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A B S T R A C T
In computer vision, estimating the six-degree-of-freedom pose from an RGB image is a fundamental
task. However, this task becomes highly challenging in multi-object scenes. Currently, the best
methods typically employ an indirect strategy, which identifies 2D and 3D correspondences, and
then solves with the Perspective-n-Points method. Yet, this approach cannot be trained end-to-end.
Direct methods, on the other hand, suffer from lower accuracy due to challenges such as varying
object sizes and occlusions. To address these issues, we propose SEMPose, an end-to-end multi-object
pose estimation network. SEMPose utilizes a well-designed texture-shape guided feature pyramid
network, effectively tackling the challenge of object size variations. Additionally, it employs an
iterative refinement head structure, progressively regressing rotation and translation separately to
enhance estimation accuracy. During training, we alleviate the impact of occlusion by selecting
positive samples from visible parts. Experimental results demonstrate that SEMPose can perform
inference at 32 FPS without requiring inputs other than the RGB image. It can accurately estimate the
poses of multiple objects in real time, with inference time unaffected by the number of target objects.
On the LM-O and YCB-V datasets, our method outperforms other RGB-based single-model methods,
achieving higher accuracy. Even when compared with multi-model methods and approaches that use
additional refinement, our results remain competitive.

1. Introduction
In the field of machine vision, six degrees of freedom

(6D) pose estimation plays a crucial role. This technology
can measure an object’s position (coordinates along the x,
y, and z axes) and orientation (roll, pitch, and yaw angles).
Therefore, it can help robots accurately understand objects’
spatial posture, which is crucial in robots grasping, mov-
ing, or manipulating objects[1]. During these processes, it
is common to encounter scenes with multiple objects to
estimate. These objects often vary in size and may occlude
each other. However, despite significant advancements in 6D
pose estimation technology, existing methods still struggle
to effectively handle the multi-object scenes.

Specifically, in recent years, with the deepening research
in deep learning [3, 6, 26], methods for 6D pose estima-
tion have been continuously emerging[2, 4, 5, 7, 8, 9].
At the same time, physically-based rendering techniques
have narrowed the gap between synthetic and real images,
improving the model’s generalization ability in real-world
scenarios [28]. In this context, deep learning-based methods
have made significant advancements in the task of 6D pose
estimation, surpassing traditional methods based on point-
to-point features in terms of both accuracy and speed [27].
Among these methods, the most direct approach is to directly
regress the 6D pose of objects from input images, without
the need for additional steps or models for feature point
detection or matching [5, 7, 9, 21]. These methods are

⋆This work was supported in part by the National Natural Science
Foundation of China under Grant 62273226 and Grant 61873162.

∗Corresponding author: Shibei Xue
liu.xin@sjtu.edu.cn (X. Liu); wh631q@sjtu.edu.cn (H. Wang);

shbxue@sjtu.edu.cn (S. Xue); Dezong.Zhao@glasgow.ac.uk (D. Zhao)

suitable for both single-object and multi-object scenarios.
And they are easy to deploy and train. However, they still
lag behind state-of-the-art methods in terms of accuracy
due to occlusions and varying object sizes[30, 29]. Indirect
methods achieve higher accuracy by utilizing the idea of
correspondence [23, 24, 12, 11, 32]. These methods first
predict the key points of objects in 2D images and then match
them with corresponding 3D key points. Finally, these cor-
respondences are input into the Perspective-n-Points (PnP)
algorithm or RANSAC algorithm to obtain the object’s pose.
This two-stage approach has improved accuracy. However,
these methods also have drawbacks: on the one hand, due
to the non-differentiable nature of PnP and RANSAC, these
methods cannot be directly trained and deployed end-to-
end; on the other hand, even if only one object is pro-
cessed, the iterative process of RANSAC can be very time-
consuming[32].

In addition, there are some other challenges in existing
methods when it comes to multi-object pose estimation
tasks. On the one hand, existing methods mostly design
networks for specific types of objects, making it difficult to
generalize to other types of objects. Therefore, to improve
accuracy on the YCB-V dataset, many methods train 21
pose estimation models for 21 different types of objects
[8, 14]. This means high system complexity and resource
consumption when deployed in practice. On the other hand,
in multi-object scenarios, there are differences in size and
scale between objects, which can lead to imbalance and bias
during network training[30].

To address these issues, we propose SEMPose, a Single
End-to-end network for Multi-object Pose estimation. Our
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network requires no additional information besides RGB im-
ages, such as 3D models[33], depth images[34], object sym-
metry information[10], or ground-truth RoI information[9].

Specifically, we adopt a backbone-neck-head structure
that enables the entire network to be trained end-to-end. To
address the issue of varying object scales in multi-object
scenes, we designed a texture-shape guided feature pyramid
structure to hierarchically capture the fused features of ob-
jects with different sizes. For the issue of object occlusions,
we use the unoccluded parts of objects to guide positive sam-
ple selection during sampling. What’s more, to improve the
accuracy of pose prediction, we employ different strategies
for predicting rotation and translation, and design rotation
iteration head and translation iteration head. This enables
our network to learn coordinate features closely related to
translation and fully utilize contextual information for a
more comprehensive perspective in prediction.

Overall, our contributions are as follows:
• We propose an end-to-end pose estimation network

that can simultaneously handle multiple objects. Our
approach requires only one model for multiple objects,
and the runtime is independent of the number of
objects. Additionally, we train the network using only
raw RGB data.

• We propose a texture-shape guided feature pyramid
structure that can handle objects of varying sizes and
enhance feature extraction. Additionally, we decouple
the prediction of rotation and translation, and propose
iteration heads. This enables our network to improve
the accuracy of rotation and translation predictions.
Compared to GDR-Net, we reduce the average trans-
lation estimation error by 2.47cm and the average
rotation estimation error by 8.87◦.

• In methods using only RGB images, we achieve
state-of-the-art performance on the LM-O and YCB-
V datasets. Even compared to multi-model methods
and those utilizing 3D models, SEMPose can achieve
similar or even superior performance.

2. Related Works
2.1. Indirect Methods.

The mainstream methods for 6D pose estimation adopt
an indirect regression approach. Some of these methods
[8, 23, 24, 12, 11, 32] are based on correspondence prin-
ciples. They first detect feature points of the target object
in an image, then match these feature points with corre-
sponding features in a known model. Subsequently, they
utilize algorithms such as RANSAC or Perspective-n-points
(PnP) to compute the 6D pose of the target object based on
the matched point pairs. For example, PVNet [8] predicts
pixel-level vectors pointing to key points, then uses these
vectors to determine the key points’ positions through a
RANSAC-based voting mechanism. Finally, PnP is used for
calculation. Some methods [23, 24] predict belief maps and

affinity maps for each object category. Belief maps represent
the likelihood of keypoint locations, while affinity maps
represent the correlation between 3D bounding box vertices
and the corresponding center point. Then, 2D key points are
extracted from the predicted belief maps, and finally, the
PnP algorithm is used to calculate the pose. Although these
methods can effectively reduce the impact of occlusions,
the non-differentiable nature of RANSAC/PnP prevents end-
to-end training and deployment; moreover, an increase in
the number of objects in the scene significantly raises the
demand for computational resources.

Another group of methods is based on the idea of tem-
plate matching[33, 35]. These methods first construct a 2D
template database using a 3D model, and then compare
the input image with all templates in the database using a
sliding window algorithm to estimate the pose. The accuracy
of this approach improves with an increase in the number
of templates, but it also has several significant drawbacks:
firstly, obtaining accurate 3D models can be challenging in
practical applications; secondly, as the number of objects
to be estimated in the scene increases, the size of the tem-
plate database will also increase, leading to a significant
decrease in processing speed; thirdly, changes in texture
due to occlusions or lighting can greatly decrease accuracy.
Overall, these indirect methods exhibit several limitations in
scenarios involving multiple objects.
2.2. Direct Methods.

The most straightforward way to estimate 6D pose is to
directly regress the 6D pose[4, 5, 7, 9, 21]. For instance,
some methods [4, 7, 21] evaluate the matching loss by
calculating the average squared distance between points on
the model under the ground truth pose and the estimated
pose. This approach assesses the discrepancies in model
points across the two poses to enhance the accuracy of
6D pose estimation. PoET[9] utilizes a neural network to
generate multi-scale feature maps from monocular RGB
images and detect objects. These features and bounding
boxes are then processed through a Transformer, ultimately
predicting the 6D pose of each object using separate rotation
and translation heads. GDR-Net[5] first predicts intermedi-
ate geometric feature maps, including dense correspondence
maps and surface area attention maps. A 2D convolutional
Patch-PnP module then directly regresses the 6D pose from
these geometric features.

These methods are mostly end-to-end, which is benefi-
cial for training and deployment. However, because convo-
lutional neural networks directly regress the 6D pose from
images, they face challenges in learning varying degrees
of translation dependencies and struggle with effectively
handling occlusions[17, 29]. Therefore, there is significant
room for improvement in the accuracy of these methods.

3. Proposed Method
Given an RGB image I containing N objects  =

{

𝑖 ∣ 𝑖 = 1, 2,⋯ , 𝑁
}, our goal is to simultaneously esti-

mate their 6D poses 𝐏𝑖 =
[

𝐑𝑖|𝐭𝑖
]

, 𝑖 = 1, 2,⋯ , 𝑁 , where,
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Figure 1: Framework of SEMPose. Given an input RGB image I, SEMPose first uses Resnet50 to extract basic features. Then,
SEMPose employs a Texture-Shape Guided Feature Pyramid Network (TS-FPN) to fuse these features and produce feature maps
at five different scales. Finally, SEMPose uses four heads to predict the categories, bounding boxes, rotations, and translations of
the objects. After post-processing, the poses are obtained. Additionally, the network’s training process relies on a positive sample
sampling strategy guided by the visible parts.

𝐑𝑖 ∈ 𝑆𝑂 (3) is the rotation matrix, and 𝐭𝑖 ∈ ℝ3 is the
translation vector. The entire 6D pose 𝐏𝑖 represents a rigid
transformation from the camera coordinate system to the
object coordinate system.

Figure 1 provides an overview schematic of our proposed
method. Our SEMPose consists of three parts: the backbone,
neck, and heads. The core components include our designed
TS-FPN, pose estimation heads, and a positive sample selec-
tion strategy guided by visible parts.

In the following, we will first (Sec. 3.1) provide a de-
tailed introduction to our TS-FPN. Then (Sec. 3.2), we will
explain our regression strategy for rotation and translation.
Following this (Sec. 3.3), we will describe how we designed
the network to implement this strategy. Finally (Sec. 3.4), we
will introduce our network’s approach to handling occlusion,
specifically by sampling from the visible parts.
3.1. Texture-Shape Guided Feature Pyramid

Network
In neural networks, lower layers typically capture basic

features of input images, such as edges, colors, and texture
information. These features vary with the rotation of objects.
Therefore, by capturing these high-frequency details, neural
networks can better understand the orientation of objects,
leading to more accurate estimates of rotation. As the net-
work deepens, the feature maps abstract the input data more

deeply, depicting more complex edge structures and specific
shapes. This low-frequency information often reflects the
overall shape and larger structural features of objects, which
is crucial for estimating the translation. This is because the
global shape and position information of objects help the
network determine the center and position of the object.
For example, when an object moves, changes are mainly
related to low-frequency information, while high-frequency
information such as edges and textures remains relatively
stable.

Traditional Feature Pyramid Networks[6], by integrating
the high-resolution information from lower levels with the
semantically rich information from higher levels, can better
handle targets of different scales. This has achieved good
results in the field of object detection, but remains insuf-
ficient for pose estimation[15, 16]. Therefore, we propose
a Texture-Shape-guided Feature Pyramid Networks (TS-
FPN) to further integrate high and low-frequency features.
Compared to FPN, in the top-down process, we do not
simply use an upsampling and addition approach. As shown
in Figure 2, our TS-FPN concatenates the upsampled low-
frequency features  𝑖

𝑙 ∈ ℝ𝐶𝑖×𝐻𝑖×𝑊𝑖 with the high-frequency
features  𝑖

ℎ ∈ ℝ𝐶𝑖×𝐻𝑖×𝑊𝑖 along the channel dimension.
It then captures the spatial dependencies of H and W to
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Figure 2: The structure diagram of texture shape feature fusion
module.

generate attention weights. These attention weights are ap-
plied to  𝑖

𝑙 and  𝑖
ℎ separately, and then the weighted high-

frequency/low-frequency features are added back to 𝑖
𝑙 / 𝑖

ℎ to
obtain enhanced features ̂ 𝑖

ℎ/̂ 𝑖
𝑙 . This enhancement process

can be described as:
̂ 𝑖
ℎ =  𝑖

ℎ ⊕ ( 𝑖
𝑙 ⊗ 𝜎(𝐶𝑜𝑛𝑣(𝐶-𝑃𝑜𝑜𝑙(𝐶( 𝑖

ℎ,
𝑖
𝑙 ))))),

̂ 𝑖
𝑙 =  𝑖

𝑙 ⊕ ( 𝑖
ℎ ⊗ 𝜎(𝐶𝑜𝑛𝑣(𝐶-𝑃𝑜𝑜𝑙(𝐶( 𝑖

ℎ,
𝑖
𝑙 ))))),

(1)

where⊕ refers to element-wise addition,⊗ denotes element-
wise multiplication, 𝜎 (⋅) represents the sigmoid function,
𝐶𝑜𝑛𝑣 (⋅) stands for convolution with a kernel size of 7,
𝐶-𝑃𝑜𝑜𝑙 (⋅) indicates a channel pool, and 𝐶 (⋅) means the
concatenation along the channel dimension.

After capturing the spatial dependencies, we rotate
̂ 𝑖
ℎ/̂ 𝑖

𝑙 90◦ counterclockwise along the H-axis/W-axis[25].
We then concatenate the features processed in the same
way and generate attention weights between C and W,
and between C and H, in parallel channel attention. These
weights are used to reweight the corresponding enhanced
features, followed by the inverse rotation. Finally, we take
the average to obtain the final fused features  𝑖

𝑓𝑢. The cross-
channel feature fusion can be described as:

̃ 𝑖
1 = ̂ 𝑖

ℎ,𝑟+𝐻
⊗ 𝜎(𝐶𝑜𝑛𝑣(𝑍-𝑃𝑜𝑜𝑙(𝐶(̂ 𝑖

ℎ,𝑟+𝐻
, ̂ 𝑖

𝑙,𝑟+𝐻
)))),

̃ 𝑖
2 = ̂ 𝑖

𝑙,𝑟+𝐻
⊗ 𝜎(𝐶𝑜𝑛𝑣(𝑍-𝑃𝑜𝑜𝑙(𝐶(̂ 𝑖

ℎ,𝑟+𝐻
, ̂ 𝑖

𝑙,𝑟+𝐻
)))),

̃ 𝑖
3 = ̂ 𝑖

ℎ,𝑟+𝑊
⊗ 𝜎(𝐶𝑜𝑛𝑣(𝑍-𝑃𝑜𝑜𝑙(𝐶(̂ 𝑖

ℎ,𝑟+𝑊
, ̂ 𝑖

𝑙,𝑟+𝑊
)))),

̃ 𝑖
4 = ̂ 𝑖

𝑙,𝑟+𝑊
⊗ 𝜎(𝐶𝑜𝑛𝑣(𝑍-𝑃𝑜𝑜𝑙(𝐶(̂ 𝑖

ℎ,𝑟+𝑊
, ̂ 𝑖

𝑙,𝑟+𝑊
)))),

(2)

 𝑖
𝑓𝑢 =

1
4
(̃ 𝑖

1,𝑟−𝐻
+ ̃ 𝑖

2,𝑟−𝐻
+ ̃ 𝑖

3,𝑟−𝑊
+ ̃ 𝑖

4,𝑟−𝑊
), (3)

where 𝑍-𝑃𝑜𝑜𝑙 (⋅) represents the max and average pooling
along the 0th dimension[25], and the subscripts 𝑟+𝐻 , 𝑟+𝑊 ,
𝑟−𝐻 , and 𝑟−𝑊 indicate 90◦ rotations: 𝑟+𝐻 for counterclockwise
along the H, 𝑟+𝑊 for counterclockwise along the W,𝑟−𝐻 for
clockwise along the H, and 𝑟−𝑊 for counterclockwise along
the W.

Finally, our TS-FPN performs downsampling on the
output side. It ultimately outputs feature maps at five scales,
fused with shape and texture information, for further object
detection and pose estimation.

3.2. Pose Regression Strategy
After obtaining the multi-scale features extracted by TS-

FPN, we need to utilize these features for 6D pose estima-
tion. For the rotation, our primary focus is on the object’s
appearance in the image, as rotation can significantly alter
the object’s appearance[36]. Correspondingly, the estima-
tion of the translation focuses more on the distance of the
object’s center point relative to the camera, as this directly
affects the size of the object in the image[37]. Therefore, the
rotation and translation should be estimated using different
strategies.

In the regression of rotation, all representations in four-
dimensional or lower real Euclidean spaces are discontin-
uous. This means the widely used 3D and 4D represen-
tations (Euler angles and quaternions) are discontinuous,
which poses challenges for neural network learning[22]. To
address this, we adopted a higher-dimensional 6D repre-
sentation. Compared to traditional representations, its main
advantages are simplicity and continuity in most cases,
and it has been proven effective in many studies[5, 22]. In
the 6D representation, a rotation is represented by two 3D
vectors, which correspond to two orthogonal directions in
3D space. Our strategy is to directly regress the 6D vector
𝒓6𝑑 =

(

𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6
) through the rotation head. Then,

we can recover two 3D vectors from the 6D vector, i.e.,
𝒂1 =

(

𝑟1, 𝑟2, 𝑟3
)

,𝒂2 =
(

𝑟4, 𝑟5, 𝑟6
). Next, we construct

three standard orthogonal bases 𝒆1,𝒆2, and 𝒆3 from these two
3D vectors. Finally, we use these three base vectors as the
columns of the rotation matrix to obtain the final rotation
matrix R =

[

𝒆𝑇1 , 𝒆
𝑇
2 , 𝒆

𝑇
3
]. This process can be represented

as:
𝒆1 = 𝛷

(

𝒂1
)

, 𝒆2 = 𝛷
(

𝒆1 × 𝒆2
)

, 𝒆3 = 𝒆1 × 𝒆2, (4)
where 𝛷 (⋅) denotes vector normalization, while the symbol
× denotes the vector cross product.

After obtaining the rotation matrix, we use a geodesic
loss shown in Equ. 5 to train the rotation head[20]. This
formula quantifies the difference in angles between the pre-
dicted rotation and the actual rotation.

𝑟𝑜𝑡_6𝑑 = arc cos

⎛

⎜

⎜

⎜

⎝

𝑡𝑟
(

𝐑𝑇
𝑔𝑡𝐑𝑝𝑟𝑒𝑑

)

− 1

2

⎞

⎟

⎟

⎟

⎠

. (5)

To validate the effectiveness of this representation, we also
experimented with the quaternion representation. Quater-
nions have two different representations for the same rota-
tion. Therefore, we normalized both the predicted and actual
quaternions by ensuring that the real part is non-negative.
Additionally, we utilized a loss function shown in Equ. 6,
which is essentially similar to the geodesic loss[20]. The
comparison of the effectiveness of the two representation
methods is provided later in Sec. 4.

𝑟𝑜𝑡_𝑞𝑢𝑎𝑡 = 2arc cos
(

|

|

|

⟨

q𝑔𝑡,q𝑝𝑟𝑒𝑑
⟩

|

|

|

)

. (6)
For the translation, due to the translational invariance of

convolutional operations, the network’s prediction of abso-
lute coordinates is not as effective as relative coordinates[21].
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(a) The part for initialization. (b) The part for iteration.
Figure 3: The structure of the rotation head.

Therefore, we did not directly regress the translation vector
𝐭 =

(

𝑡𝑥, 𝑡𝑦, 𝑡𝑧
)𝑇 like in PoET. First, the transformation be-

tween the camera coordinate system and the pixel coordinate
system can be expressed as 𝑡𝑧

(

𝑐𝑥, 𝑐𝑦, 1
)𝑇 = 𝐾

(

𝑡𝑥, 𝑡𝑦, 𝑡𝑧
)𝑇 ,

where 𝑐𝑥 and 𝑐𝑦 represent the coordinates of the projected
3D point on the image, and K represents the camera intrinsic
parameters. Based on this, we decompose (

𝑡𝑥, 𝑡𝑦, 𝑡𝑧
)𝑇 into

the projected points (

𝑐𝑥, 𝑐𝑦
)𝑇 and 𝑡𝑧. Then, we decompose

(

𝑐𝑥, 𝑐𝑦
)𝑇 into the anchor point coordinates (𝑎𝑥, 𝑎𝑦

)𝑇 and the
relative coordinates (Δ𝑥,Δ𝑦)𝑇 . Therefore, we can obtain the
translation by predicting the offset (Δ𝑥,Δ𝑦)𝑇 and 𝑡𝑧, i.e.,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑥 = (𝑎𝑥+Δ𝑥−𝑝𝑥)⋅𝑡𝑧
𝑓𝑥

,

𝑡𝑦 =
(

𝑎𝑦+Δ𝑦−𝑝𝑦
)

⋅𝑡𝑧
𝑓𝑦

,

𝑡𝑧 = 𝑡𝑧,

(7)

where 𝑓𝑥, 𝑓𝑦, 𝑝𝑥 and 𝑝𝑦 are obtained from the camera’s

intrinsic matrix 𝐾 =
⎛

⎜

⎜

⎝

𝑓𝑥 0 𝑝𝑥
0 𝑓𝑦 𝑝𝑦
0 0 1

⎞

⎟

⎟

⎠

. During training, we
use the translation losses as

𝑡𝑟𝑎𝑛1 =
‖

‖

‖

(

𝑡𝑥, 𝑡𝑦
)

𝑝𝑟𝑒𝑑 ,
(

𝑡𝑥, 𝑡𝑦
)

𝑔𝑡
‖

‖

‖2
, (8)

𝑡𝑟𝑎𝑛2 =
‖

‖

‖

𝑡𝑧,𝑝𝑟𝑒𝑑 , 𝑡𝑧,𝑔𝑡
‖

‖

‖1
. (9)

3.3. Pose Estimation Heads
In the previous section, we have established the re-

gression strategies for rotation and translation. When im-
plementing these strategies into the network structure, we

need to regress r6𝑑 and (

Δ𝑥,Δ𝑦, 𝑡𝑧
)𝑇 separately. The most

straightforward approach is similar to the heads in the object
detection task[15, 16]. Specifically, it involves the use of
class head and bounding box head, as illustrated in Figure
1. Four 3x3 convolutions are employed to further refine the
feature maps produced by the TS-FPN. Lastly, a convolu-
tional layer outputs the prediction results. However, com-
pared to the object detection task, the 6D pose estimation
task requires higher accuracy. Additionally, regressing the
translation relies on coordinate features, which are difficult
to extract with ordinary convolutions. Hence, we do not
use a structure similar to the class head to regress rotation
and translation. Inspired by EfficientPose[21], we adopt an
iterative refinement approach to approximate the final result.
Based on this, we design the rotation head and translation
head. Taking the rotation head as an example, its structure is
illustrated in Figure 3.

The approximation approach is divided into two steps.
Firstly, the pose initialization module (PInM) is utilized to
refine the feature maps 𝑖 ∈ ℝ𝐶×𝐻×𝑊 , 𝑖 ∈ {1, 2, 3, 4, 5}
from TS-FPN. This refinement process results in obtain-
ing 𝒓𝑝𝑟𝑒, which is then further processed to obtain 𝒓𝑖𝑛𝑖𝑡.Specifically, the 𝑥 and 𝑦 coordinates of 𝑖 are normalized
to the range [0, 1] and then mapped to [−1, 1]. This process
generates two channels with coordinate features, which are
then concatenated with 𝑖. The concatenated data passes
through a standard convolutional layer. Subsequently, it is
processed through three depthwise separable convolutional
layers, along with group normalization and the Swish acti-
vation function, resulting in 𝒓𝑝𝑟𝑒. 𝒓𝑝𝑟𝑒, retaining the prelim-
inary raw features, is utilized for further iterations. Finally,
the number of channels is reduced to 6 using a depthwise
separable convolutional layer to obtain 𝒓𝑖𝑛𝑖𝑡. Thus, we have
completed the addition of coordinate features and the initial
utilization of overall features. Our first step can be repre-
sented as:

𝒓𝑝𝑟𝑒 = 𝐷𝑆-𝐶𝑜𝑛𝑣3
(

𝐶𝑜𝑛𝑣
(

𝐶
(

𝑖, 𝐶𝑜𝑜𝑟𝑑
(

𝑖
))))

, (10)
𝒓𝑖𝑛𝑖𝑡 = 𝐷𝑆-𝐶𝑜𝑛𝑣

(

𝒓𝑝𝑟𝑒
)

, (11)
where 𝐷𝑆-𝐶𝑜𝑛𝑣 (⋅) refers to a depthwise separable convo-
lution and 𝐶𝑜𝑜𝑟𝑑 (⋅) indicates the operation of extracting
coordinate information described above.

Secondly, we concatenate 𝒓𝑝𝑟𝑒 and 𝒓𝑖𝑛𝑖𝑡 along the channel
dimension. Then we feed the concatenated feature map into
a pose iteration module (PItM) consisting of two depthwise
separable convolutions. After that, we use another depthwise
separable convolution to compress the channels, producing
Δ𝒓. At last, we add Δ𝒓 to 𝒓𝑖𝑛𝑖𝑡, obtaining the optimized
𝒓6𝑑 . The advantage of this structure is that it not only
considers the initial rotation estimation but also integrates
features from the early layers of the network. This helps
to utilize more contextual information and offers a more
comprehensive perspective for making predictions. Thus,
we have completed one iteration. Our second step can be
represented as:

Δ𝒓 = 𝐷𝑆-𝐶𝑜𝑛𝑣3
(

𝐶
(

𝒓𝑝𝑟𝑒, 𝒓𝑖𝑛𝑖𝑡
))

, (12)
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Figure 4: Schematic diagrams of the three different sampling
strategies [15, 16, 29]. A darker green color indicates a higher
probability of sampling.

Figure 5: The schematic diagram of the sampling process from
visible parts.

𝒓6𝑑 = 𝒓𝑖𝑛𝑖𝑡 + Δ𝒓. (13)
Our translation head and rotation head are essentially the

same. The only difference is that we use two branches in the
translation head, as shown in Figure 1. This corresponds to
(Δ𝑥,Δ𝑦)𝑇 and t𝑧 in Sec. 3.2. At the end of the translation
head, we concatenate the two branches along the channel
dimension to output (Δ𝑥,Δ𝑦, 𝑡𝑧

)𝑇 . Further, we can convert
it back to the translation vector t.

Additionally, Our rotation and translation heads share
weights across various scales, similar to FCOS’s approach[15].
The weight sharing leads to a considerable reduction in the
number of parameters. This method ensures that as long as
positive samples are present on one scale, weights on other
scales can also be updated, despite having fewer positive
samples. This helps mitigate the problem of uneven sample
distribution across levels of heads.
3.4. Positive Sample Selection

In this section, we will describe our approach to ad-
dressing occlusion in multi-object scenes. In single-stage
object detectors, positive samples refer to sampling points
linked to annotated instances of objects. These are utilized
to depict the features of target categories during training.
Typically, strategies for positive sample selection consider
either all points within the GT bounding box or just those
near the box center as positive samples[15, 16]. Hai et al.
propose that it’s more logical to use points from visible
sections as positive samples for rigid objects[29]. In scenes
with multiple objects, occlusion among objects is common,
and the objects we study are all rigid. Therefore, during the
training phase, we sample positive samples from the parts of
the object that are visible. Different sampling strategies are
illustrated in Figure 4.

To implement the above sampling strategies, we first
uniformly set boundary points 𝔹 =

{

𝑏1, 𝑏2,⋯ , 𝑏𝑚
} on the

ground truth bounding box of the target object. Then, we

calculate the foreground-background discrepancy  (𝑝, 𝑏)
for each pixel point 𝑝 within the bounding box relative to
the boundary point 𝑏. Finally, based on the foreground-
background discrepancy, we determine the parts of the ob-
ject that can be seen. The overall process is illustrated in the
Figure 5. We can see that the distance map and the ground
truth visibility mask are essentially consistent. This means
that during the process of positive sample sampling, we can
achieve an effect similar to segmentation.

The principle of the above process is that boundary
points are generally not part of the target object. The larger
the discrepancy between a pixel point and a boundary point,
the more likely the pixel point is part of the target object.
Specifically, we use the minimum barrier distance  (, 𝑙)
related to the color difference [31] and the Euclidean dis-
tance 𝑑 (𝑝, 𝑑) to represent  (𝑝, 𝑏). This can be formulated
as,

 (𝑝, 𝑏) = min
𝑏∈𝔹

min
𝑙∈𝕃{𝑝,𝑏}

[

(

 (, 𝑙)
255

)2
+ 𝛼 ⋅ 𝑑 (𝑝, 𝑑)

]

, (14)

where 𝕃{𝑝,𝑏} represents the set of paths between 𝑝 and 𝑏, 𝑙 is
one of these paths,  represents the color brightness of 𝑝 and
𝛼 is a balance coefficient, set to 0.1 here, used to adjust the
weight of color difference and distance. And  (, 𝑙) can be
obtained by

 (, 𝑙) =
3

max
𝑖=1

[

max
𝑝𝑗∈𝑙

𝑖
(

𝑝𝑗
)

− min
𝑝𝑗∈𝑙

𝑖
(

𝑝𝑗
)

]

. (15)

In the formula, the outer 𝑖 represents one of the three chan-
nels of RGB, and the inner 𝑝𝑗 is a point on the path 𝑙.
Furthermore, for the feature maps extracted by TS-FPN, we
calculate the visibility probability for each cell by

 (𝑐) =
 (𝑐)

max𝑐∈ℂ  (𝑐)
, (16)

where  (𝑐) represents the average foreground-background
discrepancy of pixels within a cell and ℂ is the set of all
cells on the feature maps. In our experiments, we set cells
with  (𝑐) > 0.25 as positive samples. For more parameter
settings, please refer to [29].

4. Experiments
In this section, we will first provide the implementa-

tion details of our experiment, descriptions of the datasets
used, and the evaluation metrics. Then, we will compare
our method with the state-of-the-art methods on two public
datasets to demonstrate the superiority of SEMPose. Finally,
we conduct ablation studies to prove the effectiveness of our
specific designs.
4.1. Experimental Setup

Implementation Details. Our algorithm is designed
based on PyTorch. We choose ResNet-50 [3] as the backbone
network, utilize our TS-FPN for the neck, and design four
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Table 1
Comparison with State of the Art on LM-O. We report the Recall of ADD(-S) in %. P.E. indicates whether to use 1 model or N
models to estimate N types of objects. (*) marks the symmetrical objects. (-) refers to unavailable results[7, 9, 5, 8, 12, 13, 14].

Method w/o Refinement w/ Refinement
PoseCNN PoET GDR-Net Ours PVNet GDR-Net DPOD DeepIM RNNPose

P.E. 1 1 1 1 N N 1 1 N

Ape 9.6 10.2 44.9 33.2 15.8 46.8 - 59.2 37.2
Can 45.2 31.8 79.7 85.2 63.3 90.8 - 63.5 88.1
Cat 0.9 9.0 30.6 30.1 16.7 40.5 - 26.2 29.2
Driller 41.4 33.9 67.8 88.6 65.7 82.6 - 55.6 88.1
Duck 19.6 15.4 40.0 29.0 25.2 46.9 - 52.4 49.2
Eggbox* 22.0 44.7 49.8 77.0 50.2 54.2 - 63.0 67.0
Glue* 38.5 58.7 73.7 67.3 49.6 75.8 - 71.7 63.8
HoleP. 22.1 24.7 62.7 71.4 36.1 60.1 - 52.5 62.8

Mean 24.9 28.5 56.1 60.2 40.8 62.2 47.3 55.5 60.7

heads corresponding to different tasks. Our TS-FPN is
constructed from the last three layers of ResNet to extract
features, generating multi-scale feature maps with 256 chan-
nels. In our network’s training phase, we configure the batch
size at 16 and opt for AdamW as the optimization algorithm,
setting the initial learning rate to 4e-4. The optimizer’s
beta parameters are specified as (0.9, 0.999), coupled with
a weight decay factor of 5e-4 and an epsilon of 1e-8. The
OneCycle policy governs the learning rate adjustments[18],
peaking at 4e-4. The training spans over 150 epochs, with
the learning rate experiencing a linear ascent to its peak
within the initial 0.5% of the steps, followed by a linear
decline throughout the subsequent steps. In the optimization
configuration, we perform gradient clipping with a max-
imum norm of 35 using the L2 norm type. Most of our
experiments are conducted on an RTX 4090D GPU and
an AMD 3.1GHz CPU. Additionally, to ensure consistency
with other methods, we measure the inference time on an
RTX 3090 GPU and an Intel 2.8GHz CPU.

Datasets. We use two core datasets from the BOP
dataset, LM-O[19] and YCB-V[7], to evaluate our method.
The LM-O dataset provides 6D pose annotations for 8
low-texture objects under various occlusion conditions,
making it well-suited for testing an algorithm’s occlusion
handling capabilities. We train exclusively on Physically-
Based Rendering (PBR) data and test on real-world data.
YCB-V is a highly challenging dataset with varying lighting
conditions, cluttered backgrounds, and image noise. It in-
cludes 21 commonly found household objects of different
sizes, some of which exhibit high symmetry and varying
degrees of occlusion among objects. The original YCB-
V dataset comprises 92 video sequences, of which we use
80 sequences for real image training and the remaining 12
sequences for testing. Additionally, we also use the officially
provided PBR data for training.

Evaluation Metrics. We use the commonly applied
ADD(-S) metric for evaluation. ADD measures the aver-
age distance between corresponding model points trans-
formed by ground truth and estimated poses, suitable for

non-symmetric objects. ADD-S measures the average dis-
tance between each model point transformed by the esti-
mated pose and the nearest model point transformed by
the ground truth pose, suitable for symmetric objects. The
specific formulas are as follows:

𝐴𝐷𝐷 = 𝑎𝑣𝑔
𝒙∈

‖

‖

‖

(

R𝑔𝑡𝒙 + 𝒕𝑔𝑡
)

−
(

R𝑝𝑟𝑒𝑑𝒙 + 𝒕𝑝𝑟𝑒𝑑
)

‖

‖

‖

, (17)

𝐴𝐷𝐷-𝑆 = 𝑎𝑣𝑔
𝒙1∈

min
𝒙2∈

‖

‖

‖

(

R𝑔𝑡𝒙 + 𝒕𝑔𝑡
)

−
(

R𝑝𝑟𝑒𝑑𝒙 + 𝒕𝑝𝑟𝑒𝑑
)

‖

‖

‖

,

(18)
where  refers to the set of 3D model points, R𝑔𝑡 and 𝒕𝑔𝑡represent the ground truth rotation and translation, while
R𝑝𝑟𝑒𝑑 and 𝒕𝑝𝑟𝑒𝑑 represent the predicted rotation and trans-
lation. When evaluating on YCB-V, we also computed the
AUC (area under curve) of ADD-S. Additionally, we cal-
culated the geodesic distance as the rotation error and the
L2 distance as the translation error for each object category,
with the specific formulas as follows:

𝑒𝑟𝑟𝑜𝑟𝑟𝑜𝑡 = arc cos

⎛

⎜

⎜

⎜

⎝

𝑡𝑟
(

R𝑇
𝑔𝑡R𝑝𝑟𝑒𝑑

)

− 1

2

⎞

⎟

⎟

⎟

⎠

, (19)

𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑛 =
‖

‖

‖

𝒕𝑔𝑡 − 𝒕𝑝𝑟𝑒𝑑
‖

‖

‖

. (20)
4.2. Comparison with State of the Art
Results on LM-O. Table. 1 shows our comparison results
with state-of-the-art methods on LM-O[7, 9, 5, 8, 12, 13, 14].
Among the single-model methods without using additional
refinement, our SEMPose achieves the state-of-the-art re-
sults; compared to the methods that use 8 models for 8
objects, SEMPose also achieves similar accuracy. Moreover,
SEMPose even outperforms some time-consuming methods
that employ refinement.
Results on YCB-V. In Table. 2, we present the comparison
of SEMPose with other state-of-the-art methods on YCB-V.
Among the single-model methods without using refinement,

Xin Liu et al.: Preprint submitted to Elsevier Page 7 of 11



SEMPose: A Single End-to-end Network for Multi-object Pose Estimation

Figure 6: Qualitative comparison results on YCB-V.

Table 2
Comparison with State of the Art on YCB-V. We report the
results evaluated by AUC of ADD-S and AUC of ADD(-S).
ADD-S means using symmetric metrics for all objects, while
ADD(-S) is used only for symmetric objects. P.E. indicates
whether to use 1 model or N models to estimate N types of
objects. (-) refers to unavailable results.

Method Refinement P.E. AUC of AUC of
ADD-S ADD(-S)

PoseCNN[7] 1 75.9 61.3
SilhoNet[10] 1 79.6 -
PoET[9] 1 87.1 70.1
GDR-Net[5] 1 89.1 80.2
Ours 1 92.2 85.2

PVNet[8] N - 73.4
GDR-Net[5] N 91.6 84.4

DeepIM[13] ✓ 1 88.1 81.9
CosyPose[4] ✓ 1 89.8 84.5

RNNPose[14] ✓ N - 83.1

SEMPose continues to achieve the best results. For multi-
model methods that use 21 models for prediction, our results
remain competitive. Moreover, SEMPose also performs well
in terms of accuracy compared to the time-consuming meth-
ods that employ refinement.

Additionally, we report a comparison of the average rota-
tion error and the average translation error for each category.
The methods listed in the Table. 3 are all single-model
approaches for YCB-V. As the table shows, our method
achieves lower translational prediction errors compared to
other methods; the rotational prediction error is only bigger
than that of SilhoNet, which employs rotation correction.
Compared to GDR-Net, which performs second best in
Table. 2, SEMPose reduces the translation prediction error
by 2.47cm and the rotational error by 8.87 ◦.

In Figure. 6, we present qualitative comparison results
on YCB-V. We project the 3D model points onto the image
using the predicted poses and differentiate objects with
various colors. It is evident that our method effectively han-
dles occlusion, a challenge that other single-model methods
struggle with. For both GDR-Net and our SEMPose, a score
threshold of 0.4 is used before plotting to remove low-
confidence predictions. Despite this, GDR-Net frequently
misidentifies background objects as targets or misclassifies
targets as other objects. This is a common issue among
single-model methods.
4.3. Ablation Study on YCB-V

We conduct ablation studies on the YCB-V dataset to
demonstrate the effectiveness of our designs. All results are
for the same set described in Sec. 4.1.
The fusion of texture and shape. In Table. In row B0, we
show the results without using the texture and shape fusion
proposed in Sec. 3.1. After removing the feature fusion,
the prediction error for translation increased by 29.6%, and
the rotation error increased by 114.0%. At the same time,
the AUC of ADD-S and ADD(-S) decreased by 7.0% and
14.1%, respectively. This indicates that by integrating texture
and shape features, SEMPose can capture more accurate
detail information, which is especially beneficial for rotation
prediction.
Pose regression strategies. In rows C0 to C2, we show the
outcomes of employing different pose regression strategies.
Specifically: In row C0, we use quaternion instead of the
6D representation 𝒓6𝑑 for representing rotation. In row C1,
we shift from regressing (Δ𝑥,Δ𝑦)𝑇 and 𝑡𝑧 separately to
directly regressing 𝐭 =

(

𝑡𝑥, 𝑡𝑦, 𝑡𝑧
)𝑇 . In row C2, we utilize

the L2 distance between the predicted and actual translation
vectors for translation loss. Each adjustment leads to varying
degrees of increased errors and reduced accuracy. It’s critical
to highlight that making adjustments for either rotation or
translation alone influences the accuracy of the other value.
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Table 3
Comparison of average errors. We report the average errors for translation and rotation. (†) indicates the use of rotation
correction from SILHONET[]. (*) marks the symmetrical objects. The results of GDR-Net are obtained through the official single
model[5, 7, 9, 10].

Method Average Translation Error [cm] Average Rotation Error [◦]

PoseCNN SilhoNet† PoET GDR-Net Ours PoseCNN SilhoNet† PoET GDR-Net Ours

master chef can 3.29 3.02 2.26 5.40 1.79 50.70 1.21 80.12 48.16 22.33
cracker box 4.02 5.24 3.14 5.09 3.58 19.69 19.86 21.87 25.30 35.70
sugar box 3.06 2.10 1.42 5.23 1.15 9.29 12.28 4.40 20.10 15.14
tomato soup can 3.02 2.40 1.62 6.60 1.57 18.23 1.91 49.29 30.23 17.00
mustard bottle 1.72 1.65 1.42 2.61 1.16 9.94 5.78 27.73 9.16 13.78
tuna fish can 2.41 1.57 1.79 5.59 1.76 32.80 1.46 63.72 30.53 40.70
pudding box 3.69 7.15 1.94 1.78 1.66 10.20 20.95 6.87 6.74 10.21
gelatin box 2.49 1.09 1.41 1.67 0.96 5.25 12.52 7.19 7.88 35.35
potted meat can 3.65 4.30 1.75 5.14 1.93 28.67 7.27 6.75 18.24 14.67
banana 2.43 4.12 1.95 2.02 0.92 15.48 16.29 20.40 9.16 8.25
pitcher base 4.43 1.31 1.55 4.89 1.53 11.98 6.64 8.04 30.17 10.16
bleach cleanser 4.86 3.60 2.47 7.52 3.19 20.85 51.28 21.93 43.85 17.49
bowl* 5.23 3.30 1.76 3.81 1.97 75.53 49.95 25.71 69.60 38.05
mug 4.00 2.61 1.85 2.77 2.52 19.44 18.14 5.59 7.75 15.88
power drill 4.59 6.77 2.29 4.80 1.85 9.91 30.54 6.45 28.27 14.26
wood block* 6.34 5.59 4.75 6.33 2.68 23.63 25.52 14.32 79.75 42.37
scissors 6.40 9.91 3.72 3.69 2.06 43.98 155.53 6.27 87.35 30.71
large marker 3.89 3.24 2.75 4.45 1.76 92.44 10.44 25.91 80.28 41.38
large clamp* 9.79 6.27 2.33 7.46 4.50 38.12 3.54 4.88 12.01 54.25
extra large clamp* 8.36 4.86 3.10 5.83 3.78 34.18 29.18 26.01 52.39 38.59
foam brick* 2.48 3.98 3.42 2.36 1.75 22.67 13.84 36.34 4.41 71.46

Mean 4.16 3.49 2.12 4.53 2.06 27.79 16.04 27.26 33.39 24.52

Table 4
Ablation Study on YCB-V. Ablation on feature fusion, pose regression methods, pose head structures, and positive sample
sampling strategies.

Row Method AUC of AUC of Avg. T. Avg. R.
ADD-S ADD(-S) Error [cm] Error [◦]

A0 SEMPose (Ours) 92.2 85.2 2.06 24.52
B0 A0 → without fusion of texture and shape features 85.7 73.2 2.67 52.48
C0 A0: 𝒓6𝑑 → quaternion 87.7 75.3 2.69 50.45
C1 A0: indirectly regress the translation vector → directly regression 83.3 67.7 3.51 64.91
C2 A0: separate translation loss → combined translation loss 91.7 82.7 2.15 27.58
D0 A0: iterative refinement head → structure similar to the class head 74.1 56.7 5.16 72.37
E0 A0: sampling from visible parts → from center parts 84.2 70.2 3.12 52.64

This interdependence arises because the four heads share a
common set of features derived from the backbone and neck
of the network. Consequently, modifications targeted at one
parameter can inadvertently alter the backbone and neck’s
parameters, thereby affecting the other value.
Pose heads structure. In row D0, we substitute the iterative
refinement heads described in Sec. 3.3 with ones similar to
the class head. This adjustment results in a significant loss in
accuracy. The reason is that a simple head structure cannot
effectively utilize the fused features from TS-FPN. More-
over, conventional convolutional layers do not proficiently
extract coordinate features.
Positive sample selection strategies. In row E0, we select
positive samples for training from the center of the bound-
ing box, leading to an expected decrease in accuracy. As
mentioned in Sec. 3.4, occlusion is very common in pose
estimation tasks. Significant occlusion results in the center

of the bounding box no longer belonging to the target object.
Sampling from visible parts can avoid this issue.
4.4. Runtime Analysis

On an RTX 3090 GPU and an Intel 2.8GHz CPU,
inputting a 640× 480 image, our SEMPose takes an average
of 31ms to obtain the 6D poses of all target objects in the
picture. This inference speed is highly competitive among
mainstream methods. Moreover, as shown in Figure 7, our
inference time is independent of the number of objects in
the image, which marks a significant difference from other
methods.

5. Conclusion and Future Work
In this work, we propose the novel SEMPose, a sin-

gle end-to-end network for multi-object pose estimation. In
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Figure 7: Runtime comparison under the same conditions.
The running time of existing methods becomes longer as the
number of objects to be estimated increases[2, 4], whereas our
method is unaffected.

methods using only RGB images, SEMPose achieves state-
of-the-art performance on the LM-O and YCB-V datasets.
The key to success is that we employ a shape texture-guided
feature processing strategy. This allows our SEMPose to bet-
ter recognize individual objects from a multi-object scene.
On the other hand, our iterative head structure also reduces
the estimation error for rotations and translations. This guar-
antees the estimation accuracy of SEMPose. In addition, we
sample positive samples from visible parts, which copes well
with the occlusion problem in multi-object scenes. Based on
the above, the SEMPose can predict the 6D poses of all target
objects in a image accurately and in real time.

In the future, we plan to extend our work to category-
level pose estimation, which involves predicting the poses of
previously unseen objects within the same category. Addi-
tionally, we aim to explore the integration of depth informa-
tion to further improve the robustness and accuracy of pose
estimation, especially in challenging scenarios with severe
occlusions and complex backgrounds.
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