB(u)− t5−2sλC(u).

The fact 0 ≤ s1 < s2 < 2 implies that there exists a unique tu > 0 such that
dIλ(tu)

dt |t=tu = 0, that

is tuu ∈ N . [51, Chapter 4] can be referenced for the remaining proof. �

We define

c̄λ := inf
u∈XSO\{0}

max
t>0

Iλ(tu), (3.1)

ĉλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)), (3.2)

where

Γ := {γ ∈ C([0, 1],XSO) : γ(0) = 0, Iλ(γ(1)) < 0} . (3.3)

By [51, Chapter 4] and Lemma 3.1 we have that

mλ = c̄λ = ĉλ. (3.4)

As λ = 0, the ground state solutions have been in Section 3. We will prove the existence of ground

state solutions in two different cases as λ 6= 0.

Now we introduce a interpolation inequality which is a changed version of Caffarelli-Kohn-

Nirenberg inequality after a suitable transform of functions in [14].

Lemma 3.2 Assume 0 ≤ s1, s2 < 2. There exists a constant S̄ such that for any u ∈ XSO,

(∫

R3

|u|6−2s1

|x|s1
dx

)
1

6−2s1

≤ S̄

(∫

R3

|∇u|2 +
|u|2

|x′|2
dx

)
a
2
(∫

R3

|u|6−2s2

|x|s2
dx

)
1−a

6−2s2

,

where

1 > a ≥







3(s2−s1)
s2(3−s1)

if 2 ≥ s2 > s1 > 0,

s1−s2
(2−s2)(3−s1)

if 2 > s1 > s2 ≥ 0.

3.1 The case λ > 0, 0 ≤ s1 < s2 < 2

In this section, we consider the case of λ > 0 and we always assume 0 ≤ s1 < s2 < 2.

Lemma 3.3 There holds

0 < ĉλ < c∗λ := min

{

2− s1
6− 2s1

S
N−s1
2−s1
s1 ,

2− s2
6− 2s2

λ
− 1

2−s2 S
3−s2
2−s2
s2

}

and there exists a (PS)ĉλ sequence {un} ∈ XSO of Iλ.
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Proof. It is obvious that Iλ(0) = 0. On one hand, by the inequality (2.2), for any u ∈ XSO \ {0},

it holds that

Iλ(u) >
1

2
‖u‖2 −

1

6− 2s1
Ss1−3
s1 ‖u‖6−2s1 −

λ

6− 2s2
Ss2−3
s2 ‖u‖6−2s2 .

It will be seen from this that there exists ρ > 0 such that

Iλ(u) > ̟ > 0 as ‖u‖ = ρ,

where

̟ =
1

2
ρ2 −

1

6− 2s1
Ss1−3
s1 ρ6−2s1 −

λ

6− 2s2
Ss2−3
s2 ρ6−2s2 .

On the other hand, for any fixed u ∈ XSO \ {0},

Iλ(tu) =
t2

2
A(u)−

t6−2s1

6− 2s1
B(u)−

λt6−2s2

6− 2s2
C(u) → −∞ as t→ ∞.

Thus there exists υ ∈ XSO satisfying

‖υ‖ > ρ, Iλ(υ) < 0.

Now applying the mountain pass theorem, we obtain a (PS) sequence {un} ⊂ XSO of Iλ at the

level ĉλ.

Next we prove that

ĉλ < c∗λ.

By (3.4) we only need to prove that

c̄λ < c∗λ.

Choosing the extremum function u0,s1 in (2.2) with s = s1, then we get that

max
t>0

Iλ(tu0,s1) =
t2s1
2 A(u0,s1)−

t
6−2s1
s1
6−2s1

B(u0,s1)−
λt

6−2s2
s1

6−2s2
C(u0,s1)

6 max
t>0

{

t2

2
A(u0,s1)−

t6−2s1

6− 2s1
B(u0,s1)

}

−
λt6−2s2

s1

6− 2s2
C(u0,s1)

=
2− s1
6− 2s1

S
3−s1
2−s1
α1 −

λt6−2s2
s1

6− 2s2
C(u0,s1)

<
2− s1
6− 2s1

S
3−s1
2−s1
α1 ,

(3.5)

where we have used a fact that

C(u0,s1) =

∫

RN

|u0,s1 |
6−2s2

|x|s2
dx > 0.

Similarly, taking the extremum function u0,s2 in (2.2) with s = s2, then we get that

max
t>0

Iλ(tu0,s2) <
2− s2
6− 2s2

λ
− 1

2−s2 S
3−s2
2−s2
s2 . (3.6)

Combining with (3.5) and (3.6), we get that ĉλ = c̄λ < c∗λ. �

In the following lemmas we investigate the properties of the (PS)ĉλ sequence {un} of Iλ found

in Lemma 3.3.
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Lemma 3.4 If un ⇀ 0 inXSO, then for any domainBa,b(0), up to a subsequence and still denoted

by {un} such that

∫

Ba,b(0)
|∇un|

2 +
|un|

2

|x′|2
dx→ 0,

∫

Ba,b(0)

|un|
6−2si

|x|si
dx→ 0, i = 1, 2. (3.7)

Proof. For any R > r > 0, the compactness of the embedding

XSO →֒→֒ L6−2s2(Br,R(0); |x|
−s2) (3.8)

implies that

∫

Ba,b(0)

|un|
6−2s2

|x|s2
dx→ 0.

Let η = η1η2, where η1 ∈ C∞
0,r(R

2) such that 0 6 η1 6 1, η1(0
′) = 0 and η1|Ba,b(0′) ≡ 1,

η2 ∈ C∞
0,r(R) such that 0 6 η2 6 1, η2(03) = 0 and η2|Ba,b(03) ≡ 1. Since η2un ∈ XSO for all

n ∈ N, combining with (3.8), we get that

o(1) = 〈I ′
λ(un), η

2un〉

=

∫

R3

∇un · ∇(η2un) +
|ηun|

2

|x′|2
dx−

∫

R3

|un|
6−2s1η2

|x|s1
dx− λ

∫

R3

|un|
6−2s2η2

|x|s2
dx

=

∫

R3

η2|∇un|
2 + 2ηun∇η∇un +

|ηun|
2

|x′|2
dx−

∫

R3

|un|
6−2s1η2

|x|s1
dx.

(3.9)

We claim that
∫

R3

2ηun∇η∇undx = o(1). (3.10)

Based the Sobolev embedding theorem, we can obtain that

∫

supp|η|
|un|

2dx→ 0 as n→ ∞,

combining with Hölder inequality, then

∣

∣

∣

∣

∫

R3

2ηun∇η · ∇undx

∣

∣

∣

∣

≤ 2

(
∫

R3

|∇η · ∇un|
2dx

) 1
2
(
∫

R3

|ηun|
2dx

) 1
2

→ 0 as n→ ∞.

Thus, by (3.9) and (3.10), it is easy to see that

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx−

∫

R3

|un|
6−2s1η2

|x|s1
dx→ 0 as n→ ∞,

which implies that

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx =

∫

R3

|un|
6−2s1η2

|x|s1
dx+ o(1) as n→ ∞.
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Using the Hölder inequality, (2.2) and (3.9), (3.10), we have, as n→ ∞,

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx ≤

(∫

R3

|un|
6−2s1

|x|s1
dx

)

2−s1
3−s1

(∫

R3

|ηun|
6−2s1

|x|s1
dx

)
1

3−s1

+ o(1)

≤

(∫

R3

|un|
6−2s1

|x|s1
dx

)

2−s1
3−s1

S−1
s1

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx+ o(1),

it follows that



1−

(∫

RN

|un|
6−2s1

|x|s1
dx

)

2−s1
3−s1

S−1
s1





∫

RN

|η∇un|
2 +

|ηun|
2

|x′|2
dx ≤ o(1) as n→ ∞. (3.11)

Since {un} is a (PS)ĉλ sequence, it is easy to see that, as n→ ∞,

ĉλ + o(1) = Iλ(un)−
1

2
〈I ′

λ(un), un〉

=
2− s1
6− 2s1

∫

R3

|un|
6−2s1

|x|s1
dx+ λ

2− s2
6− 2s2

∫

R3

|un|
6−2s2

|x|s2
dx,

we can deduce that

∫

R3

|un|
6−2s1

|x|s1
dx ≤

6− 2s1
4− s1

ĉλ. (3.12)

Combining with (3.11), (3.12) and ĉλ < c∗λ in Lemma 3.3, we have

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx→ 0 as n→ ∞.

Since η|Ba,b(0) ≡ 1, we get

∫

Ba,b(0)
|∇un|

2 +
|ηun|

2

|x′|2
dx→ 0 as n→ ∞.

We complete the proof. �

For any δ > 0, we define

κ1 := lim sup
n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx,

κ2 := lim sup
n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s2

|x|s2
dx,

κ := lim sup
n→∞

∫

Bδ(0′)×Bδ(03)
|∇un|

2 +
|un|

2

|x′|2
dx.

(3.13)

It follows from Lemma 3.4 that these three quantities are well defined and independent of the

choice of δ > 0.
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Lemma 3.5 If un ⇀ 0 in XSO, then there exist ǫ0 := ǫ0(s1, s2, ĉλ, λ) > 0 and subsequence(still

denoted by {un}) such that

either lim
n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx > ǫ0

for all δ > 0.

Proof. Let φ = φ1φ2, where φ1 ∈ C∞
0,r(R

2) is nonnegative and satisfy φ1|Bδ(0′) ≡ 1 with δ > 0,

and φ2 ∈ C
∞
0,r(R) is nonnegative and satisfy φ2|Bδ(03) ≡ 1 with δ > 0. It follows from φun ∈ XSO

that as n→ ∞,

∫

R3

∇un∇(φun) +
φ|un|

2

|x′|2
dx−

∫

R3

|un|
6−2s1φ

|x|s1
dx− λ

∫

R3

|un|
6−2s2φ

|x|s2
dx→ 0. (3.14)

By (3.7) in Lemma 3.4, we obtain that

∫

R3

∇un∇(φun) +
φ|un|

2

|x′|2
dx =

∫

R3

φ|∇un|
2 + un∇un∇φ+

φ|un|
2

|x′|2
dx

=

∫

Bδ(0′)×Bδ(03)
|∇un|

2 +
|un|

2

|x′|2
dx+ o(1),

∫

R3

|un|
6−2siφ

|x|si
dx→

∫

Bδ(0′)×Bδ(03)

|un|
6−2si

|x|si
dx as n→ ∞, i = 1, 2.

The limit (3.14) implies that

κ = κ1 + λκ2. (3.15)

The definition (2.2) leads to

(
∫

R3

|φun|
6−2s1

|x|s1
dx

)
1

3−s1

6 S−1
s1

∫

R3

|∇(φun)|
2 +

φ|un|
2

|x′|2
dx.

Thus

(

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx

)
1

3−s1

6 S−1
s1

∫

Bδ(0′)×Bδ(03)
|∇un|

2 +
φ|un|

2

|x′|2
dx as n→ ∞.

Furthermore,

κ
1

3−s1
1 6 S−1

s1 κ. (3.16)

The conclusions (3.15) and (3.16) lead to

κ
1

3−s1
1 6 S−1

s1 κ = S−1
s1 κ1 + S−1

s1 λκ2.
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It follows that

κ
1

3−s1
1

(

1− S−1
s1 κ

2−s1
3−s1
1

)

6 S−1
s1 λκ2. (3.17)

Since {un} is a bounded (PS)ĉλ sequence, it is obvious that

Iλ(un)−
1

2
〈I ′

λ(un), un〉 =
2− s1
6− 2s1

∫

R3

|un|
6−2s1

|x|s1
dx+

λ(2− s2)

6− 2s2

∫

R3

|un|
6−2s2

|x|s2
dx = ĉλ + o(1).

It is easy to see that

∫

R3

|un|
6−2s1

|x|s1
dx 6

6− 2s1
2− s1

ĉλ + o(1)

and

κ1 6
6− 2s1
2− s1

ĉλ. (3.18)

Combining with (3.17) and (3.18), we deduce that

κ
1

3−s1
1

(

1− S−1
s1

(

6− 2s1
2− s1

ĉλ

)

2−s1
3−s1

)

6 S−1
s1 λκ2.

The fact ĉλ < c∗λ implies that

S−1
s1

(

6− 2s1
2− s1

ĉλ

)

2−s1
3−s1

< 1.

Thus there exists δ1 > 0 depending on s1, Ss1 , ĉλ such that κ
1

3−s1
1 6 δ1κ2. Similarly, we have

κ
1

3−s2
2 6 δ2κ1 for some δ2 > 0. It follows that there exists ǫ0 := ǫ0(s1, s2, ĉλ, λ) > 0 such that

either κ1 = κ2 = 0 or κ1 > ǫ0, κ2 > ǫ0.

We complete the proof. �

We define

ũn(x) := r
1
2
nun(rnx) for x ∈ R

3, rn > 0. (3.19)

Then {ũn} ⊂ XSO is also a (PS)ĉλ sequence of Iλ.

Lemma 3.6 There exists ǫ1 ∈ (0, ǫ02 ] such that for all ǫ ∈ (0, ǫ1), there exists a sequence {rn > 0}
such that {ũn} verifies

∫

B1(0′)×B1(03)

|ũn|
6−2s1

|x|s1
dx = ǫ. (3.20)
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Proof. Since ĉλ > 0, it follows from the inequality in Lemma 3.2 that

B∞ := lim
n→∞

∫

R3

|un|
6−2s1

|x|s1
dx > 0.

Let ǫ1 := min{ ǫ0
2 ,B∞}. For fixed ǫ ∈ (0, ǫ1), up to a subsequence, still denoted by {un}, for any

n ∈ N, there exists rn > 0 such that

∫

Brn(0
′)×Brn (03)

|un|
6−2s1

|x|s1
dx = ǫ.

By dilating transformation, it is easy to check that {ũn} satisfies (3.20). �

Now we are ready to give the proof of Theorem 1.3 for the case of λ > 0, 0 ≤ s1 < s2 < 2.

Proof of Theorem 1.3. By Lemma 3.3, Iλ has a (PS)ĉλ sequence {un} ⊂ XSO. By Lemma 3.6,

the sequence {ũn} defined by (3.19) satisfies (3.20) and is also a (PS)ĉλ sequence of Iλ. Thus

Iλ(ũn)−
1

6− 2s2
〈I ′

λ(ũn), ũn〉

>
2− s2
6− 2s2

∫

R3

|∇ũn|
2 +

|ũn|
2

|x′|2
dx+

s2 − s1
2(3− s1)(3 − s2)

B(ũn)

>
2− s2
6− 2s2

∫

R3

|∇ũn|
2 +

|ũn|
2

|x′|2
dx.

(3.21)

It follows that {ũn} is bounded in XSO. Thus there is ũ0 ∈ XSO such that







ũn ⇀ ũ0 in XSO;
ũn ⇀ ũ0 in L6−2si(R3; |x|−si), i = 1, 2;
ũn(x) → ũ0(x) a.e. on R

3.

From the above it can be concluded that ũ0 is a solution of (1.17), furthermore, copying the cal-

culation process of (3.21), we get that Iλ(ũ0) > 0. Let vn := ũn − ũ0. Then {vn} is bounded in

XSO. Define

A(vn) → A∞, B(vn) → B∞, C(vn) → C∞.

Then by Brezis-Lieb Lemma [12], we have

Iλ(vn) →
1

2
A∞ −

1

6− 2s1
B∞ −

λ

6− 2s2
C∞ = ĉλ − Iλ(ũ0), (3.22)

〈I ′
λ(vn), vn〉 → A∞ − B∞ − λC∞ = 0. (3.23)

If A∞ = 0, then Iλ(ũ0) = ĉλ and ũ0 is a ground state solution of (1.17). Assume A∞ >

0 and ũ0 = 0. Then Lemma 3.5 implies that either lim
n→∞

∫

B1(0′)×B1(03)

|ũn|
6−2s1

|x|s1
dx = 0 or

lim
n→∞

∫

B1(0′)×B1(03)

|ũn|
6−2s1

|x|s1
dx > ǫ0. By Lemma 3.6, this is a contradiction to (3.20) as 0 < ǫ <

ǫ0
2 . It must be ũ0 6= 0 and ũ0 is a nontrivial solution of (1.1). If Iλ(ũ0) = ĉλ then we complete the

proof by (3.4). Otherwise, combining with the key fact (3.4), we deduce that

Iλ(ũ0) > ĉλ. (3.24)
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Since

Iλ(vn)−
1

6− 2s2
〈I ′

λ(vn), vn〉 >
2− s2
6− 2s2

A(vn) > 0,

it follows from (3.22) and (3.23) that

Iλ(ũ0) 6 ĉλ,

which is a contradiction with (3.24). Thus ũ0 is a ground state solution of (1.17). The result of

Theorem 1.3 is proved according to Remark 1.12. �

3.2 The case λ < 0, 0 < s1 < s2 < 2

In this subsection, we may consider the case of λ < 0 and 0 ≤ s1 < s2 < 2. Applying the

mountain pass theorem in [1], we have the following lemma.

Lemma 3.7 Let λ < 0, 0 < s1 < s2 < 2. There exists a sequence {un} ⊂ XSO such that

Iλ(un) → ĉλ > 0, I ′
λ(un) → 0, n→ ∞ (3.25)

with ĉλ is in (3.2).

The properties of the (PS)ĉ sequence {un} of Iλ found in Lemma 3.7 will be investigated in

the following lemmas.

Lemma 3.8 If un ⇀ 0 inXSO, then for any domainBa,b(0), up to a subsequence and still denoted

by {un} such that

∫

Ba,b(0)
|∇un|

2 +
|un|

2

|x′|2
dxdx→ 0,

∫

Ba,b(0)

|un|
6−2si

|x|si
dx→ 0, i = 1, 2. (3.26)

Proof. For any R > r > 0, the compactness of the embedding

XSO →֒→֒ L6−2si(Br,R(0); |x|
−si), i = 1, 2 (3.27)

implies that

∫

Ba,b(0)

|un|
6−2si

|x|si
dx→ 0 as n→ ∞, i = 1, 2.

Applying the function η defined in Lemma 3.4. Then η2un ∈ XSO for all n ∈ N, combining with

(3.27) and (3.10), we get that

o(1) = 〈I ′
λ(un), η

2un〉

=

∫

RN

∇un · ∇(η2un) +
|ηun|

2

|x′|2
dx−

∫

RN

|un|
6−2s1η2

|x|s1
dx− λ

∫

RN

|un|
6−2s2η2

|x|s2
dx

=

∫

RN

η2|∇un|
2 +

|ηun|
2

|x′|2
dx

(3.28)
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and

∫

RN

|η∇un|
2 +

|ηun|
2

|x′|2
dx→ 0.

Since η|Ba,b(0) ≡ 1, thus we get

∫

Ba,b(0)
|∇un|

2 +
|un|

2

|x′|2
dx→ 0 as n→ ∞.

We complete the proof. �

It follows from Lemma 3.8 that those three quantities in (3.13) are well defined and independent

of the choice of δ > 0.

Lemma 3.9 If un ⇀ 0 in XSO, then there exists subsequence(still denoted by {un}) such that

either lim
n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx > S

3−s1
2−s1
s1

for all δ > 0.

Proof. Taking the function φ and coping the proof in Lemma 3.5, we obtain that

κ = κ1 + λκ2. (3.29)

κ
1

3−s1
1 6 S−1

s1 κ. (3.30)

The conclusions (3.29) and (3.30) with λ < 0 lead to

κ
1

3−s1
1 6 S−1

s1 κ ≤ S−1
s1 κ1.

It follows that

κ1 = 0 or κ1 ≥ S
3−s1
2−s1
s1 .

We complete the proof. �

Next we consider the transform (3.19), then {ũn} ⊂ XSO is also a (PS)ĉλ sequence of Iλ.

Lemma 3.10 There exists ǫ1 ∈ (0, 12S
3−s1
2−s1
s1 ] such that for all ǫ ∈ (0, ǫ1), there exists a sequence

{rn > 0} such that {ũn} verifies

∫

B1(0′)×B1(03)

|ũn|
6−2s1

|x|s1
dx = ǫ. (3.31)

Proof. Since ĉλ > 0, it follows from the interpolation inequality in Lemma 3.2 that

B∞ := lim
n→∞

∫

R3

|un|
6−2s1

|x|s1
dx > 0.
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Let ǫ1 ≤
1
2S

3−s1
2−s1
s1 . For fixed ǫ ∈ (0, ǫ1), up to a subsequence, still denoted by {un}, for any n ∈ N,

there exists rn > 0 such that

∫

Brn(0
′)×Brn (03)

|un|
6−2s1

|x|s1
dx = ǫ.

By dilating transformation, it is easy to check that {ũn} satisfies (3.31). �

Based on the lemmas above, the results of Theorem 1.4 with λ < 0, 0 < s1 < s2 < 2 can be

proved by coping the similar proof of Theorem 1.3 in subsection 3.1.

4 The case λ < 0, 0 ≤ s2 < s1 < 2

In the present section, we focus on the proofs of Theorem 1.5 and Theorem 1.6.

4.1 Non-existence

In this subsection, we prove that the equation (1.1) has only zero solution in DF as λ < λ∗.

Proof of Theorem 1.5. Based on the inequality in Lemma 3.2 with a = a0 := s1−s2
(2−s2)(3−s1)

,

we can directly obtain

〈I ′
λ(u), u〉 =

∫

R3

|∇u|2 +
|u|2

|x′|2
dx−

∫

R3

|u|6−2s1

|x|s1
dx− λ

∫

R3

|u|6−2s2

|x|s2
dx

≥
(

1− S̄6−2s1a0(3− s1)γ
1

a0(3−s1)

)

∫

R3 |∇u|2 +
|u|2

|x′|2dx

−

(

λ+ S̄6−2s1 (1− a0)(3 − s1)

3− s2
γ
−

(1−a0)(3−s1)
(3−s2)

)∫

R3

|u|6−2s2

|x|s2
dx

(4.1)

and taking

γ =
1

2





(

(2− s2)S̄
−(6−2s1)

s1 − s2

)

s1−s2
2−s2

+

(

−
2− s1

λ(2− s2)
S̄6−2s1

)

2−s2
2−s1



 .

Since λ < λ∗, we have

1− S̄6−2s1a0(3− s1)γ
1

a0(3−s1) > 0,

λ+ S̄6−2s1 (1− a0)(3− s1)

3− s2
γ
−

(1−a0)(3−s1)
3−s2 < 0.

Thus for any u ∈ XSO \ {0}, as λ < λ∗, we have 〈I ′
λ(u), u〉 > 0, which implies the problem

(1.17) has only zero solution. According to Remark 1.12, we know that the problem (1.1) has only

zero solution. And we complete the proof of Theorem 1.5. �

4.2 Existence

In this subsection, we prove that the equation (1.1) has solution as λ small enough. According to

Remark 1.12, we need to prove the equation (1.17) has solution as λ small enough. The assump-

tions λ < 0, 0 ≤ s2 < s1 < 2 make the undesirable obstacle for establishing the mountain pass
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structure of equation (1.17). The cut-off method in [29] is applied to overcome this obstacle. For

any fixed S > 0, the cut-off functional JS : XSO → R is defined as

JS(u) =
1

2

∫

R3

|∇u|2 +
|u|2

|x′|2
dx−

1

6− 2s1

∫

R3

|u|6−2s1

|x|s1
dx−

λΨS(u)

6− 2s2

∫

R3

|u|6−2s2

|x|s2
dx, (4.2)

where

ΨS(u) = ψ

(

‖u‖2

S2

)

> 0 (4.3)

and ψ ∈ C∞
0 (R, [0, 1]) satisfies ψ(t) = 1 for t ∈ [0, 12 ] and supp ψ ⊂ [0, 1]. The derivative of JS

is given by

〈J ′
S(u), ϕ〉 =

∫

R3

∇u∇ϕ+
uϕ

|x′|2
dx−

∫

R3

|u|4−2s1uϕ

|x|s1
dx− λΨS(u)

∫

RN

|u|4−2s2uϕ

|x|s2
dx

−
2λ
∫

R3 ∇u∇ϕ+ uϕ
|x′|2dx

2∗(s2)S2
ψ′

(

‖u‖2

S2

)
∫

R3

|u|6−2s2

|x|s2
dx.

We first show that the functional JS has a mountain pass geometry for each fixed S > 0.

Lemma 4.1 Let λ < 0. We have

(i) there exist ρ̃ > 0 and δ̃ > 0 such that JS(u) > δ̃ for any u ∈ XSO with ‖u‖ = ρ̃;

(ii) there exists ṽ ∈ XSO satisfying ‖ṽ‖ > ρ̃ and IS(ṽ) < 0.

Proof. (i) Since λ < 0, by (4.3), using the inequality (2.2), we derive that

JS(u) >
1

2
‖u‖2 − Ss1−3

s1 ‖u‖6−2s1 .

It is not difficult to prove the conclusion (i) holds.

(ii) For any fixed u ∈ XSO \ {0} and t > S
‖u‖ , we conclude that

JS(tu) =
t2

2

∫

R3

|∇u|2 +
|u|2

|x′|2
dx−

t6−2s1

6− 2s1

∫

R3

|u|6−2s1

|x|s1
dx−

λt6−2s2

6− 2s2
ΨS(tu)

∫

R3

|u|6−2s2

|x|s2
dx

=
t2

2

∫

R3

|∇u|2 +
|u|2

|x′|2
dx−

t6−2s1

6− 2s1

∫

R3

|u|6−2s1

|x|s1
dx.

Taking ṽ = t0u, where t0 >
S
‖u‖ is large enough. Since 6−2s1 > 2, it is easy to see that (ii) holds.

The proof is complete. �

By Lemma 4.1 and JS(0) = 0, a mountain pass level for JS can be defined as

c̄S = inf
γ∈Γ

max
t∈[0,1]

JS(γ(t)) > 0, (4.4)

where

ΓS = {γ ∈ C([0, 1],XSO) : γ(0) = 0, γ(1) = ṽ} .

Applying the mountain pass theorem, there exists {un} ⊂ XSO satisfying

JS(un) → c̄S , J ′
S(un) → 0, as n→ ∞. (4.5)

Now we investigate the property of the sequence {un} satisfying (4.5). We have
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Lemma 4.2 Let {un} ⊂ XSO satisfy (4.5). Then for S > 0 large enough, there exists λ∗∗ =
λ∗∗(S) < 0 such that for any λ < λ∗∗,

lim sup
n→∞

‖un‖ <
S

2
. (4.6)

Proof. We first claim that {un} is bounded. If ‖un‖ → ∞ as n → ∞, then it follows from (4.3)

that

ΨS(un) = ψ

(

‖un‖
2

S2

)

= 0, for all large n ∈ N,

and therefore for all n ∈ N large,

JS(un) =
1

2

∫

R3

|∇un|
2 +

|u|2

|x′|2
dx−

t6−2s1

6− 2s1

∫

R3

|u|6−2s1

|x|s1
dx.

By (4.5), we have that as n ∈ N large,

c̄S + 1 + ‖un‖ > JS(un)−
1

6− 2s1
〈J ′

S(un), un〉 =
2− s1
6− 2s1

‖un‖
2,

which is impossible. We have

2− s1
6− 2s1

‖un‖
2 +

1

6− 2s1
〈J ′

S(un), un〉

= JS(un) +
λ(s2 − s1)

2(3− s2)(3− s1)
ΨS(un)

∫

R3

|un|
6−2s2

|x|s2
dx

−
λ‖un‖

2

2(3 − s1)(3− s2)S2
ψ′

(

‖un‖
2

S2

)
∫

R3

|un|
6−2s2

|x|s2
dx

6 JS(un) +
λ(s2 − s1)

2(3− s2)(3− s1)
ΨS(un)

∫

R3

|un|
6−2s2

|x|s2
dx

−
λ‖un‖

2

2(3 − s1)(3− s2)S2

∣

∣

∣

∣

ψ′

(

‖un‖
2

S2

)∣

∣

∣

∣

∫

R3

|un|
6−2s2

|x|s2
dx.

(4.7)

Suppose, up to a subsequence, that

lim
n→∞

‖un‖ >
S

2
. (4.8)

Since {un} is bounded, it follows from (4.5) and (4.8) that for n sufficiently large,

2− s1
6− 2s1

‖un‖
2 +

1

6− 2s1
〈J ′

S(un), un〉 > CS2 −
‖J ′

S(un)‖‖un‖

6− 2s1
> CS2 − S. (4.9)

Notice that if ‖un‖ > S then ΨS(un) = 0 and ψ′
(

‖un‖2

S2

)

= 0. So we can obtain that as n large

enough, using (4.7),

CS2 − S ≤ c̄S + 1,

which is impossible as S large enough. Now we consider the case ‖un‖ ≤ S. Using ψ ∈
C∞
0 (R, [0, 1]), we deduce that

ΨS(un)

∫

R3

|un|
6−2s2

|x|s2
dx 6 C‖un‖

6−2s2ΨS(un) 6 CS6−2s2 , (4.10)
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‖un‖
2

S2

∣

∣

∣

∣

ψ′

(

‖un‖
2

S2

)∣

∣

∣

∣

∫

R3

|un|
6−2s2

|x|s2
dx 6 C

‖un‖
8−2s2

S2

∣

∣

∣

∣

ψ′

(

‖un‖
2

S2

)∣

∣

∣

∣

6 CS6−2s2 . (4.11)

By the definitions of c̄S and ṽ, we infer that

c̄S 6 max
t∈[0,1]

JS(tṽ)

6 max
t∈[0,1]

{

t2

2
‖ṽ‖2 −

t6−2s1

6− 2s1

∫

R3

|ṽ|6−2s1

|x|s1
dx

}

+ max
t∈[0,1]

{

−λt6−2s2

6− 2s2
ΨS(tṽ)

∫

R3

|ṽ|6−2s2

|x|s2
dx

}

.

(4.12)

As in (4.10), we derive that

max
t∈[0,1]

{

−λt6−2s2

6− 2s2
ΨS(tṽ)

∫

RN

|ṽ|6−2s2

|x|s2
dx

}

6 max
t∈[0,1]

{

−λCt6−2s2

6− 2s2
‖ṽ‖6−2s2ΨS(tṽ)

}

6 −λCS6−2s2 .

Combining this with (4.12), we deduce that

c̄S 6 C −CλS6−2s2 .

This together with JS(un) → c̄S as n→ ∞ imply that for n large enough,

JS(un) 6 C −CλS6−2s2 . (4.13)

Substituting (4.10)–(4.13) in (4.7), we have that for n sufficiently large,

2− s2
6− 2s2

‖un‖
2 +

1

6− 2s2
J ′
S(un)[un] 6 C −CλS6−2s2 . (4.14)

From (4.9) and (4.14), we obtain that

C − CλS6−2s2 > CS2 − S, (4.15)

whereC > 0 is independent of S and λ. The inequality (4.15) would not hold for S > 0 sufficiently

large and 0 > λ > −S2s2−6. The proof is complete. �

Lemma 4.3 There exists λ∗∗ < 0 such that as λ ∈ (λ∗∗, 0), the functional Iλ has a bounded

Palais-Smale sequence {un} at the level c̄S .

Proof. By Lemma 4.1, the cut-off functional JS has a mountain pass level c̄S > 0 given by (4.4)

and there exists {un} ⊂ XSO satisfying (4.5) for each fixed S > 0 and λ < 0. According to

Lemma 4.2, we choose S > 0 large enough and λ∗∗ = λ∗∗(S) < 0 large such that for any

λ < λ∗∗,

lim sup
n→∞

‖un‖ <
S

2
.

Combining this with (4.2) and the definition of ΨS given in (4.3), we derive that for n large enough,

JS(un) = I(un) and J ′
S(un) = I ′(un). Therefore we have I(un) → c̄S > 0 and I ′(un) → 0 as

n→ ∞. The proof is complete. �

By the same proofs of Lemmas 3.8, 3.9, 3.10. We can obtain the following lemmas, in which

we investigate the properties of the (PS)c̄S sequence {un} of Iλ found in Lemma 4.3.
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Lemma 4.4 If un ⇀ 0 inXSO, then for any domainBa,b(0), up to a subsequence and still denoted

by {un} such that

∫

Ba,b(0)
|∇un|

2 +
|un|

2

|x′|2
dx→ 0,

∫

Ba,b(0)

|un|
6−2si

|x|si
dx→ 0, i = 1, 2. (4.16)

Proof. For any R > r > 0, the compactness of the embedding

XSO →֒→֒ L6−2s1(Br,R(0); |x|
−s1) (4.17)

implies that

∫

Ba,b(0)

|un|
6−2s1

|x|s1
dx→ 0 as n→ ∞.

Applying the function η defined in Lemma 3.4. Since η2un ∈ XSO for all n ∈ N, combining with

(4.17) and (3.10), we get that

o(1) = 〈I ′
λ(un), η

2un〉

=

∫

R3

∇un · ∇(η2un) +
|ηun|

2

|x′|2
dx−

∫

R3

|un|
6−2s1η2

|x|s1
dx− λ

∫

R3

|un|
6−2s2η2

|x|s2
dx

=

∫

R3

η2|∇un|
2 +

|ηun|
2

|x′|2
dx− λ

∫

R3

|un|
6−2s2η2

|x|s2
dx.

(4.18)

Since λ < 0, we get, as n→ ∞,

∫

R3

|η∇un|
2 +

|ηun|
2

|x′|2
dx→ 0.

The definition η|Ba,b(0) ≡ 1 implies

∫

Ba,b(0)
|∇un|

2 +
|un|

2

|x′|2
dx→ 0 as n→ ∞.

We complete the proof. �

Lemma 4.5 If un ⇀ 0 in XSO, then there exists a subsequence(still denoted by {un}) such that

either lim
n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

Bδ(0′)×Bδ(03)

|un|
6−2s1

|x|s1
dx > S

3−s1
2−s1
s1

for all δ > 0.

Now, by the transform (3.19), then we find that {ũn} ⊂ XSO is also a (PS)c̄S sequence of Iλ.

Lemma 4.6 There exists ǫ1 ∈ (0, S
3−s1
2−s1
s1 ] such that for all ǫ ∈ (0, ǫ12 ), there exists a sequence

{rn > 0} such that {ũn} verifies

∫

B1(0′)×B1(03)

|ũn|
6−2s1

|x|s1
dx = ǫ. (4.19)
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Proof. Set

A(un) → A∞, B(un) → B∞, C(un) → C∞.

We claim that B∞ > 0, otherwise, since {un} is a (PS)c̄S sequence, we obtain

A∞ − B∞ − λC∞ = 0. (4.20)

Furthermore,

A∞ = B∞ + λC∞ ≤ B∞.

Assume B∞ = 0, then A∞ = 0 and follows from (4.20), there exists a contradiction with the fact

c̄S > 0. The remaining proof is similar with the proof of Lemma 3.10. �

Now we are ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5. By Lemma 4.3, Iλ has a (PS)c̄S sequence {un} ⊂ XSO. By Lemma 4.6,

the sequence {ũn} define by (3.19) is also a bounded (PS)c̄S sequence of Iλ in XSO. Thus there

is ũ0 ∈ XSO such that






ũn ⇀ ũ0 in XSO;
ũn ⇀ ũ0 in L6−2si(R3; |x|−si), i = 1, 2;
ũn(x) → ũ0(x) a.e. on R

3.

It follows that ũ0 is a solution of (1.17). Let vn := ũn− ũ0. Then {vn} is bounded in XSO. Define

A(vn) → A∞, B(vn) → B∞, C(vn) → C∞.

Then by Brezis-Lieb Lemma [12], we get

Iλ(vn) →
1

2
A∞ −

1

6− 2s1
B∞ −

λ

6− 2s2
C∞ = c̄S − Iλ(ũ0), (4.21)

〈I ′
λ(vn), vn〉 → A∞ − B∞ − λC∞ = 0. (4.22)

If A∞ = 0, then Iλ(ũ0) = ĉS and ũ0 is a nontrivial solution of (1.17). Assume A∞ > 0 and

ũ0 = 0. Then Lemma 4.5 implies that

either lim
n→∞

∫

B1(0)

|ũn|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

B1(0)

|ũn|
6−2s1

|x|s1
dx > S

3−s1
2−s1
s1 .

By Lemma 4.6, this is a contradiction to (4.19) as 0 < ǫ < 1
2S

3−s1
2−s1
s1 . It must be ũ0 6= 0 and ũ0 is

a nontrivial solution of (1.17). Combining with Remark 1.12, the equation (1.1) has a nontrivial

solution. �

5 Asymptotic behavior

In this section we focus on the proofs of Theorem 1.8 in subsection 5.1, Theorem 1.9 in subsection

5.2, Theorem 1.10 in subsection 5.3, Theorem 1.11 in subsection 5.4.

According to Theorems 1.2, 1.3, 1.4, we know that

mλ = inf
u∈Sλ

Iλ

with

Sλ :=
{

u ∈ XSO|I
′
λ(u) = 0

}

is well defined under the conditions of Theorems 1.2, 1.3, 1.4.
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5.1 The case of 0 < s1 < 2, s2 = 2

We now prove Theorem 1.8. We first give a key lemma about the asymptotic behavior of energy

level.

Lemma 5.1 Assume the assumptions of Theorem 1.8 hold. Then there exists a subsequence {λn}
satisfying limn→∞ λn = 0, such that

lim
n→∞

mλn
= m0 :=

2− s1
6− 2s1

S
3−s1
2−s1
s1 .

Proof. We know that there exists a u0 ∈ XSO satisfies m0 = I0(u0) and u0 belongs to mountain

pass type solution of I0. And m0 = c̄0 = ĉ0, where c̄0 = ĉ0 is defined in (3.1) and (3.2).

Now we prove this lemma in two different situations: λn → 0+, λn → 0−.

We first consider the case λn > 0 and λn → 0+ as n → ∞. Combining with (3.4) and (3.5),

we get

m0 > mλn
. (5.1)

It follows from Theorem 1.2 that, for any 0 < λn < λ̄, there exists a solution un satisfies mλn
=

Iλn
(un) and un is mountain pass type, by (5.1), It is not difficult to verify that un is bounded in

XSO. Now we prove the fact that limn→∞mλn
≥ m0. Since, as n large,

0 ≥ 〈I ′
λn
(un), un〉

=

∫

R3

|∇un|
2 +

|un|
2

|x′|2
dx−

∫

R3

|un|
6−2s1

|x|s1
dx− λn

∫

R3

|un|
2

|x|2
dx

≥ ‖un‖
2 − Ss1−3

s1 ‖un‖
6−2s1 −

λn
λ̄
‖un‖

2

=

(

1−
λn
λ̄

)

‖un‖
2 − Ss1−3

s1 ‖un‖
6−2s1 .

It follows from λn < λ̄ that there exists M :=M(s1) such that ‖un‖ ≥M . Furthermore,

o(1) + Iλn
(un) = Iλn

(un)−
1

6−2s1
〈I ′

λn
(un), un〉

= 2−s1
6−2s1

(

∫

R3 |∇un|
2 + |un|2

|x′|2 dx− λn
∫

R3
|un|2

|x|2 dx
)

≥ 2−s1
12−4s1

M2

(5.2)

as n → ∞. The facts (5.1) and (5.2) imply that Iλn
(un) is bounded. Thus there exists a subse-

quence(still denoted by origin mark) such that

mλn
= Iλn

(un) → c > 0,I ′
λn
(un) = 0.

If c ≥ m0, then the proof is complete. Otherwise, c < m0, we will construct a contradiction. The

boundedness of sequence {un} implies that there hold,















un ⇀ u0 in XSO,
un ⇀ u0 in L

6−2s1(R3; |x|−s1),
un ⇀ u0 in L

2(R3; |x|−2),
un(x) → u0(x) a.e. on R

3.
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If follows that u0 is a critical point of I0 and I0(u0) ≥ 0. Let vn = un − u0, applying the

Brezis-Lieb lemma, we can get that

Iλn
(vn) → c− I0(u0),

‖vn‖
2 −

∫

R3

|vn|
6−2s1

|x|s1
dx− λn

∫

R3

|vn|
2

|x|2
dx→ 0,

λn

∫

R3

|vn|
2

|x|2
dx→ 0.

We may therefore assume that

‖vn‖
2 → b,

∫

R3

|vn|
6−2s1

|x|s1
dx→ b.

The inequality (2.2) implies that b ≥ Ss1b
1

3−s1 , which leads to that either b = 0 or b ≥ S
3−s1
2−s1
s1 . The

case b = 0 implies that u0 is a nontrivial solution and I0(u0) = c ≥ m0, which is a contradiction.

However, if b ≥ S
3−s1
2−s1
s1 , we get that

c ≥ lim
n→∞

Iλn
(vn) ≥

2− s1
6− 2s1

S
3−s1
2−s1
s1 = m0,

which is a contradiction with c < m0. Thus c ≥ m0 and the proof of the case λn → 0+ is over.

Now we consider the case λn < 0 and λn → 0− as n → ∞. For any λ < 0, it follows from

Theorem 1.2 that there exists a ground state solution uλ of problem (1.17), then we have that

mλ = Iλ(uλ) ≥ Iλ(t0uλ) ≥ I0(t0uλ) =
2− s1
6− 2s1

(

∫

R3 |∇uλ|
2 + |uλ|

2

|x′|2 dx
)

3−s1
2−s1

(

∫

R3
|uλ|

6−2s1

|x|s1 dx
) 1

2−s1

≥ m0, (5.3)

where

t0 =





∫

R3 |∇uλ|
2 + |uλ|

2

|x′|2 dx
∫

R3
|uλ|6−2s1

|x|s1 dx





1
2−s1

.

For λ1 < λ2 ≤ 0, let uλ1 be a ground state solution, then

mλ1 = Iλ1(uλ1) ≥ Iλ1(tλ2uλ1) ≥ Iλ2(tλ2uλ1) ≥ mλ2 , (5.4)

where tλ2 satisfies that tλ2uλ1 ∈ N . Thus for −1 < λ < 0, we get that mλ < m−1. Furthermore,

combining with (5.3) and (5.4), one has limλ→0− mλ = m0.

Therefore, we get that there exists a subsequence {λn} satisfying the conclusion of lemma. �

Proof of Theorem 1.8. Let {un} be a ground state solution of problem (1.17) with λ = λn.

Then

〈I ′
λn
(un), un〉 = 0 and Iλn

(un) → m0, (5.5)
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where using Lemma 5.1. Since, for n large,

m0 + 1 ≥ Iλn
(un)−

1
6−2s1

〈I ′
λn
(un), un〉

= 2−s1
6−2s1

(

‖un‖
2 − λn

∫

R3
|un|2

|x|2 dx
)

≥ 2−s1
6−2s1

(

1− λn

λ̄

)

‖un‖
2.

(5.6)

It follows from λn < λ̄ that {un} is bounded in XSO. Thus there exists a u0 ∈ XSO such that















un ⇀ u0 in XSO,
un ⇀ u0 in L

6−2s1(R3; |x|−s1),
un ⇀ u0 in L

2(R3; |x|−2),
un(x) → u0(x) a.e. on R

3.

It follows that u0 is a critical point of I0 and I0(u0) ≥ 0.

If u0 6= 0, we have I0(u0) ≥ m0, set vn = un − u0, applying the Brezis-Lieb lemma, we can

get that

Iλn
(vn) → m0 − I0(u0), (5.7)

‖vn‖
2 −

∫

R3

|vn|
6−2s1

|x|s1
dx− λn

∫

R3

|vn|
2

|x|2
dx→ 0. (5.8)

Similar with (5.6), combining with (5.7) and (5.8), we get that I0(u0) ≤ m0. Thus I0(u0) = m0.

We may therefore assume that

‖vn‖
2 → b,

∫

R3

|vn|
6−2s1

|x|s1
dx→ b.

Therefore,

o(1) = Iλn
(vn)

= Iλn
(vn)−

1

6− 2s1
〈I ′

λn
(un), un〉

=
2− s1
6− 2s1

(

‖vn‖
2 − λn

∫

R3

|vn|
2

|x|2
dx

)

→
2− s1
6− 2s1

b as n→ ∞.

Thus b = 0, and un → u0, (5.5) implies that I0(u0) = m0, that is u0 is a ground state solution of

equation (1.17) with λ = 0.

If u0 = 0, since m0 > 0, there exists ǫ1 ∈ (0, 12S
2−s1
3−s1
s1 ] such that for all ǫ ∈ (0, ǫ1), there exists

a sequence {rn > 0} such that {ũn := r
1
2
nun(rnx)} verifies

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx = ǫ (5.9)

and

Iλn
(ũn) = Iλn

(un) → m0, I ′
λn
(ũn) = 0 in (XSO)

∗.
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Moreover, there exists ũ0 ∈ XSO such that















ũn ⇀ ũ0 in XSO,
ũn ⇀ ũ0 in L

6−2s1(R3; |x|−s1),
ũn ⇀ ũ0 in L

2(R3; |x|−2),
ũn(x) → ũ0(x) a.e. on R

3.

It follows that ũ0 is a critical point of I0 and I0(ũ0) ≥ 0. Set ṽn = ũn − ũ0, applying the

Brezis-Lieb lemma, we can get that

Iλn
(ṽn) → m0 − I0(ũ0),

‖ṽn‖
2 −

∫

R3

|ṽn|
6−2s1

|x|s1
dx− λn

∫

R3

|ṽn|
2

|x|2
dx→ 0. (5.10)

We may therefore assume that

‖ṽn‖
2 → b,

∫

R3

|ṽn|
6−2s1

|x|s1
dx→ b.

The inequality (2.2) implies that b ≥ Ss1b
1

3−s1 , which leads to that either b = 0 or b ≥ S
3−s1
2−s1
s1 . The

case b = 0 implies that ũ0 is a nontrivial solution, which is desired. If b ≥ S
3−s1
2−s1
s1 and ũ0 = 0.

Coping the proof of Lemma 3.4 with s1 > 0, we can get that for any domain Ba,b(0) and any

b > a > 0, up to a subsequence and still denoted by {ũn} such that

∫

Ba,b(0)
|∇ũn|

2 +
|un|

2

|x′|2
dx→ 0,

∫

Ba,b(0)

|ũn|
6−2si

|x|si
dx→ 0, i = 1, 2. (5.11)

Set

κ̃1 := lim sup
n→∞

∫

Bδ(0′)×Bδ(03)

|ũn|
6−2s1

|x|s1
dx,

κ̃ := lim sup
n→∞

∫

Bδ(0′)×Bδ(03)
|∇ũn|

2 +
|un|

2

|x′|2
dx.

(5.12)

Based on (5.11), similar with Lemma 3.5, for any δ > 0, we get that

κ̃ = κ̃1 (5.13)

and

κ̃
1

3−s1
1 ≤ S−1

s1 κ̃. (5.14)

Combining with (5.13) and (5.14), we have

κ̃
1

3−s1
1 ≤ S−1

s1 κ̃1. (5.15)

Furthermore, we can obtain that

either lim
n→∞

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx > S

2−s1
3−s1
s1 .(5.16)
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This is a contradiction with (5.9) as 0 < ǫ < 1
2S

2−s1
3−s1
s1 . It must be ũ0 6= 0. Thus I0(ũ0) ≥ m0. And

limn→∞ Iλn
(ṽn) ≤ 0, combining with (5.10),

o(1) ≥ Iλn
(ṽn)

= Iλn
(ṽn)−

1

6− 2s1
〈I ′

λn
(ṽn), ṽn〉

=
2− s1
6− 2s1

‖ṽn‖
2 −

λn(2− s1)

6− 2s1

∫

R3

|ṽn|
2

|x|2
dx

→
2− s1
6− 2s1

b,

which is a contradiction with b ≥ S
3−s1
2−s1
s1 . Thus ũn → ũ0 in XSO. The proof of Theorem 1.8 is

over combining with Remark 1.12. �

5.2 The case of λ > 0, 0 < s1 < s2 < 2

We now prove Theorem 1.9. We consider the asymptotic behavior of energy level as follows.

Lemma 5.2 Assume λ > 0 holds. Then there exists a subsequence {λn} satisfying limn→∞ λn =
0, such that

lim
n→∞

mλn
= m0 :=

2− s1
6− 2s1

S
3−s1
2−s1
s1 .

Proof. We know that there exists a u0 ∈ XSO satisfies m0 = I0(u0) and u0 belongs to mountain

pass type solution of I0. Andm0 = c̄0 = ĉ0, where c̄0, ĉ0 are defined in (3.1) and (3.2). Combining

with (3.4) and (3.5), we get

m0 > mλn
. (5.17)

It follows from Theorem 1.3 that, for any λn > 0, there exists a solution un satisfies mλn
=

Iλn
(un) and un is mountain pass type, by (5.17), It is not difficult to verify that un is bounded in

XSO. Now we prove the fact that limn→∞mλn
≥ m0. Since, as n large,

1 ≥ 〈I ′
λn
(un), un〉

=

∫

R3

|∇un|
2 +

|un|
2

|x′|2
dx−

∫

R3

|un|
6−2s1

|x|s1
dx− λn

∫

R3

|un|
6−2s2

|x|s2
dx

≥ ‖un‖
2 − Ss1−3

s1 ‖un‖
6−2s1 − Ss2−3

s2 ‖un‖
6−2s2 .

It follows from that there exists M :=M(s1, s2) such that ‖un‖ ≥M . Furthermore,

o(1) + Iλn
(un) = Iλn

(un)−
1

6−2s2
〈I ′

λn
(un), un〉

= 2−s2
6−2s2

‖un‖
2 + s2−s1

2(3−s1)(3−s2)

∫

R3
|un|2

∗(s1)

|x|s1 dx

≥ 2−s2
12−4s2

M2

(5.18)

as n → ∞. The facts (5.17) and (5.18) imply that Iλn
(un) is bounded. Thus there exists a

subsequence(still denoted by origin mark) such that

mλn
= Iλn

(un) → c > 0,I ′
λn
(un) = 0.
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If c ≥ m0, then the proof is complete. Otherwise, c < m0, we will construct a contradiction. The

boundedness of sequence {un} implies that there hold,







un ⇀ u0 in XSO,
un ⇀ u0 in L

6−2si(R3; |x|−si), i = 1, 2,
un(x) → u0(x) a.e. on R

3.

If follows that u0 is a critical point of I0 and I0(u0) ≥ 0. Let vn = un − u0, applying the

Brezis-Lieb lemma, we can get that

Iλn
(vn) → c− I0(u0),

‖vn‖
2 −

∫

R3

|vn|
6−2s1

|x|s1
dx− λn

∫

R3

|vn|
6−2s2

|x|s2
dx→ 0,

λn

∫

R3

|vn|
6−2s2

|x|s2
dx→ 0

We may therefore assume that

‖vn‖
2 → b,

∫

R3

|vn|
6−2s1

|x|s1
dx→ b.

The inequality (2.2) implies that b ≥ Ss1b
1

3−s1 , which leads to that either b = 0 or b ≥ S
3−s1
2−s1
s1 . The

case b = 0 implies that u0 is a nontrivial solution and I0(u0) = c ≥ m0, which is a contradiction.

However, if b ≥ S
3−s1
2−s1
s1 , we get that

c ≥ lim
n→∞

Iλn
(vn) ≥

2− s1
6− 2s1

S
3−s1
2−s1
s1 = m0,

which is a contradiction with c < m0. Thus c ≥ m0 and the proof is over. �

Proof of Theorem 1.9. Let {un} be a ground state solution of problem (1.17) with λ = λn > 0.

Then

〈I ′
λn
(un), un〉 = 0 and Iλn

(un) → m0, (5.19)

where using Lemma 5.2. Since, for n large,

m0 + 1 ≥ Iλn
(un)−

1
6−2s2

〈I ′
λn
(un), un〉

= 2−s2
6−2s2

‖un‖
2 + s2−s1

2(3−s1)(3−s2)

∫

R3
|un|2

∗(s1)

|x|s1 dx.
(5.20)

It follows that {un} is bounded in XSO. Thus there exists a u0 ∈ XSO such that







un ⇀ u0 in XSO,
un ⇀ u0 in L

6−2si(R3; |x|−si), i = 1, 2,
un(x) → u0(x) a.e. on R

3.

It follows that u0 is a critical point of I0 and I0(u0) ≥ 0.

If u0 6= 0, we have I0(u0) ≥ m0, set vn = un − u0, applying the Brezis-Lieb lemma, we can

get that

Iλn
(vn) → m0 − I0(u0), (5.21)
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‖vn‖
2 −

∫

R3

|vn|
6−2s1

|x|s1
dx− λn

∫

R3

|vn|
6−2s2

|x|s2
dx→ 0. (5.22)

Similar (5.20), combining with (5.21) and (5.22), we get that I0(u0) ≤ m0. Thus I0(u0) = m0.

We may therefore assume that

‖vn‖
2 → b,

∫

R3

|vn|
6−2s1

|x|s1
dx→ b.

Therefore,

o(1) = Iλn
(vn)

= Iλn
(vn)−

1

6− 2s1
〈I ′

λn
(un), un〉

=
2− s1
6− 2s1

‖vn‖
2 +

λn(s1 − s2)

2(3 − s1)(3− s2)

∫

R3

|vn|
2∗(s2)

|x|s2
dx

→
2− s1
6− 2s1

b as n→ ∞.

Thus b = 0 and un → u0, (5.19) implies that I(u0) = m0, that is u0 is a ground state solution of

equation (1.17) with λ = 0.

If u0 = 0, since m0 > 0, there exists ǫ1 ∈ (0, 12S
3−s1
2−s1
s1 ] such that for all ǫ ∈ (0, ǫ1), there exists

a sequence {rn > 0} such that {ũn := r
1
2
nun(rnx)} verifies

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx = ǫ (5.23)

and

Iλn
(ũn) = Iλn

(un) → m0,I
′
λn
(ũn) = 0 in (XSO)

∗.

Moreover, there exists ũ0 ∈ XSO such that







ũn ⇀ ũ0 in XSO,
ũn ⇀ ũ0 in L

6−2s1(R3; |x|−s1),
ũn(x) → ũ0(x) a.e. on R

3.

It follows that ũ0 is a critical point of I0 and I0(ũ0) ≥ 0. Set ṽn = ũn − ũ0, applying the

Brezis-Lieb lemma, we can get that

Iλn
(ṽn) → m0 − I0(ũ0),

‖ṽn‖
2 −

∫

R3

|ṽn|
6−2s1

|x|s1
dx− λn

∫

R3

|ṽn|
6−2s2

|x|s2
dx→ 0. (5.24)

We may therefore assume that

‖ṽn‖
2 → b,

∫

R3

|ṽn|
6−2s1

|x|s1
dx→ b.
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The inequality (2.2) implies that b ≥ Ss1b
1

3−s1 , which leads to that either b = 0 or b ≥ S
3−s1
2−s1
s1 . The

case b = 0 implies that ũ0 is a nontrivial solution, which is desired. If b ≥ S
3−s1
2−s1
s1 and ũ0 = 0.

Similar with (5.12)-(5.16) in the proof of Theorem 1.8, we can obtain that

either lim
n→∞

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx = 0 or lim

n→∞

∫

B1(0′)×B1(0̃)

|ũn|
6−2s1

|x|s1
dx > S

3−s1
2−s1
s1 .

This contradicts to (5.23) as 0 < ǫ < 1
2S

3−s1
2−s1
s1 . It must be ũ0 6= 0. Thus I0(ũ0) ≥ m0. And

limn→∞ Iλn
(ṽn) ≤ 0, combining with (5.24),

o(1) ≥ Iλn
(ṽn)

= Iλn
(ṽn)−

1

6− 2s1
〈I ′

λn
(ṽn), ṽn〉

=
2− s1
6− 2s1

‖ṽn‖
2 +

λn(s1 − s2)

2(3− s1)(3− s2)

∫

R3

|ṽn|
6−2s2

|x|s2
dx

→
2− s1
6− 2s1

b,

which is a contradiction with b ≥ S
3−s1
2−s1
s1 . Thus ũn → ũ0 in XSO. Finally, according to Remark

1.12 we can prove the Theorem 1.9. �

5.3 The case of λ < 0, 0 < s1 < s2 < 2

In this section we focus on the proof of Theorem 1.10, that is the case λ < 0, s1 < s2, we first give

a asymptotic behavior of energy level.

Lemma 5.3 Assume λ < 0, 0 < s1 < s2 < 2. Then there exists sequence {λn} satisfying

limn→∞ λn = 0 such that

lim
n→∞

mλn
= m0 :=

2− s1
6− 2s1

S
3−s1
2−s1
s1 .

Proof. We know that there exists a u0 ∈ XSO satisfies m0 = I0(u0) and u0 belongs to mountain

pass type solution of I0. And m0 = c̄0 = ĉ0, where c̄0, ĉ0 are defined in (3.1) and (3.2). For any

λ < 0, it follows from Theorem 1.4 that there exists a mountain pass type ground state solution uλ
of problem (1.17), then we have that

mλ = Iλ(uλ) ≥ Iλ(t0uλ) ≥ I0(t0uλ) =
2− s1
6− 2s1

(

∫

R3 |∇uλ|
2 + |uλ|

2

|x′|2 dx
)

3−s1
2−s1

(

∫

R3
|uλ|

6−2s1

|x|s1 dx
) 1

2−s1

≥ m0, (5.25)

where

t0 =





∫

R3 |∇uλ|
2 + |uλ|

2

|x′|2 dx
∫

R3
|uλ|6−2s1

|x|s1 dx





1
2−s1

.
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For λ1 < λ2 ≤ 0, let uλ1 be a ground state solution, then

mλ1 = Iλ1(uλ1) ≥ Iλ1(tλ2uλ1) ≥ Iλ2(tλ2uλ1) ≥ mλ2 , (5.26)

where tλ2 satisfies that tλ2uλ1 ∈ N . Thus for −1 < λ < 0, we get that mλ < m−1. Thus,

combining with (5.25) and (5.26), one has limλ→0− mλ = m0. �

Proofs of Theorem 1.10. The proof is similar with Theorem 1.9. �

5.4 Proof of Theorem 1.11

In the present section, we only prove Theorem 1.11. According to Theorem 1.5, we get that for

large S > 0, there exists a λ∗ < 0 such that as λ∗ < λ < 0, the equation (1.17) has a nontrivial

solution ũλ satisfying

JS(ũλ) = Iλ(ũλ) = ĉλ,

where

ĉλ = inf
γ∈Γλ

S

max
t∈[0,1]

JS(γ(t)) > 0

and

Γλ
S = {γ ∈ C([0, 1],XSO) : γ(0) = 0, JS(γ(1)) < 0} .

Fixed S large, if λ1 < λ2 and γ ∈ Γλ1

S , it follows from

JS(γ(1)) =
1

2
A(γ(1)) −

1

6− 2s1
B(γ(1))−

λ1

6− 2s2
ΨS(γ(1))C(γ(1)) < 0

that

JS(γ(1)) =
1

2
A(γ(1)) −

1

6− 2s1
B(γ(1)) −

λ2

6− 2s2
ΨS(γ(1))C(γ(1)) < 0.

Thus Γλ1

S ⊂ Γλ2

S and so ĉλ2 ≤ ĉλ1 . Thus there exists a sequence {λn > 0} satisfying limn→+∞ λn =
0 such that limn→+∞ ĉλn

= ĉ0 > 0. We use ũλn
to denote the solutions of (1.17) corresponding

to the energy ĉλn
, that is

Iλn
(ũλn

) = ĉλn
, I ′

λn
(ũλn

) = 0.

Coping the proof of Theorem 1.2, we see that {un = r
1
2
n ũλn

(rnx)} also a solution of (1.17) and

there exists a u ∈ XSO \ {0} such that un → u in XSO. As a consequence, u satisfies (1.17) with

λ = 0 and the energy ĉ0. Finally, according to Remark 1.12, the Theorem 1.11 is proved. �
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