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Abstract. The set of sums of two squares plays an important role in the elementary
number theory. In [18], Di Nasso investigated several infinite monochromatic patterns
in integers considering operations induced from affine maps and asked whether one can
find different sets of infinite monochromatic configurations in natural numbers with
the structure induced from the set of sums of two squares. This article investigates
Nasso’s question and along the way proves several classical Ramsey-type theorems in
this new setting.

1. Introduction

Finding monochromatic patterns for a colouring of certain algebraic structures has
been a long-standing thrust in Ramsey’s theory. Among all, there are a few ground-
breaking results, such as the van der Waerden theorem, which deals with the existence
of monochromatic arithmetic progression for any finite partition of natural numbers.
In other words, the family of subsets of natural numbers given by arithmetic progres-
sion is partition regular. One notices that the van der Waerden theorem is a finitary
Ramsey-type result that only uses the additive structure of N. The infinitary version
is widely known as the Hindman’s theorem, and it states that for any finite colouring
of N, an injective sequence exists such that all finite sums are monochromatic. There
are many ways to pass from the additive structure of N to a multiplicative structure,
such as via the maps n 7→ pn for any prime p. This change in structure suggests the
multiplicative van der Waerden theorem, which states that for any finite partition of
N, a monochromatic geometric progression of arbitrary length exists.

The patterns that mix natural numbers’ additive and multiplicative structures are
much more difficult to proceed. The first instance in this direction is due to Bergel-
son [6]and Hindman [13]. They independently prove that the configuration {a, b, c, d}
with a+b = c.d is monochromatic. Later in [16], J. Moreira proved that the pattern
{a, a + b, a.b} , and consequently, with J.M. Barrett and M. Lupini, Moreira showed
the pattern {a, a+b, a+b+a.b} is monochromatic in [1]. In the area of mixed pattern,
the monochromaticity of the configuration {a, b, a+ b, a.b} is still an open problem.
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Recently, D. Nasso developed a new idea to construct a new operation on Z in-
volving both the additive and multiplicative structure in [18]. He considers a class
of associative and commutative operations on the integers originating from the affine
transformations. For specific cases, the multiplication for these operations gives the
symmetric polynomials (these are combinations of old additive and multiplicative struc-
tures.) Then, using the algebra of Stone-Čech compactification of this new semigroup,
Nasso produced a lot of new monochromatic patterns in integers. Furthermore, poly-
nomial extension of some Ramsey theorems have been considered in [10] along the line
of Nasso.

Thus, it is interesting to investigate the Ramsey-type properties of well-structures.
Let N0 be the set of natural numbers along with zero. Consider the set S(m,n) :=
{xm1 + · · ·+xmn : x1, · · · , xm ∈ N0}. It is well known from the elementary number theory
that S(2, 4) is N0, S(2, 3) is the set of the natural those are not of the form of 4a(8b+7)
for some a, b ∈ N0. This set is not multiplicative, whereas S(2, 4) is multiplicative but
not interesting to us as it is the whole set. Therefore, this article focuses on Σ = S(2, 2),
which is nothing but the set of all natural numbers such that the prime divisors of form
4k + 3 (if any) having even exponents. Monochromatic patterns induced from the set
of all sum of two squares, Σ, were asked by D. Nasso in [18] and we answered this
question in this article.

In this article, we investigate a new structure on natural numbers induced from
the set of sums of two squares, Σ and with this new algebraic structure along the
Stone-Čech compactification of it, we prove several classical results such as Hindman
theorem, Deuber theorem, Brauer’s theorem, Miliken-Taylor theorem, geo-arithmetic
progression, and polynomial van der Waerden theorem.

2. A new structure and Stone-Čech compactification

The set Σ = {a2 + b2 : a, b ∈ N0} ⊆ N0 of sums of two squares, is a commutative
semigroup with respect to the usual multiplication of natural numbers since (a2 +
b2)(c2+d2) = (ad− bc)2+(ac+ bd)2 ∈ Σ. Now, one consider the ordering on Σ induced
from N0 and write

Σ = {s0 < s1 < s2 < s3 < s4 < s5 < s6 < s7 < · · · },

where s0 = 0,s1 = 1, s2 = 2, s3 = 4, s4 = 5, s5 = 8, s6 = 9, s7 = 10, s8 = 13, s9 = 16,
s10 = 17, s11 = 18, s12 = 20, s13 = 25, s14 = 26, s15 = 29, s16 = 32 and so on.

Denote by Σ/s = {y ∈ S : y < s}, the set of all predecessors of s in Σ. Consider the
function g : S → N0 given by

g(s) = card(Σ/s).

One can easily verify that g is a bijective function with the inverse f(n) is the nth term
sn in Σ.

Definition 2.1. m ∗f n = g(f(m).f(n)) = card(Σ/sm · sn).
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Example 2.2. For example, m = 2 and n = 5, then sm = 2 and sn = 8. Now
smsn = 2 · 8 = 16 = s9. So, for m = 2, n = 5,we have card(S/sm · sn) = card({y ∈ S :
y < smsn}) = card({y ∈ S : y < s9}) = 9. Therefore, 2 ∗f 5 = 9.

Proposition 2.3. (N0, ∗f ) is a commutative semigroup and it contains identity element
and f : (N0, ∗f ) → (Σ, .) is a semigroup homomorphism.

Proof. The associativity and commutativity properties of multiplication on the set of
sums of two squares Σ are inherited by the operation ∗f , via the isomorphism f. The
identity element in (N0, ∗f ) is 1 as 1∗f n = card(Σ/s1.sn) = card(Σ/sn) = n. Similarly,
we can prove that n ∗f 1 = n.

The second part evident from the definition of ∗f . Hence the result follows. □

We write x(0) = 1 and x(n) := x ∗f x ∗f · · · ∗f x︸ ︷︷ ︸
n times

which in turn gives card(Σ/snx).

2.0.1. Algebra in the Stone-Čech compactification. We briefly recall the algebraic struc-
ture of the Stone-Čech compactification βS for a discrete semigroup (S, ·). The el-
ements of βS consist of the ultrafilters on S, identifying the principal ultrafilters
with the points of S and thus pretending that S ⊆ βS. Given A ⊆ S let us set,
A = {p ∈ βS | A ∈ p}. Then the set {A | A ⊆ S} is a basis for a topology on βS.
The operation · on S can be extended to the Stone-Čech compactification βS of S so
that (βS, ·) is a compact right topological semigroup (meaning that for any p ∈ βS,
the function ρp : βS → βS defined by ρp(q) = q · p is continuous) with S contained in
its topological center (meaning that for any x ∈ S, the function λx : βS → βS defined
by λx(q) = x · q is continuous). Given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if
{x ∈ S | x−1 · A ∈ q} ∈ p, where x−1 · A = {y ∈ S | x · y ∈ A}. This is a fundamental
result due to Ellis, which states that in every compact right topological semigroup,
there exists an idempotent element. Thus, idempotent ultrafilter p in (βS, ·) such that
p · p = p exists.
For any sequence ⟨xn⟩∞n=1 of elements in a semigroup (S, ·), denote by FP (⟨xn⟩∞n=1)

the corresponding set of finite products:

FP (⟨xn⟩∞n=1) = {xn1 .xn2 · · · .xnk
: n1 < n2 < · · · < nk}.

The relevance of idempotent ultrafilters in Ramsey Theory can be understood by
Galvin’s theorem which says that given a semigroup (S, ·) and an idempotent ultrafilter
p = p · p in the Stone-Čech compactification (βS, ·). Then for every A ∈ p there exists
a sequence ⟨xn⟩∞n=1 such that the set of finite products FP (⟨xn⟩∞n=1) ⊆ A. To study the
details about Stone-Čech compactification of any set and it’s application on Ramsey
theory, one can see [14], [21].

As we understood that (N0, ∗f ) is a discrete commutative semigroup, then its Stone-
Čech compactification (βN0, ∗f ) responsible for a lot of Ramsey type results in N0

induced by this new operation ∗f .
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3. Study on Monochromatic Configurations

In this section, we write down new monochromatic configurations in the semigroup
(N, ∗f ) that encodes information about the sum of two squares. We start with the
following definition:

For any infinite sequence of natural numbers ⟨xn⟩∞n=1, the corresponding set of finite
sums is denoted and defined by

FS(⟨xn⟩∞n=1) = {xn1 + xn2 + · · ·+ xnk
: n1 < n2 < · · · < ns}.

A famous result in arithmetic Ramsey Theory shows the existence of infinite monochro-
matic patterns of finite sums, which was proved by Hindman stated as follows:

Theorem 3.1 (Hindman’s finite sum theorem, [12]). Let r ≥ 1. For every r-coloring
N = C1 ∪ C2 ∪ · · · ∪ Cr there exist a color Ci and a sequence ⟨xn⟩∞n=1 in N such that
FS(⟨xn⟩∞n=1) ⊆ Ci.

The above result is true if we consider finite products instead of finite sums. The
same result is true even if we take any semigroup [14, Theorem 5.8]. In analogy with
the set of finite sums, we can define the set of finite ∗f -operations for the semigroup
(N0, ∗f ).

FPf (⟨xn⟩∞n=1) = {xn1 ∗f xn2 ∗f · · · ∗f xnk
: n1 < n2 < · · · < nk}

= {card(Σ/sxn1
sxn2

· · · sxnk
) : n1 < n2 < · · · < nk}.

Theorem 3.2. For any r ≥ 1 and any finite r-coloring N0 = C1 ∪C2 ∪ · · · ∪Cr, there
exists a color Ci and a sequence ⟨xn⟩∞n=1 in N such that FPf (⟨xn⟩∞n=1) ⊆ Ci, that is,

{card(Σ/sxn1
sxn2

· · · sxnk
) : n1 < n2 < · · · < nk} ⊆ Ci,

Proof. The proof is similar to the ultrafilter proof of Hindman Theorem [14, Theorem
5.8] where the associative operation is ∗f . □

A fundamental result in arithmetic Ramsey Theory is the Van der Waerden Theorem
(1927). Next year, this theorem was strengthened by Brauer, who proved that one can
also have the common difference as well as the elements of the progression in the same
color.

Theorem 3.3 (van der Waerden Theorem, [20]). For every finite coloring N = C1 ∪
C2 ∪ · · · ∪Cr and for every L ∈ N there exists a monochromatic arithmetic progression
of length L; that is, there exist a color Ci and elements a, b ∈ N such that a, a+ b, a+
2b, · · · , a+ Lb ∈ Ci.

Theorem 3.4 (Brauer’s Theorem, [9]). For every finite coloring N = C1∪C2∪· · ·∪Cr
and for every k ∈ N there exists a monochromatic arithmetic progression of length k;
that is, there exist a color Ci and elements a, b ∈ N such that {a, b, a+b, a+2b, · · · , a+
kb} ⊆ Ci.
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We have the analogues version of Brauer’s Theorem in our context which is the
following:

Theorem 3.5. For every finite coloring N0 = C1 ∪C2 ∪ · · · ∪Cr and for every k ∈ N,
there exist a color Ci and elements x, y ∈ N such that

{x, z, card(Σ/sjxsz) : j = 1, 2, · · · , k} ⊆ Ci

where Σ is the set of sums of two squares.

After few decades later, Deuber gave a result about generalized partition regularity
of homogeneous systems of linear Diophantine equations: in particular, he showed the
partition regularity of the so called (m, p, c)-sets.

Theorem 3.6 (Deuber Theorem, [11]). For every m, p, c ∈ N and for every finite
coloring N = C1∪C2∪· · ·∪Cr there exists a monochromatic (m, p, c)-set; that is, there

exist a color Ci and elements a0, a1, · · · , am ∈ Ci such that caj +
∑j−1

s=0 nsas ∈ Ci for
every j ∈ {1, 2, · · · ,m} and for all n0, n1, · · · , nj−1 ∈ {−p, · · · , p}.

We have the analogue of Deuber Theorem in our context which is following:

Theorem 3.7. Let m, p, r ∈ N. For every r-coloring N0 = C1 ∪ C2 ∪ · · · ∪ Cr, there
exists a color Ci and elements x0, x1, · · · , xm ∈ Ci such that

{card(Σ/sn0
x0
sn1
x1
· · · snj−1

xj−1
sxj) : n0, n1, · · · , nj−1 ∈ {0, 1, · · · , p} and j = 1, 2, · · · ,m} ⊆ Ci

where Σ is the set of sums of two squares.

Proof. To prove this theorem, we will use a generalisation of Deuber’s Theorem for
commutative semirings, which was recently proved by V. Bergelson, J.H. Johnson, and
J. Moreira in [8, Corollary 3.7]. It states as follows:

Let (S, ∗) be a commutative semigroup, and for j = 1, 2, · · · ,m, let Fj be a finite set
of endomorphisms ψ : Sj → S. Then for every r-coloring S = C1 ∪C2 ∪ · · · ∪Cr, there
exist a color Ci and elements x0, x1, · · · , xm different from identity, such that x0 ∈ Ci
and ψ(x0, x1, · · · , xj−1) ∗ xj ∈ Ci for every j = 1, 2, · · · ,m and for every ψ ∈ Fj.
The statement of the theorem is a generalisation of Theorem 3.6 for c = 1 case. We

will apply Bergelson-Johnson-Moreira’s result with (S, ∗) = (N0, ∗f ). For every j-tuple
n̄ = (n0, n1, · · · , nj−1) ∈ (N0)

j, let

ψn̄ : (x0, x1, · · · , xj−1) 7→ x0
(n0) ∗f x1(n1) ∗f · · · ∗f xj(nj).

Since (N0, ∗f ) is a commutative semigroup, then ψn̄ : (N0, ∗f )j → (N0, ∗f ) is a semi-
group homomorphism. Let

Fj = {ψn̄ : Nj → N : n̄ = (n0, n1, · · · , nj−1) ∈ {0, 1, 2, · · · , p}j}
be the sets of homomorphisms for j = 1, 2, · · · ,m. Then by Bergelson-Johnson-Moreira
Theorem, for every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr, there exist a color Ci and
elements x0, x1, · · · , xm different from the identity such that:

(1) x0 ∈ Ci
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(2) ψn̄(x0, x1, · · · , xj−1) ∗f xj ∈ Ci, for every j = 1, 2, · · · ,m and for all n̄ ∈
{0, 1, 2, · · · , p}j.

Finally, from the second point, we have

ψn̄(x0, x1, · · · , xj−1) ∗f xj ∈ Ci

which implies that x0
(n0) ∗f x1(n1) ∗f · · · ∗f xj(nj) ∗f xj ∈ Ci.

Therefore, for all (n0, n1, · · · , nj−1) ∈ {0, 1, · · · , p}j and j = 1, 2, · · · ,m we obtain

card(Σ/sn0
x0
sn1
x1
· · · snj−1

xj−1
sxj) ∈ Ci.

Hence, the result follows. □

Proof. (Proof of Brauer’s Theorem 3.5) The proof of Brauer’s theorem relies on the
Bergelson-Johnson-Moreira Theorem that we discussed in the proof of Theorem 3.7
for (S, ∗) = (N0, ∗f ). For j = 0, 1, 2, · · · , k + 1, let ψj : (N, ∗f ) → (N, ∗f ) be the
endomorphism defined by ψj(x) = x(j). Then for every r-coloring N = C1∪C2∪· · ·∪Cr,
there exist a color Ci and elements x, y different from 1 such that

(3.1) {x, ψ0(x) ∗f y, ψ1(x) ∗f y, ψ2(x) ∗f y, · · · , ψk+1(x) ∗f y} ⊆ Ci.

Note that ψ0(x) ∗f y = x(0) ∗f y = 1 ∗f y = y and ϕj(x) ∗f y = card(Σ/sjxsy). Now if we
let, z := x ∗f y, then from (3.1) we obtain

{x, z, x ∗f z, x(2) ∗f z, x(3) ∗f z, · · · , x(k) ∗f z} ⊆ Ci.

Which in turn gives

{x, z, card(Σ/sjxsz) : j = 1, 2, · · · , k} ⊆ Ci.

Hence the result follows. □

4. Milliken-Taylor theorem

Milliken-Taylor Theorem simultaneously generalises the Hindman finite sums the-
orem and Ramsey’s Theorem. It has often been utilized in the literature, including
various powerful generalisations of Szemeredi’s Theorem on arithmetic progressions.

To state the Milliken-Taylor Theorem, one needs to introduce some notations. The
set of all finite non-empty subsets of N is denoted by Pf (N) and for any natural number
m, we denote [N]m = {A ⊆ N : |A| = m}, the family of all subsets of N of cardinality
m and for any F,G ∈ Pf (N) we consider the ordering given by F < G if and only if
maxF < minG.

Theorem 4.1 (Milliken-Taylor Theorem, [17] [19]). For r ≥ 1 and every r-coloring
[N]m = C1 ∪C2 ∪ · · · ∪Cr there exists an injective sequence (xn)

∞
n=1 of natural numbers

and a color Ci such that

{(xF1 , · · · , xFm) : F1 < · · · < Fm} ⊆ Ci,

where for F = {n1 < n2 < · · · < nk} ∈ Pf (N) we denoted xF = xn1 + xn2 + · · ·+ xnk
.
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One can easily observe that for m = 1, we have Hindman’s Theorem, and when all
Fi contains a single element, one has the Ramsey Theorem.

Milliken-Taylor Theorem also has an analogue version in our context. To prove our
result, the main tool is the notion of tensor products of ultrafilters.

Definition 4.2. Let k ∈ N and for i ∈ {1, 2, · · · , k}, let Si be a semigroup and let

pi ∈ βSi. We define
⊗k

i=1 pi ∈ β(×k
i=1Si) inductively as follows:

(1)
⊗1

i=1 pi = p1.

(2) Given k ∈ N and A ⊆ ×k+1
i=1 Si, A ∈

⊗k+1
i=1 pi if and only if

{(x1, x2, · · · , xk) ∈ ×k
i=1Si : {xk+1 ∈ Sk+1 : (x1, x2, · · · , xk+1) ∈ A} ∈ pk+1} ∈

k⊗
i=1

pi.

One can easily verify that
⊗k

i=1 pi is an ultrafilter on ×k
i=1Si. We will use the general

version of Milliken-Taylor Theorem, which is characterised by the sets contained in the
tensor products of idempotent ultrafilters, as follows:

Theorem 4.3 (Bergelson-Hindman-Williams, [7]). Let S be a semigroup, let m ∈ N,
and let A ⊆ ×m

i=1S. The following statements are equivalent:

(a) There is a sequence ⟨xn⟩∞n=1 in S such that

{(xF1 , · · · , xFm) : F1 < · · · < Fm} ⊆ A.

(b) There is an idempotent p ∈ βS such that A ∈
⊗m

i=1 p

Suppose ϕ : X → Y is any function, It induces a map ϕ∗ : βX → βY defined by

ϕ∗(p) := {B ⊆ Y : ϕ−1(B) ∈ p}, for p ∈ βX.

Notice that A ∈ p⇒ ϕ(A) ∈ ϕ∗(p), but not conversely.

Corollary 4.4. Let (S, ·) be a semigroup, andm ∈ N. Let ϕ : Sm → S be any function,
and let B ⊆ S. Then the following statements are equivalent:

(a) There is a sequence ⟨xn⟩∞n=1 in S such that

{ϕ(xF1 , · · · , xFm) : F1 < · · · < Fm} ⊆ B.

(b) B ∈ ϕ∗(
⊗m

i=1 p), where p is an idempotent in (βS, ·)
Proof. In Bergelson-Hindman-Williams theorem, if we consider A := ϕ−1(B) ∈

⊗m
i=1 p,

then we have the required result. For details see [18, Corollary 5.4]. □

Theorem 4.5. For r ≥ 1 and ϕ : (N0)
m → N0 be any map. Then for every r-coloring

N0 = C1 ∪C2 ∪ · · · ∪Cr there exists a sequence (xn)
∞
n=1 of natural numbers and a color

Ci such that

{ϕ(card(Σ/F1), · · · , card(Σ/Fm)) : F1 < · · · < Fm} ⊆ Ci,

where Fj = {nj1 < · · · < njkj } ∈ Pf (N) for all j = 1, · · · ,m and Σ/Fj = Σ/sxnj1
sxnj2

· · · sxnjkj

where Σ is the set of sums of two squares.
7



Proof. In Corollary 4.4, we consider (S, ·) = (N0, ∗f ). Pick an idempotent ultrafilter
p ∈ (βN0, ∗f ). Thus

⊗m
i=1 p is an ultrafilter on (N0)

m. For the given map ϕ : (N0)
m →

N0, we set q = ϕ∗(
⊗m

i=1 p). Given a finite coloring N0 = C1 ∪ C2 ∪ · · · ∪ Cr, let Ci be
the color such that Ci ∈ q, and by Corollary 4.4, there is a sequence ⟨xn⟩∞n=1 in N0 such
that

{ϕ(xF1 , · · · , xFm)|F1 < · · · < Fm} ⊆ Ci

holds for all Fi ∈ Pf (N), i = 1, 2, · · · ,m and F1 < · · · < Fm.
For each j ∈ {1, · · · ,m}, let Fj = {nj1 < nj2 < · · · < njkj }, then one computes

xFj
= xnj1

∗f xnj2
∗f · · · ∗f xnjkj

= card(Σ/sxnj1
sxnj2

· · · sxnjkj

) = card(Σ/Fj).

Thus, we derive the following by substituting these values in the conclusion of the
Corollary 4.4.

{ϕ(card(Σ/F1), · · · , card(Σ/Fm)) : F1 < F2 < · · · < Fm} ⊆ Ci.

Hence, the result follows. □

5. Application of Hales-Jewett theorem

Let A be a nonempty, finite set of alphabet and v /∈ A be a symbol, call it a variable.
A located word in the alphabet A is finitely supported function b : Dom(b) → A where
Dom(b) is a (possibly empty) finite subset of N0. Similarly, a located variable word in
the alphabet A and variable v is a finitely supported function b : Dom(b) → A ∪ {v}
whose range contains v, where Dom(b) is a finite subset of N0. Let L(A) be the set
of located words in A and let L(Av) be the set of located variable words in A and
the variable v. Then S := L(A) ∪ L(Av) has a natural partial semigroup operation 1,
obtained by letting b0 + b1 be defined whenever the domains of b0 and b1 are disjoint.
In such a case, b0 + b1 is just b0 ∪ b1.

Theorem 5.1 (Hales-Jewett Theorem). Let L(A) be finitely coloured. Then there exist
α ∈ L(A) and γ ∈ Pf (N) such that Dom(α) ∩ γ = ∅ and {α ∪ γ × {s} : s ∈ A} is
monochromatic.

In 2008, M. Beiglböck extended the Hales–Jewett theorem which is stronger than
the above Theorem. He involves partition regular families of N. A partition regular
family F of N is a subset of Pf (N) such that for any partition N = C1 ∪ · · · ∪Cr, there
exists an i ∈ {1, · · · , r} such that Ci ∈ F .

1(Partial semigroup) A partial semigroup is a triple (S,X ⊆ S×S, ∗) of a set S, a subset X ⊆ S×S
and an operation ∗ defined on X satisfying

(x ∗ y) ∗ z = x ∗ (y ∗ z) ∀x, y, z ∈ G

in the sense that if either side is defined, so is the other and they are equal.
8



Theorem 5.2. [2, Theorem 3] Let F be a partition regular family of finite subsets of N
which contains no singletons, and let A be a finite alphabet set. For any finite coloring
of L(A), there exist α ∈ L(A), γ ∈ Pf (N) and F ∈ F such that Dom(α), γ, F are
pairwise disjoint sets and

{α ∪ (γ ∪ {t} × {s}) : s ∈ A, t ∈ F}
is monochromatic.

5.1. Geo-arithmetic progression. Vitaly Bergelson proved for any finite coloring of
Z, there exists a monochromatic geo-arithmetic progression of arbitrary length which
can be considered as the combined extension of additive and multiplicative van der
Waerden’s Theorem. He proved this property by using the ergodic theory [5]. Later
M. Beiglböck, V. Bergelson, N. Hindman and D. Strauss proved this result by using
the algebra of Stone-Čech compactification in [3].

Theorem 5.3 (Geo-arithmetic progression). If n, r ∈ N, and Z is r-colored, then there

exist a, b, and d ∈ N such that the set {a(̇b+ iḋ)j : 0 ≤ i, j ≤ n} is monochromatic.

In [2], M. Beiglböck proved that the extension of the Hales-Jewett theorem is strong
enough to yield Theorem 5.3. In this article, we will use this variant of the Hales-Jewett
Theorem 5.2 to prove our geo-arithmetic structure .

Theorem 5.4. If k, r ∈ N, and N is r-colored, then there exist a, b, d ∈ N and
γ ∈ Pf (N) such that the set {card(Σ/sb(

∏
t∈γ stsa+id)

j) : i, j = 0, 1, 2, · · · , k} is
monochromatic, where Σ is the set of sums of two squares.

Proof. Assume that N is finitely colored. Fix k ∈ N, let F = {{a, a+ d, · · · , a+ kd} :
a, d ∈ N} be the set of all (k + 1)-term arithmetic progressions, put A = {0, 1, · · · , k}
and define

h : L(A) → N by h(α) = ∗f
t∈Dom(α)

t(α(t)).

We color each α ∈ L(A) with the color of h(α) and choose α, γ and F = {a, a +
d, · · · , a+ kd}.

Then using the Theorem 5.2 we obtain that the set

{h(α ∪ (γ ∪ {a+ id})× {j}) : i, j ∈ {0, 1, · · · , k}
is monochromatic.

h(α ∪ (γ ∪ {a+ id})× {j}) =( ∗f
t∈Dom(α)

t(α(t))) ∗f (∗f
t∈γ
t(j)) ∗f ((a+ id)(j))

=card(Σ/(
∏

t∈Dom(α)

s
α(t)
t )(

∏
t∈γ

stsa+id)
j).

Hence, we obtain that the following set

{card(Σ/(sb(
∏
t∈γ

stsa+id)
j) : i, j ∈ {0, 1, · · · , k}}
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is monochromatic, where sb =
∏

t∈Dom(α) s
α(t)
t . □

5.2. Polynomial van der Waerden’s theorem. Polynomial extension of van der
Waerden’s theorem relies on the polynomial version of the Hales-Jewett theorem. In
1988, V. Bergelson and A. Liebman proved the polynomial extension of the Hales-
Jewett Theorem by introducing and developing the apparatus of set-polynomials (poly-
nomials whose coefficients are finite sets) and applying the methods of topological dy-
namics in [4]. Later, M. Walters gave short and purely combinatorial proofs of those
results in [22]. Let us start with the statement of the polynomial Hales-Jewett theorem
with some relevant notations.

For fixed numbers q,N, d, let us consider the set X(q,N, d) =
∏d

i=1[q]
N i
, where

[q] = {1, · · · q}. An element x ∈ X(q,N, d) is of the form (⃗b1, · · · , b⃗d), where b⃗i :
[N ]i → [q]. For a = (⃗a1, · · · , a⃗d), γ ⊆ [N ] and (x1, · · · xd) ∈ [q]d, define an element
x = a⊕ x1γ ⊕ · · · ⊕ xdγ

d as follows:

If x = (⃗b1, · · · , b⃗d), then

b⃗j((i1, · · · ij)) =

{
xj, if (i1, · · · ij) ∈ γj

a⃗j((i1, · · · ij)), otherwise.

Theorem 5.5. (PHJ Theorem) For any q, k, d ∈ N, there exists N ∈ N such that
whenever X(q,N, d) is k-colored, there exist a ∈ X(q,N, d) and γ ⊆ [N ] such that the
set

{a⊕ x1γ ⊕ · · · ⊕ xdγ
d : (x1, · · ·xd) ∈ [q]d}

is monochromatic.

We’ll use Theorem 5.5 to get our version of polynomial van der Waerden Theorem
which is the following:

Theorem 5.6. Let d, k, ℓ ∈ N and {F1, · · ·Fℓ} ⊂ Pf (N) with Fi = {ai1, · · · , aid} for
all i ∈ {1, · · · , ℓ}. Then for any k-coloring of N, there exist b, c ∈ N such that the set

{card(Σ/sbscai1 · · · s
cd

aid
) : i = 1, · · · , ℓ} is monochromatic, where Σ is the set of sums of

two squares.

Proof. Let us consider q, k, d ∈ N as in the statement of the polynomial Hales-Jewett
theorem. Then using that theorem we get a natural number N = N(q, k, d). Suppose
χ : (N, ∗f ) → [k] a k-coloring of N and the canonical map m : X(q,N, d) → (N, ∗f )
given by m((⃗b1, · · · , b⃗d)) =

d∗f
j=1

( ∗f
(i1,···ij)∈[N ]j

b⃗j((i1, · · · ij))). Then composite χ ◦ m is a

k-coloring of X(q,N, d). Using the polynomial Hales-Jewett theorem, we derive that
{a ⊕ x1γ ⊕ · · · ⊕ xdγ

d : (x1, · · · xd) ∈ [q]d} is monochromatic. Therefore the image
m({a ⊕ x1γ ⊕ · · · ⊕ xdγ

d : (x1, · · ·xd) ∈ [q]d}) is monochromatic for the coloring χ of
10



N. Note that

m(a⊕ x1γ ⊕ · · · ⊕ xdγ
d) =

d∗f
j=1

( ∗f
(i1,···ij)∈[N ]j

b⃗j((i1, · · · ij)))

= (
d∗f
j=1

( ∗f
(i1,···ij)∈γj

b⃗j((i1, · · · ij))) ∗f (
d∗f
j=1

( ∗f
(i1,···ij)∈[N ]j\γj

b⃗j((i1, · · · ij)))

= x
(c)
1 ∗f · · · ∗f x(c

d)
d ∗f b

= card(S/sbs
c
x1
· · · scdxd).

Here c is the cardinality of γ and b =
d∗f
j=1

( ∗f
(i1,···ij)∈[N ]j\γj

a⃗j((i1, · · · ij))). □

Remark 5.7. Let (P,<) be a countably infinite poset. Then there is a canonical bijec-
tion

ϕ : P → N given by ϕ(x) = card{y ∈ P : y < x},
with an inverse ψ given by ψ(n) = (n + 1)st smallest element of P. Since ψ does not
preserve the multiplication of N, hence if P is a countable multiplicative subgroup of
N, then the pullback ψ is not a semigroup homomorphism with respect to the usual
multiplication. Thus we get a new operation on N via m ∗ψ n = ϕ(ψ(m).ψ(n)) (as we
did before for the case of Σ). Note that (Pf (N), <) is a countable ordered poset and
for the map σ : Pf (N) → N given by σ(F ) = Σn∈F2

n. This map is not of the above
form although it induces operations on Pf (N).

Remark 5.8. The set Σ = {a2+b2 : a, b ∈ N0} is symmetric with respect to a, b, therefore
there is canonical bijection between the set T := {(a, b) ∈ N2

0 : a ≤ b} and Σ. Then the
map ψ : T → N given by ψ(m, 2n) = (n+1)2−m and ψ(m, 2n+1) = (n+1)(n+2)−m
given a bijection which induces a new operation on T. Hence, one may write a lot of
different monochromatic configurations in N.

Acknowledgement: The first author would like to thank the Department of Math-
ematics, University of Haifa for her position.
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