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Abstract

We consider a sequential decision-making setting where, at every round t, a market maker
posts a bid price Bt and an ask price At to an incoming trader (the taker) with a private
valuation for one unit of some asset. If the trader’s valuation is lower than the bid price, or
higher than the ask price, then a trade (sell or buy) occurs. If a trade happens at round t,
then letting Mt be the market price (observed only at the end of round t), the maker’s utility is
Mt−Bt if the maker bought the asset, and At−Mt if they sold it. We characterize the maker’s
regret with respect to the best fixed choice of bid and ask pairs under a variety of assumptions
(adversarial, i.i.d., and their variants) on the sequence of market prices and valuations. Our
upper bound analysis unveils an intriguing connection relating market making to first-price
auctions and dynamic pricing. Our main technical contribution is a lower bound for the i.i.d.
case with Lipschitz distributions and independence between prices and valuations. The difficulty
in the analysis stems from the unique structure of the reward and feedback functions, allowing
an algorithm to acquire information by graduating the “cost of exploration” in an arbitrary way.
Keywords: Regret minimization, online learning, market making, first-price auctions, dynamic
pricing.
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1 Introduction

Trading in financial markets is a crucial activity that helps keep the world’s economy running,
and several players, including hedge funds, prop trading firms, investment banks, central banks,
and retail traders participate in it daily. While every actor has their own objective function (for
example, a hedge fund wants to maximize profit whereas a central bank wants to keep inflation in
check), at a fundamental level, trading can be viewed as a stochastic control problem where agents
want the state to evolve so as to maximize their objective function. In this work we focus on market
makers, i.e., traders whose job is to facilitate other trades to happen. One way to do so is by
broadcasting, at all times, a price (bid) at which they are willing to buy, and a price (ask) at which
they are willing to sell the asset being traded. This way when a buyer (seller) arrives, they do not
have to wait for a seller (buyer) to be able to perform a transaction. A market where it is easy to
make trades is called liquid, and liquidity is a desirable property for any kind of market. A market
maker thus provides an essential service by increasing the liquidity of the market, and collects
compensation for it by (among other ways) ensuring that the bid is always smaller than the ask,
thus making a profit proportional to the difference between the bid and the ask. Market making is
challenging, and a lot of thought goes into making it profitable, see [Har03] for an overview. A major
risk that a market maker has to deal with, called adverse selection, is the risk that your counterpart
is an informed trader who knows something about the future direction of the price movement. For
example, an informed trader who knows that an asset is soon about to become cheaper will sell it
to you thus forcing you to buy something whose price crashes. One way to mitigate this risk is to
immediately offload your positions elsewhere. This strategy can be profitable if, for example, you
have access to two markets for the same asset where one market is less liquid than the other. You
can be a market maker for the less liquid market while offloading your positions in the more liquid
one. We call this strategy “market making with instant clearing”.

1.1 Related works

Perhaps closest to our work is the paper [AK13], where they compete against a class of N constant-
spread dynamic strategies. Although we also compete with constant-spread (static) strategies, their
results are not directly comparable to ours for several reasons. First, in their model the only
unknown parameter is the market price, whose change from step to step is adversarial yet bounded
by a known quantity. As the market price is revealed at the end of each step, their utility function
at time t is fully known at the end of step t. This implies that their model has a full information
feedback, which yields a regret of order

√
T lnN against the best constant-spread strategy. In our

setting, instead, we compete against a continuum of strategies parametrized by ask-bid pairs. This
forces us to simultaneously control estimation and approximation error. Moreover, and crucially,
our market model does not have a full information feedback, as our reward function depends on the
taker’s private valuations which remain unknown. Hence, we need to carefully exploit the structure
of the reward function to compensate for the missing information. Please see Section 5 for an
extensive list of related works.

1.2 Our contributions

We study the question of market making with instant clearing in an online learning setup. Here,
trading happens in discrete time steps and an unknown stochastic process governs the prices of the
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Adversarial IID

General Lip General Lip IV Lip+IV

Realistic T T 2/3 T T 2/3 T 2/3 T 2/3

Full T
√
T

√
T

√
T
√
T

√
T

Table 1: A summary of the regret guarantees we prove for each variant of the online market-making
problem. All the rates are optimal up to logarithmic factors.

asset being traded as well as the private valuations assigned to the asset by market participants (see
details in Section 2). The market maker is an online learning algorithm that posts a bid and an ask
at the beginning of each time step and receives some feedback at the end of the time step. We are
interested in controlling the regret suffered by this learner at the end of T time steps. We consider
two feedback models. In both models, the learner can see the price (called the market price) at
which they are able to offload their position at the end of the time step. However, in the realistic
feedback model, they can only see whether their bid or the ask (or neither) got successfully traded,
whereas in the full feedback model, they also get to see the private valuations of their counterpart
in the trade. For each feedback model, we consider the i.i.d. setting, where the unknown stochastic
process is i.i.d., as well as the adversarial setting, where no such assumption is made on the process.
Our results are summarized in Table 1.

In the realistic feedback model, we make the following contributions.

1. We design the M3 (meta-)algorithm (Algorithm 2) and prove a O(T 2/3) upper bound on its
regret under the assumption that either the cumulative distribution functions of the takers’
valuations are Lipschitz or the sequence of market prices and takers’ valuations are i.i.d. with
market prices being independent of taker’s valuations (Theorem 3.3).

2. Our main technical contribution is a lower bound of order Ω(T 2/3) that matches M3’s upper
bound, and holds even under the simultaneous assumptions that the sequence of market prices
and takers’ valuations is i.i.d., admits Lipschitz cumulative distribution functions, and is such
that market prices are independent of takers’ valuations (Theorem 3.4).

3. We then investigate the necessity of assuming either Lipschitzness of the cumulative distribu-
tion function of the takers’ valuations or independence of market values and takers’ valuations.
We prove that, if both assumptions are dropped, learning is impossible in general, even when
market values and takers’ valuations are i.i.d. (Theorem 3.5).

Lastly, we discuss the full-feedback case to flesh out the impact of limited feedback on learning rates
and learnability. We show that learning is impossible in the adversarial setting (Theorem 4.1), while
it is possible to achieve an O(

√
T ) regret rate when market values and takers’ valuations are i.i.d.

(Theorem 4.3), or when the cumulative distribution functions of takers’ valuations are Lipschitz
(Theorem 4.4). This rate is unimprovable, even if the three previous assumptions hold at the same
time (Theorem 4.2).

1.3 Techniques and challenges

We now move on to describe the main technical challenges encountered when proving our results.
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Upper bounds. First observe that the learner’s action space (i.e., the set of ask/bid pairs) is
the two dimensional set {(b, a) ∈ [0, 1]2 | b ≤ a}. If market prices and takers’ valuations are
both generated adversarially, standard bandit approaches typically require Lipschitzness (or the
weaker one-side Lipschitzness) of the reward function, a property that is unfortunately missing in
our setting. We can recover Lipschitzness (in expectation) by smoothing1 the taker’s valuations,
while the market prices remain adversarial. Under the smoothness assumption, the problem can
be seen as an instance of 2-dimensional Lipschitz bandits, and a black-box application of existing
continuous bandits techniques [Sli19] would give us only a suboptimal regret rate O(T 3/4). Using a
different approach that exploits the structure of our feedback and reward functions, we manage to
effectively reduce the dimensionality of the problem by 1, thus obtaining an improved (and optimal,
as discussed later) O(T 2/3) regret rate, see Theorem 3.2.

The previous result is based on discretizing the action space and exploiting the Lipschitzness of
the expected reward function provided by the smoothness assumption, together with the available
feedback (which is sufficient to reconstruct bandit feedback). Can discretization be used to obtain
the same rate when smoothed adversarial valuations are replaced by a different, yet natural, as-
sumption? In Section 3.1 we consider an i.i.d. setting with independence between market prices and
private valuations. Although this assumption does not provide Lipschitzness (not even in expecta-
tion), we show that the same algorithm as before has a regret again bounded by O(T 2/3). However,
the analysis relies on a different observation: although we cannot guarantee that the reward of all
actions is well approximated by that of a corresponding point in the grid, we can guarantee the
weaker property that the expected reward of the best actions are approximated by the expected
reward of a point in the grid, which is sufficient to prove the desired rate.

Lower bounds. A first roadblock in constructing regret lower bounds is that, in contrast to stan-
dard multi-armed bandits problems, we can control the distribution of the feedback and the expected
reward functions only indirectly, through the joint distribution of market prices and valuations. In
particular, there are constraints on the types of reward functions we can design, and it is non-
trivial to design underlying joint distributions of market prices and valuations whose corresponding
expected reward functions have the desired properties.

Another challenge is that the learner’s feedback in our setting is richer than bandit feedback. There-
fore, even if we could encode our expected reward functions in hard multi-armed bandit instances,
we would not be able to rely on the same arguments. A similar reason prevents us from applying
the known Ω(T 2/3) lower bounds for dynamic pricing and first-price auctions, two problems that
turn out to be closely related to ours. Proving the optimality of the T 2/3 rate in the i.i.d. setting
under the assumptions of smoothness and independence of market prices and taker’s valuations is
a highly nontrivial task which represents the main technical contribution of this work.

To understand the complexity of proving a lower bound, we now compare the trade-offs between re-
gret and amount of feedback in hard instances of our setting and of other related settings. The three
main ingredients in the standard lower bound approach for online learning with partial feedback
are:

• Hard instances, constructed as “ε-perturbations” of a base instance obtained by slightly alter-
ing the base distributions of some of the random variables drawn by the environment.

1I.e., by assuming that their cumulative distribution function is Lipschitz.
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Figure 1: Utility (in red) and amount of acquired information (in blue) in a hard instance of the
classic multi-armed bandit problem with a finite set of arms (on the left) and in a hard instance of
the first-price auctions problem with a continuous set of bids (on the right). Both quantities are
maximized at the same point. In particular where there is no perturbation, there is no information
and some amount of reward, otherwise the KL can grow up to a quantity of order ε2 and the utility
can grow by a quantity of order ε.

• The amount of information acquired when playing an action, quantified by the Kullback-
Leibler (KL) divergence between the distribution of the feedback obtained when selecting the
action in the perturbed instance and the corresponding feedback distribution when selecting
the action in the base instance—the higher, the better.

• The regret of an action, simply measured by the expected instantaneous regret of the action
in the perturbed instance—the smaller, the better.

In hard instances of K-armed bandits, an arm is drawn uniformly at random from a K-sized set and
assigned an expected reward ε-higher than the other arms in the set. Selecting an optimal arm costs
zero regret and provides Θ(ε2) bits of information. Selecting a non-optimal arm, instead, provides
no information and costs ε regret [ACBFS02]. This implies that any algorithm has only one way to
acquire information about an arm, i.e., to play that arm. A similar situation occurs in other settings,
including those with continuous decision spaces. For example, to acquire information about a bid in
the standard hard instance of first-price auctions, the only reasonable option is to post that price,
incurring regret Θ(ε) if the arm is non-optimal and acquiring Θ(ε2) bits of information if the arm
is optimal [CBCC+24c]. See Figure 1 for a pictorial representation of the expected reward and KL
divergence in said hard instances.

In a hard instance of market-making, a price b⋆ is drawn uniformly at random from a known finite
set of bid prices and the bid/ask pair (b⋆, 1) is given a reward ε-higher than the other bid/ask
pairs of the form (b′, 1). The amount of information and corresponding regret of each pair of
prices (b, a) can be visualized by looking at the qualitative plots in Figure 3. Note that there are
uncountably many ways to determine if a pair of prices (b, 1) is optimal: playing any pair in the
non-blue area of the left plot in Figure 3 allows to modulate the amount of exploration, with the
points that yield the highest quality feedback being the ones with low reward and high regret (for a
plot representing the growth of the amount of feedback and the corresponding reward as a function
of the pair (b, a) taken along a representative path, see Figure 4). Consequently, the exploration-
exploitation trade-off consists in first choosing whether to exploit with some pair (b, 1), or instead
pick another potentially optimal pair (b′, 1) to explore, then choosing from an uncountable set of
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options (b′′, a′′) how much regret one is willing to suffer in order to acquire more information about
the optimality of (b′, 1).2 To build a lower bound, we then need to consider all possible ways a
learner can handle these multiple trade-offs between information and regret. To the best of our
knowledge, this is the first lower bound for a problem exhibiting a continuum of trade-offs between
reward and feedback. As our setting is arguably simple, we expect the same phenomenon to occur
in other applications of online learning to digital markets. We solve the problem by partitioning
the action space into finitely many elements (or clusters) that can be further grouped in three
macro-categories: “get high regret but (potentially) lots of information”, “get (potentially) small
regret but also little information”, and clearly suboptimal actions where we “get some regret and
no information”. We then analyze an algorithm in terms of how many times it selects an action
from each cluster, using similar techniques for all clusters belonging to the same macro-category.
We believe that the clustering technique developed in this work could be helpful in tackling similar
lower bounds exhibiting a continuum of trade-offs that might appear in future works applying online
learning to digital market problems.

We close this section with a last remark. When investigating the necessity of the assumptions of
smoothness and independence of valuations and prices, if both these assumptions are dropped, an
intriguing needle-in-a-haystack phenomenon arises: by devising discrete entangled takers’ valuations
and market prices distributions, we show that it becomes impossible for the learner to determine
an optimal action within a finite horizon in a continuum of potentially optimal actions.

2 Setting

In online market making, the action space of the maker is the upper triangle U :=
{
(b, a) ∈ [0, 1]2 :

b ≤ a
}
, enforcing the constraint that a bid price b is never larger than the corresponding ask price

a. For an overview of the notation, see Table 2, in Appendix A. The utility of the market maker,
for all (b, a) ∈ U and m, v ∈ [0, 1], is

u(b, a,m, v) := (m− b) · I{b ≥ v}︸ ︷︷ ︸
Maker buys

+ (a−m) · I{a < v}︸ ︷︷ ︸
Maker sells

, (1)

where v is the taker’s private valuation and m is the market price.3 Our online market making
protocol is specified in Trading Protocol 1. At every round t, a taker arrives with a private valuation
Vt ∈ [0, 1] and the maker posts bid/ask prices (Bt, At) ∈ U . If Bt < Vt ≤ At (i.e., if the taker is
not willing to sell nor to buy at the proposed bid/ask prices), then no trade happens. If Bt ≥ Vt
(buy) or At < Vt (sell), a trade happens. At the end of each round, the maker observes the
market price Mt and the type of trade (buy, sell, none) that took place in that round. The maker’s
utility is determined by Ut(Bt, At) := u(Bt, At,Mt, Vt). Hence, any (possibly randomized) learning

2The situation is even more complex because, in the realistic feedback model, pairs (b, a) allow to test for the
optimality not just of the pair (b, 1), but also of the pair (a, 1).

3The choice of buying when b ≥ v and selling when a < v models a taker that is slightly more inclined to sell
rather than buy: in this case, the taker is willing to sell even when their valuation is exactly equal to the bid. This
choice is completely immaterial for the results that follow and is merely done for the sake of simplicity. All the results
we present still hold if trades happen according to a similar rule but with a taker that is slightly more inclined to buy
rather than sell (i.e., if a trade occurs whenever b > v or a ≤ v) or if this inclination changes arbitrarily whenever a
new taker comes at any new time step.
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Trading protocol 1: Market making with instant clearing and realistic feedback
for time t = 1, 2, . . . do

Taker arrives with a private valuation Vt ∈ [0, 1];
Maker posts bid/ask prices (Bt, At) ∈ U ;
Feedback I{Bt ≥ Vt} and I{At < Vt} is revealed;
if Bt ≥ Vt then Maker buys and pays Bt to Taker;
else if At < Vt then Maker sells (short) and is paid At by Taker;
else no trade happens;
The market price Mt ∈ [0, 1] is revealed;
if Maker bought from Taker then Maker offloads to Market at price Mt;
else if Maker sold (short) to Taker then Maker buys from Market at price Mt;
Maker’s utility is Ut(Bt, At) := u(Bt, At,Mt, Vt);

strategy for the maker at time t is a map that takes all previous feedback
{(

I{Bτ ≥ Vτ}, I{Aτ <
Vτ},Mτ

)}
τ<t

, plus some optional random seeds, to a (random) pair (Bt, At) of bid/ask prices in U .

The maker’s goal is to minimize, for any time horizon T ∈ N, the regret after T time steps:

RT := sup
(b,a)∈U

E

[
T∑
t=1

Ut(b, a)

]
− E

[
T∑
t=1

Ut(Bt, At)

]
,

where the expectations are with respect to the (possible) randomness of the market prices, takers’
valuations, and (possibly) the internal randomization of the algorithm. Note that the supremum
is not attained in general, because of the strict inequality in one of the two indicator functions in
Equation (1).

Types of feedback. We call the feedback received in the protocol above “realistic feedback”. In
a real market, we very rarely have access to the private valuation Vt of the taker and thus it is safe
to assume that the learner only gets to observe I{Bt ≥ Vt} and I{At < Vt}. Still, one can imagine
scenarios where additional information about Vt is sometimes available. In this spirit and with the
goal of contrasting the effect of partial feedback on learnability and learning rates, it is of theoretical
interest to study what happens in the other extreme, the full feedback scenario, where the learner
gets to observe the value of Vt (in addition to Mt) at the end of each time step t. There might be
other interesting feedback models between realistic and full that we leave for future work.

3 Realistic feedback

Note that the utility of our market-making problem can be viewed as the sum of the utilities of
two related sub-problems: the first addend in (1) corresponds to the utility in a repeated first-price
auction problem with unknown valuations, while the second addend corresponds to the utility in a
dynamic pricing problem with unknown costs. This suggests trying to use two algorithms for the
two problems to solve our market-making problem. However, in our problem we have the further
constraint that the bid we propose in the first-price auction is no greater than the price we propose
in the dynamic pricing problem. This constraint prevents us from running directly two independent
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no-regret algorithms for the two different problems because the bid/ask pair produced this way may
violate the constraint. To cope with this obstruction, we present a meta-algorithm (Algorithm 2)
that takes as input two algorithms for the two sub-problems and combines them to post pairs in
U while preserving the respective guarantees. We now formally introduce the two related problems
and build the explicit reduction.

Repeated first-price auctions with unknown valuations. Consider the following online prob-
lem of repeated first-price auctions where the learner only learns the valuation of the good they are
bidding on after the auction is cleared. At any time t, two [0, 1]-valued random variables Zt and
Ht are generated and hidden from the learner: Zt is the current valuation of the good and Ht is
the highest competing bid for the good, both unknown to the learner at the time of bidding. Then,
the learner bids an amount Xt ∈ [0, 1] and wins the bid if and only if their bid is higher than or
equal to the highest competing bid. The utility of the learner is Zt − Xt if they win the auction
and zero otherwise. Finally, the valuation of the good Zt and the indicator function I{Xt ≥ Ht}
(representing whether or not the learner won the auction) are revealed to the learner.

The goal is to minimize, for any time horizon T ∈ N, the regret after T time steps

Rfpa
T := sup

x∈[0,1]
E

[
T∑
t=1

(Zt − x) · I{x ≥ Ht}

]
− E

[
T∑
t=1

(Zt −Xt) · I{Xt ≥ Ht}

]
,

where the expectations are taken with respect to the (possible) randomness of (Z1, H1), . . . (ZT , HT )
and the (possible) internal randomization of the algorithm that outputs the bids X1, . . . , XT .

The same setting was studied in [CBCC+24c], but with different feedback models.

Dynamic pricing with unknown costs. Consider the following online problem of dynamic
pricing where the learner only learns the current cost of the item they are selling after interacting
with the buyer. At any time t, two [0, 1]-valued random variables Ct and Wt are generated and
hidden from the learner: Ct is the current cost of the item, and Wt is the buyer’s valuation for the
item. Then, the learner posts a price Pt ∈ [0, 1] and the buyer buys the item if and only if their
valuation is higher than the posted price. The utility of the learner is Pt − Ct if the buyer bought
the item and zero otherwise. Finally, the cost of the item Ct and the indicator function I{Pt < Wt}
(representing whether or not the buyer bought the item) are revealed to the learner.

The goal is to minimize, for any time horizon T ∈ N, the regret after T time steps

Rdp
T := sup

p∈[0,1]
E

[
T∑
t=1

(p− Ct) · I{p < Wt}

]
− E

[
T∑
t=1

(Pt − Ct) · I{Pt < Wt}

]
,

where the expectations are taken with respect to the (possible) randomness of (C1,W1), . . . (CT ,WT )
and the (possible) internal randomization of the algorithm that outputs the posted prices P1, . . . , PT .

Dynamic pricing is generally studied under the assumption that costs are known and all equal to
zero, and assuming that the buyer buys whenever their evaluation is greater than or equal to the
posted price—see, e.g., [KL03, CBCP19, LSTW21, LSL24].
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Algorithm 2: M3 (Meta Market Making)
input: Algorithm A for repeated first-price auctions with unknown valuations
Algorithm A′ for dynamic pricing with unknown costs
for time t = 1, 2, . . . do

Let Xt be the output of A at time t and let Pt be the output of A′ at time t;
if Xt ≤ Pt then let Bt := Xt and At := Pt;
else if Xt > Pt then let Bt := Pt and At := Xt;
Post buying/selling prices (Bt, At) and observe feedback I{Bt ≥ Vt}, I{At < Vt}, and Mt;
if Xt ≤ Pt then feed (I{Bt ≥ Vt},Mt) back to A and (I{At < Vt},Mt) to A′;
else if Xt > Pt then feed (1− I{At < Vt},Mt) back to A and (1− I{Bt ≥ Vt},Mt) to A′;

First-price auctions plus dynamic pricing implies market making. In this section, we
introduce a meta-algorithm that combines two sub-algorithms, one for repeated first-price auctions
with unknown valuations and one for dynamic pricing with unknown costs. This way, we obtain
an algorithm for market-making and we show in Theorem 3.1 that its regret can be upper bounded
by the sum of the regrets of the two sub-algorithms (in two corresponding sub-problems). The idea
of our meta-algorithm M3 (Algorithm 2) begins with the observation that the utility of the market
maker is a sum of two terms that correspond to the utilities of the learner in first-price auctions and
dynamic pricing respectively. This suggests maintaining two algorithms in parallel, one to determine
buying prices and one to determine selling prices. M3 then enforces the constraint that buying prices
should be no larger than selling prices by swapping the recommendations of the two sub-algorithms
whenever they generate corresponding bid/ask prices that would violate the constraint. Finally,
M3 leverages the available feedback (I{Bt ≥ Vt}, I{At < Vt},Mt) at time t to reconstruct and relay
back to the two sub-algorithms the counterfactual feedback they would have observed if the swap
didn’t happen (i.e., if the learner always posted the prices determined by the sub-algorithms).

The next result shows that the regret of M3 is upper bounded by the sum of the regrets of the two
sub-algorithms.

Theorem 3.1. Let T ∈ N. Suppose that (Mt, Vt)t∈[T ] is a [0, 1]2-valued stochastic process.

• Let Afpa be an algorithm for repeated first-price auctions with unknown valuations and let Rfpa
T

be its regret over the sequence (Zt, Ht)t∈[T ] := (Mt, Vt)t∈[T ] of unknown valuations and highest
competing bids.

• Let Adp be an algorithm for dynamic pricing with unknown costs and let Rdp
T be its regret over

the sequence (Ct,Wt)t∈[T ] := (Mt, Vt)t∈[T ] of unknown costs and buyers’ valuations.

Then, in the realistic-feedback online market-making problem, the regret of M3 run with parameters
Afpa and Adp over the sequence (Mt, Vt)t∈[T ] of market values and takers’ valuations satisfies

RT ≤ Rfpa
T +Rdp

T .

Proof. First, notice that the feedback received by the two algorithms is equal to the feedback they
would have retrieved in the corresponding instances regardless of whether or not the prices are
swapped. Hence, the regret guarantees of the prices posted by the two algorithm on the original
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Figure 2: Possible relative positioning of Vt with respect to Pt and Xt, when Pt < Xt.

Algorithm 3: Discretized Bandits for First Price Auctions
input: Number of arms K ∈ {2, 3, . . . }, Algorithm A for K-armed bandits
initialization: Let qk := k−1

K−1 , for all k ∈ [K]

for time t = 1, 2, . . . do
Let It ∈ [K] be the output of A at time t;
Post bid Xt := qIt and observe feedback Zt and I{Xt ≥ Ht};
Compute utility (Zt −Xt) · I{Xt ≥ Ht} and feed it back to A;

sequence still hold true. Notice that, for each t ∈ N, we have that

(It) := Ut(Bt, At) ≥ (Mt −Xt)I{Xt ≥ Vt}+ (Pt −Mt)I{Vt > Pt} =: (IIt) .

In fact, if Xt ≤ Pt the two quantities are equal because Bt = Xt and At = Pt. Instead, if Pt < Xt

(Figure 2), then Bt = Pt and At = Xt, and a direct computation shows that

• if Vt ≤ Pt then (It) =Mt − Pt > Mt −Xt = (IIt)

• if Pt < Vt ≤ Xt then (It) = 0 > Pt −Xt = (IIt)

• if Xt < Vt then (It) = Xt −Mt > Pt −Mt = (IIt) .

It follows that

RT = sup
(b,a)∈U

E

[
T∑
t=1

Ut(b, a)

]
− E

[
T∑
t=1

(It)

]
≤ sup

(b,a)∈U
E

[
T∑
t=1

Ut(b, a)

]
− E

[
T∑
t=1

(IIt)

]

≤ sup
b∈[0,1]

E

[
T∑
t=1

(Mt − b)I{b ≥ Vt}

]
− E

[
T∑
t=1

(Mt −Xt)I{Xt ≥ Vt}

]

+ sup
a∈[0,1]

E

[
T∑
t=1

(a−Mt)I{a < Vt}

]
− E

[
T∑
t=1

(Pt −Mt)I{Pt < Vt}

]
= Rfpa

T +Rdp
T .

3.1 T 2/3 upper bound (Adversarial+Lip) or (IID+IV)

Consider the problem of repeated first-price auctions with unknown valuations. Since the feedback
received at the end of each round allows to compute the utility of the learner, a natural strategy
is to simply discretize the interval [0, 1] and run a bandit algorithm on the discretization. The
pseudo-code of this simple meta-algorithm can be found in Algorithm 3. The following theorem
shows its guarantees.
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Algorithm 4: Discretized Bandits for Dynamic Pricing
input: Number of arms K ∈ {2, 3, . . . }, Algorithm A for K-armed bandits
initialization: Let qk := k−1

K−1 , for all k ∈ [K]

for time t = 1, 2, . . . do
Let It ∈ [K] be the output of A at time t;
Post price Pt := qIt and observe feedback Ct and I{Pt < Wt};
Compute utility (Pt − Ct) · I{Pt < Wt} and feed it back to A;

Theorem 3.2. In the repeated first-price auctions with unknown valuations problem, let T ∈ N be
the time horizon and let (Zt, Ht)t∈[T ] be the [0, 1]2-valued stochastic process representing the sequence
of valuations and highest competing bids. Assume that one of the two following conditions is satisfied:

1. For each t ∈ [T ], the cumulative distribution function of Ht is L-Lipschitz, for some L > 0.

2. The process (Zt, Ht)t∈[T ] is i.i.d. and, for each t ∈ [T ], the two random variables Zt and Ht

are independent of each other.

Then, for any K ≥ 2 and any K-armed bandit algorithm A, letting RK
T be the regret of A when the

reward at any time t ∈ [T ] of any arm k ∈ [K] is (Zt − qk)I{qk ≥ Ht}, the regret of Algorithm 3
run with parameters K and A satisfies RT ≤ RK

T + L̃+1
2(K−1)T , with L̃ = L (resp., L̃ = 1) if Item 1

(resp., Item 2) holds. In particular, if T ≥ 2, by choosing K := ⌈T 1/3⌉ + 1 and, as the underlying
learning procedure A, an adapted version of Poly INF [AB10], the regret of Algorithm 3 run with
parameters K and A satisfies RT ≤ c · T 2/3 , where c ≤ L + 50 (resp. c ≤ 51) if Item 1 (resp.,
Item 2) holds.

A completely analogous theorem can be proved for Algorithm 4 for the problem of dynamic pricing
with unknown costs (see Theorem B.1 in Appendix B).

Next, we use Theorem 3.2 and Theorem B.1 to show that the regret of M3 is bounded by O(T 2/3).

Theorem 3.3. In the realistic-feedback online market-making problem, let T ∈ N be the time horizon
and let (Mt, Vt)t∈[T ] be the [0, 1]2-valued stochastic process representing the sequence of market prices
and takers’ valuations. Assume that one of the two following conditions is satisfied:

1. For each t ∈ [T ], the cumulative distribution function of Vt is L-Lipschitz, for some L > 0.

2. The process (Mt, Vt)t∈[T ] is i.i.d. and, for each t ∈ [T ], the two random variables Mt and Vt
are independent of each other.

Then, let K := ⌈T 1/3⌉+ 1, let A be the instance of Algorithm 3 that uses Poly INF as described in
Theorem 3.2, and A′ be the instance of Algorithm 4 that uses Poly INF as described in Theorem B.1.
Then the regret of M3 (Algorithm 2) run with parameters A and A′ satisfies RT ≤ cT 2/3 with
c ≤ 2L+ 100 (resp., c ≤ 102) if Item 1 (resp., Item 2) holds.

Proof. By Algorithm 2, the regret of M3 is upper bounded by the regret of a repeated first-price
auctions problem with unknown valuations plus a dynamic pricing problem with unknown costs.
Plugging in the bounds from Theorem 3.2 and Theorem B.1, we get the required result.
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3.2 T 2/3 lower bound (IID+Lip+IV)

In this section we prove the main lower bound, showing that no algorithm can achieve a regret
better than Ω(T 2/3) even when the sequence of market values and taker’s valuations is i.i.d. with a
smooth distribution, and market values and taker’s valuations are independent of each other.

Theorem 3.4. In the realistic-feedback online market-making problem, for each L ≥ 8, each time
horizon T ≥ 42, and each (possibly randomized) algorithm for realistic-feedback online market mak-
ing, there exists a [0, 1]2-valued i.i.d. sequence (Mt, Vt)t∈[T ] of market values and taker’s valuations
such that for each t ∈ [T ] the two random variables Mt and Vt are independent of each other,
they admit an L-Lipschitz cumulative distribution function, and the regret of the algorithm over the
sequence (Mt, Vt)t∈[T ] is lower bounded by RT ≥ cT 2/3 where c is a constant and c ≥ 10−6.

Before presenting the full proof of this theorem, we give a high-level description of its key ideas.
The first step is to build a base joint distribution over market values and takers’ valuations such
that the expected utility function of the learner is maximized over an entire segment of pairs of
prices (b, 1), for b that belongs to some interval (which are instances where it is never optimal to
sell). Then, we partition this set of maximizers into K = Θ(T 1/3) segments with the same size and
build K perturbations of the base distribution such that, in each one of these perturbations, the
corresponding expected utilities have a small ε = Θ(1/K)-spike inside one of these subsegments. To
obtain this result, we draw market values uniformly on

[
7
8 , 1
]

and define a more involved distribution
for the takers’ valuations (see Figure 5 for the plot of one of these perturbed distributions over takers’
valuations). From here, we start with a simple observation: If we content ourselves with proving
a lower bound for algorithms that play exclusively bid/ask pairs of the form (b, 1), our problem
reduces to repeated first-price auctions with unknown valuations. In this simplified problem, the
learner has to essentially locate an ε-spike present in one of 1/ε locations. Therefore, the learner can
either refuse to locate the spike, consequently paying an overall Θ(εT ) regret in the worst case, or
invest Ω(1/ε2) rounds4 in trying to locate each one of the 1/ε potential spikes, paying Ω(ε) each time
a point in the wrong region is selected, for an overall regret of Ω

(
1
ε2
· 1ε · ε

)
= Ω(1/ε2). The hardest

instance is when εT = 1/ε2, i.e., when ε = T 1/3. In this case, no matter what the learner decides,
they will always pay at least Ω(εT ) = Ω(1/ε2) = Ω(T 2/3) regret. The problem becomes substantially
more delicate in our setting because, now, to explore a potential action (b, 1), the learner has access
to uncountably more options (b, a) (see Figure 3). This complicates things because, in usual online
learning lower bounds, the worst-case regret of an algorithm is analyzed by counting how many
times the algorithm plays exploiting and exploring arms, then quantifying how much information
was gathered from the exploration and summing over all exploring arms. This strategy is hardly
implementable in our setting because each exploiting pair (b, 1) can be explored with uncountably
many other arms (b′, s′), and each one trades off some reward to gather some amount of feedback
(see Figure 4)—for example, one could post two prices (b, b+ θ), for some small θ > 0 paying Ω(1)
regret to obtain much higher quality feedback than if they played (b, 1) (ε vs ε2 KL-divergence
information). We circumvent this problem by clustering the action set U into finitely many disjoint
subsets (see Figure 6) and analyzing all points belonging to the same set in a similar way. This
way, we are able to prove that no matter how an algorithm decides to play, there will always be
instances where it has to pay a regret of order at least Ω(T 2/3).

4Given that the KL divergence between the base distribution of the feedback of points in a perturbed region and
the perturbed distribution of the feedback of the same points is O(ε2), a standard information-theoretic argument
shows that Ω(1/ε2) samples of points in a region are needed to determine if the spike is present in that region.
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Figure 3: The heat maps of the amount of information (on the left) and the expected utilities (on the
right) obtained by selecting pairs of prices in a hard instance we construct in our Ω(T 2/3) lower bound
for i.i.d. smooth instances with market values independent of takers’ valuations (Theorem 3.4). To
distinguish the optimal region with reward of (at least) 1/8+cspikeεK (the yellow region at the top of
the right plot) from the suboptimal region with reward 1/8, one could play any point in the non-blue
horizontal and vertical regions on the left plot. Note that the pairs that yield the highest amount
of feedback (the two small yellow neighborhoods close to the diagonal on the left plot) give highly
suboptimal rewards, which are at least cplat = Ω(1) below 1/8.

Proof. Fix T ≥ 42. We define the following constants that will be used in the proof.

K :=
⌈
T

1/3
⌉

εK := 1/16K ∀k ∈ [K], rkK := 3/16 + (k − 1/2) εK

pleft := 3/16 pright := 1/4 pexploit := 3/4

cplat := 1/32 cspike := 1/72

Define the density

f : [0, 1]→ [0,∞) , x 7→ 8

9
· I[0, 3

16 ]
(x) +

1

8

1(
15
16 − x

)2 · I( 3
16

, 3
4 ]
(x) +

8

3
· I( 3

4
, 7
8 ]
(x) ,

so that the corresponding cumulative distribution function F satisfies, for each x ∈ [0, 1],

F (x) =
8

9
x · I[0, 3

16 ]
(x) +

1

8

1
15
16 − x

· I( 3
16

, 3
4 ]
(x) +

8

3

(
x− 1

2

)
· I( 3

4
, 7
8 ]
(x) + I( 7

8
,1](x) . (2)

We define a family of perturbations parameterized by the set Ξ := {(r, ε) ∈ [ 316 ,
11
16 ] × [0, 1] | 3

16 ≤
r − ε

2 ≤ r + ε
2 ≤

11
16}; for each (r, ε) ∈ Ξ, define gr,ε := 1

9 · I[r− ε
2
,r] − 1

9 · I(r,r+ ε
2
] and fr,ε := f + gr,ε.

Notice that for each (r, ε) ∈ Ξ the function fr,ε is still a density function whose corresponding
cumulative distribution function Fr,ε satisfies, for each x ∈ [0, 1],

Fr,ε(x) = F (x) +
ε

18
Λr,ε(x) ,
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Ω(ε)

Ω(ε2)

(b̃, ã) (b̃, pexploit)

x

K
L

Ω(1)

(b̃, ã) (b̃, pexploit)

x

u

Figure 4: The amount of information (on the left) and the corresponding expected utility (on the
right) as a function of pairs of prices (b, a), with (b, a) following the red dashed line in Figure 3
starting at the left boundary of the horizontal non-blue region at the point (0, b̃), moving horizontally
up to the diagonal, then vertically up to the optimal pairs (b⋆, 1), parameterized by a real number x.
The points (̃b, ã) and (̃b, pexploit) illustrate how regions of high reward and regions of high information
do not coincide, in fact the cost of gathering more information (play (̃b, ã) instead of (̃b, pexploit))
can be a constant Ω(1) in the reward. On the other hand, a high-reward play can cost Ω(ϵ) in the
amount of information (but still gathering a quantity Ω(ϵ2)).

where Λr,ε is the tent function of height 1 and width ε centered in r, i.e., the function defined, for
each x ∈ R, by

Λr,ε(x) :=

(
1− 2

ε
(r − x)

)
· I[r− ε

2
,r](x) +

(
1− 2

ε
(x− r)

)
· I(r,r+ ε

2 ]
(x) .

Note that Fr,ε is 4-Lipschitz; indeed, for each (b, a) ∈ U ,

|Fr,ε(a)− Fr,ε(b)| =
∫ a

b
fr,ε(x) dx = max

c∈[b,a]
fr,ε(c)(a−b) ≤

(
max
c′∈[0,1]

f(c′) +
1

9

)
(a−b) = 4 (a−b) ,

where f is maximized in 3/4. Consider an independent family {Mt, Vt, Vr,ε,t}t∈N,(r,ε)∈Ξ such that for
each t ∈ N the distribution µ of Mt is a uniform on

[
7
8 , 1
]

(therefore, Mt admits an 8-Lipschitz
cumulative distribution function), for each t ∈ N the distribution ν of Vt has f as density, while for
each (r, ε) ∈ Ξ and each t ∈ N the distribution νr,ε of Vr,ε,t has fr,ε as density. Notice that for each
k ∈ [K] we have that (rkK , εK) ∈ Ξ. Now, partition U in the following regions (see Figure 6 for a
not-to-scale illustration).

Rleft
1 := {(b, a) ∈ U | (b ≤ pleft) ∧ (pright − εK ≤ a ≤ pright)}

Rleft
2 := {(b, a) ∈ U | (b ≤ pleft) ∧ (pright − 2εK ≤ a < pright − εK)}

...

Rleft
K−1 := {(b, a) ∈ U | (b ≤ pleft) ∧ (pleft + εK ≤ a < pleft + 2εK)}
Rleft

K := {(b, a) ∈ U | (b ≤ pleft) ∧ (pleft ≤ a < pleft + εK)}
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and

Rtop
1 := {(b, a) ∈ U | (pleft ≤ b ≤ pleft + εK) ∧ (pright ≤ a ≤ pexploit)}

Rtop
2 := {(b, a) ∈ U | (pleft + εK < b ≤ pleft + 2εK) ∧ (pright ≤ a ≤ pexploit)}

...

Rtop
K−1 := {(b, a) ∈ U | (pright − 2εK < b ≤ pright − εK) ∧ (pright ≤ a ≤ pexploit)}

Rtop
K := {(b, a) ∈ U | (pright − εK < b ≤ pright) ∧ (pright ≤ a ≤ pexploit)}

and, for each i, j ∈ [K] such that i+ j ≤ K

Rsquare
i,j := {(b, a) ∈ U | (pleft + (i− 1)εK < b ≤ pleft + iεK)∧

(pright − jεK < a ≤ pright − (j − 1)εK)}

and, for each k ∈ [K]

Rtriangle
k := {(b, a) ∈ U | (pleft + (k − 1)εK < b ≤ pleft + kεK)∧

(pleft + (k − 1)εK < a ≤ pleft − kεK)}

and

Rexploit
1 := {(b, a) ∈ U | {(b, a) ∈ U | (pleft ≤ b ≤ pleft + εK) ∧ (pexploit < a)}}

Rexploit
2 := {(b, a) ∈ U | {(b, a) ∈ U | (pleft + εK < b ≤ pleft + 2εK) ∧ (pexploit < a)}}

...

Rexploit
K−1 := {(b, a) ∈ U | {(b, a) ∈ U | (pright − 2εK < b ≤ pright − εK) ∧ (pexploit < a)}}

Rexploit
K := {(b, a) ∈ U | {(b, a) ∈ U | (pright − εK < b ≤ pright) ∧ (pexploit < a)}}

Let Rwhite be the part of U not covered by the union of the previous regions and define

Rexploit := Rexploit
1 ∪ · · · ∪Rexploit

K , Rexplore := U\(Rwhite ∪Rexploit) .

Notice that, for each k ∈ [K], each t ∈ N, and each (b, a) ∈ U , given that P[VrkK ,εK ,t ≤ Mt] = 1, it
holds that

E
[
u(b, a,Mt, VrkK ,εK ,t)

]
≤ E

[
u(b, 1,Mt, VrkK ,εK ,t)

]
= E

[
(Mt − b)I{b > VrkK ,εK ,t}

]
=

(
15

16
− b
)
FrkK ,εK

(b)

=
8

9
b

(
15

16
− b
)
· I[0, 3

16 ]
(b) +

1

8
· I( 3

16
, 3
4 ]
(b) +

εK
18

(
15

16
− b
)
· ΛrkK ,εK

(b)

+
8

3

(
b− 1

2

)(
15

16
− b
)
· I( 3

4
, 7
8
](b) +

(
15

16
− b
)
· I( 7

8
,1](b) ,

from which it follows that:
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• The pair of prices with highest expected utility is (rkK , 1) and

max
(b,a)∈U

E
[
u(b, a,Mt, VrkK ,εK ,t)

]
= E

[
u
(
rkK , 1,Mt, VrkK ,εK ,t

)]
≥ 1

8
+ cspike · εK .

• The maximum expected utility when b is not in the perturbation is

max
(b,a)∈U ,b/∈[rkK− εK

2
,rkK+

εK
2

]
E
[
u(b, a,Mt, VrkK ,εK ,t)

]
=

1

8
.

• The expected utility in the exploration region is upper bounded by

max
(b,a)∈Rexplore

E
[
u(b, a,Mt, VrkK ,εK ,t)

]
≤ E

[
u(rkK , pexploit,Mt, VrkK ,εK ,t)

]
≤ 1

8
− cplat .

Also note that:

• For each x ∈ [0, 1], if x /∈ [rkK − εK/2, rkK + εK/2], then P[VrkK ,εK ,t < x] = F (x).

Crucially, given that the setting is stochastic, without loss of generality, we can consider only de-
terministic algorithms. Fix a deterministic algorithm (At)t∈N := (Bt,At)t∈N, i.e., a sequence of
functions such that for each t ∈ N we have that At = (Bt,At) : ([0, 1] × {0, 1} × {0, 1})t−1 → U ,
with the understanding that A1 = (B1,A1) ∈ U . For each k ∈ [K], let (Bk

t , A
k
t )t∈[T ] be the prices

posted by the algorithm when the underlying instance is (Mt, VεK ,rkK ,t)t∈[T ], i.e., let (Bk
1 , A

k
1) :=

A1 and for each t ∈ [T ] with t ≥ 2 let (Bk
t , A

k
t ) := At(M1, I{VεK ,rkK ,1 ≤ Bk

1}, I{VεK ,rkK ,1 >

Ak
1}, . . . ,Mt−1, I{VεK ,rkK ,t−1 ≤ Bk

t−1}, I{VεK ,rkK ,t−1 > Ak
t−1}). Analogously, let (Bt, At)t∈[T ] be the

prices posted by the algorithm when the underlying instance is (Mt, Vt)t∈[T ]. For each k ∈ [K] and
each t ∈ [T ], let also W k

t := (I{VεK ,rkK ,t ≤ Bk
t }, I{VεK ,rkK ,t > Ak

t }) and Wt := (I{Vt ≤ Bt}, I{Vt >
At}).

Define the following auxiliary random variables. For each i, k ∈ [K], define

N left
i,k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ Rleft

i

}
and for each i ∈ [K], define

N left
i (t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rleft
i

}
.

Analogously, for each i, k ∈ [K], define

N top
i,k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ R

top
i

}
and for each i ∈ [K], define

N top
i (t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rtop
i

}
.
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Also, for each i, j, k ∈ [K] with i+ j ≤ K, define

N square
i,j,k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ R

square
i,j

}
and for each i, j ∈ [K] with i+ j ≤ K, define

N square
i,j (t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rsquare
i,j

}
.

Then, for each i, k ∈ [K], define

N triangle
i,k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ R

triangle
i

}
and for each i ∈ [K], define

N triangle
i (t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rtriangle
i

}
.

Moreover, for each i, k ∈ [K], define

Nexploit
i,k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ R

exploit
i

}
and for each i ∈ [K], define

Nexploit
i (t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rexploit
i

}
.

Finally, for each k ∈ [K], define

Nwhite
k (t) :=

t∑
s=1

I
{

As(M1,W
k
1 , . . . ,Ms−1,W

k
s−1) ∈ Rwhite

}
and for each i ∈ [K], define

Nwhite(t) :=

t∑
s=1

I
{

As(M1,W1, . . . ,Ms−1,Ws−1) ∈ Rwhite
}
.

Let Rk
T be the regret of the algorithm A up to the time horizon T when the underlying instance

is (V k
t ,Mt)t∈N and let RT be the regret of the algorithm A up to the time horizon T when the

underlying instance is (Vt,Mt)t∈N. Start by considering

1

K

∑
k∈[K]

Rk
T ≥

1

K

∑
k∈[K]

(
cspike · εK ·

(
T − E

[
Nexploit

k,k (T )
]))

=: (□) .
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We recall that if (X ,F) is a measurable space and X is a X -valued random variable, we denote
by PX the push-forward probability measure of P induced by X on X , i.e., PX [E] := P[X ∈ E],
for any E ∈ F . Also, with ∥·∥TV we denote the total variation norm for measures, and for any
two probability measures Q,Q′ defined on the same sample space, we denote their Kullback-Leibler
divergence by DKL(Q,Q′). Now, for each k ∈ [K], using Pinsker’s inequality [Tsy08, Lemma 2.5]
that upper bounds the difference in the total variation ∥·∥TV of two probability measures using their
Kullback-Leibler divergence DKL, we have that

∣∣∣E[Nexploit
k,k (T )]− E[Nexploit

k (T )]
∣∣∣ ≤ T∑

t=1

∣∣∣P[(Bk
t , A

k
t ) ∈ R

exploit
k ]− P[(Bt, At) ∈ Rexploit

k ]
∣∣∣

≤
T−1∑
t=1

∥∥∥P(M1,W1,...,Mt,Wt) − P(M1,Wk
1 ,...,Mt,Wk

t )

∥∥∥
TV

≤
T−1∑
t=1

√
1

2
DKL

(
P(M1,W1,...,Mt,Wt),P(M1,Wk

1 ,...,Mt,Wk
t )

)
=: (⋆k) .

Now, for each t ∈ [T − 1], each m1, . . . ,mt ∈ [0, 1], and each w1, . . . , wt ∈ {0, 1}2, defining a :=
At+1(m1, w1, . . . ,mt, wt) and b := Bt+1(m1, w1, . . . ,mt, wt), we have

DKL

(
P(Mt+1,Wt+1)|(M1,W1,...,Mt,Wt)=(m1,w1,...,mt,wt)),P(Mt+1,Wk

t+1)|(M1,Wk
1 ,...,Mt,Wk

t )=(m1,w1,...,mt,wt))

)
= DKL

(
P(I{Vt+1≤b},I{a<Vt+1}),P(I{V k

t+1≤b},I{a<V k
t+1})

)
·
(
I{(a, b) ∈ Rleft

k }+
k−1∑
j=1

I{(a, b) ∈ Rsquare
k,j }

+ I{(a, b) ∈ Rtriangle
k }+

k−1∑
i=1

I{(a, b) ∈ Rsquare
i,k }+ I{(a, b) ∈ Rtop

k }+ I{(a, b) ∈ Rexploit
k }

)
A direct verification (see Lemma C.3 in Appendix C) shows that, letting c2 := 65/9, for each k ∈ [K],
and i, j ∈ [K − 1], if (a, b) ∈ Rleft

k ∪Rsquare
k,j ∪Rtriangle

k ∪Rsquare
i,k ∪Rtop

k , then

DKL

(
P(I{Vt+1≤b},I{a<Vt+1}),P(I{V k

t+1≤b},I{a<V k
t+1})

)
≤ c2 · εK ,

likewise (see, again, Lemma C.3 in Appendix C), letting c1 := 2/81 such that, for each k ∈ [K], if
(a, b) ∈ Rexploit

k , then

DKL

(
P(I{Vt+1≤b},I{a<Vt+1}),P(I{V k

t+1≤b},I{a<Zk
t+1})

)
≤ c1 · ε2K .

For notational convenience, set

Pk
t+1,m1:t,w1:t

:= P(Mt+1,Wk
t+1)|(M1,Wk

1 ,...,Mt,Wk
t )=(m1,w1,...,mt,wt))

Pt+1,m1:t,w1:t
:= P(Mt+1,Wt+1)|(M1,W1,...,Mt,Wt)=(m1,w1,...,mt,wt))

and notice that, for each t ∈ [T − 1] such that t ≥ 2, using the chain rule for the Kullback-Leibler
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divergence [CT06, Theorem 2.5.3], we have that

DKL

(
P(M1,W1,...,Mt,Wt),P(M1,Wk

1 ,...,Mt,Wk
t )

)
= DKL

(
P(M1,W1,...,Mt−1,Wt−1),P(M1,Wk

1 ,...,Mt−1,Wk
t−1)

)
+

∫
([0,1]×{0,1}2)t−1

DKL

(
Pt,m1:t−1,w1:t−1 ,Pk

t,m1:t−1,w1:t−1

)
dP(M1,W1,...,Mt−1,Wt−1)(m1, w1, . . . ,mt−1, wt−1)

≤ DKL

(
P(M1,Wk

1 ,...,Mt−1,Wk
t−1)

,P(M1,W1,...,Mt−1,Wt−1)

)
+ c1 · ε2K · P

[
(At, Bt) ∈ Rexploit

k

]
+ c2 · εK ·

(
P
[
(Bt, At) ∈ Rleft

k

]
+

k−1∑
j=1

P
[
(Bt, At) ∈ Rsquare

k,j

]

+ P
[
(Bt, At) ∈ Rtriangle

k

]
+

k−1∑
i=1

P
[
(Bt, At) ∈ Rsquare

i,k

]
+ P

[
(Bt, At) ∈ Rtop

k

])
and iterating (and repeating essentially the same calculations in the last step where there is no
conditioning), we get

DKL

(
P(M1,W1,...,Mt,Wt),P(M1,Wk

1 ,...,Mt,Wk
t )

)
≤ c1 · ε2K · E

[
Nexploit

k (t− 1)
]

+ c2 · εK ·
(
E
[
N left

k (t− 1)
]
+

k−1∑
j=1

E
[
N square

k,j (t− 1)
]

+ E
[
N triangle

k (t− 1)
]
+

k−1∑
i=1

E
[
N square

i,k (t− 1)
]
+ E

[
N top

k (t− 1)
])

≤ c1 · ε2K · E
[
Nexploit

k (T )
]

+ c2 · εK ·
(
E
[
N left

k (T )
]
+

k−1∑
j=1

E
[
N square

k,j (T )
]

+ E
[
N triangle

k (T )
]
+

k−1∑
i=1

E
[
N square

i,k (T )
]
+ E

[
N top

k (T )
])

It follows that, for each k ∈ [K],

(⋆k) ≤ T ·
√

1

2
·
(
c1 · ε2K · E

[
Nexploit

k (T )
]
+ c2 · εK ·

(
E
[
N left

k (T )
]
+

k−1∑
j=1

E
[
N square

k,j (T )
]

+ E
[
N triangle

k (T )
]
+

k−1∑
i=1

E
[
N square

i,k (T )
]
+ E

[
N top

k (T )
]))1/2

≤ T ·
√

1

2
· εK ·

√
c1E

[
Nexploit

k (T )
]

18



+ T ·
√

1

2
·
√
εK ·

(
c2 ·

(
E
[
N left

k (T )
]
+

k−1∑
j=1

E
[
N square

k,j (T )
]

+ E
[
N triangle

k (T )
]
+

k−1∑
i=1

E
[
N square

i,k (T )
]
+ E

[
N top

k (T )
]))1/2

For notational convenience, define

Nexplore :=
∑
i∈[K]

N left
i (T ) +

∑
j∈[K]

N top
j (T ) +

∑
k∈[K]

N triangle
k (T ) +

∑
i,j∈[K], i+j≤K

N square
i,j (T )

and
Nexploit :=

∑
k∈[K]

Nexploit
k (T )

Notice that, after bringing the summation under the square root leveraging Jensen’s inequality, we
sum each of the terms N left

i (T ), N top
j (T ), N triangle

k (T ), N square
i,j (T ) at most two times, we get:

1

K

∑
k∈[K]

(⋆k) ≤ T · εK ·
√
c1
2
·

√
E
[
Nexploit

]
K

+ T ·
√
εK ·
√
c2 ·

√
E
[
Nexplore

]
K

≤ T · εK ·
√
c1
2
·
√
T

K
+ T ·

√
εK ·
√
c2 ·

√
E
[
Nexplore

]
K

.

It follows that

(□) = cspike · εK ·

T − 1

K

∑
k∈[K]

E[Nexploit
k,k ]


≥ cspike · εK ·

T − 1

K

∑
k∈[K]

E[Nexploit
k ]− 1

K

∑
k∈[K]

(⋆k)


= cspike · εK ·

T − E[Nexploit]

K
− 1

K

∑
k∈[K]

(⋆k)


≥ cspike · εK · T ·

1− 1

K
− εK ·

√
c1
2
·
√
T

K
−
√
εK ·
√
c2 ·

√
E
[
Nexplore

]
K

 =: (□̃) .

Now, if E
[
Nexplore] ≥ T 2/3 then

RT ≥ cplat · E
[
Nexplore] ≥ cplat · T

2/3 .
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Instead, if E
[
Nexplore] ≤ T 2/3, then

(□̃) ≥ cspike · εK · T ·

(
1− 1

K
− εK ·

√
c1
2
·
√
T

K
−
√
εK ·
√
c2 ·

√
T 2/3

K

)

= cspike ·
T

16
⌈
T 1/3

⌉ (1− 1⌈
T 1/3

⌉ − 1

16
⌈
T 1/3

⌉ ·√c1
2
·
√

T⌈
T 1/3

⌉ −√ 1

16
⌈
T 1/3

⌉ · √c2 ·
√

T 2/3⌈
T 1/3

⌉)
≥ 10−6 · T 2/3

for T ≥ 42, where in the last step we have plugged in the values of c1 and c2. Since we proved that

1

K

∑
k∈[K]

Rk
T ≥ 10−6 · T 2/3 ,

then, there exists an instance k ∈ [K] such that the regret of the algorithm over (Mt, VεK ,rkK ,t)t∈[T ]

is at least T 2/3, concluding the result.

3.3 Linear lower bound (IID)

Our last lower bound for the realistic setting shows that, in the i.i.d. setting, without smoothness or
independence between market values and taker’s valuations learning becomes impossible in general.

The idea of the proof is that, in an i.i.d. setting, it is sufficient to consider deterministic algorithms,
which, if market prices are always equal to 0 or 1, can only generate finitely many points over a
finite time horizon. Therefore, for any fixed deterministic algorithm and any small 0 < ε ≈ 0,
there exists a small interval [c, d] included in

[
1
2 − ε,

1
2 + ε

]
where the algorithm never plays over

a finite time horizon. Building an i.i.d. family of market values and takers’ valuations such that
(Mt, Vt) = (0, d) or (Mt, Vt) = (1, c) with probability 1/2 each, one can prove that the best fixed
bid/ask pair belongs to the open interval (c, d), that this pair always wins (roughly) at least 1/2
reward in expectation, and the algorithm (roughly) gains 0 in expectation.

Theorem 3.5. In the realistic-feedback online market-making problem, for each time horizon T ∈ N
and each δ ∈ (0, 1/2) and each (possibly randomized) algorithm for realistic-feedback online market
making, there exists a [0, 1]2-valued i.i.d. sequence (Mt, Vt)t∈[T ] of market values and takers’ valua-
tions such that the regret of the algorithm over the sequence (Mt, Vt)t∈[T ] is lower bounded by

RT ≥
(
1

2
− δ
)
· T .

Proof. Given that the sequence is (Mt, Vt)t∈[T ] i.i.d., without any loss of generality we can consider
deterministic algorithms to post prices (B1, A1), . . . , (BT , AT ). Fix a time horizon T ∈ N. We build
an instance where, for each t ∈ [T ], the random variable Mt takes values in {0, 1}. In this case,
notice that there are at most 8T sequences of feedback

(M1, I{B1 ≥ V1}, I{A1 < V1}), . . . , (MT−1, I{BT−1 ≥ VT−1}, I{AT−1 < VT−1})

and, consequently, the set P ⊂ [0, 1] where the algorithm posts prices up to time contains at most∑T−1
t=1 2 · 8t different prices. Let ε ∈ (0, 1/4). Given that P is finite, we can select 1/2 − ε <
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c < d < 1/2 + ε such that the closed interval [c, d] does not contain any point in P. Now, select
(M1, V1), . . . , (MT , VT ) as an i.i.d. sequence drawn uniformly in the set {(0, d), (1, c)}. Notice that,
for any time t ∈ [T ], a maker that posts (b, a) ∈ U such that c < b = a < d gains (deterministically)
at least 1/2 − ε regardless of the realization of (Mt, Vt) (if (Mt, Vt) = (0, d) then the maker always
sells while if (Mt, Vt) = (1, c) the maker always buys). On the other hand, the pair of prices
(Bt, At) posted by the algorithm at any time t ∈ [T ] is such that one and only one of the following
alternatives hold true:

• Bt ≤ At < c. In this case, the maker always sells to the taker, but with probability 1/2 the
maker gains at most 1/2 + ε (when (Mt, Vt) = (0, d)) and with probability 1/2 the maker loses
at least 1/2− ε (when (Mt, Vt) = (1, c)).

• Bt < c and d < At. In this case, then the maker never sells or buys (because the proposed
selling price is too high and the proposed buying price is too low) and hence the maker gains
zero.

• d < Bt ≤ At. In this case, then the maker always buys from the taker, but with probability
1/2 the maker gains at most 1/2+ε (when (Mt, Vt) = (1, c)) and with probability 1/2 the maker
loses at least 1/2− ε (when (Mt, Vt) = (0, d)).

Overall, the algorithm gains in expectation at most 0 when the underlying instance is (Mt, Vt)t∈[T ].
Hence, for any fixed pair of prices (b, a) ∈ U such that c < b = a < d, we have that

RT ≥ E

[
T∑
t=1

u(b, a,Mt, Vt)

]
− E

[
T∑
t=1

u(Bt, At,Mt, Vt)

]

≥
(
1

2
− ε
)
· T −

((
1

2
+ ε

)
· 1
2
−
(
1

2
− ε
)
· 1
2

)
· T =

(
1

2
− 2ε

)
· T .

Setting δ := 2ε and noticing that ε was chosen arbitrarily in the interval (0, 1/4), the conclusion
follows.

4 Full feedback

Recall the full feedback scenario where, at the end of every round t, the learner gets to observe
the value of Vt (in addition to Mt). In this section we prove tight upper and lower bounds of
order T (for the adversarial case) and of order

√
T for the smooth adversarial and the i.i.d. setting.

Although this feedback model is not very plausible, the characterization of its regret rates allows us
to quantify the cost of realistic feedback (i.e., how much we lose in the rate when moving from full
to realistic feedback).

4.1 Linear lower bound (Adversarial)

In this section we show that in the oblivious adversarial feedback model, when the sequence of
market values and taker’s valuations is an arbitrary and unknown deterministic sequence, any
(possibly randomized) algorithm is bound to suffer linear regret.

Theorem 4.1. In the full-feedback online market-making problem, for each time horizon T ∈ N,
each δ ∈ (0, 1/8), and each (possibly randomized) algorithm for full-feedback online market mak-
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ing, there exists a [0, 1]2-valued deterministic sequence (mt, vt)t∈[T ] of market values and taker’s
valuations such that the regret of the algorithm over the sequence (mt, vt)t∈[T ] is lower bounded by

RT ≥
(
1

4
− δ
)
T .

Proof. Fix a randomized algorithm (Bt,At)t∈N for the full-feedback setting, i.e., a sequence of
pairs of maps such that, for each time t ∈ N, it holds that (Bt,At) : [0, 1]

t ×
(
[0, 1] × [0, 1]

)t−1 →
U . Let (Yt)t∈N be the P-i.i.d. sequence of [0, 1]-uniform random seeds used by the algorithm
for randomization purposes. Then, if at the beginning of time t the feedback received by the
algorithm so far is (M1, V1), . . . , (Mt−1, Vt−1) ∈ [0, 1]2, while the sequence of uniform random
seeds in [0, 1] (used for randomization purposes) are Y1, . . . , Yt, the algorithm posts a pair of
buying/selling prices (Bt, At) ∈ U , where Bt := Bt(Y1, . . . , Yt,M1, V1, . . . ,Mt−1, Vt−1) and At :=
At(Y1, . . . , Yt,M1, V1, . . . ,Mt−1, Vt−1).

We recall that if (X ,F) is a measurable space and X is a X -valued random variable, we denote by
PX the push-forward probability measure of P induced by X on X , i.e., PX [E] := P[X ∈ E], for
any E ∈ F .

Fix ε ∈ (0, 1/18) and define c0 := 1−3ε
2 and d0 := 1+3ε

2 . Recursively for t = 0, 1, 2, . . . , define

B̄t+1 : [0, 1]
t+1 → [0, 1], (y1, . . . , yt+1) 7→ Bt+1

(
y1, . . . , yt+1 , (m1, v1), . . . , (mt, vt)︸ ︷︷ ︸

doesn’t appear when t=0

)
,

call the induced push-forward probability measure νt+1 := PB̄t+1(Y1,...,Yt+1), and{
ct+1 := ct, dt+1 := dt − 2ε

3t , mt+1 := 0, vt+1 := dt+1, if νt+1

[[
ct+dt

2 , 1
]]
≥ 1

2 ,

ct+1 := ct +
2ε
3t , dt+1 := dt, mt+1 := 1, vt+1 := ct+1, otherwise.

Then (B̄t)t∈N, (νt)t∈N, (ct)t∈N, (dt)t∈N, (mt)t∈N, (vt)t∈N are well-defined, and hence also the sequence
of pair of random (the randomness is induced by the sequence of uniform random seeds (Yt)t∈N)
prices (Bt, At)t∈N when the underlying instance is (Mt, Vt)t∈N := (mt, vt)t∈N , and satisfy:

• For each t ∈ N, dt − ct = ε/3t−1.

• For each t ∈ N, (1−3ε)/2 = c0 ≤ c1 ≤ · · · ≤ ct ≤ vt ≤ dt ≤ · · · ≤ d1 ≤ d0 = (1+3ε)/2.

• There exists (a unique) x⋆ in
⋂∞

t=0[ct, dt].

• For each t ∈ N, u (x⋆, x⋆,mt, vt) ≥ min(x⋆, 1− x⋆) ≥ (1−3ε)/2.

• For each t ∈ N, P
[
Bt > vt

]
≥ 1/2 or P

[
Bt < vt

]
≥ 1/2.

• For each t ∈ N, if P
[
Bt > vt

]
≥ 1/2 then mt = 0.

• For each t ∈ N, if P
[
Bt < vt

]
≥ 1/2 then mt = 1.

Now, if P
[
Bt > vt

]
≥ 1/2, given that At ≥ Bt and mt = 0, it follows that

E
[
u(Bt, At,mt, vt)

]
= E

[
−BtI{Bt ≥ vt}+AtI{At < vt}

]
≤ E

[
−BtI{Bt > vt}+AtI{At < vt}

]
≤ E

[
−vtI{Bt > vt}+ I{Bt < vt}

]
≤ 1− vt

2
≤ 1

2

(
1

2
+

3ε

2

)
.
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On the other hand, if P
[
Bt < vt

]
≥ 1

2 , given that At ≥ Bt and mt = 1, we have

E
[
u(Bt, At,mt, vt)

]
= E

[
(1−Bt)I{Bt ≥ vt}+ (At − 1)I{At < vt}

]
≤ E

[
(1− vt)I{Bt ≥ vt}

]
≤ 1− vt

2
≤ 1

2

(
1

2
+

3ε

2

)
.

In any case, it follows that, for each T ∈ N,

T∑
t=1

E
[
u(x⋆, x⋆,mt, vt)− u(Bt, At,mt, vt)

]
≥
(
1− 3ε

2
− 1

2

(
1

2
+

3ε

2

))
· T ≥

(
1

4
− 9

4
ε

)
· T .

Since ε was chosen arbitrarily in the interval (0, 1/18), the conclusion follows.

4.2
√
T lower bound (IID+IV+Lip)

We now state and prove the analogue of Theorem 3.4 in the full-feedback model. Namely, that in
the i.i.d. case, when market values and taker’s valuations are also independent between each other,
and their distribution is Lipschitz, the regret of any algorithm is Ω(

√
T ).

Theorem 4.2. In the full-feedback online market-making problem, for each L ≥ 8, each time horizon
T ≥ 3, and each (possibly randomized) algorithm for full-feedback online market making, there exists
a [0, 1]2-valued i.i.d. sequence (Mt, Vt)t∈N of market values and taker’s valuations such that for each
t ∈ [T ] the two random variables Mt and Vt are independent of each other, they admit a L-Lipschitz
cumulative distribution function, and the regret of the algorithm over the sequence (Mt, Vt)t∈[T ] is
lower bounded by

RT ≥
1

200

√
T .

Proof. Define the density

f : [0, 1]→ [0,∞) , x 7→ 8

9
· I[0, 3

16
](x) +

1

8

1(
15
16 − x

)2 · I( 3
16

, 3
4
](x) +

8

3
· I( 3

4
, 7
8
](x) ,

so that the corresponding cumulative distribution function F satisfies, for each x ∈ [0, 1],

F (x) =
8

9
x · I[0, 3

16
](x) +

1

8

1
15
16 − x

· I( 3
16

, 3
4
](x) +

8

3

(
x− 1

2

)
· I( 3

4
, 7
8
](x) + I( 7

8
,1](x) .

For each ε ∈ [−1
2 ,

1
2 ], define gε := ε·I[ 1

16
, 3
16

]−ε·I( 3
4
, 7
8
] and fε := f+gε. Notice that for each ε ∈ [−1

2 ,
1
2 ]

the function fε is still a density function whose probability distribution νε has a corresponding
cumulative distribution functions Fε satisfies, for each x ∈ [0, 1],

Fε(x) = F (x) + ε

(
x− 1

16

)
· I[ 1

16
, 3
16

](x) +
ε

8
· I( 3

16
, 3
4
](x) + ε

(
1

8
−
(
x− 3

4

))
· I( 3

4
, 7
8
](x) .

Consider an independent family {Mt, Vε,t}t∈N,ε∈[− 1
2
, 1
2
] such that for each t ∈ N the distribution µ

of Mt is a uniform on
[
7
8 , 1
]
, while for each ε ∈ [−1

2 ,
1
2 ] and each t ∈ N the distribution of Vε,t has
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fε as density. Then, notice that, for each ε ∈ [−1
2 ,

1
2 ], each t ∈ N, and each (b, a) ∈ U , given that

P[Vε,t ≤Mt] = 1, it holds that

E
[
u(b, a,Mt, Vε,t)

]
≤ E

[
u(b, 1,Mt, Vε,t)

]
= E

[
(Mt − b)I{b ≥ Vε,t}

]
=

(
15

16
− b
)
Fε(b)

=
8

9
b

(
15

16
− b
)
· I[0, 1

16
](b)

+

((
8

9
+ ε

)
b− ε

16

)(
15

16
− b
)
· I( 1

16
, 3
16

](b)

+

(
1

8
+

(
15

16
− b
)
ε

8

)
· I( 3

16
, 3
4
](b)

+

(
ε

(
7

8
− b
)
+

8

3

(
b− 1

2

))(
15

16
− b
)
· I( 3

4
, 7
8
](b)

+

(
15

16
− b
)
· I( 7

8
,1](b) ,

and consequently, if ε > 0 then

• max(b,a)∈U E
[
u(b, a,Mt, Vε,t)

]
= E

[
u
(

3
16 , 1,Mt, Vε,t

)]
= 1

8 + 3ε
32

• max(b,a)∈U ,b≥ 15
32
E [u(b, a,Mt, Vε,t)] = E

[
u
(
15
32 , 1,Mt, Vε,t

)]
= 1

8 + 15ε
256

• E
[
u
(

3
16 , 1,Mt, Vε,t

)]
− E

[
u
(
15
32 , 1,Mt, Vε,t

)]
= 9ε

256 ≥
1
32 · |ε|

while if ε < 0 then

• max(b,a)∈U E [u(b, a,Mt, Vε,t)] = E
[
u
(
3
4 , 1,Mt, Vε,t

)]
= 1

8 + 3ε
128

• max(b,a)∈U ,b≤ 15
32
E [u(b, a,Mt, Vε,t)] = E

[
u
(
15
32 , 1,Mt, Vε,t

)]
= 1

8 + 15ε
256

• E
[
u
(
3
4 , 1,Mt, Vε,t

)]
− E

[
u
(
15
32 , 1,Mt, Vε,t

)]
= − 9ε

256 ≥
1
32 · |ε|

Given that we are in a stochastic i.i.d. setting, without loss of generality we can consider only
deterministic algorithms. Fix a deterministic algorithm for the full-feedback setting (Bt,At)t∈N, i.e.,
a sequence of pairs of maps such that, for each time t ∈ N, it holds that (Bt,At) :

(
[0, 1]×[0, 1]

)t−1 →
U (with the convention that (B1,A1) is just an element of U). Then, if at the beginning of time t
the feedback received by the algorithm so far is (M1, V1), . . . , (Pt−1, Vt−1) ∈ [0, 1]2, the algorithm
posts a pair of buying/selling prices (Bt, At) ∈ U , where Bt := Bt(M1, V1, . . . , Pt−1, Vt−1) and
At := At(M1, V1, . . . , Pt−1, Vt−1).

Fix a time horizon T ≥ 3. For any ε ∈ [−1/2, 1/2], let N ε
T be the (random) number of times that

the algorithm has played in {(b, a) ∈ U | b ≥ 15/32} up to time T when the underlying instance
is (Mt, Vε,t)t∈N. In what follows, if Q and Q′ are two probability measures, we denote by Q ⊗ Q′

their product probability measure. Now, for any ε ∈ (0, 1/2), leveraging Pinsker’s inequality [Tsy08,
Lemma 2.5] that upper bounds the difference in the total variation ∥·∥TV of two probability measures
using their Kullback-Leibler divergence DKL, the chain rule for the Kullback-Leibler divergence
[CT06, Theorem 2.5.3], and the fact that the Kullback-Leibler divergence is upper bounded by the
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χ2 divergence Dχ2 [Tsy08, Lemma 2.7], we have that

E
[
N−ε

T −N
ε
T

]
=

T−1∑
t=1

(
P(M1,V−ε,1,...,Mt,V−ε,t)

[
B−1
t+1

([
15

32
, 1

])]
− P(M1,Vε,1,...,Mt,Vε,t)

[
B−1
t+1

([
15

32
, 1

])])

≤
T−1∑
t=1

∥∥P(M1,V−ε,1,...,Mt,V−ε,t) − P(M1,Vε,1,...,Mt,Vε,t)

∥∥
TV

=
T−1∑
t=1

∥∥∥∥∥
t⊗

s=1

(µ⊗ ν−ε)−
t⊗

s=1

(µ⊗ νε)

∥∥∥∥∥
TV

≤
T−1∑
t=1

√√√√1

2
DKL

(
t⊗

s=1

(µ⊗ ν−ε),

t⊗
s=1

(µ⊗ νε)

)

=
T−1∑
t=1

√
t

2
DKL (ν−ε, νε) ≤

T−1∑
t=1

√
t

2
Dχ2 (ν−ε, νε)

=
T−1∑
t=1

√
t

2

∫ 1

0

∣∣∣∣ fε(x)f−ε(x)
− 1

∣∣∣∣2 f−ε(x) dx

≤ ε
T−1∑
t=1

√
t ≤ 2ε

3
T 3/2 .

Now, notice that, for each ε ∈ (0, 1/2), the regret when the underlying instance is determined by
(Mt, Vε,t)t∈[T ] is lower bounded by E[N ε

T ]
1
32 |ε|, while the regret when the underlying instance is

determined by (Mt, V−ε,t)t∈[T ] is lower bounded by
(
T − E[N ε

T ]
)

1
32 |ε|. Hence, by setting ε := 3/4

√
T

(and noticing that ε ≤ 1/2 given that T ≥ 3), we have

max

(
E
[
N ε

T

] 1
32
ε,
(
T − E

[
N−ε

T

]) 1
32
ε

)
≥ 1

2

(
E
[
N ε

T

] 1
32
ε+

(
T − E

[
N−ε

T

]) 1
32
ε

)
≥ 1

64
ε
(
T − E

[
N−ε

T −N
ε
T

])
≥ 1

64
ε

(
T − 2ε

3
T 3/2

)
=

1

64

3

8

√
T ≥ 1

200

√
T ,

and hence the algorithm regrets at least 1
200

√
T in one of the two instances (Mt, Vε,t)t∈[T ] or

(Mt, V−ε,t)t∈[T ].

4.3
√
T upper bound (IID)

Next, we prove a O(
√
T ) upper bound matching Theorem 4.2 up to constants in the standard i.i.d.

case; i.e., without assuming neither independence between market values and taker’s valuations nor
smoothness of the joint distributions of these values. This is in sharp contrast with the realistic
setting, for which we proved in Theorem 3.5 a linear Ω(T ) lower bound on the regret. To do so,
we introduce the Follow The Approximately Best Prices (FTABP) algorithm, which at any time step
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Algorithm 5: FTABP (Follow The Approximately-Best Prices)
initialization: let B1 ← 1/2, A1 ← 1/2
for t = 1, 2, . . . do

Post prices (Bt, At);
Receive feedback (Mt, Vt);

Pick (Bt+1, At+1) ∈ U such that
1

t

t∑
i=1

Ui(Bt+1, At+1) ≥ sup
(b,a)∈U

1

t

t∑
i=1

Ui(b, a)−
1

t(t+ 1)
;

posts a pair of bid/ask prices that nearly maximizes the empirical reward observed so far. The
reason why we play an approximate maximum instead of the maximum stems from the fact that,
given that our expected reward function is not upper semicontinuous, said maximum may not exist.

Theorem 4.3. In the full-feedback online market-making problem, let T ∈ N be the time horizon
and assume that the sequence (Mt, Vt)t∈[T ] of market prices and takers’ valuations is an i.i.d. [0, 1]2-
valued stochastic process. Then, the regret of FTABP satisfies

RT ≤ 3 + c ·
√
T − 1 ,

where c ≤ 4590152.

Proof. To prove this result, we draw ideas from the somewhat related problem of online bilateral
trade (see, e.g., [CBCC+24a, Theorem 1]). Assume without loss of generality that T > 2. For any
t ∈ [T − 1] and all (b, a) ∈ U , a direct verification shows the validity of the following decomposition:

Ut(b, a) =

∫ Mt

b
I{Vt ≤ b} dλ+

∫ a

Mt

I{Vt > a}dλ

=

∫ 1

b
I{Mt ≥ λ, Vt ≤ b} dλ−

∫ b

0
I{Mt ≤ λ, Vt ≤ b} dλ

+

∫ a

0
I{Mt ≤ λ, Vt > a} dλ−

∫ 1

a
I{Mt ≥ λ, Vt > a} dλ ,

which, by Fubini’s theorem, further implies that

E
[
Ut(b, a)

]
=

∫ 1

b
P[Mt ≥ λ, Vt < b] dλ−

∫ b

0
P[Mt ≤ λ, Vt < b] dλ

+

∫ a

0
P[Mt ≤ λ, Vt > a] dλ−

∫ 1

a
P[Mt ≥ λ, Vt > a] dλ .

Now, fix any t ∈ [T − 1] and define, for any (b, a) ∈ U , the random variable

Lt(b, a) :=
1

t

t∑
i=1

Ui(b, a)− E
[
U1(b, a)

]
.
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Noting that the pair of prices (Bt+1, At+1) computed by Algorithm 5 at time t are independent
of (Vt+1,Mt+1) by our i.i.d. assumption, and that, for all (b, a) ∈ U and i ∈ [T ], by the same
assumption, E

[
Ui(b, a)

]
= E

[
U1(b, a)

]
, we have, for all (b, a) ∈ U ,

E
[
Ut+1(b, a)

]
−E
[
Ut+1(Bt+1, At+1)

]
≤ 1

t(t+ 1)
+E

[
1

t

t∑
i=1

Ui(Bt+1, At+1)

]
−E
[
Ut+1(Bt+1, At+1)

]
≤ 1

t(t+ 1)
+E

[
1

t

t∑
i=1

Ui(Bt+1, At+1)− E
[
Ut+1(Bt+1, At+1)|Bt+1, At+1

]]
=

1

t(t+ 1)
+E
[
Lt(Bt+1, At+1)

]
.

Using the decomposition we proved earlier, we get

Lt(Bt+1, At+1) ≤ sup
(b,a)∈U

Lt(b, a)

= sup
(b,a)∈U

(
1

t

t∑
i=1

Ui(b, a)− E[U1(b, a)]

)

= sup
(b,a)∈U

(∫ 1

b

(
1

t

t∑
i=1

I{Mi ≥ λ, Vi ≤ b} − P[Mi ≥ λ, Vi ≤ b]

)
dλ

−
∫ b

0

(
1

t

t∑
i=1

I{Mi ≤ λ, Vi ≤ b} − P[Mi ≤ λ, Vi ≤ b]

)
dλ

+

∫ a

0

(
1

t

t∑
i=1

I{Mi ≤ λ, Vi > a} − P[Mi ≤ λ, Vi > a]

)
dλ

−
∫ 1

a

(
1

t

t∑
i=1

I{Mi ≥ λ, Vi > a} − P[Mi ≥ λ, Vi > a]

)
dλ

)

We now upper bound each of the four addends inside the supremum on the right-hand side. For
any (b, a) ∈ U , the first term can be upper bounded by

sup
b′∈[0,1]

∫ 1

b′

(
1

t

t∑
i=1

I{Mi ≥ λ, Vi ≤ b′} − P[Mi ≥ λ, Vi ≤ b′]

)
dλ

= sup
b′∈[0,1]

∫ 1

b′

(
1

t

t∑
i=1

I{−Mi ≤ −λ, Vi ≤ b′} − P[−Mi ≤ −λ, Vi ≤ b′]

)
dλ

≤ sup
b′∈[0,1],x∈[−1,−b′]

∣∣∣∣∣1t
t∑

i=1

I{−Mi ≤ x, Vi ≤ b′} − P[−Mi ≤ x, Vi ≤ b′]

∣∣∣∣∣
≤ sup

(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{−Mi ≤ x, Vi ≤ y} − P[−Mi ≤ x, Vi ≤ y]

∣∣∣∣∣ ,

27



the second term can be upper bounded by

sup
b′∈[0,1]

(
−
∫ b′

0

(
1

t

t∑
i=1

I{Mi ≤ λ, Vi ≤ b′} − P[Mi ≤ λ, Vi ≤ b′]

)
dλ

)

≤ sup
(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{Mi ≤ x, Vi ≤ y} − P[Mi ≤ x, Vi ≤ y]

∣∣∣∣∣ ,
the third term can be upper bounded by

sup
a′∈[0,1]

∫ a′

0

(
1

t

t∑
i=1

I{Mi ≤ λ, Vi > a′} − P[Mi ≤ λ, Vi > a′]

)
dλ

≤ sup
(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{Mi ≤ x, −Vi < y} − P[Mi ≤ x, −Vi < y]

∣∣∣∣∣ ,
and the fourth term can be upper bounded by

sup
a′∈[0,1]

(
−
∫ 1

a′

(
1

t

t∑
i=1

I{Mi ≥ λ, Vi > a′} − P[Mi ≥ λ, Vi > a′]

)
dλ

)

≤ sup
(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{−Mi ≤ x, −Vi < y} − P[−Mi ≤ x, −Vi < y]

∣∣∣∣∣ .
Each of the terms can be upper bounded with high probability using some version of the bivariate
DKW inequalities (see Appendix D). Considering as an example the first term, define m0, c1, c2
as in Theorem D.1 and, for each t ∈ [T ], let εt :=

√
m0/t. Then, for each t ∈ N, after taking

expectation, and using Fubini theorem, we get

E

[
sup

(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{−Mi ≤ x, Vi < y} − P[−Mi ≤ x, Vi < y]

∣∣∣∣∣
]

≤ εt +
∫ 1

εt

P

[
sup

(x,y)∈R2

∣∣∣∣∣1t
t∑

i=1

I{−Mt ≤ x, Vt < y} − P[−Mt ≤ x, Vt < y]

∣∣∣∣∣ > ε

]
dε

≤ εt +
∫ 1

εt

c1e
−c2tε2 dε ≤ εt +

c1√
c2t

∫ ∞

0
e−uu−1/2 du =

(
√
m0 + c1

√
π

c2

)
1√
t
.

The same bound also holds for all the other terms. Finally, knowing that
∑T−1

t=1 t
−1/2 ≤ 2

√
T − 1,

we can upper bound the the regret as follows

RT = 2 + sup
(b,a)∈U

T−1∑
t=1

(
E
[
Ut+1(b, a)

]
− E

[
Ut+1(Bt+1, St+1)

])
≤ 2 +

T∑
t=1

1

t(t+ 1)
+

T−1∑
t=1

E[Lt(Bt+1, St+1)] ≤ 3 + 4

(
√
m0 + c1

√
π

c2

) T−1∑
t=1

1√
t

≤ 3 + 8

(
√
m0 + c1

√
π

c2

)√
T − 1 ≤ 3 + 4590152 ·

√
T − 1 .
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4.4
√
T upper bound (Adversarial+Lip)

We conclude with a last upper bound for the smoothed adversarial case.

Theorem 4.4. In the full-feedback online market-making problem, for any time horizon T ≥ 2, if
the sequence (Mt, Vt)t∈N of market prices and takers’ valuations is such that there exists L ≥ 2 such
that for each t ∈ [T ] the cumulative distribution function of Vt is L-Lipschitz, then, the regret of the
Hedge-in-the-continuum algorithm satisfies

RT ≤ c
√
T ln(T ) ln(L) ,

where c ≤
√
2 · (e− 2).

Proof. This is an immediate application of [CBCC+24b, Corollary 1 in Appendix A].

5 Additional related works

There exists a vast literature that treats various trading-related tasks as specific stochastic control
problems and solves them using techniques from stochastic control theory [Shr04, Shr05, CJP15,
Gat11]. However, most of that work assumes that the parameters of the underlying stochastic
process are known or have been fitted to historical data in a previous “calibration” step. Fitting
a distribution to data is challenging, especially in a market with hundreds of thousands of assets.
Moreover, the distribution-fitting process is typically unaware of the downstream optimization prob-
lem the distribution is going to be fed into, and thus is unlikely to minimize generalization error on
the downstream task. The field of online learning [CBL06, SS12, Haz16, Ora19] provides adversarial
or distribution-free approaches for solving exactly the kinds of sequential decision making problems
that are common in financial trading, and even though some recent research does apply these ap-
proaches to trading, they are still far from being widely adopted. An early contribution to this area is
Cover’s model of “universal portfolios” [Cov91], where a problem of portfolio construction is solved in
the case where asset returns are generated by an adversary. Cover showed that one can still achieve
logarithmic regret with respect to the best “constantly rebalanced portfolio”, that ensures the frac-
tion of wealth allocated to each asset remains constant through time. A long line of work has built up
on his model to handle transaction costs [BK97] and side information [CO96], as well as optimizing
the trade-off between regret and computation [HSSW98, BEYG00, BEYG03, ZAK22]. The problem
of pricing derivatives such as options has also been tackled using online learning, where the prices are
generated by an adversary as opposed to a geometric Brownian motion [DKM06, AFW12, ABFW13].
However, most of the problems considered in the online learning framework are from the point of
view of a liquidity seeker as opposed to a liquidity provider, such as a market maker. Here we begin
a rigorous study of possibly the simplest online market making setup: online market making with
instant clearing.

This work contributes to the existing body of research on first-price auctions and dynamic pricing
within the online learning paradigm, specifically the multi-armed bandit framework, which boasts a
substantial literature base across Statistics, Operations Research, Computer Science, and Economics
[ACBF02, LS20, BKS18, Kle04]. Our focus centers on environments exhibiting Lipschitz continuity
[Kle04, Agr95, AOS07] and how this property aids learning under different assumptions on the level
of information shared with the learner while bidding.

29



Smoothed adversary Popularized by [ST04, RST11, HRS20], smoothness analysis provides a
framework for analyzing algorithms in problems parameterized by distributions that are not “too”
concentrated. Recent advancements in the smoothed analysis of online learning algorithms include
contributions from [KMR+18, HHSY22, HRS21, BDGR22, DHZ23, CBCC+21, CBCC+23, BCC24,
CBCC+24b]. In this work, we exploit the connection between the smoothness of the takers’ valu-
ations distributions (i.e., the Lipschitzness of the corresponding cumulative distribution function,
or, equivalently, the boundedness of the corresponding probability density function) and Lipschitz-
ness of the expected utility. This property is crucial to achieving sublinear regret guarantees in
adversarial settings.

First-price auctions with unknown evaluations When restricted solely to the option of buy-
ing stock, our problem can be viewed as a series of repeated first-price auctions with unknown
valuations. This scenario has received prior attention within the context of regret minimization
[CBCC+24c, ACG21]. The present work leverages these existing results but applies them within a
more intricate setting. A recent work [CBCC+24c] explored this problem with varying degrees of
transparency, defined as the information revealed by the auctioneer, and provide a comprehensive
characterization. In our framework, the level of transparency is higher than that encountered in the
bandit case, orthogonal to the semi-transparent case, and less informative that the transparent case;
this positioning offers a novel perspective on the problem. Another work [ACG21] investigated the
repeated first-price auction problem within a fixed stochastic environment with independence as-
sumptions and provide instance-dependent bounds, we tackle a similar problem in Theorem 3.2 and
present distribution-free guarantees. Other types of feedback have been considered, e.g., the case
where the maximum bids (Vt)t∈[T ] form an i.i.d. process and are observed only when the auction is
lost [HZW24], for the case where the private evaluations (Mt)t∈[T ] are i.i.d. it is possible to achieve
regret Õ(

√
T ).

Dynamic pricing with unknown costs When considering solely the option of selling stock,
our problem aligns with the well-established field of dynamic pricing with unknown costs. This area
boasts a rich body of research, prior research analyzed the setting in which the learner has I items to
sell to N independent buyers and, with regularity assumptions of the underlying distributions, can
achieve a O((I log T )2/3) regret bound against an offline benchmark with knowledge of the buyer’s
distribution [BDKS15]. It is known that in the stochastic setting and, under light assumptions on
the reward function, achieve regret O(

√
T log T ) [KL03]; this result has been expanded upon by

considering discrete price distributions supported on a set of prices of unknown size K and it has
been shown to be possible to achieve regret of order O(

√
KT ) [CBCP19]. Our work on dynamic

pricing focuses on a scenario where the learner maintains an unlimited inventory and must incur an
unknown cost per trade before realizing any profit.

Online market making The Glosten-Milgrom model [GM85] introduces the concept of a market
specialist (the market maker) within an exchange who provides liquidity to the market. The spe-
cialist interacts with both informed traders (whose valuations are informed by future marker prices)
and uninformed traders (who places without any private valuation). The model’s objective is for the
specialist to identify informed traders and optimize the bid-ask spread accordingly. There has been
some work [Das05] towards a learning algorithm in an extended version of the Glosten-Milgrom
model for the market maker with a third type of “noisy-informed” trader, whose current valuation
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is a noisy version of the future market price. However, to the best of our knowledge, they do not
provide any regret guarantees.

Traditional finance Traditionally, the finance literature first fits the parameters of a stochastic
process to the market and then optimizes trading based on those parameters. For example, the
Nobel prize-winning Black-Scholes-Merton formula [BS73] assumes that the price of a stock follows
a geometric Brownian motion with known volatility and prices an option on the stock by solving a
Hamilton-Jacobi-Bellman equation to compute a dynamic trading strategy whose value at any time
matches the value of the option. Many similar formulae have since been derived for more exotic
derivatives and for more complex underlying stochastic processes (see [Hul17] for an overview). A
stochastic control approach has also been taken to solve the problem of “optimal trade execution,”
which involves trading a large quantity of an asset over a specified period of time while minimizing
market impact [AC01, BL98], to compute a sequence of trades such that the total cost matches a
pre-specified benchmark [Kon02], and also for the problem of market making [CJP15]. Once again,
the underlying stochastic process is assumed to be known. The two-step approach of first fitting
a distribution and then optimizing a function over the fitted distribution is very popular even for
simpler questions. For example, the problem of “portfolio optimization/construction” deals with
computing the optimal allocation of your wealth into various assets in order to maximize some
notion of future utility. The celebrated Kelly criterion [SKSA20, Tho75, Tho69, Hak75, MTZ12]
recommends one to use the allocation that maximizes the expected log return, and the mean-variance
theory [Mar52] (another Nobel prize-winning work) says one should maximize a sum of expected
return and the variance of returns (scaled by some measure of your risk tolerance). However both
assume that one knows the underlying distribution over returns.

6 Conclusions

We initiated an investigation of a market making problem under an online learning framework and
provided tight bounds on the regret under various natural assumptions. While the regret of various
problems related to financial trading was previously investigated, most of these results are from the
viewpoint of a liquidity seeker. Liquidity providers are crucial for the functioning of the markets,

and we believe our work may have some practical impact. There are many future directions worth
exploring and we list a few of them.

• What other feedback models are interesting? In this paper, we studied two extremes: when
the private valuations of the market participants are never available and when they are always
available. What can be done when they are sometimes available?

• What happens if we are unable to offload our positions immediately? What if we are allowed
to hold onto them for multiple rounds? Can we manage our inventory in a way that we come
out profitable in the end?

• Can we make a market in several related assets at the same time? How do we exploit the
relationship between assets to increase the liquidity of the market?
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A Notation

In this section, we collect the main pieces of notation used in this paper.

T Time horizon
K Step of the grid over [0, 1]
U Upper triangle over [0, 1]2

Market making

Mt Market price
Vt Taker’s valuation
Bt Bid presented by the learner
At Ask presented by the learner

First-price auction with unknown valuations

Zt Unknown valuation of the auctioned item
Ht Highest competing bid in the auction
Xt Bid presented by the learner

Dynamic pricing with unknown costs

Ct Unknown cost of the item for sale
Wt Buyer’s valuation of the item
Pt Price presented by the learner

Table 2: Notation

B Missing details of Section 3.1

Theorem 3.2. In the repeated first-price auctions with unknown valuations problem, let T ∈ N be
the time horizon and let (Zt, Ht)t∈[T ] be the [0, 1]2-valued stochastic process representing the sequence
of valuations and highest competing bids. Assume that one of the two following conditions is satisfied:

1. For each t ∈ [T ], the cumulative distribution function of Ht is L-Lipschitz, for some L > 0.

2. The process (Zt, Ht)t∈[T ] is i.i.d. and, for each t ∈ [T ], the two random variables Zt and Ht

are independent of each other.

Then, for any K ≥ 2 and any K-armed bandit algorithm A, letting RK
T be the regret of A when the

reward at any time t ∈ [T ] of any arm k ∈ [K] is (Zt − qk)I{qk ≥ Ht}, the regret of Algorithm 3
run with parameters K and A satisfies RT ≤ RK

T + L̃+1
2(K−1)T , with L̃ = L (resp., L̃ = 1) if Item 1

(resp., Item 2) holds. In particular, if T ≥ 2, by choosing K := ⌈T 1/3⌉ + 1 and, as the underlying
learning procedure A, an adapted version of Poly INF [AB10], the regret of Algorithm 3 run with
parameters K and A satisfies RT ≤ c · T 2/3 , where c ≤ L + 50 (resp. c ≤ 51) if Item 1 (resp.,
Item 2) holds.
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Proof. The regret RK
T of A, when the reward at any time t ∈ [T ] of an arm k ∈ [K] is (Zt−qk)I{qk ≥

Ht}, is defined by

RK
T = max

k∈[K]
E

[
T∑
t=1

(Zt − qk) · I{qk ≥ Ht}

]
− E

[
T∑
t=1

(Zt − qIt) · I{qIt ≥ Ht}

]
.

The regret RT of Algorithm 3 when the unknown valuations are Z1, . . . , ZT and the highest com-
peting bids are H1, . . . ,HT is

RT = sup
x∈[0,1]

E

[
T∑
t=1

(Zt − x) · I{x ≥ Ht}

]
− E

[
T∑
t=1

(Zt − qIt) · I{qIt ≥ Ht}

]
.

Hence RT = RK
T + δK , where δK is the discretization error

δK := sup
x∈[0,1]

E

[
T∑
t=1

(Zt − x) · I{x ≥ Ht}

]
− max

k∈[K]
E

[
T∑
t=1

(Zt − qk) · I{qk ≥ Ht}

]
.

We now proceed to bound the discretization error δK in the two cases:

1. If the cumulative distribution function of Ht is L-Lipschitz, for some L > 0, then for all
t ∈ [T ] the expected utility is ϕ(q) = E

[
(Zt − q) · I{q ≥ Ht}

]
is (L+ 1)-Lipschitz; indeed, for

all q, q′ ∈ [0, 1], if (without loss of generality) q > q′, then

∣∣ϕ(q)− ϕ(q′)∣∣ = ∣∣∣E[(Zt − q)I{Ht ≤ q} − (Zt − q′)I{Ht ≤ q′}
]∣∣∣

=
∣∣∣E[(Zt − q)I{q′ < Ht ≤ q}+ (q′ − q)I{Ht ≤ q′}

]∣∣∣
≤
(
P[Ht ≤ q]− P[Ht ≤ q′]

)
+ (q − q′) ≤ (L+ 1)(q − q′).

Define the supremum x⋆ ∈ [0, 1] in the definition of δK , which exists because ϕ is continuous
and [0, 1] is compact. Let k⋆ = argmink∈[K] |qk − x⋆| be the point in the grid closest to x⋆.
Since

max
k∈[K]

E

[
T∑
t=1

(Zt − qk) · I{qk ≥ Ht}

]
≥ E

[
T∑
t=1

(Zt − qk⋆) · I{qk⋆ ≥ Ht}

]
,

the function ϕ is (L+ 1)-Lipschitz, and |x⋆ − qk⋆ | ≤ 1/2(K−1) we obtain

δK ≤
T∑
t=1

(
E
[
(Zt − x⋆) · I{x⋆ ≥ Ht}

]
− E

[
(Zt − qk⋆) · I{qk⋆ ≥ Ht}

])
≤ L+ 1

2(K − 1)
T .

2. If the process (Zt, Ht)t∈[T ] is i.i.d. and for each t ∈ [T ] the two random variables Zt and Ht

are independent of each other, then for all t ∈ [T ] the expected utility is ψ(x) := (µ− x)F (x)
where µ := E[Zt] and F (x) := P[Ht ≤ x]. Fix η > 0. If supx∈[0,1] ψ(x) ≤ η, set k⋆ = K and
note that for each x ∈ [0, 1] we have that ψ(x) ≤ η ≤ ψ(1) + η = ψ(qk⋆) + η, which means
δK ≤ ηT . Otherwise, let x⋆η be such that supx∈[0,1] ψ(x)− ψ(x⋆η) ≤ η and notice that we can
assume that x⋆η ≤ µ because otherwise ψ(x⋆η) ≤ 0, hence we would have been in the first case
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when supx∈[0,1] ψ(x) ≤ η. The expected reward achieved by playing bid x⋆η can be controlled
with any point qk on the grid such that qk ≥ x⋆η as

ψ(x⋆η)− ψ(qk) = (µ− x⋆η)F (x⋆η)− (µ− qk)F (qk) ≤ (µ− x⋆η)F (qk)− (µ− qk)F (qk) ≤ qk − x⋆η .

Call k⋆ ∈ [K] the index of the arm closest to x⋆η such that qk⋆ ≥ x⋆η, note that qk⋆−x⋆η ≤ 1/(K−1).
Thus

δK ≤ ηT +
T∑
t=1

(
ψ(x⋆η)− ψ(qk⋆)

)
≤ ηT +

T∑
t=1

|x⋆η − qk⋆ | ≤ ηT +
T

K − 1
.

Given that η was chosen arbitrarily, taking the limit as η → 0, we have that

δK ≤
T

K − 1
.

Define L̃ = L in the first case and L̃ = 1 in the second case. Next, pick the Poly INF algorithm
[AB10] as the underlying learning procedure A and apply the appropriate rescaling of the utilities
x 7→ x+1

2 , which is necessary because the utility yields values in [−1, 1], while Poly INF was designed
for rewards in [0, 1], this costs a multiplicative factor of 2 in the regret guarantee. The regret RT of
Algorithm 3 can be upper bounded by

RT ≤ RK
T +

L̃

K − 1
· T ≤ 50 · T 2/3 +

L̃

K − 1
· T ≤ (50 + L̃) · T 2/3

whenever K = ⌈T 1/3⌉+1 and the second inequality comes from the regret guarantees of the rescaled
version of Poly INF [AB10, Theorem 11].

Theorem B.1. In the repeated dynamic pricing with unknown costs problem, let T ∈ N be the time
horizon and let (Ct,Wt)t∈[T ] be the [0, 1]2-valued stochastic process representing the sequence of costs
and buyer’s valuations. Assume that one of the two following conditions is satisfied:

1. For each t ∈ [T ], the cumulative distribution function of Wt is L-Lipschitz, for some L > 0.

2. The process (Ct,Wt)t∈[T ] is i.i.d. and, for each t ∈ [T ], the two random variables Ct and Wt

are independent of each other.

Then, for any K ≥ 2 and any K-armed bandit algorithm A, letting RK
T be the regret of A when the

reward at any time t ∈ [T ] of any arm k ∈ [K] is (qk − Ct)I{qk < Wt}, the regret of Algorithm 4
run with parameters K and A satisfies

RT ≤ RK
T +

L̃+ 1

2(K − 1)
T ,

with L̃ = L (resp., L̃ = 1) if Item 1 (resp., Item 2) holds. In particular, if T ≥ 2, by choosing
K := ⌈T 1/3⌉+1 and, as the underlying learning procedure A, an adapted version of Poly INF [AB10],
the regret of Algorithm 4 run with parameters K and A satisfies

RT ≤ c · T
2/3 ,

where c ≤ L+ 50 (resp. c ≤ 51) if Item 1 (resp., Item 2) holds.
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Proof. As in Theorem 3.2, we can bound RT for the two cases by controlling the discretization error
δK on the grid via Lipschitzness (Item 1) or leveraging the structure of the expected utility around
the maximum (Item 2). The bound on the regret RT of A follows from the same guarantees on
Poly INF [AB10].

C Missing details of Section 3.2

Lemma C.1. For any pair ε, r ∈ (0, 1]2, Λr,ε is 2
ε -Lipschitz.

Proof. Fix 0 ≤ b ≤ a ≤ 1, we consider all possible cases with respect to the interval R = R−∪R+ =
[r − ε/2, r] ∪ (r, r + ε/2] to prove that

|Λ(a)− Λ(b)| ≤ 2

ε
|a− b|

• If b, a /∈ R, then Λ(a) = Λ(b) = 0 and the property is trivially true.

• If b, a ∈ R− or b, a ∈ R+ then

|Λ(a)− Λ(b)| =
∣∣∣∣1− 2

ε
(r − a)− 1 +

2

ε
(r − b)

∣∣∣∣ = 2

ε
|a− b|

• If b ∈ R− and a ∈ R+ then

|Λ(a)− Λ(b)| =
∣∣∣∣1− 2

ε
(a− r)− 1 +

2

ε
(r − b)

∣∣∣∣ = 2

ε
|a− b− 2r| ≤ 2

ε
|a− b|

because |s− b| > 2r.

• If b ∈ R+ and a /∈ R then

|Λ(a)− Λ(b)| =
∣∣∣∣1− 2

ε
(b− r)

∣∣∣∣ = 2

ε

∣∣∣ε
2
+ r − b

∣∣∣ ≤ 2

ε
|a− b|

because ε/2 + r ≤ a. The same reasoning applies to the case b /∈ R and a ∈ R+.

• If b ∈ R− and a /∈ R then

|Λ(a)− Λ(b)| =
∣∣∣∣1− 2

ε
(r − b)

∣∣∣∣ = 2

ε

∣∣∣ε
2
− r + b

∣∣∣ = 2

ε

∣∣∣r − ε

2
− b
∣∣∣ ≤ 2

ε
|a− b|

because r − ε/2 ≤ −a. The same reasoning applies to the case b /∈ R and a ∈ R−.

Lemma C.2. For all pairs (b, a) ∈ U \ [pexploit, 1]2, it holds that

F (a)− F (b) ≥ 1

6
(a− b)
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Proof. Notice that, for any pair (b, a) ∈ U \ [pexploit, 1]
2,

F (a)− F (b) =
∫ a

b
f(x) dx ≥ min

c∈[b,a]
f(c)(a− b) ,

The minimum value of f is found when approaching 3/16 from the right, which yields f(c) → 1/6,
therefore F (a)− F (b) ≥ 1/6 · (a− b).

Lemma C.3. For all K ∈ N, k ∈ [K], If (a, b) ∈ Rexploit
k , then we have

DKL

(
P(I{Vt+1<b},I{a<Vt+1}),P(I{V k

t+1<b},I{a<V k
t+1}

)
)
≤ 2

81
· ε2K ,

while if (a, b) ∈ Rleft
k ∪Rsquare

k,j ∪Rtriangle
k ∪Rsquare

i,j ∪Rtop
k , then,

DKL

(
P(I{Vt+1<b},I{a<Vt+1}),P(I{V k

t+1<b},I{a<V k
t+1}

)
)
≤ 65

9
· εK .

Proof. Fix K ∈ N, εK = 1/16K and rkK = 3/16 + εK(k − 1/2), the KL divergence can be decomposed
as follows

DKL

(
P(I{Vt+1<b},I{a<Vt+1}),P(I{V k

t+1<b},I{a<V k
t+1}

)
)

= log

(
F (b)

FrkK ,εK
(b)

)
F (b) + log

(
1− F (a)

1− FrkK ,εK
(a)

)
(1− F (a))

+ log

(
F (a)− F (b)

FrkK ,εK
(a)− FrkK ,εK

(b)

)
(F (a)− F (b))

= log

(
F (b)

F (b) + εK
18 ΛrkK ,εK

(b)

)
F (b) + log

(
1− F (a)

1− F (a)− εK
18 ΛrkK ,εK

(a)

)
(1− F (a))

+ log

(
F (a)− F (b)

F (a)− F (b) + εK
18 (ΛrkK ,εK

(a)− ΛrkK ,εK
(b))

)
(F (a)− F (b)) = (⋆)

For sake of brevity, we will write Λ instead of ΛrkK ,εK
for the remainder of the proof. Note that the

first term is non-positive for any b ∈ [0, 1] , while the second term is non-negative for any a ∈ [0, 1].
Furthermore if Λ(b) = 0, then log(F (b)/F (b))F (b) = 0, likewise if Λ(a) = 0 then log(F (a)/F (a))F (a) =
0, if both Λ(b) = Λ(a) = 0 then the whole expression is zero.

Exploitation region If (a, b) ∈ Rexploit
k , then Λ(a) = 0 because all perturbations happen within

pleft and pright whereas a > pexploit, If in addition Λ(b) = 0 then the whole expression is zero,
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otherwise

(⋆) ≤ log

(
F (a)− F (b)

F (a)− F (b)− εK
18 Λ(b)

)
(F (a)− F (b)) + log

(
F (b)

F (b) + εK
18 Λ(b)

)
F (b)

= log

 1(
1− εKΛ(b)

18(F (a)−F (b)

)(F (a)−F (b))

+ log

 1(
1 + εKΛ(b)

18F (b)

)F (b)



= log

 1(
1− 1

18(F (a)−F (b))
εKΛ(b)

) 18(F (a)−F (b))
εKΛ(b)

· εKΛ(b)

18

+ log

 1(
1 + 1

18F (b)
εKΛ(b)

) 18F (b)
εKΛ(b)

· εKΛ(b)

18

 = (◦)

We know that for x > 1 both (1 − 1/x)x and (1 + 1/x)x are monotonically increasing functions
of x. Now, note that both F (a) − F (b) and F (b) are lower bounded by a constant. Indeed,
pleft ≤ b ≤ pright and a ≥ pexploit, thus F (a) − F (b) ≥ F (pexploit) − F (pright) and F (b) ≥ F (pleft).
Let c = min{F (pexploit)− F (pright), F (pleft)} = 1/6. Therefore we have that both

18(F (a)− F (b))
εKΛ(b)

≥ 18c

εKΛ(b)
> 1 and

18F (b)

εKΛ(b)
≥ 18c

εKΛ(b)
> 1

Now, using the monotonicity of the denominators, we can write

(◦) ≤ log

 1(
1− εKΛ(b)

18c

)c
+ log

 1(
1 + εKΛ(b)

18c

)c
 = c · log

 1

1−
(
εKΛ(b)
18c

)2


≤ c ·

(
εKΛ(b)
18c

)2
1−

(
εKΛ(b)
18c

)2 ≤ 4

3
· c ·

(
εKΛ(b)

18c

)2

=
4

3
· 1
c
· 1

182
· ε2K

Here, we first use the inequality that log x ≤ x−1, then we use the facts that Λ(b) ≤ 1 and εK ≤ 9c
(loose bound). In practice c = 1/6 and εK ≤ 9c = 3/2 holds for any K ∈ N.

Exploration regions If (a, b) ∈ Rleft
k ∪Rsquare

k,j ∪Rtriangle
k ∪Rsquare

i,k ∪Rtop
k , then consider each

term in (⋆) individually.

The first term is upper bounded by zero for any b ∈ [0, 1].

If a > pright, then Λ(a) = 0 and the second term is zero, otherwise the second term can be bounded
as follows:

log

(
1− F (a)

1− F (a)− εK
18 Λ(a)

)
(1− F (a)) ≤ εK

18
· Λ(a)

1− F (a)− εK
18 Λ(a)

(1− F (a))

=
εK
18
· Λ(a)

1− εK
18

Λ(a)
1−F (a)

≤ εK
18
· 1

1− εK
18

1
1−F (pright)

≤ εK
9
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where we used the inequality log x < x − 1 and the fact that 1
1− εK

18
F (pright)

≤ 1/2, which is always

true because εK ≤ 9(1− F (pright)) ≤ 81/11 holds for any K ∈ N.

Finally, we just need to bound the third term. We consider the following cases.

• First consider the case in which a − b ≤ εK , since F is Lipschitz with constant L we have
F (a)− F (b) ≤ LεK , thus

log

(
F (a)− F (b)

F (a)− F (b) + εK
18 (Λ(a)− Λ(b))

)
(F (a)− F (b)) = log

 1

1 + εK
18 ·

Λ(a)−Λ(b)
F (a)−F (b)

LεK

which is maximized when Λ(a)−Λ(b)
F (a)−F (b) is minimized, by leveraging the Lipschitzness of Λ from

Lemma C.1 together with the lower bound on F (a)− F (b) from Lemma C.2 we get

Λ(a)− Λ(b)

F (a)− F (b)
≥ −

2/εK(a− b)
1/6(a− b)

= − 12

εK

Substituting in the above, we get the upper bound:

log

(
1

1− εK
18

12
εK

)
LεK < 2LεK =

64

9
· εK

where L = 32/9 by the definition of F in Equation (2). For the case a = b, note that this term
is zero because Λ(a)− Λ(b) = 0 and can therefore be ignored.

• Next consider the opposite a−b > εK . By Lemma C.2 we know that F (a)−F (b) ≥ 1/6(a−b) ≥
εK/6. We use the inequality log x ≤ x− 1 to get:

log

(
F (a)− F (b)

F (a)− F (b) + εK
18 (Λ(a)− Λ(b))

)
(F (a)− F (b))

≤ −εK
18
· Λ(a)− Λ(b)

F (a)− F (b) + εK
18 (Λ(a)− Λ(b))

(F (a)− F (b))

≤ εK
18
· F (a)− F (b)
F (a)− F (b)− εK

18

=
εK
18
· 1

1− εK
18

1
F (a)−F (b)

≤ εK
18
· 1

1− εK
18

6
εK

=
1

12
· εK

In conclusion, the result holds with c1 = 2/81 and c2 = 1/9 + 64/9 = 65/9.

D DKW inequalities for Section 4.3

In this section we present two bivariate DKW inequalities that can be deduced as corollaries of
the VC-dimension theory [AB09, Theorem 4.9; see also Lemmas 4.4, 4.5, and 4.11 for the explicit
constants].

44



Theorem D.1. There exist positive constants m0 ≤ 1200, c1 ≤ 13448, c2 ≥ 1/576 such that,
if (Ω,F ,P) is a probability space, (Xn, Yn)n∈N is a P-i.i.d. sequence of two-dimensional random
vectors, then, for any ε > 0 and all m ∈ N such that m ≥ m0/ε2, it holds

P

[
sup
x,y∈R

∣∣∣∣∣ 1m
m∑
k=1

I{Xk ≤ x, Yk ≤ y} − P [X1 ≤ x, Y1 ≤ y]

∣∣∣∣∣ > ε

]
≤ c1e−c2mε2 ,

and

P

[
sup
x,y∈R

∣∣∣∣∣ 1m
m∑
k=1

I{Xk ≤ x, Yk < y} − P [X1 ≤ x, Y1 < y]

∣∣∣∣∣ > ε

]
≤ c1e−c2mε2 .
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Figure 5: Above, the perturbed density frkK ,εK
(x) and below, the perturbed cumulative density

FrkK ,εK
(x) with K = 3, k = 2, the highlighted portions show the effects of the perturbation ΛrkK ,εK

on the density function f(x) and on the cumulative distribution function F (x) respectively. The
dotted lines represent the base functions.
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Figure 6: (Not-to-scale) Division of the upper triangle U in regions with K = 3, to illustrate the
relative positions of the exploitation regions (in blue) and the exploration regions (in red, green and
lime).
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