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Abstract
We propose a novel Stochastic Model Predictive Control (MPC) for uncertain linear systems subject
to probabilistic constraints. The proposed approach leverages offline learning to extract key features
of affine disturbance feedback policies, significantly reducing the computational burden of online
optimization. Specifically, we employ offline data-driven sampling to learn feature components
of feedback gains and approximate the chance-constrained feasible set with a specified confidence
level. By utilizing this learned information, the online MPC problem is simplified to optimization
over nominal inputs and a reduced set of learned feedback gains, ensuring computational efficiency.

In a numerical example the proposed MPC approach achieves comparable control performance
in terms of Region of Attraction (ROA) and average closed-loop costs to classical MPC optimiz-
ing over disturbance feedback policies, while delivering a 10-fold improvement in computational
speed.
Keywords: Stochastic Model Predictive Control, Feature Extraction, Scenario Approach

1. Introduction

One key challenge in nominal Model Predictive Control (MPC) is the potential for constraint vio-
lations under model uncertainty. Robust MPC mitigates this by ensuring constraint satisfaction in
worst-case scenarios; however, it often results in overly conservative policies with limited regions
of attraction. Stochastic Model Predictive Control (SMPC) offers a more flexible alternative by em-
ploying chance constraints, which allow controlled constraint violations and yield less conservative
policies Mesbah (2016).

Various SMPC methods address these challenges with different levels of conservatism. Tech-
niques using Chebyshev’s inequality guarantee constraint satisfaction for any probability distribu-
tion but tend to be overly conservative Cannon et al. (2012); Korda et al. (2011). In contrast, methods
tailored for specific distributions, such as Gaussian, offer improved performance but lack generality
Oldewurtel et al. (2008); Hewing et al. (2020). Sampling-based approaches handle arbitrary dis-
tributions, but their real-time application is hindered by the large sample sizes required, especially
if affine disturbance feedback policies are used as decision variables Zhang et al. (2013); Hew-
ing and Zeilinger (2019); Lee et al. (2023). To overcome these limitations, offline scenario-based
approaches leverage pre-sampled data to eliminate redundant constraints, reducing computational
complexity Lorenzen et al. (2017). However, these approaches can still become infeasible for high-
dimensional decision spaces or when dealing with large sample sets. Our work seeks to address
these challenges building on the idea of sampling offline scenarios Lorenzen et al. (2017); Mam-
marella et al. (2022) and proposing a technique which is tractable when affine disturbance feedback
policies are used as decision variables.

We propose a fast SMPC using an offline scenario approach that achieves performance compa-
rable to traditional affine disturbance feedback SMPCs. The proposed method uses two key ideas:
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• Extracting features of affine feedback gains that have the highest effect on constraints viola-
tion. This is done by simply applying Singular Value Decomposition (SVD) to the stacked
constraint and dynamics matrix. When such features are used as optimization variables in the
online SMPC this leads to drastical reduction of online computation.

• Deriving an approximate constraint set of in the space of features which maintains a specified
confidence level for chance constraint satisfaction, simplifying the structure for faster MPC
optimization.

When both key ideas are employed, the resulting SMPC problem will have fewer number of vari-
ables and constraints.

2. Problem Formulation

We consider a linear time-invariant (LTI) system with additive uncertainty:

xt+1 = Axt +But + wt, x0 = xS , (1)

where the system matrices A ∈ Rn×n and B ∈ Rn×m are known, xt ∈ Rn, ut ∈ Rm, wt ∈ Rm

denote the state, control input, the uncertainty at time t with a compact support W, respectively.
The system under consideration is subject to chance constraints on states and inputs described

as follows:

P(Cxt ≤ d) ≥ 1− ϵ, P(Huut ≤ hu) ≥ 1− ϵ, (2)

where C ∈ Rnc×n and Hu ∈ Rncu×m. Our goal is to design a controller to have the system track a
reference signal from a given initial state xS while satisfying the given chance constraints. We are
interested in synthesizing a stochastic Model Predictive Control (MPC) by repeatedly solving the
following optimal control problem:

min
u0|t,u1|t(·),··· ,uN|t(·)

N∑
k=0

c(x̄k|t, ūk|t) + V (x̄N+1|t) (3a)

s.t. xk+1|t = Axk|t +Buk|t + wk|t, x̄k+1|t = Ax̄k|t +Būk|t, (3b)

P(Cxk|t ≤ d) ≥ 1− ϵ, P(Huuk|t ≤ hu) ≥ 1− ϵ, (3c)

ūk|t = uk|t(x̄k|t), x̄N+1|t ∈ XF , x0|t = x̄0|t = xt, ∀k ∈ {0, 1, ..., N} (3d)

where x̄k|t, xk|t denote the nominal state and the predicted state for prediction step k ∈ {0, 1, . . . , N+
1}, obtained from xt by applying the predicted input policies {u0|t, . . . , uk−1|t(·)}. Also, ūk|t de-
notes the corresponding nominal input and wk|t denotes the uncertainty. c(x̄k|t, ūk|t), V (x̄N+1|t),XF

denote the nominal cost, the terminal cost and the terminal set, respectively. There are two main
challenges to solve (3), namely:

(I) Optimizing over policies {u0, . . . , uT−1(·)} is an infinite dimensional problem, and compu-
tationally intractable, in general.

(II) The chance constraints need to be reformulated so that they can be solved with a numerical
algorithm.
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To address (I), we restrict our control policy to an affine disturbance feedback parametrization, i.e.,

uk|t =

k−1∑
i=0

Mk,i|twi|t + vk|t, (4)

where Mk,i|t is the planned feedback gain for the prediction step k, corresponding to wi|t, and vk|t
is a nominal input. To address (II) we use the scenario approach Calafiore and Campi (2006) to
reformulate the chance constraints (3c) as discussed next.

2.1. Scenario Approach

The scenario-based approach transforms chance constraints into a finite set of sampled constraints.
While this method provides significant advantages over approaches tailored to specific probability
distributions, it often requires a large number of samples, making it unsuitable for real-time MPC
applications. The increased number of constraints directly impacts the computational burden of
solving the optimization problem. When coupled with the affine disturbance feedback policy (4),
the optimization problem, which involves {{Mk,i|t}k−1

i=0 , vk|t}Nk=0, becomes particularly computa-
tionally demanding due to the high-dimensional decision space and the complexity of the constraint
structure. To address this issue, we propose an offline sampling method which: 1) Extracts fea-
ture decision variables impacting state evolution in constraints to create a feature feedback policy
that satisfies the chance constraints. 2) Computes an approximate chance-constrained set using the
probabilistic scaling approach with offline scenarios proposed in Mammarella et al. (2022).

This study extends the concept that chance constraints can be probabilistically satisfied via the
scenario approach based on offline samples Lee et al. (2023); Lorenzen et al. (2017). Confidence in
satisfaction increases with more scenarios; see Lorenzen et al. (2017); Calafiore and Campi (2006)
for details on scenario requirements.

3. Offline Sampling approach for Extracting feature disturbance feedback gains

Given the control policy in (4), the decision variables in the MPC problem of (3) are the feedback
gain matrices Mk,i|t and the nominal input vk|t for k = 0, . . . , N and i = 0, . . . , k − 1 for each
k. In the SMPC formulation {{Mk,i|t}k−1

i=0 }Nk=0 does not affect the objective function and is solely
utilized for constraint satisfaction. By evaluating how {{Mk,i|t}k−1

i=0 }Nk=0 influences the constraints
across offline samples and the system dynamics, we construct a large constraint matrix composed
of these samples and the corresponding state dynamics. We apply Singular Value Decomposition
(SVD) to the matrix, as in classical feature extraction techniques. By truncating components with
zero singular values, we extract the key feature components of the disturbance feedback policy,
without altering its impact on the constraint matrix. In the following sections, we provide a detailed
discussion on the feature extraction process.

3.1. Constraint matrix from dynamics and offline samples

For notational brevity, yt denotes a vectorization of all gain matrices {Mk,0|t, . . . ,Mk,k−1|t}Nk=1 at
time step t and vt denotes a vector stacking up all nominal inputs, i.e., [v⊤0|t, . . . , v

⊤
N |t]

⊤. Then, the
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scenario approximation of (3) with Ns samples is rewritten as:

min
yt,vt

1

2

[
x0|t
vt

]⊤
H

[
x0|t
vt

]
(5a)

s.t.

Āyt + B̄vt + C̄x0|t + d̄ ≤ 0, (5b)

x0|t = xt, (5c)

where H denotes the quadratic cost weight matrix and Ā, B̄, C̄, d̄ denote matrices stacking dynam-
ics and constraints from (3), described as next. Ā, d̄ contain the offline uncertainty samples. The
matrices B̄ and C̄ are constructed by stacking Ns instances of B0:N , C0:N , respectively. All stacked
matrices are constructed as follows:

Ā =

A
0
0:N
...

ANs
0:N

 , B̄ =

B0:N
...

B0:N

 , C̄ =

C0:N
...

C0:N

 , d̄ =

d
0
0:N
...

dNs
0:N

 , (6)

Aj
0:N , B0:N , C0:N , dj0:N are constructed as follows:

Aj
0:N =

[
wj⊤
0 · · ·wj⊤

N

]
⊗



0 . . . 0

CB
...

...
. . . 0

CAN−1B · · · CB
Hu · · · 0

...
. . .

...
0 · · · Hu


, B0:N =



CB . . . 0
...

. . .
...

CANB · · · CB
Hu · · · 0

...
. . .

...
0 · · · Hu


, (7)

C0:N =



CA
...

CAN+1

0
...
0


, dj0:N =



C . . . 0
...

. . .
...

CAN · · · C
0
...
0


wj

0
...

wj
N

−



d
...
d

−hu
...

−hu


, (8)

where j denotes the index of the j-th samples and ⊗ denotes a Kronecker product. In this Quadratic
Programming (QP) problem (5), yt only appears in (5b) constraints, not in the objective function.
We want to extract features of yt by discarding redundant elements that have no effect on (5b) and
solve the problem for only the feature components without changing the optimization results. We
apply SVD based feature extraction techniques in the following section.

Remark 1 The terminal constraint can be expressed in terms of vt and easily integrated into the
framework without any changes to the procedure if a robust invariant set is used, as it is independent
of yt. Detailing such design is beyond this paper’s scope.

3.2. SVD based Feature Extraction

To efficiently apply SVD to Ā which is a large matrix, we first perform SVD on each of its sub-
components. From (7), we aim to apply SVD to each matrix prior to its formulation as a Kronecker
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product. Here, W ∈ RNs×n(N+1) denotes the vertically stacked form of [wj⊤
0 · · ·wj⊤

N ] for all Ns

samples and UW ,ΣW , VW denote the resulting matrices of SVD of W. Next, we apply SVD to the
matrix of (7) as:

W =

 w0⊤
0 · · ·w0⊤

N
...

wNs⊤
0 · · ·wNs⊤

N

 = UWΣWV ⊤
W ,



0 · · · 0

CB
...

...
. . . 0

CAN−1B · · · CB
Hu · · · 0

...
. . .

...
0 · · · Hu


= UBΣBV

⊤
B (9)

Then we can present Ā with SVD submatrices as below:

Ā =

UB

. . .
UB

 (W ⊗ ΣB)

V
⊤
B

. . .
V ⊤
B

 (10)

In this formulation, the first matrix is constructed by stacking Ns instances of UB diagonally, and
the third matrix is formed by stacking nN instances of V ⊤

B diagonally.

W ⊗ ΣB = UWΣWV ⊤
W ⊗ ΣB = (UW ⊗ Ip)ΣW ⊗ ΣB(V

⊤
W ⊗ Iq), (11)

where p = Ns, q = nN and the equality holds according to (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
from the mixed-product property of Kronecker product. Then, Ā can be expressed as:

Ā=(INs⊗UB)(UW⊗Ip)ΣW⊗ΣB(V
⊤
W⊗Iq)(InN⊗V ⊤

B )=(UW⊗UB)(ΣW⊗ΣB)(V
⊤
W⊗V ⊤

B ) (12)

This decomposition leverages the structure of the SVD to simplify SVD of the large matrix Ā.

3.3. Truncated feedback policy

Consider the term Āyt in (5b) using the SVD form of Ā in (12). Geometrically V ⊤
W ⊗ V ⊤

B acts
as a rotation matrix. Since yt represents a vector of decision variables that can take any values,
V ⊤
W ⊗ V ⊤

B yt also spans the same dimensional space. Given that ΣW ⊗ ΣB is a diagonal matrix,
certain elements of V ⊤

W ⊗ V ⊤
B yt are zeroed out after matrix multiplication. Consequently, we can

truncate the elements of V ⊤
W ⊗ V ⊤

B yt corresponding to the zero singular values of ΣW ⊗ ΣB (i.e.,
σi = 0).

Remark 2 In theory, only the components with exact zero singular values are truncated. In prac-
tice, components with small singular values can be removed. This will affect chance constraints
guarantees and new probability satisfaction bounds can be derived as a function of the truncation
parameters. Derivations are beyond the scope of this paper.

The remaining valid components of the policy yt after truncation, are expressed as follows:

ytrun
t = trun((ΣW ⊗ ΣB)(V

⊤
W ⊗ V ⊤

B )yt) (13)

where trun is a function that removes the corresponding zero elements, retaining only the non-zero
elements. In other words, if the Ny-dimensional vector (ΣW ⊗ ΣB)(V

⊤
W ⊗ V ⊤

B )yt contains Nzero

zero elements, this operation can be represented as a multiplication by an (Ny−Nzero)×Ny matrix
with ones on the diagonal. Formally, the entire process can be expressed as ytrun

t = P yt where

5
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P denotes the product of all matrices involved. Using this truncated policy and rotation/reflection
matrices truncated accordingly, we can rewrite (5b) as:

(UW ⊗ UB)
trunytrun

t + B̄vt + C̄x0|t + d̄ ≤ 0, (14)

where (UW ⊗ UB)
trun is a truncated version of (UW ⊗ UB). The truncated policy significantly

reduces the number of decision variables without altering the sampled constraints. We refer to
this reduced policy as the “feature feedback policy”. Although the number of decision variables
decreases, the sampled constraints (i.e., The number of rows of Ā ) remains unchanged and is large.
This will be address in the next section.

Remark 3 The matrix P retains a full-rank structure, as both the truncation matrix and the Kro-
necker product of diagonal and unitary matrices are full rank. Consequently, once ytrun

t is com-
puted through the optimization process, the corresponding feasible yt can be reconstructed. yrecon

t

denotes the reconstructed yt. This ensures the applicability of the feature feedback policy.
When vectorizing all the feedback gain matrices, certain elements of yt must be zeros due to

time causality. For instance, at prediction step k, the elements corresponding to Mk,k+1|t should be
zero when we construct the (13). Without enforcing these zero constraints, some reconstructed yt

may include non-zero values in these positions, violating time causality and resulting in infeasible
control policies. To address this issue, we enforce yt,i = 0 for all indices i ∈ I, where I represents
the set of indices that must satisfy these zero conditions. Consequently, the relationship ytrun

t = Pyt

can be reformulated as: ytrun
t = P̄ ȳt where ȳt comprises only the elements yt,i for i /∈ I. If P̄

is a full-rank matrix, then for any ytrun
t , a corresponding ȳt can be reconstructed such that the

original policy yt satisfies ytrun
t = Pyt. In this case, no additional constraints are necessary in

the optimization problem for ytrun
t . However, if P̄ is not full rank, it becomes essential to impose

further restrictions on ytrun
t by adding equality constraints and introducing new decision variables

as follows:

ytrun
t = P̄basisc, (15)

where P̄basis consists of the basis columns of P̄ , and c is a vector of decision variables. Since the
truncated policy ytrun

t already has a significantly reduced dimensionality, incorporating a few addi-
tional equality constraints and decision variables has minimal impact on computational efficiency,
even in the worst-case scenario.

3.4. Probabilistic Properties

In Lorenzen et al. (2017), the main theorem proves that if the number of scenarios Ns satisfies
Ns ≥ 5

ϵ (ln
4
δ + d ln 40

ϵ ) where d denotes the dimension of the set element, the feasible constrained
set of scenario approximate problem belongs to the feasible set of the original problem allowing
violations with at most probability ϵ and confidence level at least 1− δ. Consequently, the solution
yt,vt of (5) satisfies the original problem (3) with confidence level 1− δ, provided that the number
of samples Ns meets the condition Ns ≥ 5

ϵ (ln
4
δ + d ln 40

ϵ ). If the control policy is truncated by
removing only components corresponding to exact zero singular values (σi = 0), the truncated
variables ytrun

t and vt would still satisfy all the existing sampled constraints. This ensures that the
original constraints are satisfied with the same confidence level 1− δ when Ns ≥ 5

ϵ (ln
4
δ + d ln 40

ϵ )
is used, even when the truncated policy is used.
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4. Probabilistic scaling based set approximation

Here zt denotes [y⊤
t ,v

⊤
t , x

⊤
0|t]

⊤ at time step t and ztrunt denotes [ytrun⊤
t ,v⊤

t , x
⊤
0|t]

⊤ at time step t.
We define the ϵ-chance constrained set of zt next.

Definition 4 (ϵ-Chance Constrained Set of zt)
Zϵ = {zt | (3c), holds, ∀k ∈ {0, . . . , N}} (16)

Also we define the sampled set for each sampled disturbance sequence w = [w0|t, . . . , wN |t] as:

Definition 5 (Sampled Set of truncated ztrunt )
Ztrun(w) = {ztrunt |Cxk|t(w) ≤ d,Huuk|t(w) ≤ hu, ∀k ∈ {1, . . . , N}}, (17)

where xk|t(w), uk|t(w) denote the states and the inputs evaluated over w and the reconstructed

zrecont from ztrunt . Using the definitions, Ztrun
N̄

for any integer N̄ denotes
⋂N̄

j=1Ztrun(wj), which
is an intersection of multiple sampled sets. A general scenario approximation approach constructs
an inner approximate set of Zϵ with the 1 − δ confidence level, using finite sampled constraints.
Through the proposed truncation process in Sec. 3, we compute the sampled set Ztrun

Ns
in ztrunt

space, ensuring any reconstructed zt from ztrunt in Ztrun
Ns

remains feasible within the approximate
sampled set (5b). zrecont denotes the reconstructed zt. However, as elaborated in Sec. 3.3, the sam-
pled constraints still result in a large number of constraints. To address this, we aim to construct an
approximate set that simplifies the representation of the sampled constraints, while maintaining the
same 1− δ confidence level of the scenario approximation. We achieve this by using the probabilis-
tic scaling approach Mammarella et al. (2022). To explain how the probabilistic scaling approach
keeps the 1 − δ confidence with the truncated feature policy, we briefly introduce the probabilistic
scaling approach first.

4.1. Probabilistic Scaling Approach

The approach finds an approximate set of {θ ∈ Rq | P(F (w)θ ≤ g(w)) ≥ 1 − ϵ} denoted as Θϵ

where F (w), g(w) are a matrix and a vector which are functions of uncertainty w, respectively. The
approximated set is expressed as the Minkowski sum of a center and a p-norm ball. The main idea
of the method involves two primary steps: 1) Design the center and the shape of the candidate set,
defined by a p-norm ball and an affine transformation Hθ ∈ Rq×q 2) Find a scaling factor γ to
ensure the set satisfies chance constraints with 1− δ confidence, expressed as Θ(γ) = θc ⊕ γHθBq

p

where Bp = {s ∈ Rq | ∥s∥p ≤ 1}.
Similarly, we aim to find an approximate set for the ϵ-CSS of ztrunt while preserving 1− δ con-

fidence level. In the following section, we provide detailed explanations of the two-step procedure,
along with the necessary adjustments to the proposed approach, and demonstrate that the confidence
level is maintained.

4.2. Adjusted Probabilistic Scaling Approach

First we decide the center and the shape matrix for ztrunt as design parameters, following the existing
methodology in Mammarella et al. (2022). Since this set serves as an initial candidate, it is not
required to satisfy the 1 − δ confidence level. Therefore, the center zc and the shape H can be
computed from the small number of samples denoted as Nini. The center can be computed as

7
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Chebyshev center of the sampled set Ztrun
Nini

and the shape is determined in a form of the zonotope
represented with the infinity norm. We compute the H matrix ensuing that the zc ⊕HBntrun

∞ is the
largest set included within Ztrun

Nini
where ntrun is the dimension of ztrunt . The problem to obtain H

is written as follows:

max
zc,H

volp(H) s.t. zc +HBntrun
∞ ⊆ Ztrun

Nini
(18)

Once the initial design parameters zc, H are computed, we compute the γ(w) for Nγ samples as:

γ(w) = max
S(γ)⊆Ztrun(w)

γ, (19)

where w is a realized disturbance sequence [w0|t, . . . , wN |t], S(γ) = zc ⊕ γHBntrun
∞ . We compute

the maximal scaling that S(γ) is a subset of Ztrun(w) for each realization w in the truncated z. For
the specific ϵ violation probability and 1− δ confidence level, we need at least Nγ samples as:

Nγ ≥ 7.47

ϵ
ln

1

δ
(20)

Then, for all Nγ samples, we sort out the γ in descending order. We have to choose the r-th smallest
value γ⋆ to guarantee the 1 − δ confidence level according to the probabilistic scaling approach,
where r = [

Nγϵ
2 ]. Then, as mentioned in Sec. 4.1, S(γ⋆) is an approximate set of the ϵ-CSS of

ztrunt . To check the proof that the S(γ⋆) is a subset of ϵ-CSS of ztrun with the specific confidence,
when using the lower bound of the number of samples, see Mammarella et al. (2022). In this paper,
we affirm that applying the probabilistic scaling approach to truncated variables still maintains the
original chance constraint satisfaction with the same specific confidence level.

Proposition 6 (Probabilistic Scaling with Truncation) Assume that the same sample set from the
truncation process of Sec. 3 is employed for computing the scaling factor for the truncated vari-
ables. Then, all zrecont reconstructed from ztrunt ∈ S(γ⋆), is contained within Zϵ with the same
1 − δ confidence level. Furthermore, the minimum number of samples required for the adjusted
probabilistic scaling remains unchanged.

Proof Let W denote the sample set. The constraints evaluated at ztrunt for all samples in W are
identical to those evaluated at the corresponding zrecont , where Pre is the matrix that reconstructs
zrecont from ztrunt (i.e., zrecont = Prez

trun
t ). Let xk|t(w, z) and uk|t(w, z) denote the state and input

at prediction step k, respectively, evaluated with disturbance w and variable z. For every w ∈ W , the
state constraints Cxk|t(w, z

recon
t ) ≤ d and input constraints Huuk|t(w, z

recon
t ) ≤ hu are satisfied.

Consequently, for all ztrunt within the set zc ⊕ γHBntrun
∞ , the reconstructed zrecont = Prez

trun
t lies

within the feasible set {z | Cxk|t(w, z) ≤ d,Huuk|t(w, z) ≤ hu} for all w ∈ W . As a result,

each zrecont is contained within Z(w) for at least Nγ −
⌊
Nγϵ
2

⌋
samples w ∈ W according to (19).

Therefore, zrecont belongs to the approximate set of (ϵ-CSS) of zt using the probabilistic scaling
approach. Since all inclusion relations hold in the ztrunt space, the required number of samples in the
adjusted probabilistic scaling approach to guarantee the confidence of chance constraint satisfaction
remains unchanged from the original method. Consequently, each reconstructed zrecont derived from
elements of S(γ) resides within the ϵ-CSS of zt with 1− δ confidence.

8
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5. Online MPC with principal feature policy and approximate sets

5.1. Construct the online MPC problem with offline components

We construct the modified MPC problem with the offline computed components described in the
previous sections. The decision variables of the online MPC problem are the truncated policy gains
ytrun
t and the nominal inputs vt at time step t. The constraints are the approximate set S(γ⋆)

obtained from the adjusted probabilistic scaling approach. In summary, the modified MPC problem
is constructed as:

min
ytrun
t ,vt

1

2

[
x0|t
vt

]⊤
H

[
x0|t
vt

]
s.t. [ytrun

t ,vt, x0|t] ∈ S(γ⋆), x0|t = xt, (21)

5.2. Implementation details

Infinity norm can be converted into linear inequalities in (22). Since taking the inverse of H is com-
puted offline, it does not degrade the efficiency of online implementation and numerical stability.
Since x0|t is included in zt, we have to update the last elements of zt with xt every time step.

z ∈ zc ⊕ γHB∞ ⇐⇒ z − zc
γ

= Hs, ∥s∥∞ ≤ 1 ⇐⇒ −γ ≤ H−1(z − zc) ≤ γ (22)

Following the typical MPC framework, the first element of v∗, is selected as the control input for
the current time step. The entire process of the proposed algorithm is described in Algorithm. 1.

Algorithm 1: Fast stochastic MPC with the feature feedback policy using offline sampling
Input: The uncertainty samples {[wj

0, . . . , w
j
N ]}Ns

j=0

Output: Control policy ut(·)
Offline :

1: Obtain a SVD based feature feedback policy in (13) using offline sampling.
2: Compute the norm-based approximate set of chance constrained set using adjusted probabilistic

scaling approach in (18), (19).
Online at time step t :

3: Construct the MPC problem (21) with the offline computed components
4: Solve (21) and apply v⋆0|t to the system (1) and Repeat the online process at time step t+ 1.

6. Simulation Results

In this section, we demonstrate the practical application of the proposed method through numer-
ical simulations. We consider a lane keeping scenario with the safety distance and the following
distance not to disturb traffic flow. In this scenario, an ego vehicle keeps the lane with a preced-
ing vehicle which is randomly changing a speed. The objective is to keep the reference speed as
possible, while ensuring a safety distance (i.e., minimum distance) and a following distance (i.e.,
maximum distance) up to the preceding vehicle. The preceding vehicle has uncertainties of speed
and acceleration.

We consider an integrator model of the ego vehicle as follows:[
st+1

vt+1

]
=

[
1 ∆t
0 1

] [
st
vt

]
+

[
0
∆t

]
at, (23)

9
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where st, vt, at denote the position, speed, acceleration of the ego vehicle at time step t, respectively.
The dynamic model of the preceding vehicle is written as:[

senvt+1

venvt+1

]
=

[
1 ∆t
0 1

] [
senvt

venvt

]
+∆t

[
w1,t

w2,t

]
, (24)

where senvt , venvt , aenvt , w1,t, w2,t denote the position, speed, acceleration, uncertainty in speed and
acceleration of the preceding vehicle at time step t, respectively. The uncertainty samples are chosen
from an uniform distribution, which is not known by the controller. So the entire system dynamics
is described in the form of (1) where

A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , B =


0
∆t
0
0

 , wt =


0
0
ws
t

wv
t


and xt = [st, vt, s

env
t , venvt ]⊤, ut = at. The safety constraints, the following traffic flow constraints

and the acceleration constraints are

senvt − st ≥ dsafe − (venvt − vt)∆t (25a)

senvt − st ≤ dkeep (25b)

amin ≤ at ≤ amax (25c)

We want to have (25) constraints violated in a probability lower than ϵ, as below:

P((25) is satisfied) ≥ 1− ϵ (26)

We choose the objective function as J =
∑T

t=0(vt− vref,t)
2+a2t , in order to minimize the tracking

error and regularize the inputs. We find MPC solutions to the optimal control problem (3) with
simulation parameters in Table. 1.

To assess the effectiveness of our proposed approach, we compare it against two other policies of
scenario approach: a) the open-loop policy, b) the affine feedback policy fully computed online (full
feedback policy, in short). We evaluate these policies based on two key criteria: (I) the performance
quality of solutions and (II) the computational complexity.

Simulation Parameters (All units are SI units)
s0 6 v0 6 vref 5 senv0 20 venv0 4.5

ws,env
0 U(-0.6,0.6) wv,env

0 U(-0.8,0.8) ∆T 0.2 Max acc 10 min acc -10
Ns 104 Nγ 2000 NMPC 5 Ntrial 50 Ntask 20
dsafe 10 dfollow 16

Table 1: Simulation parameter setup

6.1. Performance of the control policy

The performance of the proposed controller is evaluated in two aspects: 1) the area of Region Of
Attraction (ROA) 2) The sum of closed-loop costs.

First, we compare the area of approximate Region Of Attraction (ROA) between the approaches
after we applied the proposed MPC and the other MPC policies a), b) mentioned earlier. We try
to solve the MPC problem with multiple discretized states as an initial state of the ego vehicle.

10
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This analysis highlights the regions within the state space where each policy can obtain a feasible
solution to control the ego vehicle. The results are illustrated in Fig. 1. The blue circle denotes
the feasible initial states, while the red cross denotes the infeasible initial states. The open-loop
policy has an empty region of the feasible states, implying the scenario is too tight for finding a
conservative policy satisfying the constraints. On the other hand, the proposed policy and the full
feedback policy have some feasible regions. Remarkably, the proposed method boasts an ROA
that closely rivals that of the full feedback gain policy. To evaluate the robustness of the proposed
approach, we conduct a similar simulations using a less restrictive initial senv0 which is 21m. The
results are presented in Fig. 2. While the open-loop policy exhibits a non-empty feasible region,
both the proposed policy and the full feedback policy demonstrate larger feasible regions, with each
being of comparable area.

(a) Open-loop policy (b) Full feedback policy (c) Proposed feedback policy

Figure 1: Comparisons of ROA with three control policies

(a) Open-loop policy (b) Full feedback policy (c) Proposed feedback policy

Figure 2: Comparisons of ROA with three control policies for the less tight scenarios with senv0 = 21

Next, we run the controllers for the system from time step 0 to time step Ntask and carry out
this process repeatedly for a total of Ntrial trials. As a result, the accumulated closed-loop costs
are illustrated in Fig. 3(a). Additionally, the gap distance between two vehicles are shown in the
Fig. 4. In both graphs, the blue line represents the proposed policy, the cyan line represents the
open-loop policy and the red line represents the full feedback policy. The results reveal that the
proposed method yields closed-loop costs that closely resemble those achieved by the full feedback
policy, and notably surpass the costs incurred by the open-loop policies. Although our objective is
about the nominal cost, the proposed approach has the similar average closed-loop costs with the
full feedback policy and much better than the open-loop policy as you can see in the Table. 2. Also,

11
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the gap distance graph in Fig. 4 demonstrates a striking similarity in the outcomes derived from
both the full feedback policy (red) and the proposed policy (blue). Note that the red lines and the
blue lines are drawn in the wider range which is near the constraint boundary, while the cyan lines
are drawn in the smaller range. The plot shows the behaviors of the proposed method are implicitly
less conservative since they are much closer to the boundary of the constraints.

To check the proposed approach’s robustness, we run the similar simulations for the different
initial senv0 which is 21m. The results are shown in Fig. 4(a), Fig. 4(b) and Table. 3. Similar to the
previous results, the proposed policy achieves nearly equivalent performance to the full feedback
policy in terms of both ROA and the cumulative closed-loop costs.

(a) Comparison of the closed-loop costs over 50
trials

(b) Gap distance graph during 20 time steps
with senv0 = 20

Figure 3: (a) Comparison of the closed-loop costs over 50 trials, (b) Gap distance graph during 20
time steps with senv0 = 20

(a) Comparison of the closed-loop costs over 50
trials

(b) Gap distance graph during 20 time steps
with senv0 = 21

Figure 4: (a) Comparison of the closed-loop costs over 50 trials, (b) Gap distance graph during 20
time steps with senv0 = 21

12
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open-loop full feedback proposed
Costs 84.09 56.02 56.85

Table 2: Average closed-loop costs over 50 trials with senv0 = 20

open-loop full feedback proposed
Costs 128.16 49.96 51.64

Table 3: Average closed-loop costs over 50 trials with senv0 = 21

6.2. Computation time

The computation time of the proposed approach comprises: i) feature policy extraction via SVD in
the offline phase, ii) computation of the approximate set in the offline phase, and iii) solving the
modified MPC problem with truncated decision variables in the online phase. The optimization
problems are formulated using the CasADi interface Andersson et al. (In Press, 2018) in Python,
and solved with IPOPT Wächter and Biegler (2006). All simulations and computations are carried
out on a ThinkPad P53 with a 2.60 GHz Intel Core i7-9850H processor and 16GB RAM.

i) For 103, 104, 105 samples, considered sufficient for chance constraint satisfaction Calafiore and
Campi (2006), the offline computation times for performing SVD on the large constraint matrix
and computing the approximate set are shown in Table 4. The complete offline computation
for 105 samples takes about 20 to 30 seconds.

ii) For the online phase, using 10, 100, 1000 samples, we compare the computation time between
the full feedback policy, the open-loop policy, and the proposed method. The full feedback
policy requires 0.1s to 0.2s with 100 samples, while the proposed MPC consistently completes
in less than 0.01s due to pre-computed sampling processes in the offline phase (Table 5). This
highlights the significant speed advantage of the proposed method over the full feedback pol-
icy while maintaining control performance. The results justify using the proposed method in
real-time applications, as it enables pre-computation of the truncated feature policy and the
approximate set, achieving execution speeds at least 10X faster than the full feedback policy.

Remark 7 Although the offline computation time may seem substantial, the proposed method re-
main highly beneficial. Unlike high-dimensional parametrized policies such as neural network-
based control policies, the proposed method preserves interpretability and tunability, while requir-
ing less computation than extensive training processes. Also it still includes real-time optimization,
enabling adaptive feedback gains in time, and is competitive with brute-force computation of all
solutions. Additionally, constructing the feasible set is performed offline only once. This step does
not need to be repeated even if control costs change, as long as constraints are consistent. These
features enhance the method’s practicality and efficiency, making it highly valuable for SMPC ap-
plications.

7. Conclusions

We proposed a fast stochastic MPC for uncertain linear systems subject to chance constraints. Our
approach involves extracting feature components from affine disturbance feedback policies using
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# of samples 1,000 10,000 100,000
SVD 0.08 0.3 2.2

Approx. set 8.1 13.3 22.1

Table 4: Computation time of offline process (time unit:s)

♯ of samples 10 100 1000
open-loop 0.002 ∼ 0.009 0.031 ∼ 0.088 0.092 ∼ 0.171

full feedback 0.035 ∼ 0.049 0.116 ∼ 0.151 0.281 ∼ 1.118
proposed 0.003 ∼ 0.011 0.003 ∼ 0.011 0.003 ∼ 0.011

Table 5: Computation time of online MPC for each policy (time unit: s)
a stacked constraint matrix derived from multiple offline samples, without changing the constraint
satisfaction. We then computed an approximate feasible set for the feature decision variables while
maintaining a desired 1− δ confidence level, allowing the MPC problem to be solved with reduced
decision variables. During online MPC implementation, the proposed approach solves the modified
MPC problem with the offline computed sets and the truncated feature policy. With numerical
simulations, we demonstrated that our approach achieves control performance comparable to full-
feedback control policies in terms of Region of Attraction (ROA) and accumulated closed-loop
costs. Importantly, the proposed method achieves computation speeds that are at least ten times
faster, making it highly suitable for real-time applications.
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offline uncertainty sampling. Automatica, 81:176–183, 2017.

Martina Mammarella, Victor Mirasierra, Matthias Lorenzen, Teodoro Alamo, and Fabrizio
Dabbene. Chance-constrained sets approximation: A probabilistic scaling approach. Automatica,
137:110108, 2022.

Ali Mesbah. Stochastic model predictive control: An overview and perspectives for future research.
IEEE Control Systems Magazine, 36(6):30–44, 2016.

Frauke Oldewurtel, Colin N Jones, and Manfred Morari. A tractable approximation of chance
constrained stochastic mpc based on affine disturbance feedback. In 2008 47th IEEE conference
on decision and control, pages 4731–4736. IEEE, 2008.
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