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ABSTRACT

Fast Radio Bursts (FRBs) are highly energetic millisecond-duration astrophysical phenomena typi-

cally categorized as repeaters or non-repeaters. However, observational limitations may lead to mis-

classifications, suggesting a larger proportion of repeaters than currently identified. In this study, we

leverage unsupervised machine learning techniques to classify FRBs using data from the CHIME/FRB

catalog, including both the first catalog and a recent repeater catalog. By employing Uniform Man-

ifold Approximation and Projection (UMAP) for dimensionality reduction and clustering algorithms

(k-means and HDBSCAN), we successfully segregate repeaters and non-repeaters into distinct clus-

ters, identifying over 100 potential repeater candidates. Our analysis reveals several empirical relations

within the clusters, including the log∆tsc − log∆trw, log∆tsc − log TB , and r − γ correlations, which

provide new insights into the physical properties and emission mechanisms of FRBs. This study

demonstrates the effectiveness of unsupervised learning in classifying FRBs and identifying potential

repeaters, paving the way for more precise investigations into their origins and applications in cosmol-

ogy. Future improvements in observational data and machine learning methodologies are expected to

further enhance our understanding of FRBs.

1. INTRODUCTION

Fast Radio Bursts (FRBs) are highly energetic astronomical phenomena characterized by millisecond-duration emis-

sions. The first FRB signal was discovered in 2007 by Lorimer et al. (2007), and their existence was firmly established

in 2013 when Thornton et al. (2013) published observations of four similar events detected by the Australian Parkes

Radio Telescope. Since then, FRBs have drawn significant attention in both astronomy and cosmology (e.g., Lorimer

2018; Keane 2018; Petroff et al. 2022; Xiao et al. 2021; Xiao & Dai 2022; Xiao et al. 2022; Zhang 2014; Zhang & Li

2018; Zhang et al. 2021; Zhang & Zhang 2022; Wang et al. 2020a,b; Wang & Zhang 2019; Wang & Wei 2023; Gao

et al. 2014; Qiang & Wei 2020, 2021). However, the origin of FRBs remains unknown.

To explore their origin, numerous radio telescopes have been constructed, such as, the Deep Synoptic Array (DSA;

J. et al. 2019; Hallinan et al. 2019), Arecibo (Spitler et al. 2014), Parkes (e.g., Lorimer et al. 2007; Burke-Spolaor

& Bannister 2014; Petroff et al. 2015; Ravi & Lasky 2014), the Canadian Hydrogen Intensity Mapping Experiment

(CHIME; CHIME/FRB Collaboration et al. 2018), the Five-hundred-meter Aperture Spherical Radio Telescope (FAST;

Li & Pan 2016), and the Australian Square Kilometer Array Pathfinder (ASKAP; Shannon et al. 2024). So far, nearly

a thousand FRBs have been observed(Petroff et al. 2016; CHIME/FRB Collaboration et al. 2021; Jankowski et al.

2023; Xu et al. 2023), with nearly 100 of them have known redshifts (e.g. Law et al. 2024; Sharma et al. 2024; Bhardwaj

et al. 2024; Gordon et al. 2023). To date, the largest FRB sample is the first CHIME/FRB catalog (CHIME/FRB

Collaboration et al. 2021).

In astronomical observations, the measured quantities are often influenced by the distance between the source and

Earth. Therefore, distance-related information is crucial for analyzing the origin of FRBs. A key observational

parameter correlated with distance for FRBs is the Dispersion Measure (DM), which quantifies the total column

density of free electrons along the line of sight between the source and the observer. For the vast majority of observed

FRBs, the DM values significantly exceed the predicted values for their respective directions within the Milky Way,
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indicating that these FRBs originate from distant extragalactic regions of the universe. Meanwhile, an FRB event,

FRB 20200428, was observed to have originated within the Milky Way, providing evidence that at least some FRBs

are associated with magnetars (Andersen et al. 2020; Li et al. 2021a; Bochenek et al. 2020; Lin et al. 2020).

Based on the observational characteristics, FRBs are broadly classified into two categories, i.e., repeaters and non-

repeaters. As the names suggest, repeaters are sources that have exhibited multiple bursts, whereas non-repeaters

have only been observed once. Since the discovery of the first repeater, FRB 20121102 (Spitler et al. 2016), more

than 50 FRBs have been identified as repeaters to date (CHIME/FRB Collaboration et al. 2021, 2023; Kumar et al.

2019; Kirsten et al. 2022; Fonseca et al. 2020; Niu et al. 2022; Xu et al. 2022), while most of the remaining ones

are classified as non-repeaters. However, Ravi (2019) suggests that the volumetric rate of non-repeating FRBs might

exceed that of cataclysmic events and the formation rate of compact objects, implying that the majority of FRBs

should be repeaters. Some studies also propose that more than half of the FRBs in the first CHIME/FRB catalog

could be repeaters (Yamasaki et al. 2023; McGregor & Lorimer 2024). Furthermore, several FRBs initially identified

as non-repeaters were later observed to show repeating characteristics (CHIME/FRB Collaboration et al. 2023). This

suggests that many of the FRBs currently classified as non-repeaters might actually be potential repeaters, with only

a single burst detected due to various observational factors. As a result, some studies have attempted to identify

potential repeaters among apparent non-repeating FRBs, and one of the methods being employed is machine learning.

Machine learning is an artificial intelligence technique that allows computers to learn from data and make predictions

or decisions without being explicitly programmed (Cover & Hart 1967; Rumelhart et al. 1986). Machine learning is

generally categorized into three types, i.e., supervised learning, unsupervised learning, and semi-supervised learning

(e.g. Dempster et al. 2018; Breiman 2001; Chang & Lin 2011; Vapnik 1999). Using algorithms to uncover patterns in

the data can be applied to tasks such as classification, regression, clustering, and optimization. Until now, machine

learning has already been widely used in the detection and analysis of FRBs (e.g. Wagstaff et al. 2016; Zhang et al.

2018; Wu et al. 2019; Yang et al. 2021; Adámek & Armour 2020; Agarwal et al. 2020; Bhatporia et al. 2023). For

instance within the first CHIME/FRB catalog dataset, Chen et al. (2021) and Zhu-Ge et al. (2022) identify 188 and

117 repeater candidates from 474 non-repeating FRBs via unsupervised learning, correspondingly. Yang et al. (2023)

instead discovered 145 repeater using FRB morphology as features, while Luo et al. (2022) identified dozens of repeater

candidates with varies supervised learning methods. Furthermore, Luo et al. (2022) found that the most prominent

factors to distinguish between non-repeating and repeating FRBs are brightness temperature and rest-frame frequency

bandwidth, whereas Sun et al. (2024) found spectral running may play a role instead. Furthermore, some studies

have used machine learning techniques to classify thousands of bursts from highly active repeaters, such as FRB

20121102 (Raquel et al. 2023) and FRB 20201124A (Chen et al. 2023), in an effort to analyze their potential radiation

mechanisms.

In addition to classifying FRBs based on their repeatability, some studies have also investigated the clustering of

FRBs using characteristics beyond repeatability, as well as the empirical relationships among these features. For

instance, similar to the well-known classification of GRB, where short GRBs are short lived and associated with old

population, while long GRB with long duration and associated with young population (Zhang et al. 2007; Kumar &

Zhang 2014), Guo & Wei (2022) proposed classifying FRBs based on their association with either old or young stellar

populations. They discovered several tight empirical relations for non-repeaters in the first CHIME/FRB catalog,

such as logE − logLν , logE − logDME and logDME − logLν , where log means the logarithm to base 10, and E,

DME, Lν are isotropic energy, spectral luminosity, and extragalactic DM, respectively. Similar empirical relations were

found for non-repeaters associated with old populations and all non-repeaters, though with notably different slopes

and intercepts, such as logFν − logSν , logDME − logSν , and logFν − logDME, where Fν is specific fluence, Sν is

flux. Many empirical relations still hold for localized FRBs (Li et al. 2024). Based on these empirical relations, FRBs

could potentially serve as standard candles, allowing cosmological models to be constrained without relying on DM

measurements (Guo & Wei 2024). Li et al. (2021b) classified FRBs into short (W < 100ms) and long (W > 100ms)

bursts, where W represents the pulse width. A strong power-law correlation between fluence and peak flux density was

identified for these categories. Xiao & Dai (2022) classified repeating FRBs into classical (TB ≥ 1033 K) and atypical

(TB < 1033 K) bursts, where TB refers to the brightness temperature. A tight power-law correlation between pulse

width and fluence was also observed for classical bursts.

CHIME has recently released a new repeater catalog (CHIME/FRB Collaboration et al. 2023), significantly increasing

the data available on repeaters. This expanded dataset is expected to improve the accuracy of identifying repeater

candidates through machine learning. In this paper, we will apply unsupervised learning methods to classify the FRBs
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Figure 1. The distributions of observed and derived parameters for non-repeaters and repeaters are shown separately, forming
the input data used for unsupervised learning. For more details, refer to Section 2.

from the combined data of these two catalogs into different clusters, find potential repeaters among the non-repeaters,

and analyze possible empirical relations across these clusters. This paper is structured as follows. In Section 2, we

present the selected CHIME data and the features used in our analysis. introduces two types of unsupervised machine

learning methods, i.e., dimensionality reduction and clustering, as well as evaluation metrics. In Section 4, we present

the results of dimensionality reduction and clustering, then we analyze the potential empirical relations. Finally,

Section 5 provides our conclusions.
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Figure 2. The mean silhouette coefficients of the k-means (left panel) and HDBSCAN (right panel) with respect to different
hyperparameters.

2. DATA SET

2.1. Sample Construction

In this paper, we use the largest available FRB data from CHIME to date, including the first CHIME/FRB Cat-

alog (CHIME/FRB Collaboration et al. 2021, here after Cat1) and the CHIME/FRB Collaboration (2023) Catalog

(CHIME/FRB Collaboration et al. 2023, here after Cat2023). The Cat1 including 536 events (474 non-repeaters and

62 repeat bursts from 18 repeaters), all events have 600 sub-bursts because of multiple peaks appearing in the light

curve of FRB. The Cat2023 contains 127 events from 39 repeaters 1, or 151 sub-bursts for all events. Since there are

6 FRBs in Cat1 with flux and fluence values of zero, we excluded those FRBs. Additionally, 6 non-repeaters in Cat1,

identified as repeaters, are duplicates in Cat2023, resulting in 739 FRB bursts used in this paper.

2.2. Feature Selection

Based on these data, we choose the parameters of the sub-bursts as the features for machine learning algorithms.

To provide a more comprehensive description of an FRB event, we selected as many parameters as possible to serve

as features. These parameters can be divided into two categories: observational parameters (original data provided

by Cat1 and Cat2023) and derived parameters, and we present the distribution of all parameters for the entire FRB

dataset in Figure 1. We chose 10 observational parameters as did by Chen et al. (2022):

• Boxcar width ∆tbc (ms) – The boxcar width of sub-burst, with the label name ‘bc width’ in two catalogs.

• Width of sub-burst ∆tfitb (ms) – The width of sub-burst that is fitted by fitburst 2, with the label name

‘width fitb’ in two catalogs.

• Flux Sν (Jy) – The peak flux of the band-average profile (lower limit) with the label name ‘flux ’ in two catalogs.

• Fluence Fν (Jy · ms) – The flux integrated over the duration of sub-burst (lower limit) with the label name

‘fluence’ in two catalogs.

• Scattering time ∆tsc (ms) – The scattering time at 600 MHz of each sub-burst, with the label name ‘scat time’

in two catalogs.

1 In fact, CHIME/FRB Collaboration et al. (2023) marked 14 FRB sources as repeater candidates due to lower significance, indicating
that the burst-to-burst DM and sky position differences are larger compared to other confirmed repeaters, and their repetition rates are
relatively low. In this study, we consider these 14 FRB sources as repeaters, as they warrant further follow-up observations for potential
confirmation.

2 https://github.com/CHIMEFRB/fitburst

https://github.com/CHIMEFRB/fitburst
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• Spectral index γ – The spectral shape parameter of sub-burst. The label name in two catalogs is ‘sp idx ’.

• Spectral running r – This value characterizes the frequency dependence of the spectral shape and is labeled as

‘sp run’ in both catalogs.

• Highest frequency νmax (MHz) – The highest frequency band of detection for the sub-burst at full-width tenth-

maximum. The label name in two catalogs is ‘high freq ’.

• Lowest frequency νmin (MHz) – The lowest frequency band of detection for the sub-burst at full-width tenth-

maximum. The label name in two catalogs is ‘low freq ’.

• Peak frequency νp (MHz) – The peak frequency for the sub-burst and is labeled as ‘peak freq ’ in both catalogs.

For ∆tbc, ∆tfitb, Sν , Fν , and ∆tsc, we take their logarithmic values throughout this work. Cat1 and Cat2023 only

provide upper limits for the width of sub-burst and scattering time for some FRBs, so we opted to use these upper

limits in our analysis.

For the derived parameters, we choose 6 physical properties of FRBs (see more details in Zhu-Ge et al. 2023):

• Redshift z – The redshift of FRBs is numerically derived from their dispersion measure (DM).

The FRB can be separated into different components (see e.g. Deng & Zhang 2014; Gao et al. 2014; Zhou et al.

2014; Yang et al. 2017; Yang & Zhang 2016; Li et al. 2019; Wei et al. 2019; Qiang et al. 2020; Qiang & Wei 2020,

2021; Qiang et al. 2022):

DMobs = DMMW +DMhalo +DMIGM +DMhost/(1 + z), (1)

where DMMW,DMhalo,DMIGM and DMhost represent the contributions from the Milky Way, the Milky Way

halo, the intergalactic medium (IGM), and the host galaxy (including interstellar medium of the host galaxy and

the plasma around source) of the FRB. In the literature, we usually use extragalactic DM for research

DME = DMobs −DMMW −DMhalo = DMIGM +DMhost/(1 + z). (2)

In this paper, the values DMobs are provided by both catalogs with label name ‘bonsai dm’. We used the

values of DMMW as provided in Cat1 and Cat2023, which were estimated using the NE2001 model (Cordes &

Lazio 2002)(the corresponding label names in Cat1 and Cat2023 are ‘dm exc ne2001 ’ and ‘dm exc 1 ne2001 ’,

respectively). Following the previous studies, we adopt DMhalo = 30 pc cm−3 and DMhost = 70 pc cm−3 . For

the DMIGM, it can be written as (see e.g. Deng & Zhang 2014; Yang & Zhang 2016; Li et al. 2019; Wei et al.

2019; Qiang et al. 2020; Qiang & Wei 2020, 2021; Qiang et al. 2022)

DMIGM(z) =
3cH0Ωb,0

8πGmp

∫ z

0

fIGM(z̃) fe(z̃) (1 + z̃) dz̃

E(z̃)
, (3)

where c is the speed of light, G is the gravitational constant, mp is the mass of proton, E(z) is the dimensionless

Hubble parameter. For cosmological parameters, we adopt H0 = 67.4 km s−1 Mpc−1 , Ωm = 0.315 and Ωb,0h
2 =

0.0224 from latest Planck 18 results for the flat ΛCDM cosmology (Planck Collaboration et al. 2020). fe(z) is

the ionized electron number fraction per baryon, and fIGM(z) is the fraction of baryon mass in IGM. In principle,

these two parameters are functions of redshift z. In this work, we follow e.g. Qiang et al. (2020); Qiang & Wei

(2021); Gao et al. (2014); Yang et al. (2017) and use the fiducial values fe = 0.875 and fIGM = 0.83. According

to Eq.2 and Eq. 3, we can derive the redshift of all FRBs. Following Zhu-Ge et al. (2023), we also set minimum

redshift of 0.002248 corresponding to a luminosity distance of 10 Mpc to avoid zero or negative values.

• Rest-frame frequency width ∆ν (MHz) – The frequency width corrected for the cosmological redshift effect, it

can be calculated by

∆ν = (νmax − νmin)(1 + z). (4)

• Rest-frame width ∆trw (ms) – The width of sub-burst ∆tfitbcorrected for the cosmological redshift effect:

∆trw =∆tfitb/(1 + z). We take the logarithmic values.
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• Burst energy E (erg) – The energy of FRB can be calculated by

E =
4πd2L
1 + z

Fννp, (5)

where dL is the luminosity distance. We take their logarithmic values.

• Luminosity L (erg/s) – The luminosity of FRBs can be derived from

L = 4πd2LSννp, (6)

and we take the logarithmic values.

• Brightness temperature TB (K) – The brightness temperature can be derived as

TB =
Sνd

2
L

2πκB(νp∆tfitb)2
= 1.1× 1035 K

(
Sν

Jy

) (
dL
Gpc

) ( νp
GHz

)−2
(
∆tfitb
ms

)−2

, (7)

where κB is the Boltzmann constant. We take the logarithmic values.

3. METHOD

Dimensionality reduction and clustering are two types of unsupervised machine learning methods used in this pa-

per. First, we apply the dimensionality reduction algorithm to automatically convert high-dimensional data into

low-dimensional data. Then, we use a clustering algorithm to classify the reduced-dimensional data based on their

similarities.

3.1. Machine Learning Techniques

3.1.1. Dimensionality Reduction

In this study, we use UniformManifold Approximation and Projection (UMAP, McInnes et al. 2018), implemented via

the python package umap-learn 3, to perform dimensionality reduction. UMAP is a dimensionality reduction technique

that can be used for both visualization and general nonlinear dimensionality reduction. This algorithm assumes that

the input data is uniformly distributed on a Riemannian manifold with a locally constant (or approximately constant)

Riemannian metric and that the manifold is locally connected. Based on these assumptions, the manifold can be

modeled using a fuzzy topological structure.

The use of UMAP has been extensively explored in many studies. For FRB classification, the three parameters

n compnent, n neighbors, and min dist have a more significant impact on the classification results. Meanwhile,

we also experimented with modifying other parameters and found that they had minimal effect on the classification

outcomes. Therefore, in this study, we choose to focus on adjusting these three parameters of UMAP. n compnent

allows us to determine the dimensionality of the reduced space where the data will be embedded. In our work, we set

n compnent = 2 for all features, projecting the data onto a 2D plane for visual representation.n neighbors controls

how UMAP balance the local and globol structure of data. UMAP achieves this by controlling the size of the local

neighborhood it considers when attempting to learn the underlying structure of the data. This means that low values

of n neighbors will cause UMAP to focus on very local structures, potentially at the cost of missing the overall global

structure. On the other hand, higher values of n neighbors will push UMAP to consider larger neighborhoods around

each point, capturing the broader structure of the data, but possibly losing finer details. min dist decides how tightly

UMAP can pack points together in low-dimensional space. Basically, it sets the minimum distance between points in

the low-dimensional space. Lower values of min dist will lead to more tightly packed, “clumpier” embeddings, which

can be beneficial for identifying clusters or preserving finer topological details. In contrast, higher values of min dist

will prevent the points from being tightly packed, instead focusing on maintaining the broader topological structure.

We scan n neighbors from 2 to 50 and min dist from 0.0 to 0.99. In this paper, we take n neighbors = 21, and

min dist = 0.03.

3 https://github.com/lmcinnes/umap

https://github.com/lmcinnes/umap
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Figure 3. The results of dimensionality reduction and clustering. Left panel: The distribution of UMAP-embedded data. Blue
dots represent non-repeaters, while green and red crosses indicate repeaters from Cat1 and Cat2023, respectively. Middle panel:
The clustring result of UMAP-embedded data from k-measn. Cluster 0, 1, and 2 are represented by blue dots, orange stars,
and red crosses, respectively. Right panel: The clustring result of UMAP-embedded data from HDBSCAN. Gray triangles,
blue dots, royal blue squares, orange stars, tomato diamonds, and red crosses represent Noise, and Cluster 0, 1, 2, 3, and 4,
respectively.

3.1.2. Clustering Algorithms

In this work, we used k-means (MacQueen et al. 1967; Lloyd 1982) and Hierarchical Density-Based Spatial Clustering

of Applications with Noise (HDBSCAN Campello et al. 2013, 2015; McInnes et al. 2017) to group the reduced-

dimensional data into different clusters. K-means clustering is based on the distance between each data point and

its corresponding cluster center. It aims to minimize the distance between the points and their respective centers,

effectively grouping similar points into clusters based on proximity in the feature space. Initially, the k-means algorithm

selects k random points as the initial cluster centers, calculates the Euclidean distance of each data point from these

centers, and assigns each point to the nearest center. Then, it recalculates the mean of each cluster, updating the

cluster centers. This process is repeated iteratively until the cluster centers stabilize, minimizing the overall variance

within the cluster (for detals, see Fotopoulou 2024, and reference their in). We use sklearn.cluster.KMeans 4 to

perform the k-means clustering algorethm. The essential hyperparameter is n clusters, it means how many clusters

are present in the model.

HDBSCAN is a clustering algorithm developed by Campello et al. (2013, 2015). It extends Density-based Spatial

Clustering of Applications with Noise (DBSCAN, Ester et al. 1996) by transforming it into a hierarchical clustering

method (Han et al. 2012). The algorithm then extracts flat clusters from this hierarchy based on the stability of the

clusters, which allows it to better handle varying densities and identify clusters of different shapes and sizes. HDBSCAN

uses minimum spanning trees, allowing it to discover clusters with varying densities, unlike DBSCAN, which assumes a

constant density across the entire dataset. This flexibility enables HDBSCAN to identify clusters of different shapes and

sizes, making it more adaptable to complex structures. We use a python package hdbscan 5 to perform this clustering

algorithm. The hyperparameters of HDBSCAN adjusted in this paper are min cluster size and min samples.

min cluster size controls the minimum number of points required to form a cluster, while min samples determines

how conservative the algorithm is in classifying points as noise or part of a cluster. These parameters directly influence

the number of clusters and the overall shape of the clustering.

To improve the clustering results, we optimize the hyperparameters of the clustering algorithm by maximizing the

mean silhouette coefficient 6 (Rousseeuw 1987) across all samples. The silhouette coefficient measures how well a

sample fits within its assigned cluster, with values ranging from -1 to 1. Higher values indicate more tightly grouped,

well-defined clusters. We show the mean silhouette coefficients changed with the hyperparameters of the clustering

4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
5 https://hdbscan.readthedocs.io/en/latest/index.html
6 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette score.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://hdbscan.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
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Algorithm Cluster
Non-repeater

number
Repeater
number

Repeater
candidate
number

Total
number

Repeater
precentage

Recall
Repeating

rate

K-means

Cluster 0 210 0 0 210 0%

100% 61.7%Cluster 1 0 98 196 294 33.3%

Cluster 2 0 132 103 235 56.2%

HDBSCAN

Noise 45 14 0 59 23.7%

93.5% 37.0%

Cluster 0 169 0 0 169 0%

Cluster 1 138 15 0 153 9.8%

Cluster 2 0 88 118 206 42.7%

Cluster 3 0 66 28 94 70.2%

Cluster 4 0 47 11 58 81.0%

Table 1. The clustering results of UMAP-embedded data using k-means and HDBSCAN. For a detailed description, see Section
4.1.

algorithm in Figure 2. In this work, we chose the hyperparameters with max mean silhouette coefficients, which is

n clusters = 3 for k-means, min cluster size = 37 7 and min samples = 3 for HDBSCAN.

3.2. Evaluation Metrics

In this study, we experimented with various machine learning algorithms and hyperparameters, and their classifica-

tion performance requires evaluation using specific metrics. The outputs of clustering can be written as the following

forms:

• TP : The true positives, which means the number of repeaters correctly classified in the repeater cluster.

• TN : The true negatives, represent the number of non-repeaters correctly classified in the non-repeater cluster.

• FP : The false positives, represent the number of non-repeaters incorrectly classified in the repeater cluster.

• FN : The false negatives, indicating the number of repeaters incorrectly classified into the non-repeater cluster.

Generally, based on the four outputs mentioned above, various metrics can be calculated to evaluate the model’s

performance:

• Recall: TP/(TP + FN).

• Precision: TP/(TP + FP ).

• Accuracy: (TP + TN)/(TP + TN + FP + FN).

In this study, we use recall to evaluate the model’s performance, as observational limitations prevent the accurate

determination of non-repeaters, making it impossible to reliably estimate TN and FP .

4. RESULTS AND DISCUSSION

4.1. Dimensionality reduction and clustering

Based on the methods and hyperparameters discussed in Section 3.1.1, we present the UMAP-dimensionally reduced

features of 745 FRBs in the left panel of Figure 3. The blue dots represent non-repeaters, while the green and red

7 In fact, when we fixed min samples at 3, the mean silhouette coefficients remained constant as min cluster size varied from 37 to 60.
However, the number of noise points increased during this range. Therefore, we chose min cluster size = 37 for this study.
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Figure 4. The distributions of 16 parameters across different clusters from k-means are illustrated, with blue, orange, and red
histogram step lines representing Cluster 0, Cluster 1, and Cluster 2, respectively.

crosses indicate repeaters from Cat1 and Cat2023, respectively. It is evident that after dimensionality reduction by

UMAP, the repeaters are clustered in the upper right corner, while a distinct group of pure non-repeaters appears in

the lower left corner, separated by a noticeable gap from the mixture. This indicates that the 16 parameters of FRBs

used in the analysis have the ability to distinguish between non-repeaters and repeaters.

Then we used two types of clustering algorithm, k-means and HDBSCAN, to cluster the two-dimensional UMAP

embedding. We present the clustering results in the middle and right panels of Figure 3, based on the hyperparameters

of k-means and HDBSCAN discussed in Section 3.1.2. If the proportion of repeaters in a cluster exceeds 30%, we
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Figure 5. Same as Figure 4, but displays the results from HDBSCAN. The blue, royal blue, orange, tomato, and red histogram
step lines represent Cluster 0, 1, 2, 3, and 4, respectively.

classify it as a “ repeater cluster ”, with the non-repeaters within it considered as “ repeater candidates ”. Conversely,

if the proportion is below 30%, it is classified as an “ non-repeater cluster ”.

As shown in the middle panel of Figure 3, the k-means algorithm divided the UMAP-embedded data into three

clusters. Cluster 0 contains 210 FRBs, all of which are non-repeaters. Cluster 2 consists of 294 FRBs, including 98

repeaters and 196 repeater candidates (the percentage of repeaters is 33.3%). Cluster 3 contains 235 FRBs, with 132

repeaters (the percentage of repeaters is 56.2%) and 103 repeater candidates. All repeaters are classified into repeater

clusters, giving a recall of 100%. Out of the 509 non-repeaters, 299 repeater candidates were identified (from 269
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Figure 6. The distribution of non-repeaters (blue dots), repeater candidates (orange diamonds), and repeaters (red crosses) is
presented in the clustered UMAP-embedded data from both k-means (left panel) and HDBSCAN (right panel). And the gray
triangles are represent noises. The green stars mark the first bursts of six repeaters that were misidentified as non-repeaters.
The black circles indicate the localized non-repeaters.

non-repeater sources). If these repeater candidates are real, the repeating rate of FRBs would reach approximately

61.7%, exceeding the predicted rates from studies such as Chen et al. (2022), Zhu-Ge et al. (2022), and Yang et al.

(2023).

As shown in the right panel of Figure 3, HDBSCAN divided the UMAP-embedded data into five clusters and a

noise cluster. Cluster 0 contains 169 FRBs, all of which are non-repeaters. Cluster 1 includes 15 repeaters and 138

non-repeaters, with repeaters making up only 9.8%. Clusters 2, 3, and 4 contain 206, 94, and 58 FRBs, with 88,

66, and 47 repeaters (repeaters accounting for 42. 7%, 70. 2%, and 81. 0%, respectively) and repeater candidates

numbering 118, 28, and 11 (a total of 157 candidates, corresponding to 141 non-repeater sources). The recall for the

739 samples is 93.1%. The overall repeating rate is around 37.9%, slightly lower than the results of Yamasaki et al.

(2023); McGregor & Lorimer (2024), but comparable to those of Chen et al. (2022), Zhu-Ge et al. (2022), and Yang

et al. (2023). Detailed clustering results for both algorithms are also presented in Table 1.

We plot the feature distributions of different clusters generated by k-means and HDBSCAN in Figure 4 and Figure

5, respectively. As shown in Figure 4, the rest-frame frequency width differs the most across clusters, indicating

that repeater clusters tend to have narrower frequency bandwidths. Significant differences are also observed in the

distributions of the spectral index, highest frequency, redshift, energy, luminosity, and brightness temperature among

the clusters. These results are consistent with the feature distribution of repeaters and non-repeaters shown in Figure

1. In Figure 5, almost all features show notable differences in their distributions between clusters, with rest-frame
frequency width once again being the most distinct, similar to the results in Figure 4.

As mentioned in Section 2, there are 6 FRB sources that were previously observed as non-repeaters in Cat1 but

were later identified as repeaters in Cat2023. We marked these 6 FRBs in Figure 6 with green open stars to analyze

the reliability of our repeater candidate predictions. The left and right panels of Figure 6 show the repeater candidate

predictions from k-means and HDBSCAN, respectively. For k-means, five out of these 6 FRB sources are located

in the repeater clusters and were successfully identified as repeater candidates, while HDBSCAN predicted four of

them successfully. This indicates that our method is effective in identifying potential repeaters. However, one of

these 6 FRBs stands out—FRB20180910A—which was classified into the non-repeater cluster by both clustering

algorithms. After analyzing its 16 parameters, we found that its boxcar width is only 0.98 ms, and its spectral index

(0.05) and spectral running (-0.53) are very similar to those of non-repeaters. Additionally, its broadband emission

characteristics differ significantly from the narrow-band emission typically observed in repeaters. Currently, there is no

satisfactory theoretical explanation for repeaters that exhibit characteristics so similar to non-repeaters. We also found

that FRB20180910A has so far produced three detected bursts, with intervals of 1 year and 9 months. These bursts

exhibit noticeable differences in boxcar width, bandwidth, spectral index, and spectral running. It is possible that

these bursts are from different non-repeaters within the same galaxy (or neighboring galaxies in the same direction).

Further observations are needed to confirm this.
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represented by blue, orange, and red lines, respectively. The corresponding R2 values (in blue, orange, and red) are also provided.
See Section 4.2 for details.

x y cluster a b R2

log ∆tsc log ∆trw

0 0.3440 -0.3055 0.2818

1 0.4954 -0.1744 0.3966

2 0.6572 -0.1256 0.5463

r γ

0 -0.9000 -1.6846 0.8977

1 -0.7853 -1.9914 0.8226

2 -0.1613 11.4422 0.3920

Table 2. The slope (a), intercept (b), and R2 values of the empirical relations for different clusters from k-means.

Additionally, some of the non-repeaters from Cat1 have identified host galaxies (Bhardwaj et al. 2024; Law et al.

2020). In both panels of Figure 6, we highlight two of these FRBs (FRB20181220A and FRB20190418A) that were

identified as repeater candidates by both clustering algorithms with black circles. Continued observations of the host

galaxies of these two FRBs may reveal further repeating bursts in the future.

4.2. Empirical Relationships

In this paper, we further analyze the potential two-dimensional empirical relations within different clusters identified

by various clustering algorithms. We pair the 16 parameters of FRBs from different clusters and linearly fit the

data points using scipy.stats.linregress 8, which performs linear least-squares regression. The form of the two-

dimensional empirical relationship is given as y = a x+b, and the goodness of fit is evaluated using the score (coefficient

of determination), defined as R2 = 1 −∑
i(yi − ŷi)

2/
∑

i(yi − ȳi)
2, where yi, ŷi, and ȳi are the observed values, the

regressed values and the mean of the observed values, respectively. The closer R2 is to 1, the better the model fits the

data.

We set a high score threshold of R2 > 0.5 to filter out well-fitted empirical relations and excluded parameter

combinations that inherently have a linear relationship (e.g., luminosity and flux). For the clusters from k-means, the

8 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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x y cluster a b R2

log ∆tsc log TB

0 -1.4741 35.8475 0.6159

1 -1.0264 34.9418 0.1888

2 -0.7559 34.4684 0.0669

3 -0.9667 34.4318 0.0576

4 -0.098 34.1223 0.0003

r γ

0 -0.9394 -2.2495 0.9125

1 -0.6574 -2.6236 0.8386

2 -0.4835 -7.4780 0.8053

3 -0.8527 4.4482 0.9187

4 -0.1090 11.8615 0.5293

Table 3. The slope (a), intercept (b), and R2 values of the empirical relations for different clusters from HDBSCAN.

selected empirical relations are shown in Figure 7, and the slope, intercept, and score of the empirical relations are

listed in Table 2. The left panel shows the empirical relation between two independent parameters: scattering time

(log∆tsc) and rest-frame width (log∆trw). We observe that R2 > 0.5 only in cluster 2, corresponding to a repeater

cluster, whereas the log∆tsc − log∆trw relation appears less significant in the other two clusters. However, the slope

and intercept of the relation log∆tsc− log∆trw are similar in all three clusters. The right panel displays the empirical

relation between two other independent parameters: spectral acceleration (r) and spectral index (γ). In contrast to

the log∆trw − log∆tsc relation, the r− γ relation is less evident in cluster 2, but is very pronounced in clusters 0 and

1 (R2 > 0.8), with similar slopes and intercepts.

Figure 8 shows the empirical relations for different clusters from HDBSCAN, and Table 3 lists the slope, intercept,

and score of these empirical relations. The left panel displays the relation between rest-frame width (log∆tsc) and

the brightness temperature (log TB), which are also two independent parameters. We can see that only cluster 0 (a
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non-repeater cluster) has a significant log∆tsc− log TB relation with R2 > 0.6, while the other clusters show no strong

log∆tsc − log TB relation. The right panel shows the empirical relation between spectral acceleration (r) and spectral

index (γ). All clusters exhibit a significant r − γ relation, especially clusters 0-3, where R2 > 0.8. Notably, clusters 0

and 3 (a repeater cluster) have very similar slopes and intercepts for the r−γ relation, suggesting that certain repeaters

might have spectral properties similar to those of non-repeaters, a trend also observed in the k-means results..

5. CONCLUSION AND FUTURE PROSPECT

Machine learning is a powerful tool to classify FRBs. In this paper, we applied unsupervised learning methods,

including dimensionality reduction and clustering algorithms, to differentiate between repeaters and non-repeaters in

the first CHIME/FRB catalog (CHIME/FRB Collaboration et al. 2021) and the CHIME/FRB Collaboration (2023)

catalog (CHIME/FRB Collaboration et al. 2023). We extracted 16 parameters from the FRBs to serve as input

features for unsupervised learning, ensuring that the information from the FRBs was sufficiently comprehensive.

Ultimately, we successfully identified several candidate repeaters among the non-repeaters. Using the UMAP+k-

means method, we identified 269 non-repeaters as repeater candidates, with an estimated repeating rate of 61.7%.

With the UMAP+HDBSCAN method, 141 non-repeaters were identified as repeater candidates, yielding a repeating

rate of 37.9%. Additionally, we found that FRBs in repeater clusters and non-repeater clusters exhibit different

distributions across several features, suggesting that repeaters and non-repeaters may belong to distinct categories.

We used six previously classified as non-repeaters but actually confirmed as repeaters FRB sources to evaluate the

predictive capability of our model. The UMAP + k-means method successfully predicted five of these sources, while

the UMAP + HDNSCAN method successfully predicted four. The only exception was FRB20180910A, which could

not be predicted. The reason for this is that many of its characteristics, such as frequency bandwidth, spectral index,

and spectral running, closely resemble those of non-repeaters, making it distinctly different from typical repeaters.

Additionally, the intervals between the three outbursts of this repeater are quite long, and the features of each burst

show significant variation. This may indicate that the FRB sources are unrelated and originate from different galaxies

within the same direction or from the same galaxy. Furthermore, within Cat1, there are some localized non-repeaters,

and we identified two of them as repeater candidates using both clustering algorithms. Continued observations of the

host galaxies of these two FRBs may reveal additional repeating bursts in the future.

We further analyzed the empirical relations that may exist within different clusters. For the clusters derived from

k-means, we identified a significant log∆tsc− log∆trw relation exclusive to cluster 2, as well as a r−γ relation present

only in clusters 0 and 1. For the clusters obtained through HDBSCAN, we found a notable log∆tsc − log TB relation

that exists solely in cluster 0, along with the r − γ relation observed across all clusters. The spectral index γ and

spectral running r are the shape parameters of FRB spectrum, described by a continuous power-law function (Pleunis

et al. 2021; Planck Collaboration et al. 2020):

I(ν) = A(ν/ν0)
γ+r ln(ν/ν0), (8)

where I(ν) is the intensity at spectral frequency ν, A is the amplitude, and ν0 is the pivotal frequency, set at 400.1953125

MHz, the lower limit of the CHIME band. The strict r − γ relation means that only one parameter can determine

the morphology of FRB. We also noted that the r − γ relation is similar in certain clusters of both non-repeaters

and repeaters, such as clusters 0 and 1 from k-means and clusters 0 and 3 from HDBSCAN. This suggests that some

non-repeaters and repeaters share comparable spectral characteristics. This finding aligns with observational evidence,

particularly regarding FRB20180910A, if it is indeed a genuine repeater.

In the future, improvements in observational data and machine learning techniques will refine FRB classification,

reduce misclassifications, and uncover more repeaters. The use of advanced clustering algorithms and multi-wavelength

observations will enhance the accuracy of models, while deep learning approaches may reveal new patterns. These

advancements will contribute to a better understanding of the origins and physical mechanisms of FRBs, with potential

implications for cosmology.
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