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We investigate the formation of steady states in one-dimensional Bose-Einstein condensates of
repulsively interacting ultracold atoms loaded into a quasiperiodic potential created by two incom-
mensurate periodic lattices. We study the transformations between linear and nonlinear modes and
describe the general patterns that govern the birth of nonlinear modes emerging in spectral gaps
near band edges. We show that nonlinear modes in a symmetric potential undergo both symmetry-
breaking pitchfork bifurcations and saddle-node bifurcations, mimicking the prototypical behaviors
of symmetric and asymmetric double-well potentials. The properties of the nonlinear modes dif-
fer for bifurcations occurring below and above the mobility edge. In the generic case, when the
quasiperiodic potential consists of two incommensurate lattices with a nonzero phase shift between
them, the formation of localized modes in the spectral gaps occurs through a cascade of saddle-
node bifurcations. Because of the analogy between the Gross-Pitaevskii equation and the nonlinear
Schrödinger equation, our results can also be applied to optical modes guided by quasiperiodic
photonic lattices.

I. INTRODUCTION

The elevated interest in quasiperiodic systems orig-
inates in the intermediate position they occupy be-
tween periodically patterned and fully disordered me-
dia. Quasiperiodic structures can be implemented in
various physical environments which, in particular, in-
clude atomic Bose-Einstein condensates (BECs) loaded
in a superposition of incommensurate optical lattices
[1–5], exciton-polariton condensates emerging in etched
nanowires [6, 7], and photonic lattices [8–11]. Exam-
ples of prominent features that are inherent to disordered
systems and have already been experimentally observed
using the paradigm of quasiperiodicity include the An-
derson localization [3] and the corresponding phase tran-
sition [8], the existence of a mobility edge [5, 12], i.e.,
the critical energy separating spatially localized and ex-
tended states, and the fractal energy spectrum [6].

The physical systems mentioned above gravitate to-
wards each other due to the similarity between the
Shrödinger equation and the paraxial equation for elec-
tromagnetic waves [13–15]. Moreover, all these systems
exhibit significant nonlinear responses and enable the ex-
istence of solitons and, more generally, steadily propa-
gating nonlinear localized waves. Hence the formation
of nonlinear patterns in quasiperiodic lattices becomes a
relevant topic. Solitons emerging in gaps of the fractal
spectrum have been predicted to exist in BECs with re-
pulsive interactions [16] whose nonlinear effect is akin to
the selfdefocusing in optical media, where analogous gap
solitons have been found too [17]. Solitons in the semiin-
fite gap of quasiperiodic selffocusing media were consid-
ered in [18]. Much attention has been given to nonlinear
matter waves [16, 19–21] and optical solitons [22–31] in
two-dimensional quasiperiodic and, more generally, qua-
sicrystalline lattices. Optical solitons in photonic qua-

sicrystals have been produced in several experiments [32–
34]. Solitons and solitonlike states in discrete [35–38] and
layered [39–42] aperiodic media have also been studied.

As compared to periodic systems, which can be ex-
haustively described with the Floquet-Bloch theory, the
linear spectra of quasiperiodic systems are usually orga-
nized in a much more complex way and contain both lo-
calized and spatially extended eigenfunctions. The point
spectrum of localized states has a fractal structure, and
spatially extended states no longer obey the Floquet the-
orem. The intricate structure of the linear spectrum and
the presence of the mobility edge between localized and
extended eigenstates are expected to manifest in the non-
linear regime as well. While nonlinear states emerging in
quasiperiodic lattices have been documented in numer-
ous studies, the interplay between linear and nonlinear
states and the mechanism of formation of localized non-
linear modes are not yet fully understood. The main goal
of this paper is to elucidate the typical patterns accom-
panying the formation of nonlinear modes in quasiperi-
odic potentials through the transformation between lin-
ear and nonlinear states below and above the mobility
edge. This issue is particularly relevant in atomic BECs,
where the transition between effectively linear and non-
linear regimes can be controlled using the Feshbach res-
onance management [12, 43–45].

More specifically, we consider a BEC trapped in a one-
dimensional symmetric bichromatic potential composed
of two incommensurate periodic lattices. The most ro-
bust nonlinear states are expected to exist in gaps of the
spectrum, where the excitation of linear modes is inhib-
ited. We therefore inspect the structure of the spectral
band edges and study families of nonlinear modes that
emerge in the spectral gaps near the band edges below
and above the mobility edge. For bands situated below
the mobility edge, we describe two mechanisms for the
formation of nonlinear modes. In the first case, nonlinear
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modes of infinitesimal amplitude branch off from the zero
solution and form nonlinear families that bifurcate from
linear localized states. The second scenario involves the
hybridization between different modes which results in
the formation of new families through a bifurcation. We
find that even the simplest spatially symmetric bichro-
matic potential composed of two lattices with zero phase
shift exhibits remarkably versatile behavior, and its non-
linear modes undergo either pitchfork or saddle-node bi-
furcations. In a more general case, when the potential
is spatially asymmetric and composed of two incommen-
surate lattices with a nonzero phase shift, the formation
of localized nonlinear modes occurs through a cascade of
saddle-node bifurcations. Further, we establish that the
existence of the mobility edge dichotomizes the formation
of nonlinear modes. Below the mobility edge, a mode is
already localized in the linear limit, and hence it remains
localized as the nonlinearity increases. Above the mobil-
ity edge, a spatially extended linear mode builds up its
localization as the chemical potential departs from the
band edge and the effective nonlinearity grows. These
distinct behaviors lead to different dependencies of the
number of atoms in the condensate on its chemical po-
tential near the band edge below and above the mobility
edge.

We approach the problem using the so-called approx-
imant path [46] which replaces the quasiperiodic system
with infinite spatial extent by a finite system truncated
by periodic boundary conditions. The qualitative pat-
terns described in our study are robust against changes
in the accuracy of the rational approximation and high-
light the interrelation between the fractal linear spectrum
and the multitude of emerging nonlinear modes.
The paper is organized as follows. In Sec. II we in-

troduce the model, discuss its rational approximations,
and summarize relevant information about the spectrum
of linear states. The main results of our study are pre-
sented in Sections III and IV. Section III describes the
structure of band edges and discusses their transforma-
tion with the change of accuracy of the rational approx-
imation. Section IV elucidates the general patterns as-
sociated with the formation of nonlinear modes near the
band edges. This section incorporates the case of sym-
metric quasiperiodic potential and the more general case
of asymmetric potential created by a pair of incommensu-
rate lattices with nonzero phase shift. Section V provides
conclusion and outlook.

II. MODEL, METHODS, AND A SUMMARY

OF RESULTS FOR THE LINEAR SPECTRUM

We consider a quasi-one-dimensional Bose–Einstein
condensate of ultracold atoms and assume that its mean-
field dynamics obeys the Gross-Pitaevskii equation:

i
∂Ψ

∂t
= HΨ+ g|Ψ|2Ψ, H := −1

2

∂2

∂x2
+ V (x). (1)

Here Ψ(x, t) is the properly normalized dimensionless or-
der parameter, and g ≥ 0 represents the corresponding
nonlinearity coefficient. In this study, we will use two
different values of the nonlinearity coefficient: the case
g = 0 corresponds to the noninteracting (i.e., linear)
regime, and the case g = 1 corresponds to repulsive inter-
actions. At the same time, the norm of the wavefunction
N =

∫

∞

−∞
|Ψ|2dx and, respectively, the number of atoms

in the condensate remain free parameters. Equivalently,
we can fix the number of particles imposing the normal-
ization N = 1 and letting g vary as a free parameter.
These two settings are interrelated by a simple renor-
malization.
An essential portion of our results is devoted to a

bichromatic quasiperiodic potential of the form

V (x) = v1 cos (2x) + v2 cos (2ϕx), (2)

where v1, v2 > 0 and ϕ is an irrational number. Poten-
tial (2) in fact corresponds to a special situation, because
(i) it is symmetric with respect to the origin x = 0, and
(ii) it achieves its maximum (both local and global) at
x = 0. In this respect the bichromatic lattice given by
Eq. (2) resembles a double-well potential with the bar-
rier situated at x = 0. In a more general situation, the
bichromatic lattice comprises a combination of mutually
shifted incommensurate dependences. This more general
case will be discussed below in Sec. IVE.
To put our work into proper context, we notice that the

potential (2) differs from the bichromatic quasiperiodic
lattice previously studied in Ref. [16]. That lattice had a
global minimum at x = 0 and no global maximum.
In the normalized model (1)–(2), the amplitudes of the

lattices, v1,2, are measured in units of the recoil energy
of one of the lattices. Regarding the normalization of the
order parameter, for 87Rb atoms with a scattering length
of approximately 100 times the Bohr radius (as ≈ 100a0)
and for the lattice created by lasers with wavelengths
∼ 1µm and ∼ ϕµm, respectively, we can estimate the
number of particles in the condensate as N ∼ 104gN ,
where N is the ‘normalized’ number of atoms defined
above.
The steady states of the condensate can be represented

as Ψ = e−iµtψ(x), where µ is the chemical potential
and ψ(x) is a stationary macroscopic wave function that
solves the time-independent Schrödinger equation

µψ = Hψ + g|ψ|2ψ. (3)

We consider real-valued solutions ψ(x), so |ψ|2 = ψ2.
The main focus of this work is on the bifurcations

between the eigenmodes of the nonlinear problem (3)
and the eigenstates of the underlying linear problem (ob-
tained by setting g = 0)

µ̃ψ̃ = Hψ̃. (4)

Hereafter we use tildes to distinguish quantities that re-
late to the linear regime.
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We treat the formulated problems using the so-called
approximant path [46] (see also [47–50]) which approx-
imates the irrational number ϕ by a rational fraction:
ϕ ≈ p/q, where p and q are coprime integers. The frac-
tion p/q is called a rational approximation (RA) of the
irrational number ϕ. Accordingly, the quasiperiodic po-
tential V (x) given by Eq. (2) is replaced by the following
expression:

Vq(x) := v1 cos(2x) + v2 cos (2px/q) . (5)

In this study, we use the irrational number given by the
golden ratio, ϕ = (1 +

√
5)/2. Then a series of optimal

approximants of increasing accuracy is given by fractions
of subsequent Fibonacci numbers:

ϕ ≈ . . . ,
55

34
,

89

55
,

144

89
, . . . (6)

The greater the denominator, the more accurate the ap-
proximation.
In contrast to the quasiperiodic potential V (x), the po-

tential Vq(x) introduced in Eq. (5) is periodic. Its period
is equal to Lq := πq. The difference between Vq(x) and
V (x) remains small only in a bounded spatial domain. As
a result, it becomes relevant to restrict our consideration
to a finite domain by imposing the periodic boundary
conditions. Specifically, we require

Ψ(−πq/2, t) = Ψ(πq/2, t) [ψ(−πq/2) = ψ(πq/2)]. (7)

The choice of periodic boundary conditions can be justi-
fied by several additional observations: (i) For eigenfunc-
tions that are well localized within the unit cell Iq :=
[−πq/2, πq/2) the difference between periodic and zero
boundary conditions is insignificant; (ii) Linear eigen-

functions ψ̃(x) satisfying the boundary conditions (7) ac-
tually represent Bloch functions of the band structure
associated with the periodic potential Vq(x). This fact
may be useful for for interpreting the results; (iii) Peri-
odic boundary conditions are ideal for efficient numerical
methods used to solve linear eigenproblems of the form
(4). To solve the linear eigenproblem (4) with the pe-
riodic potential Vq(x), we used the Fourier collocation
method which expands the potential Vq(x) and the un-

known eigenfunctions ψ̃(x) into Fourier series and ap-
proximates the second spatial derivative ∂2x in reciprocal
space (see e.g. [51, Ch. 7]). By truncating the Fourier
series, we reduce the problem to evaluating the spectrum
of a certain matrix, whose eigenvalues provide the chem-
ical potentials µ̃ of the BEC in the linear limit, and the
eigenvectors are composed of Fourier coefficients of the
corresponding eigenfunctions ψ̃. For all the RAs used
in this work, 4500 Fourier harmonics were sufficient to
ensure that the results were numerically accurate, i.e.,
the amplitudes of all neglected Fourier coefficients were
comparable to the machine precision. Regarding the non-
linear problem (3), it was solved using Newton’s method
with the periodic boundary conditions.

n

gap A

gap B

gap C

gap D

gap E

(a)

(b)

Figure 1: (a) Chemical potentials µ̃1 < µ̃2 < . . . µ̃n < . . .
and (b) IPRs χ̃n for the 100 lowest linear modes, computed
from the linear eigenvalue problem (4) with a rational ap-
proximation p/q = 89/55, and amplitudes of the lattices
v1 = v2 = 0.8. Several gaps are labelled with letters A-E
in the upper panel. The gaps are located at mode numbers
n corresponding to the Fibonacci sequence, as highlighted by
dotted vertical lines. The mobility edge is located at n = 55,
so the bands below gap D consist of localised eigenfunctions,
and the bands above gap D consist of spatially extended eigen-
functions. We note that the vertical axis is broken in the up-
per panel.

For each computed nonlinear mode, we have also
checked its spectral stability against small perturbations.
According to the standard procedure (see e.g. [51]), it is
obtained from the numerical solution of the eigenvalue
problem

λη1 = (H − µ+ 3gψ2)η2, λη2 = −(H − µ+ gψ2)η1, (8)

where η1(x) and η2(x) represent the real and imaginary
parts of the small perturbation, respectively, and λ is and
eigenvalue that determines the dynamical behavior of the
perturbation (∝ eλt). A growing (or unstable) perturba-
tion is associated with an eigenvalue with a positive real
part.
A representative example of the linear eigenspectrum

calculated for a specific RA is shown in Fig. 1. Here, we
summarize several facts about the linear spectrum that
are relevant to our study. Most of these facts have been
discussed in previous studies on bichromatic quasiperi-
odic potentials (see [48–50, 52–62]).

(i) The spectrum of the linear eigenvalue problem (4)
is bounded from below and discrete, due to the
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periodic boundary conditions. We enumerate the
chemical potentials in ascending order: µ̃1 < µ̃2 <
. . . < µ̃n < . . .. This discrete spectrum consists
of clusters of closely spaced eigenvalues (which we
call bands in what follows) separated by gaps. It is
essential that gaps are robust with respect to the
choice of the RA. This means that if we choose p
and q to be large enough, any further increase in
their values will lead to an increase in the num-
ber of eigenvalues within the bands (which become
more densely populated), while the locations and
widths of the gaps remain relatively unchanged.

(ii) For ϕ equal to the golden ratio, the locations of
the gaps in the discrete spectrum correspond to the
Fibonacci numbers. Therefore, the gaps are located
between µ̃13 and µ̃14, µ̃21 and µ̃22, µ̃34 and µ35, etc.
(see Figure 1 for an illustration).

(iii) For sufficiently large values of v1 and v2, the spec-
trum exhibits a mobility edge, i.e., several lower
bands consist of localized eigenfunctions, while the
the remaining part of the spectrum consists of
eigenfunctions that are extended over the entire pe-
riod Iq = [−πq/2, πq/2). The localization is quan-
tified by the inverse participation ratio (IPR), given
by

χ̃n =

∫

Iq
|ψ̃n(x)|4dx

(

∫

Iq
|ψ̃n(x)|2dx

)2
. (9)

States with density extended over the entire cell
[−πq/2, πq/2) correspond to relatively small IPR
values, χ̃n ∼ 1/(πq), while localized states have
χ̃n ≫ 1/(πq).

(iv) Since the introduced potential resembles a sym-
metric double well (in the sense explained above),

the spectrum of localized states {µ̃n, ψ̃n(x)} below
the mobility edge contains multiple pairs of closely
spaced eigenvalues associated with eigenfunctions
that have opposite parities, with one eigenfunction
being an even (symmetric) function of x: ψ̃(x) =

ψ̃(−x), and another eigenfunction being odd (an-

tisymmetric) function: ψ̃(x) = −ψ̃(−x). If the
bichromatic potential has a nonzero phase shift be-
tween the two sublattices, then, in the generic case,
the potential is free from any special symmetry. In
this case the eigenfunctions ψ̃(x) are neither even
nor odd, and the pairs of closely spaced eigenvalues
are not present in the spectrum. In this sense, the
distribution of eigenvalues becomes ‘more uniform’
within each band. In the meantime, the locations
of the band edges do not significantly depend on
the value of the phase shift.

gap A

ed
g
eband

gap B

ed
g
eband

gap C

ed
g
eband

gap D

ed
g
eband

gap E

ed
g
eband

Figure 2: Schematic illustrations for structure of right band
edges adjacent to gaps A-E from Fig. 1. Each diagram shows
three rightmost chemical potentials µ̃n and indicates distances
between them with curly overbraces (not to scale). Shown
schematics correspond to p/q = 89/55 and v1 = v2 = 0.8.
Dotted vertical lines indicate the right band edges.

III. STRUCTURE OF THE BAND EDGES

We are interested in the nonlinear states that arise near
the edges of linear bands and extend into spectral gaps.
As our system is dominated by a repulsive nonlinearity,
for which chemical potentials increase with the growth of
condensate density, we investigate bifurcations between
linear and nonlinear states that occur at the right edges
of bands, i.e., bifurcations from the rightmost eigenvalues
in each band. Therefore, it becomes important to take a
closer look at the structure of the linear spectrum near
band edges. Specifically, we have chosen several gaps
labeled A-E in Figure 1, where bands adjacent to gaps A
and D are located below the mobility edge and consist of
localized eigenfunctions, while gap E is located above the
mobility edge and the adjacent bands contain spatially
extended eigenfunctions.
We consider several rightmost eigenstates at the band

edge adjacent to each chosen gap. The results can be
summarized in several distinctive behaviors summarized
in Fig. 2 for fixed RA with p/q = 89/55 and in Table I
for several different RAs of increasing accuracy. In Fig. 3
we plot representative examples of eigenfunctions corre-
sponding to the band edges for different RAs.
In the first case, a band edge corresponds to a pair

of closely spaced eigenvalues associated with localized
eigenfunctions of opposite parity. One of the eigen-
functions is symmetric, and the other is antisymmetric.
‘Closely spaced’ means that the difference between the
eigenvalues µ̃n and µ̃n−1 is at least an order of magni-
tude smaller than the difference to the next neighboring
eigenstate µ̃n−2. For example, |µ̃13 − µ̃12| ≪ |µ̃12 − µ̃11|
and |µ̃21− µ̃20| ≪ |µ̃20− µ̃19| in Fig. 2. In Table I this sit-
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p/q = 55/34 p/q = 89/55 p/q = 144/89 p/q = 233/144

gap A: −0.24 . µ . −0.23 s-a/s pair s-a/s pair boundary new s-a/s pair

gap B: −0.22 . µ . −0.17 boundary s-a/s pair s-a/s pair boundary

gap C: −0.15 . µ . −0.02 symmetric mode for any p/q

gap D: −0.15 . µ . −0.02 s-a/s pair s-a/s pair boundary new s-a/s pair

Table I: The structure of the right band edges adjacent to gaps A-D from Fig. 1, for different RAs.

symmetric

antisymmetric

Figure 3: Eigenfunctions at the right edges of bands adja-
cent to gaps A–D from Fig. 1. For gap A, the edge cor-
responds to a pair of symmetric and antisymmetric eigen-
functions (‘s-a/s pair’) at p/q = 55/34 and to a new s-a/s
pair for p/q = 233/144 (see the corresponding row in Ta-
ble I); for gap B the band edge corresponds to the same s-
a/s pair for p/q = 89/55 and p/q = 144/89; for gap C the
right band edge always corresponds to the symmetric func-
tion which is localized around the origin; for gap D the right
band edge corresponds to different s-a/s pairs at p/q = 89/55
and p/q = 233/144. In (C) we additionally plot potential
Vq(x).

uation is labeled with writings ‘s-a/s pair’. The existence
of these ‘s-a/s pairs’ is a consequence of the similarity be-
tween the quasiperiodic lattice and the double-well po-
tential. Let us now consider a situation when we switch
from a less accurate RA to a more accurate one: say, from
p/q = 55/34 to p/q = 89/55. Respectively, we widen the
domain where the problem is considered: I34 ⊂ I55, and
new localized linear modes appear in the spectrum. As
mentioned above [see point (i) in Sec. II], the bands are
robust with respect to the change of the RA, i.e., the
locations of the edges of each band do not change signifi-
cantly when we switch from one RA to another. However,
it is possible that under the more accurate RA a new pair
of symmetric-antisymmetric pair will appear to the right

of the rightmost eigenvalue of the previous (i.e., less ac-
curate) RA. In that case, the right edge of the band will
change from the old s-a/s pair to the new pair. In Table I
this situation corresponds to cells labeled with ‘new s-a/s
pair’. Changes in the right band edge from one pair of
eigenfunctions to a different pair can be seen in Fig. 3(A)
and (D).

The second common situation corresponds to the band
edge represented by an eigenfunction that is sharply lo-
calized at the boundaries of the selected domain Iq =
[−πq/2, πq/2). The corresponding cells in Table I are
labelled with writings ‘boundary’.

The third situation occurs only for the gap C. For any
RA, the corresponding band edge has a well-separated,
symmetric mode that is localized around the origin. This
mode, plotted in Fig. 3(C), has two distinctive peaks that
coincide with local minima of the potential near the ori-
gin, as highlighted by dotted vertical lines in Fig. 3(C).
This mode is remarkably robust with respect to changes
in the RA, due to its strong localization around the ori-
gin. Therefore, a transition from a narrower spatial win-
dow to a broader one does not affect the shape of the lo-
calized eigenfunction. The existence of this type of mode
can be expected due to the bicentric structure of the cho-
sen potential. However, its robustness and the fact that
it always sits at the right edge of the band are not evident
beforehand.

Finally, for the gap E, which is located above the mo-
bility edge, we found that, for each considered RA, ex-
cept for 144/89, the right edge of the corresponding band
is formed by a pair of virtually coinciding and spatially
extended eigenfunctions (see the corresponding schemat-
ics in Fig. 2E); for instance, for p/q = 55/34 we com-
pute µ̃55 − µ̃54 ∼ 10−8 and for p/q = 89/55, we found
µ̃89 − µ̃88 ∼ 10−11. In fact, these tiny distances are com-
parable to the numerical error. For the RA with 144/89,
the band edge corresponds to a single extended eigen-
function which is well separated from a pair of virtually
coinciding eigenstates.
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IV. NONLINEAR MODES NEAR BAND EDGES

A. General considerations

Different structures of the band edges classified in the
previous section lead to different behaviors of nonlinear
modes theta bifurcate near those bands. The standard
perturbation theory, similar to that developed in [63],
shows that a nonlinear mode ψ(x) emerging from an iso-

lated linear eigenfunction ψ̃n(x) obeys the following ap-
proximation near the bifurcation point:

ψ(x) ≈
(

µ− µ̃n

χ̃n

)1/2

ψ̃n(x) for |µ− µ̃n| ≪ 1. (10)

Using the latter approximation, we can calculate the de-
pendence of the number of particles on the chemical po-
tential. We find that, in the leading order, this relation-
ship is a straight line, and its slope is inversely propor-
tional to the IPR of the underlying linear mode:

N (µ) ≈ (µ− µ̃n)/χ̃n. (11)

Hence bifurcations from more localized linear modes cor-
respond to relatively small slopes dN (µ̃n)/dµ. How-
ever for bifurcations that occur above the mobility edge,
where the localization of linear modes is weak, the de-
pendence N (µ) is expected to be distinctively different
compared to bifurcations below the mobility edge.

B. Pitchfork bifurcation

From now on, we will fix the parameters as p/q =
89/55 and v1 = v2 = 0.8, and we will compute the non-
linear modes that appear in the gaps C, D, and E which
correspond to three different structures of the band edges.
We start with families emerging in gap D, as the corre-

sponding band edge features the most frequent situation
being formed by a pair of symmetric and antisymmet-
ric eigenfunctions with chemical potentials µ̃54 and µ̃55,
see the corresponding schematics in Fig. 2D. The close-
up view in Fig. 4(a,b) shows that both symmetric and
antisymmetric eigenstates birth nonlinear families that
branch off from the zero solution at µ = µ̃54 and µ = µ̃55,
respectively. Additionally, a symmetry-breaking bifurca-
tion occurs at the antisymmetric family. This bifurca-
tion is of pitchfork type, as it originates two new fami-
lies of asymmetric solutions (i.e., not symmetric neither
antisymmetric). However, since the emerging asymmet-
ric solutions ψ1,2 are interrelated by the parity reversal
ψ1(x) = ψ2(−x), they share equal numbers of particles
N and IPRs χ. As a result, only one bifurcating curve is
visible in Fig. 4(a,b).
Using the two-mode approach, which assumes that the

full nonlinear dynamics can be satisfactorily described
in terms of only two modes, with n = 54 and n = 55,

S�

S�

(a)

(b)

(��

(��

Figure 4: The number of particles N and IPR χ are plotted
against the chemical potential µ for the nonlinear modes that
emerge in gap D from linear modes with numbers n = 54
and n = 55. Panels (a,b) show a closer view of the band
edge where the nonlinear families are born, while panels (c,d)
provide a small-scale view of the same dependencies. The
shaded areas represent the bands, and the yellow circles in
the upper panels indicate positions of the chemical potentials
in the linear limit µ̃n. The labels ‘SB’ in (a,b) indicate the
symmetry-breaking pitchfork bifurcation. In this figure, we
use RA with to p/q = 89/55, and the lattice amplitudes are
set to v1 = v2 = 0.8.

the number of particles at which the symmetry-breaking
bifurcation occurs can be estimated as [50]

NSB ≈ (µ̃55 − µ̃54)/χ̃55, (12)

where χ̃55 is the IPR of the corresponding linear mode
(since the density distributions of symmmetric and an-
tisymmetric partners are similar, one can assume that
χ̃55 ≈ χ̃54). For the numerical values used in Fig. 4,
the approximation (12) gives NSB ≈ 6 × 10−4, which
is in reasonable agreement with the numerical value
NSB ≈ 3×10−4. The discrepancy arises from the limited
applicability of the two-mode reduction, which requires
taking into account more comprehensive multimode dy-
namics [50].
The bifurcation diagram in Fig. 4(a,b) is similar to

the symmetry-breaking pitchfork bifurcations that occur
in symmetric double-well potentials [64–72]. In terms
of spectral stability, the picture is also similar to that
in symmetric double wells: after the bifurcation, the
linearization spectrum of solutions at the antisymmet-
ric family gets a new pair of purely real eigenvalues of
opposite sign, ±λ, and hence the positive eigenvalue im-
plies the instability. The bifurcated asymmetric family
is mostly stable until it reaches the next band, Some
fragments of this family and other families considered
herein experience subtle oscillatory instabilities, which
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are known for gap solitons in purely periodic media
[51, 73].
For completeness, we mention that in a recent study

in Ref. [50], similar symmetry-breaking bifurcations were
found to occur for antisymmetric states situated near the
left edge of a band. As a result of the repulsive nonlinear-
ity, the bifurcated states lose their localization shortly af-
ter their formation due to interaction with other modes of
the band. In our case, however, the situation is different,
as the bifurcations occur near the right band edge, and
the bifurcating families continue over the entire gap D
preserving their localization, as becomes evident from
Figs. 4(c,d) which provide a general view of the nonlinear
modes in the gap. In fact, as can be seen in Fig. 4(d),
the most localized modes are situated approximately in
the center of the gap. When the nonlinear families reach
the next band, their IPRs decrease sharply due to the
excitation of linear modes.
For gaps A and B the bifurcation scenario is similar to

that of gap D, because for the chosen RA p/q = 89/55
their band edges have a similar structure, as shown in
the corresponding column of Table I.

C. Saddle-node bifurcations

Next, we proceed to gap C, which is adjacent to the
band edge formed by a separate single eigenvalue µ̃34,
while two preceding eigenfunctions with n = 33, 32 form
a symmetric-antisymmetric pair with closely situated
chemical potentials µ̃33 and µ̃32, as shown in the corre-
sponding schematics in Fig. 2C. A close-up view of non-
linear families emerging near this band edge is shown in
Fig. 5(a,b). First, we observe that a single family bi-
furcates from the rightmost eigenvalue µ̃34; the shape
of nonlinear solutions in this family is similar to the
underlying symmetric linear mode shown in Fig. 3(C).
These nonlinear solutions remain localized with the ap-
proximately constant IPR. Regarding the symmetric-
antisymmetric pair formed by the linear eigenstates with
chemical potentials µ̃32 and µ̃33, we observe a pitch-
fork symmetry-breaking bifurcation [labelled as ‘SB1’ in
Fig. 5(a,b)] with the formation of a new asymmetric fam-
ily. A representative asymmetric state is displayed in
Fig. 5(d). As this asymmetric family approaches the
band edge, it couples to the rightmost linear state µ̃34,
which results in the formation of an in-phase nonlinear
bound state whose profile is presented in Fig. 5(c). The
formation of this bound state is possible because the
two interacting states are localized at different spatial
positions. As a result, the bound state emerges as a
‘weakly nonlinear’ superposition of the asymmetric state
emerging after the SB1-bifurcation and the linear state
µ̃34 corresponding to the band edge. The formation of
this hybridized bound state is accompanied by an abrupt
increase in the slope of the N (µ) curve in Fig. 5(a),
while the corresponding IPR curve, χ(µ), goes down in
Fig. 5(b). This is because the IPR of the hybridized state

is lower than the IPRs calculated separately for its con-
stituents.

At the same time, the formation of the nonlinear hy-
bridized state is accompanied by the emergence of a pair
of new families through a saddle-node bifurcation la-
belled with ‘SN1’ in Fig. 5(a,b). One of these families
(with a lower number of particles, N , and higher values of
IPR, χ) is a virtual continuation of the asymmetric fam-
ily. Its representative profile is shown in Fig. 5(d). The
second family emerging at the SN1 bifurcation (specifi-
cally, the family with larger N and lower χ) consists of
out-of-phase hybridized states exemplified in Fig. 5(c).
In-phase and out-of-phase bound states have nearly iden-
tical density distributions |ψ(x)|2 at the same chemical
potential µ, so their numbers of atoms, N , and IPRs, χ,
almost coincide in Fig. 5(a,b).

The hybridization between different modes is a com-
mon pattern responsible for the formation of a multitude
of new nonlinear families through saddle-node and pitch-
fork (i.e., symmetry-breaking) bifurcations. Indeed, in
Fig. 5(a,b) we additionally observe that coupling between
the family bifurcating from µ̃33 and the linear mode
µ̃34 results in another saddle-node bifurcation labelled as
‘SN2’, and coupling between the nonlinear family emerg-
ing from µ̃33 and linear mode µ̃34 leads to a pitchfork
bifurcation which is labelled with ‘SB2’ in Fig. 5(a,b),
because this bifurcation is essentially of the symmetry-
breaking type. At this bifurcation, a pair of new fam-
ilies branch off with different relative phases between
the hybridized eigenstates, see representative examples
in Fig. 5(e). The emerging nonlinear modes encompass
all possible relative phase combinations between the hy-
bridized wavepackets, which indicates that the bifurca-
tion diagrams presented in Fig. 5(a,b) provide the com-
plete information about the modes with n = 32, 33, 34.

Pitchfork and saddle-node bifurcations are typical to
occur in symmetric and asymmetric double-well poten-
tials, respectively [67]. Although in our case, the po-
tential given by Eq. (2) is a symmetric function of the
spatial coordinate x, saddle-node bifurcations can still
occur through the coupling between localized modes with
essentially different shapes, i.e., between modes that are
spatially separated and do not form a pair of symmet-
ric and antisymmetric states. Saddle-node bifurcations
are also typical to occur in multiwell potentials [74–76],
and in purely periodic potentials, where more complex
solitons can be systematically constructed from simpler
ones using the ‘composition relation’ [77] (see also [78]).
For quasiperiodic lattices, saddle-node bifurcations were
recently predicted to exist in Ref. [62] on the basis of a
few-mode analysis.

Regarding the stability of the solutions emerging at the
bifurcation SN1, the subfamily with a lower number of
atoms N contains stable solutions, For the solutions at
the upper subfamily, the linear stability spectrum con-
tains a pair of purely real eigenvalues, which indicates
that those solutions are unstable. For bifurcation SN2,
the subfamily with the lower N is already unstable, as it
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Figure 5: The number of particles N (a) and the IPR χ (b)
vs. µ for the nonlinear families in gap C. The yellow circles
in (a) indicate the chemical potentials µ̃n of the noninteract-
ing BEC. Labels ‘SB1,2’ and ‘SN1,2’ indicate two symmetry-
breaking and two saddle-node bifurcations, respectively. The
point ‘c’ in (a,b) corresponds to the in-phase and out-of-phase
hybridized states shown in (c), and point ‘d’ corresponds to
the asymmetric state shown in (d). Three more complex hy-
bridized states with different relative phases are shown in (e).
In this figure, p/q = 89/55 and v1 = v2 = 0.8.

is the virtual continuation of the symmetric family which
loses stability after the pitchfork bifurcation SB1. The
upper family is even ‘more unstable’, as its linearization
spectrum acquires an additional pair of real eigenvalues.
This difference in stability properties between the lower
and upper subfamilies is also consistent with the stability

SB

SB

(a)

(b)

(c)

(d)

antisymmetric

asymmetric

(e) (f)
symmetric

Figure 6: The number of particles N (a,c) and the IPR χ
(b,d) vs. the chemical potential µ for the nonlinear modes
emerging in gap E. Panels (a,b) present a closer-up view of
the band edge where the nonlinear families are formed, while
panels (c,d) provide a smaller-scale picture. Yellow circles in
(a) indicate the chemical potentials µ̃n of the noninteracting
BEC, and labels ‘SB’ in (a,b) indicate the symmetry-breaking
bifurcation. Panels (e,f) show the antisymmetric, asymmetric
and symmetric modes coexisting at µ = 1.5. In this figure,
p/q = 89/55, and v1 = v2 = 0.8.

patterns in asymmetric double wells [67].
As the chemical potential µ increases, all the families

shown in Fig. 5(a,b) continue across gap C and reach the
next band, where the solutions become delocalized and
unstable. This behavior is similar to what was already
plotted for gap D in Fig. 4, and therefore it is not shown
in Fig. 5.

D. Band with spatially extended modes

Next, we consider the gap E which is situated above the
mobility edge. The corresponding band edge is formed
by a pair of almost coinciding eigenvalues associated with
spatially extended eigenfunctions, see the schematic in
Fig. 2E. This pair of eigenvalues produces two nonlin-
ear families which bifurcate from the band edge. One of
these families consists of antisymmetric solutions which
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are weakly localized in the vicinity of the bifurcation,
but become more strongly localized around x = 0 as the
chemical potential increases towards the center of the
gap. The second bifurcating family contains solutions lo-
calized at the boundaries of the chosen spatial window.
We therefore disregard this family in the following dis-
cussion.
The family of antisymmetric solutions is shown in

Fig. 6(a,b). Since the IPRs of the linear modes above the
mobility edge are much smaller than for linear modes be-
low the mobility edge, the slope of the bifurcating depen-
dence N (µ) is much larger, in accordance with Eq. (11).
In fact, in this gap dependence N (µ) resembles the root-
law behavior, which can be explained by the similarity
between the found solutions and conventional gap soli-
tons in purely periodic media [51, 73]. As the bifurcated
family continues along the gap, the initially extended
state becomes more localized. In Figs. 6(a,b), we ob-
serve a symmetry-breaking bifurcation at a number of
particles NSB ∼ 0.5, which is much larger than in the
case of the bifurcation in Fig. 4, where NSB was approx-
imately 10−4. This can be explained by the fact that
the mechanism of the symmetry-breaking bifurcation in
gap E is essentially different from that encountered for
localized modes in gap D, where the bifurcation occurs
as a result of the interaction between symmetric and an-
tisymmetric modes localized at the same potential wells.
For the bifurcation in gap E, there is no symmetric lin-
ear state involved in the bifurcation. However, symmetric
nonlinear states can still be found in gap E. These states
emerge as a result of a saddle-node bifurcation which is
visible in Fig. 6(c,d). An example of a symmetric ‘gap
soliton’ from the subfamily with a lower number of atoms
N is plotted in Fig. 6(f).
The family of antisymmetric ‘gap solitons’ becomes un-

stable after the SB-bifurcation, while the emerging asym-
metric branches remain mostly stable, up to small oscil-
latory instabilities. Regarding the families of symmetric
‘gap solitons’, the one with a larger number of particles
is strongly unstable (with two pairs of purely real eigen-
values), while the other one displays weaker oscillatory
instabilities.

E. Cascade of bifurcations at a nonzero phase shift

The results presented above were obtained for the sym-
metric potential (2) composed of two periodic lattices
with a zero phase shift. In this subsection, we will con-
sider a more general case that includes a nonzero phase
shift between the two periodic lattices. We will use the
quasiperiodic potential of the following form

V (x) = v1 cos (2x) + v2 cos(2ϕx+ θ), (13)

where θ ∈ [0, 2π) is the phase shift between the lattices.
For a generic choice of the phase shift θ, this potential
is asymmetric and does not have a global minimum or
maximum.

On the basis of the results accumulated above, we
can expect that an effect of a small but nonzero shift
θ is similar to the transition from a symmetric double-
well potential to a weakly asymmetric one. Respectively,
symmetry-breaking bifurcations transform to saddle-
node ones [67]. For a generic choice of the phase shift,
the quasiperiodic potential has no any particular symme-
try, and hence the pairs of closely spaced symmetric and
asymmetric eigenmodes disappear from the linear spec-
trum, and the distribution of linear eigenvalues becomes
more uniform within each band. Respectively, saddle-
node bifurcations prevail for the nonlinear modes. A
fragment of the bifurcation diagram with an arbitrarily
chosen phase shift θ is shown in Fig. 7(a,b). It displays
saddle-node bifurcations that emerge for the three right-
most eigenmodes at the of band edge near the gap B.
Each linear mode originates a nonlinear family which
reaches the chemical potential corresponding to the right-
nearest mode and produces a saddle-node (SN) bifur-
cation, resulting in the formation of hybridized states.
Moreover, secondary bifurcations occur due to the hy-
bridization between linear modes and the nonlinear fam-
ilies that emerge after the ‘primary’ bifurcations. This
leads to a complex cascade of SN bifurcations, as shown
in Fig. 7a and b. At the same time, each linear mode
eventually makes its way into the gap producing a local-
ized nonlinear mode of the corresponding shape. Exam-
ples of these localized modes that get through the bifur-
cation cascade and emerge inside the gap are displayed
in Fig. 7(c).

V. DISCUSSION AND CONCLUSION

In this study, we have investigated the typical mech-
anisms that lead to the formation of weakly nonlinear
states in one-dimensional Bose-Einstein condensates con-
fined by bichromatic quasi-periodic lattices. Transitions
between linear and nonlinear regimes are well known
for nonlinear modes arising from isolated eigenvalues in
single- and double-well potentials, as well as for solitons
forming in gaps of purely periodic potentials. However,
the spectrum of a quasiperiodic potential with a mobility
edge is organized in a more intricate way, as it contains
a complex set of eigenvalues associated with localized
modes below the mobility edge and bands of spatially
extended states above the mobility edge. As a result, the
full picture of the bifurcations between linear and nonlin-
ear steady states becomes much more involved and reach.
The main findings of our study can be summarized

as follows. Due to the presence of a mobility edge, the
formation of nonlinear modes can occur in two differ-
ent scenarios. In the first scenario, the underlying linear
mode is already localized. In the second scenario, the
linear mode is spatially extended and gradually develops
localization as the chemical potential approaches the gap
center. The difference between these two situations is
reflected in the different dependencies of the number of
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Figure 7: The number of particles N (a) and IPR χ (b) are
plotted against the chemical potential µ, for families of nonlin-
ear modes that emerge in gap B in an asymmetric quasiperi-
odic potential described by Eq. (13) with a nonzero phase shift
θ ≈ 1.7π. The yellow circles in (a) show the chemical poten-
tials µ̃n of the noninteracting BEC. The labels ‘SN1’,. . . ,‘SN4’
indicate saddle-node bifurcations, and the points ‘d,e,f’ in
(a,b) correspond to three localized nonlinear modes that get
through the bifurcation cascade and stay free from the hy-
bridization with other modes. The spatial profiles of these
localized modes are shown in (c). In this figure, the RA with
p/q = 89/55 is used, and the lattice amplitudes are set to
v1 = v2 = 0.8.

atoms in the condensate on the chemical potential. In
the former case, the dependence is linear. In the latter
case, it is more like a square root law. Furthermore, we
have found that in a symmetric potential the birth of
nonlinear modes can be associated with either pitchfork
bifurcations or saddle-node bifurcations that mimic dis-
tinctive behaviors in symmetric and asymmetric double-
well potentials, respectively. A bifurcation of either type
can also occur for nonlinear modes that form above the
mobility edge and resemble gap solitons in periodic lat-
tices. In the general case of an asymmetric potential,
saddle-node bifurcations occur more frequently, and the
formation of localized modes in the gap occurs through
a series of saddle-node bifurcations.

We believe that our findings deepen the current un-
derstanding of the interaction between nonlinearity and
quasiperiodicity, and reveal several important patterns
that govern the bifurcation of nonlinear modes from a
fractal linear spectrum. Our results were obtained in
a fairly simple setup involving two superimposed laser
beams, which can be implemented in experiments with
cold atoms. Moreover, given the analogy between the
Gross-Pitaevskii equation and the nonlinear Schrodinger
equation for the paraxial propagation of light, our find-
ings also have implications for nonlinear optics, where the
fabrication of quasiperiodic photonic structures is within
reach of modern techniques.
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Front. Phys. 19, 42201 (2024).

[32] P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov,
Ll. Torner, V. V. Konotop, and F. Ye, Localization and
delocalization of light in photonic moiré lattices, Nature
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M. Pérez–Garćıa, Stability of excited states of a Bose-
Einstein condensate in an anharmonic trap, Phys. Rev.
A 78, 013606 (2008).

[64] R. D’Agosta and C. Presilla, States without a linear
counterpart in Bose-Einstein condensates, Phys. Rev. A
65, 043609 (2002).

[65] R. K. Jackson and M. I. Weinstein, Geometric analysis of
bifurcation and symmetry breaking in a Gross-Pitaevskii
equation, J. Stat. Phys. 116, 881 (2004).

[66] P. G. Kevrekidis, Z. Chen, B. A. Malomed, D. J.
Frantzeskakis, and M. I. Weinstein, Spontaneous sym-
metry breaking in photonic lattices: Theory and experi-
ment, Phys. Lett. A 340, 275 (2005).

[67] G. Theocharis, P. G. Kevrekidis, D. J. Frantzeskakis,
and P. Schmelcher, Symmetry breaking in symmetric
and asymmetric double-well potentials, Phys. Rev. E 74,
056608 (2006).

[68] G. L. Alfimov and D. A. Zezyulin, Nonlinear modes for
the Gross–Pitaevskii equation — a demonstrative com-
putation approach, Nonlinearity 20, 2075 (2007).

[69] M. Matuszewski, B. A. Malomed, and M. Trippenbach,
Spontaneous symmetry breaking of solitons trapped in
a double-channel potential, Phys. Rev. A 75, 063621
(2007)

[70] E. W. Kirr, P. G. Kevrekidis, E. Shlizerman, and M. I.
Weinstein, Symmetry-breaking bifurcation in nonlinear
Schrödinger/Gross–Pitaevskii equations, SIAM J. Math.
Anal. 40, 566 (2008).

[71] A. Sacchetti, Universal Critical Power for Nonlinear
Schrödinger Equations with a Symmetric Double Well
Potential, Phys. Rev. Lett. 103, 194101 (2009).

[72] E. Shamriz, N. Dror, and B. A. Malomed, Spontaneous
symmetry breaking in a split potential box, Phys. Rev.
E 94, 022211 (2016).

[73] P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, Yu.
S. Kivshar, Bose–Einstein condensates in optical lat-
tices: Band-gap structure and solitons, Phys. Rev. A 67,
013602 (2003); N. K. Efremidis, D. N. Christodoulides,
Lattice solitons in Bose-Einstein condensates, Phys. Rev.
A 67, 063608 (2003); D. E. Pelinovsky, A. A. Sukho-
rukov, Yu. S. Kivshar, Bifurcations and stability of gap
solitons in periodic potentials, Phys. Rev. E 70, 036618
(2004); P. P. Kizin, D. A. Zezyulin, G. L. Alfimov,
Oscillatory instabilities of gap solitons in a repulsive
Bose–Einstein condensate, Physica D 337, 58 (2016).

[74] T. Kapitula, P. G. Kevrekidis, and Z. Chen, Three is
a crowd: Solitary waves in photorefractive media with
three potential wells, SIAM J. Appl. Dyn. Syst. 5, 598
(2006).

[75] A. Sacchetti, Nonlinear Schrödinger equations with
multiple-well potential, Physica D 241, 1815 (2012).



13

[76] R. H. Goodman, Bifurcations of relative periodic orbits
in NLS/GP with a triple-well potential, Physica D 359,
39 (2017).

[77] Yo. Zhang, Zh. Liang and B. Wu, Gap solitons and Bloch
waves in nonlinear periodic systems, Phys. Rev. A 80,

063815 (2009).
[78] T. R. Akylas, G. Hwang, and J. Yang, From non-local

gap solitary waves to bound states in periodic media,
Proc. R. Soc. A 468, 116 (2012).


	Introduction
	 Model, methods, and a summary of results for the linear spectrum 
	Structure of the band edges
	Nonlinear modes near band edges
	General considerations
	Pitchfork bifurcation
	Saddle-node bifurcations
	Band with spatially extended modes
	Cascade of bifurcations at a nonzero phase shift

	Discussion and conclusion
	Acknowledgments
	References

