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Abstract—Fires can cause severe damage to heritage buildings,
making timely fire detection essential. Traditional dense cabling
and drilling can harm these structures, so reducing the number
of cameras to minimize such impact is challenging. Additionally,
avoiding false alarms due to noise sensitivity and preserving the
expertise of managers in fire-prone areas is crucial. To address
these needs, we propose a fire detection method based on indirect
vision, called Mirror Target YOLO (MITA-YOLO). MITA-
YOLO integrates indirect vision deployment and an enhanced
detection module. It uses mirror angles to achieve indirect views,
solving issues with limited visibility in irregular spaces and
aligning each indirect view with the target monitoring area. The
Target-Mask module is designed to automatically identify and
isolate the indirect vision areas in each image, filtering out non-
target areas. This enables the model to inherit managers’ exper-
tise in assessing fire-risk zones, improving focus and resistance
to interference in fire detection. In our experiments, we created
an 800-image fire dataset with indirect vision. Results show that
MITA-YOLO significantly reduces camera requirements while
achieving superior detection performance compared to other
mainstream models.

Index Terms—Fire detection, Mask,Indirect vision,YOLOv8.

I. INTRODUCTION

Cultural relic buildings are valuable carriers of local history
and culture [1]. Fires in these buildings pose a severe risk, as
they could lead to irreplaceable losses [2]. Many memorials
and museums fall under this category, yet, to preserve their
historical integrity, they often lack conventional fire safety in-
stallations like sprinklers or smoke detectors [3]. In the digital
age, integrating deep learning algorithms for fire detection has
emerged as a potential solution [4]. However, due to structural
constraints and obstructions within these buildings, effective
camera coverage is challenging, requiring numerous cameras
and extensive cabling, which risks damaging the building’s
fabric.

To address these challenges, a deep learning-based detection
method is needed to expand each camera’s monitoring range,
ensure high detection accuracy, and minimize false alarms by
filtering out low-risk areas. This approach would enable effec-
tive fire monitoring while preserving the historical integrity
of cultural buildings. Traditional fire monitoring methods

and deep learning-based solutions represent two primary ap-
proaches. Conventional fire prevention relies on smoke alarms,
temperature sensors, and manual fire alarm buttons [5]. Smoke
alarms detect smoke particle concentration and issue alarms
when a threshold is reached. Temperature sensors monitor
environmental temperature fluctuations, signaling alarms when
temperatures exceed safe levels. Manual fire alarm buttons
allow individuals to alert the fire control center when a fire is
observed. However, installing smoke alarms and temperature
sensors in architectural relics can significantly impact the
building’s structure and appearance. These installations often
require extensive drilling and wiring, which risks structural
damage and compromises the aesthetic and historical integrity
of these sites. Thus, a more refined approach that reduces phys-
ical intervention while maintaining effective fire monitoring is
essential for safeguarding cultural heritage.

Conventional deep learning fire prevention solutions use
video surveillance combined with traditional deep learning
algorithms, which significantly reduce the types and quantities
of equipment needed, lessening the impact on the structure and
historical features of cultural buildings [6–8]. However, these
methods rely solely on direct vision, limiting the field of view
per camera. In irregularly shaped spaces, multiple cameras are
often required, which raises costs and still demands a lot of
wiring and drilling, impacting the preservation and aesthetic
value of these buildings.

To mitigate these issues, we propose a targeted fire preven-
tion detection method based on indirect vision, named Mirror
Target YOLO (MITA-YOLO). MITA-YOLO employs indi-
rect vision through mirrors alongside an enhanced detection
module. The approach uses wide-angle mirrors to extend the
camera’s field of view, allowing monitoring of occluded areas
without adding additional cameras. By strategically placing
mirrors in areas with high fire risk (targeted detection areas)
while avoiding low-risk zones (non-interest areas), this setup
achieves focused surveillance without disrupting the struc-
ture. In MITA-YOLO, the indirect vision generated by wide-
angle mirrors effectively visualizes occluded regions, greatly
reducing the number of cameras required in irregular spaces
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Fig. 1. When the camera is deployed at a position directly facing the gate and only direct vision is used, due to the irregular shape of the indoor space, the
direct vision of the camera is blocked. Among the four plants placed in this space, only two can be observed, and two plants are invisible in the occluded
area.

and avoiding structural damage from extensive wiring. By
adjusting the mirror arrangement to focus only on high-risk
areas, we ensure that each mirror image contains only targeted
detection zones, filtering out irrelevant regions. The proposed
Target-Mask module enhances this capability by segmenting
the indirect vision area in each image. Through a pre-trained
model, Target-Mask automatically identifies mirror boundaries
and uses these boundaries to restrict fire detection exclusively
to targeted areas, filtering out non-interest regions [9]. Conse-
quently, MITA-YOLO focuses solely on relevant targets within
the field of interest, improving detection accuracy and reducing
false alarms This targeted approach achieves higher detection
precision with lower missed detection rates, ensuring robust
fire monitoring while preserving the historical integrity of
cultural buildings.

The main contributions of this paper are summarized as
follows:

• We integrate indirect vision technology into deep
learning-based fire detection, leveraging mirrors to ex-
pand the camera’s field of view, reduce camera deploy-
ment in irregular spaces, and align indirect vision with
target detection zones.

• We propose a novel Target-Mask module that automat-
ically identifies indirect vision boundaries and filters
out irrelevant areas, enhancing detection accuracy and
robustness against noise interference.

• To evaluate our approach, we simulate real-world scenar-
ios in a cultural heritage building with irregular spaces,
constructing a unique fire detection dataset consisting of
800 images captured via indirect vision.

• Our comparative experiments with YOLOv8n [10]
demonstrate the effectiveness of our method, achieving
a 3.7% improvement in mAP50 and a 3% increase in
recall on the created dataset.

• MITA-YOLO achieves state-of-the-art performance in
fire detection with indirect vision, outperforming six
advanced deep learning models on our dataset.

II. RELATED WORK

A. Fire Detection in Heritage Buildings

Heritage buildings are invaluable legacies of human history
and culture, holding significant historical and cultural value.
They are not only the cornerstone of cultural heritage but also
vital resources for promoting tourism and economic develop-
ment. Protecting these buildings is a shared responsibility [11],
with fire prevention and detection identified as critical aspects
of their preservation [12]. Effective fire detection systems must
address potential hazards without compromising the original
structure or historical appearance of these buildings [13].

Traditional fire prevention methods, such as smoke alarms
and temperature sensors, have been widely used [14]. How-
ever, these approaches often suffer from delayed detection,
slow response times, and invasive installation requirements
that can damage heritage structures [15]. With advancements
in deep learning, computer vision has demonstrated efficiency
and accuracy in fire detection for conventional buildings [16–
18]. To further enhance fire detection capabilities, diffusion
models[19, 20] offer promising potential due to their ability to
generate high-quality feature representations and model com-
plex data distributions. Despite these advancements, current
systems remain inadequate for the unique challenges posed
by heritage buildings, such as maintaining structural integrity
and minimizing aesthetic impact [21].

To address these challenges, we propose MITA-YOLO, a
targeted fire detection method tailored for heritage buildings.
Our approach significantly reduces the number of cameras,
wiring, and pipe installations while enhancing detection accu-
racy and minimizing missed detections. MITA-YOLO ensures
effective fire prevention while preserving the historical and
architectural integrity of heritage buildings.

B. Detection Method Based on Indirect Vision

Indirect vision, commonly used in fields such as medicine,
industry, and transportation, has garnered significant atten-
tion for its ability to extend the field of view and observe
occluded targets. Chu et al.[22] demonstrated its application
in medicine, highlighting how adjusting mirror angles can



Fig. 2. After the mirrors were deployed, the corresponding target areas could be seen in the indirect vision in the mirrors, realizing the expansion of the
camera’s field of vision coverage and the alignment of the indirect vision and the target detection area.

align target areas for better observation. Similarly, Yan[23]
explored its use in industrial scenarios, such as assisting with
lane changes and reversing in vehicles. TCRL [24] proposes
a contrastive learning method that facilitates the interaction
of global and local features to enhance the semantic saliency.
Shahar et al. [25] further noted the role of rearview mirrors
in enabling drivers to monitor areas outside their direct line
of sight. However, while these studies emphasize indirect
vision’s role in aiding human perception, its application in
assisting computer vision remains underexplored. MFC [26]
proposes a frequency-domain filtering module to achieve dense
target feature enhancement. CFIL [27] proposes a frequency-
domain feature extraction module and feature interaction in
the frequency domain to enhance salient features. Existing
fire detection models [28–30] have achieved improvements
in object detection, particularly for small targets, but fail to
utilize the inherent benefits of mirror-based indirect vision.
Traditional approaches often conduct full-image detection,
introducing significant noise from irrelevant areas outside the
mirrored regions.

To address these limitations, MITA-YOLO introduces a
novel target-mask module that segments and isolates indirect
vision areas in images. This module automatically identifies
mirror edges, defines them as detection boundaries, and filters
out irrelevant regions. By leveraging the pre-aligned target ar-
eas of indirect vision, the method minimizes noise interference
and enhances detection accuracy. Furthermore, MITA-YO is
compatible with various advanced object detection models,
offering versatility and extensibility for broader applications.

III. PROPOSED METHOD

The deployment of indirect vision in the interior space of
cultural relic buildings and the addition of the Target-Mask
module in the detection network are the improvement points
proposed in this paper. Figure 3 illustrates the structure of the
updated algorithm model.

A. Deployment of Indirect Vision

Due to the limitations of various obstructions and the
irregular shape of the building layout, as well as the influence
of various obstructions and changes in observation angles,
the observation range of the camera through direct vision is

greatly limited, and the monitoring range of each camera is
extremely limited. Arranging a large number of cameras to
achieve effective prevention and control coverage will bring
large-scale pipe laying and wiring, which is very likely to
cause irreversible damage to cultural relic buildings. At the
same time, it is hoped that there is a more direct method
to distinguish between targeted target areas and non-targeted
areas to improve detection accuracy and reduce false alarms.

In order to solve the above problems, by reasonably arrang-
ing mirrors in irregular building spaces, the field of view of the
camera is expanded through the indirect vision in the mirrors.
Specifically, we use the reflection characteristics of mirrors
here. It can change the observer’s perspective without changing
the position of the object. The indirect vision generated by it
can provide people with more information. By adjusting the
position and angle of the wide-angle mirror, the problem of
blocked sight in an irregular space is solved, and the number of
cameras required is also greatly reduced. At the same time, by
adjusting the mirror to only observe the target monitoring area,
the alignment of the indirect vision and the target monitoring
area is achieved, that is, the indirect vision does not contain
non-interest areas. At the same time, by adjusting the angle
and focal length of the camera, the best image containing all
indirect visions can be obtained.

For safety considerations, our mirrors can use acrylic mir-
rors. At the same time, the mirrors can be easily clamped
on the building to avoid excessive nailing and fixing. At the
same time, the significant reduction of cameras also reduces
the corresponding amount of wiring and piping work. Reduces
the probability of damage to cultural relic buildings.

B. Target-Mask Module

There are many interference factors in fire scene detection.
For example, the surrounding environment may present a com-
plex scene with various background elements such as many
decorations and crowds, which will introduce a large amount
of redundant information and interference in the image. Due
to the excessive repetition and interference brought by these
background features, it will be challenging to distinguish fire
and smoke targets from complex backgrounds. The basic
principle of the Target-Mask module is to filter out irrelevant
feature information with the cooperation of indirect vision and



Fig. 3. First, deploy the mirror system in the irregular space. Then, input the detection images obtained by the camera into the improved detection model.
After the original images pass through the Target-Mask module, only the indirect vision area is retained. The processed images are then pushed into the
subsequent modules of the detection model. Finally, the results of targeted detection only for the indirect vision area are obtained.

enhance useful feature information at the same time, so that the
model can pay more attention to important areas in the image
in a more adaptive way. Traditional attention mechanisms,
such as CBAM (Convolutional Block Attention Module) [31],
emphasize important channels and spatial positions in feature
maps to improve the expressive ability of convolutional neural
networks. CA (Channel Attention) [32] focuses on the channel
dimension of feature maps to achieve the strengthening of
important channels, but they are all based on direct vision and
do not consider the coexistence of indirect vision and direct
vision and how to deal with their corresponding relationship.

In the fire monitoring tasks of heritage buildings, in order
to reduce drilling and wiring, we will utilize the indirect
field of view to expand the coverage area of a monocular
camera, thereby reducing the number of cameras required and
simultaneously achieving the alignment of the indirect field of
view with the target area. When it is necessary to handle the
monitoring tasks by using the indirect field of view, to solve
the problems of easy false detections and omissions of the
model in this new and complex situation, we have designed the
most targeted Target-Mask module and inserted this module
into the neck part between the image input and the backbone
network. As shown in Figure 4, the Target-Mask module
contains three sub-modules: Indirect Vision Recognizer (IVR),
Targeted Mask Generator (TMG), and Mask Blender (MB).
The IVR includes an indirect vision targeting network called
Target-Net. The weights of the built-in network of Target-Net
are transferred through pre-learning. During the first round of
training, the Target-Net identifies the indirect field of view in
the image and then transmits the read position information to
the TMG. Based on the obtained position information, the
TMG will generate a mask for the targeted area and then
pass it to the MB. After receiving the targeted mask, the MB
will fuse and superimpose the targeted mask with the passing
image data, so that the passing image will only retain the
image within the indirect field of view area. In this way, when
the subsequent image passes through the Target-Mask module,
the generated mask will be mapped onto the passing image,
and the image will only retain the area of the indirect field

of view, while other areas will be filtered out as non-interest
areas. This can ensure that only the indirect field of view
exists in the detected image, preventing confusion between
the indirect and direct fields of view. Meanwhile, through this
kind of partitioning and filtering, the model can focus more on
the indirect field of view area and eliminate the interference
from irrelevant areas. This targeted detection helps the model
accurately identify the fire characteristics within the target
area under complex environmental backgrounds. Meanwhile,
compared with the traditional CBAM and CA, the Target-
Mask is a brand-new module based on the indirect field of
view detection task. It not only has higher performance but
is also more efficient in terms of the required parameters.
Therefore, this paper chooses to introduce the Target-Mask
module. By introducing the Target-Mask module into the
neck part of YOLOv8, the model pays more attention to the
position information of the target area to improve the detection
accuracy of the target area and reduce false alarms.

IV. EXPERIMENT AND ANALYSIS

A. Datasets

We take the former site of the Military Affairs Committee
of the Guangdong District Party Committee of the Communist
Party of China located in China as the research object. It
happens to be a provincial-level cultural relic protection unit
that is troubled by fire prevention monitoring. Due to the par-
ticularity of cultural relic buildings, it is impossible to conduct
actual fire tests inside, which is also not allowed by relevant
cultural relic protection laws and regulations. Therefore, we
use 3DMAX to conduct virtual fire scenes for it for subsequent
fire detection experiments. By setting and adjusting the wide-
angle mirror in the model and then using 3DMAX’s rendering
method, we can obtain the corresponding scene image. In this
experiment, we set up four target monitoring areas and one
non-interest area. Through adjustment, the indirect vision in
the mirror has been aligned with the target monitoring area.
At the same time, due to the ceiling position of the venue,
there is no line passing through. The ceiling is made of non-
combustible concrete material and is also far away from the



Fig. 4. The Target-Mask is added to the neck between the data input and
the backbone network of YOLOv8. When the image data passes through the
Target-Mask module, the module will use the built-in network to find the
area location information of each indirect vision in the image, and then use
the obtained location information to generate a mask with corresponding area
boundary information. Then, the mask is mapped back to the original image.
After the mapping processing, the passed image only retains the pixels of the
target area and filters out other non-interest areas. Then, the optimized image
data is sent to the subsequent network of YOLOv8.

crowd. The probability of a fire occurring first in this area
tends to zero. Therefore, we do not set up a wide-angle mirror
to observe this area, that is, this area is not included in the
indirect vision and is used as a non-interest area. In this non-
interest area, in a small amount of data, we will hang some
flags as some noise in the detection to test the anti-interference
ability of the detection model. This is also a real situation in
the actual operation of the venue. Then, we collect images
with the camera facing the main entrance of the building to
form this fire data set based on indirect vision. This data set
contains a total of 800 fire pictures and is saved in JPG format
with a pixel size of 1645×2493; at the same time, in order to
verify the model’s ability to resist noise interference in non-
interest areas, 100 of them have added flags as noise to the
non-interest areas. Finally, they are randomly divided into a
training set of 560 images, a validation set of 120 images,
and a test set of 120 images. Some images of this data set are

Fig. 5. Example of experimental data.

shown in Figure 5.

B. Experimental Environment and Parameter Setting

The experimental operating system used in this study is Win
10, while PyTorch serves as the underlying framework for the
developed deep learning model. The detailed environment is
shown in Table I. The hyperparameters of the model training
phase include input image size is 640 × 640, the batch size
is 64, the optimizer is SGD stochastic gradient descent, and
the number of training rounds is 100 epochs. The learning
rate is initialized to 0.01, with momentum and weight decay
values set at 0.937 and 0.0005, respectively. All other training
parameters use the default values of the YOLOv8n model. In
addition, the official pretraining weight files provided in this
study were used to enhance the generalization of the trained
model.

TABLE I
TRAINING ENVIRONMENT AND HARDWARE PLATFORM PARAMETERS

TABLE.

Parameters Configuration

CPU I9-12490F
GPU NVIDIA GeForce RTX 4060

GPU memory size 8G
Operating systems Win 10

Deep learning architecture Pytorch1.9.2 + Cuda11.4 + cudnn11.4
simulation software 3DMAX

C. Evaluation Metrics

The main metrics used in this paper are Precision, Recall,
and mAP. Precision refers to the proportion of samples that
are actually positive in all the samples predicted by the model
as positive categories, which measures the accuracy of the
model in the prediction of positive categories; Recall refers
to the proportion of samples that are actually positive in
all the samples that are correctly predicted by the model as
positive categories, which measures whether the model is able
to efficiently find all the positive categories of samples; The



TABLE II
COMPARATIVE EXPERIMENTS ON ATTENTION MECHANISMS.

Model P(%) mAP50(%)

YOLOv8 87.1 87.9
+CBAM [31] 87.8 88.6
+CA [32] 89.2 88.5
+SA [33] 88.9 88.9
+Taget-Mask 93.8 91.6

mAP is a commonly used evaluation metric in target detection
tasks that combines the precision and recall curves of the
model on different categories and calculates the average value,
which measures the detection performance of the model on
multiple categories, and is often used to evaluate the overall
effectiveness of target detection algorithms. Where mAP50
denotes the mAP value at the 50% loU threshold.

D. Comparative Experiments on Different Attention Mecha-
nisms

Table II presents the outcomes of integrating different atten-
tion mechanisms, encompassing four distinct types: CBAM,
CA, SA [33]and Target-Mask. YOLOv8 incorporating the
Target-Mask module yields the most advantageous results.
Specifically, in comparison to the original YOLOv8, it exhibits
a significant improvement of 6.7% in Precision. Additionally,
in the comparison of Precision indicators, Target-Mask out-
performs the CBAM module by 5%. This indicates that in
scenarios where detection is conducted using indirect vision,
Target-Mask has the greatest enhancement in detection perfor-
mance compared to other attention modules. This is primarily
attributed to the fact that Target-Mask directly filters out the
interference from non-interest areas, effectively reducing the
false alarm rate of the model. In the fire prevention monitoring
task of cultural relic buildings, high Precision can reduce the
frequency of false alarms, thereby avoiding unnecessary waste
of human resources and on-site panic.

E. Ablation Experiment

To verify the functions and mutual influences of each sub-
module in Target-Mask, this ablation experiment was carried
out under the same dataset and training parameters. The results
are shown in Table III and Figure 6. In the case of not
adding any sub-modules, it represents the normal detection
performance of the baseline model YOLOv8n. When only the
MB sub-module is removed among the three sub-modules in
Target-Mask, although the TMG generates the targeted mask,
without the MB sub-module to superimpose and filter the
generated mask with the original data, the original image
passes through smoothly, and the detection performance is the
same as that of the baseline model YOLOv8n. When only
the TMG sub-module is removed, it means that no mask will
be generated and passed to the MB module anymore, so the
original data will also pass through smoothly without being
processed. However, when the IVR sub-module is removed,
since the TMG doesn’t obtain the position data of the indirect

TABLE III
RESULTS OF ABLATION EXPERIMENT.

IVR TMG MB P(%) mAP50(%)

– – – 87.1 87.9
✓ ✓ – 87.1 87.9
✓ – ✓ 87.1 87.9
✓ ✓ ✓ 93.8 91.6

Fig. 6. Results of ablation experiment.

field of view, it will assume that there is no indirect field of
view in the original image and thus generate a completely
black mask, which is passed to the MB sub-module to be
superimposed with the original image data. This will filter
out the entire image. It can be seen that when the three sub-
modules exist simultaneously, the performance of the model
is improved and enhanced. Therefore, from the experimental
results, it can be known that the three sub-modules of Target-
Mask are interdependent. If any one of them is removed, the
desired effect will not be achieved.

F. Comparison with Other Models

To comprehensively investigate the performance of the
improved model proposed in this paper in the fire detection
task, a series of comparison experiments were carried out
with other renowned target detection models under iden-
tical dataset and training parameters. These models com-
prise YOLOv3-Tiny [34], YOLOv5s [35],YOLOv7-Tiny [36],
YOLOv8n [37], YOLOv8n-World [38], and the most recent
YOLOv9-Tiny [39]. The results of these comparison exper-
iments are presented in Table IV and Figure 7. Evidently,
in comparison to other models, the improved model attains
the highest values for the three evaluation metrics of recall
rate, precision rate, and mAP50, which robustly validates the
effectiveness of model improvement. When comparing Target-
YOLO with the baseline model YOLOv8n, it is observed
that the mAP50 value of the improved model is increased
by 3.7%. This significant increase clearly indicates that the
performance of the improved model in determining the target
position and classifying the target has been effectively en-
hanced. Simultaneously, the recall rate of the improved model
is increased by 3%. The elevation in recall rate implies that the



TABLE IV
RESULTS OF COMPARATIVE EXPERIMENTS.

Model recall P(%) mAP50(%) FPS

YOLOv3-Tiny [34] 73.4 74.2 73.9 17.5
YOLOv5s [35] 82.8 83.8 84.6 17.8
YOLOv7-Tiny [36] 79.6 85.3 83.8 24.4
YOLOv8n [37] 84.6 87.1 87.9 36.6
YOLOv8n-World [38] 85.4 87.6 88.8 34.3
YOLOv9-Tiny [39] 85.2 90.2 89.5 23.8
MITA-YOLO 87.6 93.8 91.6 30.2

Fig. 7. Results of comparative experiments.

model’s capability to capture important target objects has been
augmented. In the fire monitoring of cultural relic buildings,
the omission of fire objects or abnormal events may lead to
grave consequences. However, a model with a high recall
rate can significantly reduce this risk. Through the Target-
Mask module, the model can completely focus on detecting
the target area, which greatly enhances the image feature
extraction ability of key areas and the anti-interference ability
with respect to non-interest areas. Consequently, the model is
able to better capture the feature information of target objects,
thereby upgrading the overall performance of the model.

G. Experimental Effect Verification

In Figure 8, we select some detection result samples from
the test set to clearly show the differences brought about by
model improvement. The left column is the original image
obtained by the camera, the middle is the detection result
using the YOLOv8n model, and the right column shows
the detection result of the MITA-YOLO model. First, in the
detection of data a by YOLOv8n, it can recognize the fire
target in the indirect vision in the lower right corner. At the
same time, it can also recognize that the images in the two
flags in front of the non-interest area cannot be used as fire
targets. However, the pattern in the white flag at the rear is
mistakenly identified as a fire target; while the detection of
data a by MITA-YOLO, in addition to being able to recognize
the fire target in the indirect vision in the lower right corner,
since the non-interest area is directly filtered out, it will not
be affected by the noise in the non-interest area at all and
generate false alarms. Secondly, in the detection of data b by

Fig. 8. Comparison of detection results between YOLOv8n and MITA-YOLO.

YOLOv8n, the small fire target in the indirect vision in the
lower right corner is missed; while in the detection of data b
by MITA-YOLO, since only the indirect vision is used as the
targeted area, the concentration is stronger, so that the small
fire target in the indirect vision in the lower right corner is
successfully recognized.

From the above comparison results, we can know that
although YOLOv8 can understand through training that the
patterns in the flag should not be recognized as fire targets,
false alarms will still occur when some unfamiliar flag shapes
or positions change. The detection area of MITA-YOLO is
targeted, and it can directly inherit the experience of artificial
priori to remove the interference of irrelevant areas, greatly
reducing the false alarm rate and bringing great convenience to
the actual work of the venue. On the other hand, since MITA-
YOLO only focuses on detecting indirect vision areas and pays
greater attention to the targets in the indirect vision area, in the
scenario based on indirect vision, its overall detection accuracy
is higher and the missed detection rate is also greatly reduced.

V. CONCLUSION

In this study, we constructed a fire detection method based
on indirect vision, namely MITA-YOLO. The innovation of
this method resided in proposing the transfer of the advan-
tages of indirect vision to the field of deep learning. Firstly,
through the judicious arrangement of indirect vision, not only
was the monitoring range of a single camera expanded, but
also alignment with the target monitoring area was achieved.
Then, by employing the Target-Mask module we designed,
the model could automatically identify each indirect vision
as the targeted detection area and simultaneously filter out
other non-interest areas. This design not only significantly
reduced the number of cameras and mitigated the damage



to the structure of cultural relic buildings and the impact
on historical features; moreover, the model could fully in-
herit the manager’s judgment on the area where a fire was
likely to occur first, thereby enhancing the concentration
and anti-interference ability of the fire detection model. Our
method not only improved the fire protection of cultural relic
buildings but also diminished the impact of false alarms on
venue operations. Based on the indirect vision fire data set
we created, when compared with the original YOLOv8 and
other mainstream detection models, the experimental results
demonstrated that MITA-YOLO exhibited higher accuracy and
robustness in the detection task of indirect vision. In addition
to being applicable to fire detection of cultural relic buildings,
this detection method could also be utilized in various projects
that required the expansion of monocular vision coverage, had
prior experience in area division that needed to be inherited,
or had cost-saving demands.

In the field of deep learning in the future, the way to
better combine indirect vision for computer vision tasks still
needed further improvement. It was hoped that by continu-
ously improving the generator of indirect vision, expanding
more data sets, and designing detection modules with higher
compatibility, it could be applied in more complex scenarios.
In the long run, just as the automotive industry had widely
employed the indirect vision of rearview mirrors to generate
tremendous application value, the application potential of
indirect vision and its paired detection model in deep learning
should be continuously explored and tapped, with the hope of
addressing task requirements in more diverse scenarios.

REFERENCES
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