2411.13945v1 [cs.RO] 21 Nov 2024

arXiv

Neuromorphic Attitude Estimation and Control

S. Stroobants, C. De Wagter, and G.C. H. E. de Croon

Abstract—The real-world application of small drones is mostly
hampered by energy limitations. Neuromorphic computing
promises extremely energy-efficient Al for autonomous flight, but
is still challenging to train and deploy on real robots. In order to
reap the maximal benefits from neuromorphic computing, it is
desired to perform all autonomy functions end-to-end on a single
neuromorphic chip, from low-level attitude control to high-level
navigation. This research presents the first neuromorphic control
system using a spiking neural network (SNN) to effectively map
a drone’s raw sensory input directly to motor commands. We
apply this method to low-level attitude estimation and control
for a quadrotor, deploying the SNN on a tiny Crazyflie. We
propose a modular SNN, separately training and then merging
estimation and control sub-networks. The SNN is trained with
imitation learning, using a flight dataset of sensory-motor pairs.
Post-training, the network is deployed on the Crazyflie, issuing
control commands from sensor inputs at 500Hz. Furthermore,
for the training procedure we augmented training data by flying
a controller with additional excitation and time-shifting the target
data to enhance the predictive capabilities of the SNN. On the real
drone the perception-to-control SNN tracks attitude commands
with an average error of 3 degrees, compared to 2.5 degrees for
the regular flight stack. We also show the benefits of the proposed
learning modifications for reducing the average tracking error
and reducing oscillations. Our work shows the feasibility of
performing neuromorphic end-to-end control, laying the basis for
highly energy-efficient and low-latency neuromorphic autopilots.

I. INTRODUCTION

UADROTORS have soared in popularity over the past

decade, significantly influencing the field of unmanned
aerial vehicles (UAVs) with their unique capabilities. These ag-
ile machines are applicable in a myriad of applications, such as
search and rescue operations [1], environmental monitoring [2]
and precision agriculture [3], owing to their ability to hover,
perform vertical take-offs and landings, and navigate through
confined spaces with remarkable precision.

The integration of Artificial Intelligence (AI) promises to
extend the capabilities of quadrotors even further [4], [5].
By leveraging advances in Al, we can envision quadrotors
that not only perform pre-programmed tasks but also adapt
to new challenges, achieving levels of flight performance and
operational robustness previously unattainable while solving
tasks that are currently performed post-flight or offboard.
However, the current generation of quadrotors is hindered by
hardware that is often power-hungry and algorithms that fall
short in efficiency and adaptability [6].

A promising solution to these challenges lies in the emerg-
ing field of neuromorphic hardware [7]. Neuromorphic sys-
tems, including processors and sensors such as event-based
cameras [8], [9], draw inspiration from neural systems found
in nature. These systems use sparse and asynchronous spikes to

All authors are with the Micro Air Vehicle Laboratory, Faculty of Aerospace
Engineering, Delft University of Technology, The Netherlands

inputs perception control output
network network commands
We
we | f l
Wy -
A;
ay IMU . ug
a, eest >)
- — 'west u
Y
¢c0m
gcom

attitude commands

>
wcom S

Fig. 1. We present an approach to training a spiking neural network for end-
to-end attitude estimation and control of tiny drones (deployed on a CrazyFlie,
top). The network is a merging of a 2-layer attitude estimation sub-network
with recurrency and a 1-layer recurrent attitude control network (bottom). The
network exhibits a spiking activity of 15%, which is promising in terms of
energy efficiency for future implementation on a neuromorphic processor. The
network currently runs at 500 Hz on a Teensy microcontroller.

transmit information that are both energy-efficient and enable
high-speed processing. This approach is particularly well-
suited for dynamic environments where rapid decision-making
is crucial [10].

Central to this neuromorphic paradigm are Spiking Neural
Networks (SNNs) [11], which emulate the brain’s information
processing using neural spikes. SNNs have demonstrated their
potential in various robotic applications, yet their use in
controlling the full flight dynamics of quadrotors remains
largely unexplored. By adopting strategies seen in nature, such
as the reflexive control and visual processing used by the
fruit fly [12], we can develop more integrated and efficient
control systems. This does, however, require a fully end-to-
end neuromorphic system.

Neuromorphic control is a nascent field at the intersection
of neuroscience and robotics control theory [13]. The benefits
of neuromorphic hardware, such as fast inference and high
energy efficiency [14], harmonize with demanding control and
estimation tasks. While the output of rudimentary sensors for

quadrotors, such as Inertial-Measurement-Units, can already
be processed at the high frequencies necessary for agile and
robust control, vision-based tasks are severely limited by pro-
cessing power on a flying machine [15]. However, Dimitrova et
al. [16], have shown that using event-based cameras allows a
quadrotor to track the horizon at extremely high speeds. To
further increase the potential of such a system, the authors
of [17] showed that integration of this horizon tracker with a
manually-tuned SNN controller on a neuromorphic processor
leads to even faster control.

Despite significant advances in Al for quadrotors, limita-
tions remain, particularly in vision-based tasks constrained by
onboard computational resources. Falanga et al. [18] argue
that regular frame-based cameras are inadequate for avoiding
obstacles due to their high latency, which can be detrimental
in fast-paced environments. Although event-based cameras ad-
dress these latency issues, the processing on non-neuromorphic
hardware required compromises in detection algorithms to
favor speed over accuracy.

Recent breakthroughs in quadrotor research have achieved
impressive results, such as outperforming human pilots in
drone races using only onboard computations [19]. Despite
these accomplishments, the reliance on slower frame-based
vision systems, typically operating at 30Hz or lower, high-
lights a significant gap where neuromorphic solutions could
offer substantial improvements. These examples underscore
the critical need for fully integrated neuromorphic systems
capable of high-speed data processing.

To allow such a unified system, the entire estimation and
control loop needs to be considered. Despite the promising
results in partial implementations, a fully integrated neuro-
morphic system connecting sensor inputs directly to motor
commands has not yet been realized in operational quadrotors.
Results focusing exclusively on lower-level SNN control have
been obtained using manually tuned networks [20], [21] or
were limited to simulation [22], [23]. Moreover, even state-of-
the-art learned quadrotor controllers using regular Multilayer
Perceptrons (MLPs) as presented in [24], [25] and [26], that
were learned with Reinforcement Learning (RL), assume full
state knowledge or need a lower-level controller to go from
rate commands to motor outputs. Zhang et al. [27] have
demonstrated in simulation that by using an expert priviliged
policy, an MLP can be trained to perform end-to-end control.
This privileged information is not always available in the real
world, however.

Notable efforts towards a complete end-to-end neuromor-
phic system include the use of Intel’s Loihi processor [28] in
a quadrotor for velocity control based on optical flow estimates
from event-based cameras [29], which successfully combined
ego-motion estimation with a basic linear controller. The
experimental results confirmed the potential of neuromorphic
technology, as the vision ran at frequencies between 274 -
1600Hz, while only spending 7 mW for network inference.
However, this system still required traditional microprocessors
for the final control algorithm and lacked a mechanism to cor-
rect steady-state errors. In [30] a closed-form spiking network
was proposed that could do end-to-end control and estimation
for linear systems and was shown to perform well with a small

number of neurons in simulation. Since this approach needs to
be able to read out a floating point "firing rate” of neurons in
the hidden layer, it is not trivially implemented on commonly
available neuromorphic hardware where the input and outputs
are limited to vectors of binary spikes.

The main contribution of this article is that we design,
train, and implement the first fully neuromorphic control
system for attitude estimation and control of quadrotors. The
proposed method involves real-time processing from sensors to
actuators and does not require traditional computing hardware.
Our approach is to train two separate sub-networks, one for
state estimation and one for control, and to merge them after
training. For both parts of the network, we employ supervised /
imitation learning. Especially for the control part, this presents
substantial challenges, as the network needs to cope with
(1) sensor bias, (ii) delays due to the progressive updates of
spiking neural networks, and (iii) the reality gap. Additional
contributions of our work concern how we tackled these
challenges. For the sensor bias, we find that constraining the
parameters of a small group of neurons to function as integra-
tors is necessary for successful training results. For the delays
in the SNN, we propose to time-shift the targets for learning,
so that the SNN predicts future outputs of the traditional
controller. This brings substantial performance improvement.
For the reality gap, we first add noise to the motor outputs
of the traditional controller to sufficiently excite the system
and avoid biases in learning. Subsequently, we gather more
training data with a first version of the SNN, so that relevant
off-target attitudes and rates are explored. Finally, we evaluate
system performance in real-world conditions, comparing the
trained SNN with traditional control methods.

The remainder of the article is structured as follows. Sec-
tion II details our methodology, covering attitude control from
sensor data, the network architecture, training procedures, and
the hardware used for real-world testing. In Section III, we
present the test results, including position control, attitude con-
trol, and an analysis of power consumption. Finally, Section IV
summarizes our key findings and outlines potential directions
for future work in neuromorphic control systems.

II. METHODOLOGY

This section discusses how an SNN used for attitude estima-
tion and control of the Crazyflie in real time, was constructed
and trained.

A. Attitude Control from IMU measurements

The attitude of a quadrotor, its orientation relative to grav-
ity, can be estimated using measurements from an Inertial
Measurement Unit (IMU). These IMUs commonly contain
a 3 DOF (Degree of Freedom) gyroscope, measuring ro-
tational velocities and a 3 DOF accelerometer, measuring
linear acceleration. The gyroscope data offers high-frequency
information about the rotation of the quadrotor while the
accelerometer measurements contain an absolute measurement
of the gravity vector [31]. Combined, these two form the
backbone of most quadrotor control algorithms. These 6 inputs
are usually combined into an estimate of the orientation of the

drone, which in turn gets sent to a controller together with
a target orientation. This controller calculates the necessary
motor speeds for each four rotors.

B. Spiking Neural Network Architecture

1) LIF neurons: In this work, we apply one of the most
common spiking neuron models; the current-based leaky-
integrate-and-fire (CUBA-LIF) neuron. This model is chosen
since it captures temporal dynamics, is computationally ef-
ficient and is the default model in current available neuro-
morphic platforms such as Intel’s Loihi [28]. Each neuron
is connected to other neurons via synapses, connections that
carry a multiplicative weight. Every neuron keeps track of
two hidden states at each timestep; its membrane potential
and synaptic current. The membrane potential v and synaptic
input current ¢ at timestep ¢ as discrete functions of time are
given as:

vi(t+ 1) = 70 (t) + ii(t), (1)
ii(t +].) = Tégynii(t) + Z’wiij(t) + Zwiksk(tL (2)

where j and ¢ denote presynaptic (input) and postsynaptic
(output) neurons within a layer, k& the neurons in the same
layer as i, s € {0,1} a neuron spike, and w* and w'*
feedforward and recurrent connections (if any), respectively.
The leak values of the two internal state variables are denoted
by 7™ and 7,°". A neuron fires an output spike if the
membrane potential v; exceeds threshold 6; to all connected
neurons, resetting its membrane potential to zero at the same
time.

The input of the networks during training is a linear layer
that is directly inserted into the current 7 of the first layer. This
way, the encoding of floating point sensor data to binary spikes
is included in the training procedure. The output is decoded
similarly; the hidden spiking layer is connected via a weight
matrix to the outputs.

2) Combination of networks: To facilitate learning of spe-
cific tasks and increase the debugability, the training is split
into two parts; estimation and control. By learning layers of
spiking neurons that have a certain function, there is more
control over the stability of the final solution, and it also
reduces the search space. Since we define the input- and output
values of both sub-networks as a linear multiplication of the
input- or output-vector respectively, the networks can be easily
combined. The output of the first network can be written as
y(t) = Wos(t), with s(¢) the spikes in the hidden layer, and
the input to the next network is z(t) = Wiy(t). We can now
combine these by multiplying the weight matrices of the output
weights W, of the first network and the input weights W; of
the second, as introduced in [29], since these are both linear
transformations. The attitude-part of the input to the second
network can therefore be written as

(best
eest
wesl

Stacking the binary output spikes of the first network with the
floating-point command-values that are passed (see Figure 1),

= W;Wos(t) (3)

the new set of weights to the hidden layer of the second
network can be written as:

— 0 VVl command
WHCW - WWQ O (4)

C. Training

The model is trained using imitation learning, cloning the
behavior of an expert policy. Data is gathered at 500Hz
by flying manually with a Crazyflie for 20 minutes. During
these tests, the Crazyflie uses a complementary filter for
estimating the attitude and a cascaded PID controller for
control. In this work, these function as the expert policy. The
Crazyflie controller used the default parameters as defined by
the Bitcraze firmware [32]. This data was split into sequences
of 2000 timesteps and normalized according to total training
set statistics. From every sequence the integrator value at the
beginning of this sequence was subtracted, since this value
is not contained in the input data so would not be possible
to learn. All of the parameters p of the network (7",
2", w;j, wir and 6;) were then trained using supervised
backpropagation-through-time (BPTT). The loss was defined
as a weighted sum of the Mean Squared Error (MSE) and the
Pearson Correlation Loss;

T) =MSE(r,) + 3 (1= ple, @), O

with = and Z the target- and network response values respec-
tively and p(z,Z) the Pearson Coefficient [33]. One major
step in training SNNs using regular BPTT despite the non-
differentiability of the spiking threshold function is replacing
the Heaviside step-function in the backwards pass with a
surrogate function that represents a smooth approximation of
the real gradient [34]. In this work, the derivative of a scaled
arctangent was used, like in [35];

d (1 .
- (s arctaﬂ(sx)> - m ©

where s is the slope of the surrogate. A higher slope results
in a more accurate proxy of the real gradient, but can lead
to vanishing gradients for neurons with a very low or high
membrane potential. A shallow slope, on the other hand,
is less accurate but leads to less “dead” neurons that have
no contribution to the output. Among alternatives for the
surrogate-gradient is the derivative of the Sigmoid, but
research has shown that the exact shape does not matter [36].
The slope s of the derivative however, does have a large
influence on the training speed and final results. For this
work, the slope s has been set to 7.

Multiple challenges were observed during the train-
ing/deployment iterations. These are discussed here.

1) Delay in SNN, training with time-shifted data: During
training-implementation iterations, oscillations were observed
on the real quadrotor. After investigation, these were attributed
to a delay in the output of the network versus the target control
signal. Due to the nature of the SNN with the implicit memory
due to the leaking voltage and current, the output was delayed.
This can be observed in Figure 2. In the top part of the figure,

the Pearson Correlation between the output of the SNN and
the regular PID is compared for different shifts in time on the
entire data set. In the bottom part of the figure, a small time
sequence is shown that clearly shows the lag. The correlation
is highest for 5-6 timesteps shift, indicating that this is indeed
a problem when one trains SNNs for highly dynamic tasks
that require a quick response to fast changes. In the case of
a controller, a small delay in the derivative command will
actually induce oscillations. To reduce this delay, and improve

=

o)

S
T

——— SNN delay |

Pearson Correlation
o o
= ~
o ot
T 1

0 2 4 6 8 10 12

e
=
<
=
=
o
@]
-
8
o
=

1 1 1 1 1 1 1

1100 1120 1140 1160 1180 1200 1220 1240

ref d=0 === d=6 === d=12

Time [ms]

Fig. 2. Pearson Correlation between the output of the trained SNN and the
regular PID output for different time shifts d. The bottom graph shows the
output of the network for time shifts d = 0, d = 6 and d = 12 compared to
the target, further demonstrating that a delay is present in the network.

flight characteristics, we trained the control network on a
time-shifted version of the target data. Specifically, we used
the target signals of ~ 6 steps in the future. Consequently,
the SNN needs to predict the reference control output in the
future, which in turn results to less delay in the implemented
controller.

2) Imitation learning; reducing the reality gap: The reality
gap is a significant challenge in imitation learning particularly,
since the reference controller only explores a limited portion
of the state space around its stable behavior. This leads
to a dataset that does not fully represent the full range of
potential flight conditions or disturbances the SNN controller
may encounter when deployed [37], [38]. Consequently, when
the trained controller operates in real-world conditions, it can
encounter “unseen” states or disturbances not present in the
training data, resulting in unpredictable and unstable behavior.

To address this, we expanded the training data to include
a broader, more realistic range of states. Initially, the SNN
controller was trained on data generated with the reference
controller in the loop, as described in Section II-C. We then
conducted additional data collection in two steps to diversify
the training set: (1) flying the quadrotor with the initially
trained SNN controller in the loop, while simultaneously
logging the outputs the reference controller would have pro-

vided. This approach exposed the SNN to a set of states it
is likely to encounter, fine-tuning the network around these
points. (2) Introducing random disturbances to the regular
PID controller’s outputs to simulate unexpected environmental
or system changes. Specifically, disturbances were applied to
pitch, roll, and yaw commands at a 1% probability per timestep
(at 500Hz), lasting 0.2 seconds each, with disturbance size
X ~ U{0,50}% of the absolute maximum command.

This additional data, including both the reference controller
outputs and the effects of random disturbances, was incor-
porated into the training set. Retraining the SNN controller
on this expanded dataset improved its robustness, enabling it
to generalize across a wider range of states and disturbances,
thereby reducing the likelihood of instability during real-world
deployment.

3) Splitting estimation and control: As discussed in the
section on architecture (see Figure 1), the network was split
into an estimation and control part. If the network learning
attitude estimation also has access to the control command,
training is prone to end up at a local minimum. The network
will then learn a function between control command and
attitude; since the reference controller was in the loop this
will be an easy function to learn. It can then completely
disregard the sensor data, or only use it to slightly optimize
the estimation. When this estimator is then used in the loop,
the function between input command and attitude will be
different since the trained controller is not perfect; this will
further degrade flight performance. Hence, no connections
between the input command and the attitude estimation layer
are established.

4) Integrator: In developing an integrator within the spik-
ing neural network (SNN) architecture, we faced challenges
with parameter sensitivity, where small adjustments often led
to significant errors or instability, causing the network to
either underestimate the integral or diverge. This challenge is
particularly acute in recurrent neural networks (RNNs), where
recurrent gains above 1 often destabilize the system, while a
recurrency lower than 1 produces a low-pass filter response.
Orvieto et al. [39] have shown that carefully structuring
RNN network architecture before training (e.g. by linearizing
and diagonalizing the recurrency) is important to obtain the
superior results of deep State Space Models (SSMs) [40].

Another issue was the integrator signal’s dynamic: it shows
large deviations at the start of a flight test but stabilizes quickly
under constant disturbance. Effective integration through im-
itation learning required varying disturbances and resetting
the initial integral for each sequence. Additionally, the in-
tegral signal changes more slowly than the proportional and
derivative components, complicating the extraction of integral
information from the total signal in a supervised-learning
scheme.

To address these issues, we fixed specific parameters of a
small subgroup of neurons during training to ensure stability.
Specifically, we set the neuron’s leak parameters 7,°" and 7™
and threshold 6, to 1 which enabled it to retain incoming
signals without decay, facilitating integration. By training only
the input and output weights and averaging spike outputs on
integral data alone, we achieved a spike rate approximating

the cumulative incoming signal, making the neuron responsive
to transient and steady-state inputs. This fixed-parameter in-
tegrator provided the needed stability, outperforming the fully
trained version and meeting the SNN-based system’s control
requirements.

D. Hardware setup

To demonstrate the capabilities of our approach, we have
implemented it in the control loop of the tiny open-source
quadrotor Crazyflie [32]. By adding a Teensy 4.0 development
board to the Crazyflie, the necessary computation power for
running an SNN on a processor was obtained. This allowed
us to run the complete SNN from input encoding to control
commands at 500Hz in C++ on the ARM Cortex-M7 mi-
croprocessor. To carry the extra weight of the Teensy, the
regular 16mm brushed motors of the Crazyflie are swapped
with 20mm brushed motors. To maximize the accuracy of
the network while utilizing the Teensy to its full extent, the
network was optimized for speed by removing unnecessary
neurons. This was done by performing inference on a number
of test sequences and calculating the total contribution of
a neuron on the output by calculating the total number of
spikes emitted multiplied by its weight to all outputs. Now
the N lowest contributing neurons can be removed from the
implementation in C++ on the Teensy. Although the network
was trained with 150-150-130 neurons per layer respectively,
we reduced the size to 150, 100, and 80 per layer respectively.
By mainly pruning the neurons with recurrent connections this
way, we almost halve the number of mathematical operations
while retaining over 99% of the original MSE that was used
as the loss function during training.

We send the attitude setpoints, along with the IMU mea-
surements from the gyroscope and accelerometer, via UART
to the Teensy deck. The neural controller’s torque command
outputs are transmitted back to the Crazyflie through the same
UART connection, where they are incorporated into the motor
mixer. The motor mixer is a linear transformation that converts
torque commands into rotor velocities. As the network runs
at 500Hz in the loop, the maximum delay introduced in the
system is 2 milliseconds. Even though this is fast enough to
keep up with the lower-level control-loop in the Crazyflie, it
might still influence the overall stability.

An OptiTrack motion capture system provides accurate
position measurement and an absolute heading. These are
sent to the Crazyflie via a radio connection to a ground
station laptop, which also handles the sending of high-level
commands.

The total take-off weight of the Crazyflie, including the
Teensy 4.0 and upgraded motors, is only 35 grams. This allows
for approximately 5 minutes of flight time.

III. RESULTS
A. Position control
To demonstrate the capabilities of the proposed SNN, we
include it in a position control task. The higher level attitude
commands together with the IMU values are send as inputs
to the SNN, which produces pitch, roll and yaw torque

commands. After a short period of hovering at (x,y) = (0,0),
the Crazyflie is commanded to move 1 meter in x-direction
after which it is commanded to move back to (0,0). For both
the SNN and PID controller, these tests were performed ten
times. In Figure 3, the position control results are shown. The

SNN Fusion and Control

101 Measured
e Target
0.5 1
001
\N{ T T T T T T T T
o
g Complementary filter and Cascaded PID
é 101 Measured
e Target
0.5 1
0.0 4
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Time (s)

Fig. 3. Position step responses of the SNN system (top) and the regular PID
flight stack (bottom). The SNN can is able to accurately track the attitude
references as given by the outer-loop position controller and maintains a stable
flight path.

results show that performing attitude estimation and control
using an onboard SNN results in stable reference tracking,
comparable to the regular flight stack of the Crazyflie.

B. Impact of Time-Shifted and Augmented Training Data on
SNN Performance

During testing, it was quickly identified that training the
fusion network without augmenting the dataset does not pro-
duce a network that is able to be used in flight. Therefore,
it was absolutely necessary to augment the dataset for this
sub-network. However, to further investigate the behavior
of the SNN and the influence of the modifications to the
training procedure, another test is performed. Since the directly
controlled variable is the attitude command, we compare the
response of differently trained networks to an attitude setpoint
change. For these tests, the Crazyflie received a roll setpoint
of 0° for 2 seconds, followed by a setpoint of +10° for 1.5
seconds, a setpoint of —10° for 1.5 seconds before returning
to a 0° setpoint for 2.5 seconds. Again, we performed ten
tests per controller. The combined results of these ten tests
per controller are shown in Figure 4, with A) the final SNN,
B) the SNN that was trained on the augmented dataset, C)
the SNN that was trained on time-shifted data, but without
augmenting the dataset and D) the regular attitude estimator
and controller on the Crazyflie. The Root Mean Square Er-
ror (RMSE) between the commanded roll setpoint and the
resulting (estimated) roll angle is given in Table I, together
with the average standard deviation (SD) of the response with
respect to the average of all tests with the same controller.
With a tracking error of only 3.03°, the network is able to

A) SNN (augmented & time-shifted)
10°F

-10° F

1 2 3

5 6 7 8

100} B) SNN (augmented)

Roll Angle (degrees)
=]

0° [-
S10°F 'L—I

C) SNN (time—shU—'\
L W

D) SNN (baseline)

E) PID (reference)

I N _—F — |

0 2 4 6 8
Time (seconds)

s e . \easured == Setpoint

0 2 4 6 8
Time (seconds)

Fig. 4. Attitude step responses of A) the fully-trained SNN system, B) the SNN trained with augmentation, C) the SNN trained with time-shifted data and
D) the regular PID flight stack. The images on top show the Crazyflie during the different maneuvers.

Controller RMSE (deg.) | avg. SD

SNN (time-shifted & augmented) 3.03° 0.77

SNN (augmented) 3.10° 0.95

SNN (time-shifted) 3.24° 0.92

SNN (baseline) 3.14° 1.16

PID 2.57° 0.15
TABLE I

ROOT MEAN SQUARE ERROR (RMSE) AND STANDARD DEVIATION (SD)
COMPARISON BETWEEN DIFFERENT CONTROLLERS

correctly estimate the attitude and also control it. Adding the
suggested modifications to the training procedure reduces the
tracking error from 3.24° to 3.03° compared to 2.57° for the
reference controller (please note that the reference controller
does not have the 2ms delay that is introduced by the UART
communication and network inference time). Also, training
on time-shifted data significantly reduces the oscillations as
can be seen in Figure 4. This can also be inferred from the
average SD that is significantly lower for the fully-trained
SNN, showing that the controller performs more consistently
across multiple tests. On the other hand it is visible that the
modifications result in a slightly longer rise-time.

C. Power usage analysis

The main benefits of having an end-to-end attitude SNN
mainly derive from its combination with other autonomy
functions such as computer vision on a single neuromorphic
chip. Given the elementary nature of attitude estimation and
control task, we do not expect any substantial performance or
energy improvements for attitude estimation and control by
itself. Still, we do think it is insightful to analyze the power

usage of the current solution. The SNN in this research runs
on a conventional microprocessor, as currently available neuro-
morphic chips (like Intel’s Loihi [28], [41] or SpiNNaker [42])
require supporting embedded systems that are too large for
a 35-gram quadrotor or challenging to source. To explore
potential power advantages, we performed some estimative
calculations. Spike propagation through the network relies
solely on additions rather than multiplications, allowing us to
calculate the necessary operations based on addition alone. For
the three-layer network used here, this would initially amount
to approximately 42,500 additions per update. However, due to
the 15-20% sparsity in neuron activations at each timestep, the
actual required operations reduce to around 7,500 additions.
At first glance, this still seems high compared to the traditional
complementary filter and cascaded PID controller on the
Crazyflie, which only requires about 28 additions per timestep.
When including multiplications, however, the comparison
changes: a 32-bit floating-point multiplication uses roughly
37 times more energy than a 32-bit integer addition [43].
Thus, the 52 multiplications in the conventional controller
equate to an approximate cost of 2,000 additions per timestep.
This suggests that, even with current hardware limitations, a
neuromorphic algorithm like ours performs in the same energy
order of magnitude as a PID-based controller.

Expanding this network to handle image data, as seen in
other neuromorphic works (e.g. [29]), would create larger
disparities due to the high multiplication demands in image
processing tasks. These advantages align well with event-
based control, which has demonstrated potential for drastic
reductions in computational load (up to 80% for quadrotor
attitude control [44]) by activating only when significant events
occur.

IV. CONCLUSION

In this article, we have presented the first fully spiking
attitude estimation and control pipeline for a quadrotor. We
show that by using imitation learning, it is possible to train a
fully end-to-end SNN to control a micro drone. We augmented
training data to further enhance the performance, using in-
flight data. The network was also taught to predict a k-step
advance control action to mitigate delays that are inherent
to the SNN. These methods led to significant reductions
in RMSE relative to the target attitude and decreased os-
cillations, collectively enhancing the drone’s flight stability.
Furthermore, our findings indicate that constraining parameters
during training to function as integrators improves training
precision and information integration. For RNNs these param-
eters would be the recurrent weights, and for SNNs the leak
and threshold parameters. This novel approach avoids local
minima during training and allows for faster convergence. By
evaluating the system’s performance in real-world conditions
and comparing it with traditional control methods, we have
laid the groundwork for future developments in neuromorphic
control strategies. Future research should aim to implement
these algorithms on neuromorphic hardware, which could yield
substantial gains in energy efficiency and reduced latency,
potentially extending flight times and enabling neuromorphic
UAVs in energy-constrained scenarios. By advancing these
techniques, we envision the next generation of highly efficient,
adaptive, and intelligent UAVs.

ACKNOWLEDGMENT

This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA8655-20-
1-7044.

SUPPLEMENTARY MATERIALS

All code necessary to 1) train the SNN, 2) convert and run
the SNN on a Teensy 4.0, 3) integrate in the Crazyflie firmware
and 4) perform the tests can be found in https://github.com/
tudelft/neuromorphic_att_est_and_control. The data that was
used for training can be found in https://data.4tu.nl/. The code
and data will be made available upon publication.

REFERENCES

[1] S. M. S. M. Daud, M. Y. P. M. Yusof, C. C. Heo, L. S. Khoo, M. K. C.
Singh, M. S. Mahmood, and H. Nawawi, “Applications of drone in
disaster management: A scoping review,” Science & Justice, vol. 62,
no. 1, pp. 3042, 2022.

[2] L. Tang and G. Shao, “Drone remote sensing for forestry research and
practices,” Journal of forestry research, vol. 26, pp. 791-797, 2015.

[3] U. R. Mogili and B. Deepak, “Review on application of drone systems
in precision agriculture,” Procedia computer science, vol. 133, pp. 502—
509, 2018.

[4] Y. Song, A. Romero, M. Miiller, V. Koltun, and D. Scaramuzza,
“Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning,” Science Robotics, vol. 8, no. 82, p. eadgl462,
2023. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.adg1462

[5]1 A.T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim, Z. F. Ibrahim,
M. Kazim, A. Ammar, B. Benjdira, A. M. Khamis, I. A. Hameed et al.,
“Drone deep reinforcement learning: A review,” Electronics, vol. 10,
no. 9, p. 999, 2021.

[6]

[7]

[8]

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. Siinderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford et al., “The limits and
potentials of deep learning for robotics,” The International journal of
robotics research, vol. 37, no. 4-5, pp. 405-420, 2018.

Y. Sandamirskaya, M. Kaboli, J. Conradt, and T. Celikel, “Neuromorphic
computing hardware and neural architectures for robotics,” Science
Robotics, vol. 7, no. 67, p. eabl8419, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abl8419

G. Gallego, T. Delbriick, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 44, no. 1, pp. 154-180, 2020.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 db 15us
latency asynchronous temporal contrast vision sensor,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 2, pp. 566-576, 2008.

G. Indiveri and R. Douglas, “Neuromorphic vision sensors,” Science,
vol. 288, no. 5469, pp. 1189-1190, 2000.

W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659-1671, 1997.
M. H. Dickinson, “Haltere—mediated equilibrium reflexes of the fruit
fly, drosophila melanogaster,” Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, vol. 354, no. 1385,
pp. 903-916, 1999.

C. Bartolozzi, G. Indiveri, and E. Donati, “Embodied neuromorphic
intelligence,” Nature Communications, vol. 13, no. 1, p. 1024, 2022.
C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.
R. Pellerito, M. Cannici, D. Gehrig, J. Belhadj, O. Dubois-Matra,
M. Casasco, and D. Scaramuzza, “End-to-end learned event-and image-
based visual odometry,” arXiv preprint arXiv:2309.09947, 2023.

R. S. Dimitrova, M. Gehrig, D. Brescianini, and D. Scaramuzza,
“Towards low-latency high-bandwidth control of quadrotors using event
cameras,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2020, pp. 4294-4300.

A. Vitale, A. Renner, C. Nauer, D. Scaramuzza, and Y. Sandamirskaya,
“Event-driven vision and control for uavs on a neuromorphic chip,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, 2021, pp. 103-109.

D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle
avoidance for quadrotors with event cameras,” Science Robotics,
vol. 5, no. 40, p. eaaz9712, 2020. [Online]. Available: https:
/Iwww.science.org/doi/abs/10.1126/scirobotics.aaz9712

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982-987, 2023.

R. Stagsted, A. Vitale, J. Binz, L. Bonde Larsen, Y. Sandamirskaya
et al., “Towards neuromorphic control: A spiking neural network based
pid controller for uav,” in Robotics: Science and Systems 2020, Virtual
Conference. RSS, 2020.

S. Stroobants, J. Dupeyroux, and G. De Croon, “Design and imple-
mentation of a parsimonious neuromorphic pid for onboard altitude
control for mavs using neuromorphic processors,” in Proceedings of
the International Conference on Neuromorphic Systems 2022, 2022, pp.
1-7.

T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood, “Spiking neural
network (snn) control of a flapping insect-scale robot,” in 2016 IEEE
55th Conference on Decision and Control (CDC). 1EEE, 2016, pp.
3381-3388.

H. Qiu, M. Garratt, D. Howard, and S. Anavatti, “Evolving spiking
neurocontrollers for vavs,” in 2020 IEEE Symposium Series on Compu-
tational Intelligence (SSCI). 1EEE, 2020, pp. 1928-1935.

J. Hwangbo, 1. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096-2103, 2017.

E. Kaufmann, A. Loquercio, R. Ranftl, M. Miiller, V. Koltun, and
D. Scaramuzza, “Deep Drone Acrobatics,” in Proceedings of Robotics:
Science and Systems, Corvalis, Oregon, USA, July 2020.

R. Ferede, C. De Wagter, D. Izzo, and G. C. De Croon, “End-to-end
reinforcement learning for time-optimal quadcopter flight,” in 2024 I[EEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2024, pp. 6172-6177.

T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA). 1EEE, 2016, pp. 528-535.

https://github.com/tudelft/neuromorphic_att_est_and_control
https://github.com/tudelft/neuromorphic_att_est_and_control
https://data.4tu.nl/
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.abl8419
https://www.science.org/doi/abs/10.1126/scirobotics.aaz9712
https://www.science.org/doi/abs/10.1126/scirobotics.aaz9712

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” leee Micro, vol. 38, no. 1,
pp- 82-99, 2018.

F. Paredes-Vallés, J. J. Hagenaars, J. Dupeyroux, S. Stroobants, Y. Xu,
and G. C. H. E. de Croon, “Fully neuromorphic vision and control
for autonomous drone flight,” Science Robotics, vol. 9, no. 90, p.
eadi0591, 2024. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.adi0591

F. S. Slijkhuis, S. W. Keemink, and P. Lanillos, “Closed-form control
with spike coding networks,” IEEE Transactions on Cognitive and
Developmental Systems, 2023.

P. Martin and E. Salaiin, “The true role of accelerometer feedback in
quadrotor control,” in 2010 IEEE International Conference on Robotics
and Automation. 1EEE, 2010, pp. 1623-1629.

W. Giernacki, M. Skwierczynski, W. Witwicki, P. Wronski, and
P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering,” in 2017 22nd Interna-
tional Conference on Methods and Models in Automation and Robotics
(MMAR). 1EEE, 2017, pp. 37-42.

I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and 1. Cohen, Pearson Correlation Coefficient. — Berlin, Heidelberg:
Springer, 2009, pp. 1-4.

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51-63, 2019.

W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
“Incorporating learnable membrane time constant to enhance learning of
spiking neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 2661-2671.

F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural
networks,” Neural Computation, vol. 33, no. 4, pp. 899-925, 2021.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth International Conference on Artificial Intelligence and
Statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627-635.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A.
Bagnell, and M. Hebert, “Learning monocular reactive uav control in
cluttered natural environments,” in 2013 IEEE International Conference
on Robotics and Automation. 1EEE, 2013, pp. 1765-1772.

A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu,
and S. De, “Resurrecting recurrent neural networks for long sequences,”
in International Conference on Machine Learning. PMLR, 2023, pp.
26 670-26 698.

S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, “Deep state space models for time series forecasting,”
Advances in neural information processing systems, vol. 31, 2018.

G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer, and M. Davies, “Efficient neuromorphic signal processing with
loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2021, pp. 254-259.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014.
H. Luo and W. Sun, “Addition is all you need for energy-efficient
language models,” arXiv preprint arXiv:2410.00907, 2024.

J.-F. Guerrero-Castellanos, J. J. Téllez-Guzman, S. Durand, N. Marc-
hand, J. U. Alvarez-Muiioz, and V. R. Gonzalez-Diaz, “Attitude stabi-
lization of a quadrotor by means of event-triggered nonlinear control,”
Journal of Intelligent & Robotic Systems, vol. 73, pp. 123-135, 2014.

https://www.science.org/doi/abs/10.1126/scirobotics.adi0591
https://www.science.org/doi/abs/10.1126/scirobotics.adi0591

	Introduction
	Methodology
	Attitude Control from IMU measurements
	Spiking Neural Network Architecture
	LIF neurons
	Combination of networks

	Training
	Delay in SNN, training with time-shifted data
	Imitation learning; reducing the reality gap
	Splitting estimation and control
	Integrator

	Hardware setup

	Results
	Position control
	Impact of Time-Shifted and Augmented Training Data on SNN Performance
	Power usage analysis

	Conclusion
	References

