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Existence and Non-existence for Exchange-Driven Growth Model

Saroj Si† and Ankik Kumar Giri†,∗

† Department of Mathematics, Indian Institute of Technology Roorkee,
Roorkee-247667, Uttarakhand, India

Abstract. The exchange-driven growth (EDG) model describes the evolution

of clusters through the exchange of single monomers between pairs of interacting

clusters. The dynamics of this process are primarily influenced by the interaction

kernel Kj,k. In this paper, the global existence of classical solutions to the

EDG equations is established for non-negative, symmetric interaction kernels

satisfying Kj,k ≤ C(jµkν + jνkµ), where µ, ν ≤ 2, µ+ ν ≤ 3, and C > 0, with a

broader class of initial data. This result extends the previous existence results

obtained by Esenturk [10], Schlichting [23], and Eichenberg & Schlichting [7].

Furthermore, the local existence of classical solutions to the EDG equations

is demonstrated for symmetric interaction kernels that satisfy Kj,k ≤ Cj2k2

with C > 0, considering a broader class of initial data. In the intermediate

regime 3 < µ + ν ≤ 4, the occurrence of finite-time gelation is established

for symmetric interaction kernels satisfying C1

(

j2kα + jαk2
)

≤ Kj,k ≤ Cj2k2,

where 1 < α ≤ 2, C > 0, and C1 > 0, as conjectured in [10]. In this case, the

non-existence of the global solutions is ensured by the occurrence of finite-time

gelation. Finally, the occurrence of instantaneous gelation of the solutions to

EDG equations for symmetric interaction kernels satisfying Kj,k ≥ C
(

jβ + kβ
)

(β > 2, C > 0) is shown, which also implies the non-existence of solutions in this

case.

Mathematics Subject Classification (2020). 34A35, 34A12, 46B50, 34G20.
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1. Introduction

Exchange-driven growth (EDG) processes arise in the dynamics of cluster growth through
the exchange of single units called monomers. It is usually assumed that clusters are
completely identified by their mass or volume. The EDG model has applications in
migration [14], wealth exchange [13], population dynamics [19] and mean-field limit of
a class of interacting particle systems [12, 15]; see also [4, 10, 11, 23] and the references
therein. If fj(t) denotes the density of clusters of size j at time t, then the basic reaction
for the exchange-driven growth phenomenon can be interpreted as

fj(t) + fk(t)
Kj,k

−−→ fj−1(t) + fk+1(t),
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for t ≥ 0 and j, k ∈ N0 := N ∪ {0} with N := {1, 2, 3, . . .}. Here, the interaction kernel
Kj,k depends only on the size of the clusters involved in the reaction. More precisely, in
the phenomenon described above, the clusters of size j export a monomer to the clusters
of size k. Mathematically, the exchange-driven growth phenomenon is represented by an
infinite system of non-linear ordinary differential equations

ḟj(t) = fj+1(t)
∞
∑

k=0

Kj+1,kfk(t)− fj(t)
∞
∑

k=0

Kj,kfk(t) (1.1)

− fj(t)
∞
∑

k=1

Kk,jfk(t) + fj−1(t)
∞
∑

k=1

Kk,j−1fk(t), for j ∈ N,

and

ḟ0(t) = f1(t)
∞
∑

k=0

K1,kfk(t)− f0(t)
∞
∑

k=1

Kk,0fk(t), (1.2)

with initial data

fj(0) = fj,0 for j ∈ N0. (1.3)

The first and fourth terms in (1.1) represent the formation of clusters of size j when either
clusters of size j + 1 release a monomer to other clusters, or clusters of size j − 1 acquire
a monomer from other clusters. The second and third terms in (1.1) represent the loss
of clusters of size j when the clusters of size j either export a monomer to, or import a
monomer from other clusters. In the same vein, the first term in (1.2) represents the birth
of clusters of size 0, while the second term represents their death. There is no loss of mass
or number of particles in the exchange-driven growth phenomenon. Therefore, the total
mass and the total number of particles of the EDG system (1.1)–(1.3) are expected to be
conserved, i.e.,

∞
∑

j=1

jfj(t) =

∞
∑

j=1

jfj(0) and

∞
∑

j=0

fj(t) =

∞
∑

j=0

fj(0),

respectively, for t ≥ 0. However, Ben-Naim & Krapivsky [5] observe that when the
growth of the interaction kernel Kj,k is high, the conservation of total mass may fail
due to the formation of an infinite-size mass, or gel. This phenomenon is known as
gelation [2, 9, 22, 25]. Mathematically, the gelation time Tgel is defined by

Tgel := inf

{

t ≥ 0 :

∞
∑

j=1

jfj(t) <

∞
∑

j=1

jfj(0)

}

.

It is well-known that if
∑∞

j=1 j
mfj(t0) = ∞ for some m ∈ N and t0 ∈ (0,∞), then

Tgel ≤ t0, see [3, Lemma 9.2.2]. In other words,
∑∞

j=1 j
mfj(t) < ∞ for all m ∈ N

whenever t < Tgel. In the context of exchange-driven growth, a preliminary investigation
in [5] suggests that symmetric interaction kernels of the form Kj,k = (jk)η do not lead
to gelation if η ≤ 3/2. However, when 3

2
< η ≤ 2, gelation occurs at a finite time while

gelation occurs immediately at t = 0 for η > 2, which is known as instantaneous gelation.
This occurrence of gelation and instantaneous gelation in exchange-driven growth model
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differ from the Smoluchowski model. In Smoluchowski’s coagulation model [8], gelation
and instantaneous gelation occur for 1/2 < η ≤ 1 and η > 1, respectively, see [6, 24].

The mathematical study of the infinite EDG system (1.1)–(1.3) was initiated by Es-
enturk [10] with the well-posedness result for the interaction kernels growing at most
linearly; that is,

0 ≤ Kj,k ≤ Cjk for all j, k ∈ N0. (1.4)

In this case, the global existence of solution is shown by taking an additional assumption
on the initial data, i.e.,

∑∞

j=1 j
pfj(0) < ∞, for some p > 1 and the uniqueness is shown

with
∑∞

j=1 j
2fj(0) < ∞. In addition, for symmetric interaction kernels, the global well-

posedness has been extended in [10] to the interaction kernels satisfying

0 ≤ Kj,k = Kk,j ≤ Cq (j
µkν + jνkµ) for j, k ∈ N0 with µ, ν ∈ [0, 2] and µ+ ν ≤ 3.

(1.5)

In this case, the global existence of solution is shown by taking an additional assumption
on the initial data, i.e.,

∑∞

j=1 j
pfj(0) < ∞, for some p > 2 and the uniqueness is shown

with
∑∞

j=1 j
4fj(0) < ∞. Moreover, a non-existence result has been established in [10] for

the faster growing symmetric interaction kernels, i.e.,

0 ≤ Kj,k = Kk,j ≥ Cjβ with Kj,0 = 0, j ∈ N0, (1.6)

where C > 0 and β > 2 with some additional assumption on the initial data, i.e.,
limn→∞ eδn

β−2∑∞

j=n(j
2 − n2)fj(0) 9 0. Later, Schlichting [23] extended the global exis-

tence result for the class of interaction kernels satisfying (1.4) and

Kj,k−1 ≤ CKjk for j, k ∈ N,

by relaxing the additional assumption taken on the initial data, specifically, the require-
ment that

∑∞

j=1 j
pfj(0) < ∞, for some p > 1. Eichenberg & Schlichting [7] established the

global and local existence of solutions for a particular class of homogeneous, product-type
separable interaction kernels of the following form

Kj,k =

{

(jk)η, when η > 0,

1− δj,0, when η = 0,
(1.7)

for all j, k ∈ N0 and η ∈ [0, 2]. The global existence of solutions for 0 ≤ η ≤ 3/2 and the
local existence of solutions for 3/2 < η ≤ 2 to (1.1)–(1.3) have been demonstrated for a
generalized class of initial data in the work of Eichenberg and Schlichting. However, the
non-homogeneous interaction kernels and the homogeneous interaction kernels of the form
Kj,k = C (jµkν + jνkµ) with µ 6= ν that satisfy (1.5) do not fall in the class of interaction
kernels that satisfy (1.7). To the best of our knowledge, the existence result in [10] for
this general class of interaction kernels has not yet been improved for a larger class of
initial data.

The main aim of the present work is to extend the existence results established in
[7, 10, 23] and examine the occurrence of gelation and the phenomenon of instantaneous
gelation. Specifically, the existence result provided in [10] for the class of symmetric
interaction kernels (1.5) is generalized by relaxing the more restrictive condition imposed
on the initial data, specifically, the requirement that Mp(f(0)) < ∞ for some p > 2. To
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prove the global and local existence of solutions, the same approach as in [10, 20, 21] is
followed, namely, the truncation method, and some moment estimates are derived. Then,
to find the bounds on higher moments, the de la Vallée-Poussin theorem is applied, and
some convex function inequalities derived in [17] are utilized. This helps to remove the
additional assumption taken on the initial data in [10, Theorem 2], thereby extending the
global and local existence results of [7, 23]. Moreover, an intermediate regime (µ, ν ≤ 2,
µ+ν ≤ 4) for Kj,k is identified, where the solutions exist locally for a more general class of
initial data. The conjecture made in [10] is proved to some extent, indicating the gelation
regime in which blow-up of the certain moment of the solution occurs after a finite time
(the gelation time). The occurrence of finite time gelation is shown with the help of the
propagation of moments result Lemma 4.1 and Gronwall’s inequality. The non-existence
of global solutions to (1.1)–(1.3) is concluded based on the occurrence of finite time
gelation for the symmetric interaction kernel satisfying C1 (j

2kα + jαk2) ≤ Kj,k ≤ Cj2k2

, where 1 < α ≤ 2 and C1 > 0. It is also demonstrated that, for the class of interaction
kernels Kj,k = Cj2k2 with M2(f(0)) > 0 and C > 0, the gelation time is given by

Tgel = (2M2(f(0))C)−1. Beyond this regime, i.e., if Kj,k ≥ Cjβ ( β > 2 and C > 0),
the occurrence of instantaneous gelation is shown, i.e., Tgel = 0. The occurrence of the
instantaneous gelation is based on the idea of obtaining lower bounds for the higher
moments of the solution. The occurrence of instantaneous gelation plays a key role in
proving the non-existence result established in [10] for the class of symmetric interaction
kernels satisfying (1.6).

The structure of this article is as follows: In Section 2, we provide the notion of the
solution to (1.1)–(1.3) and state the main results of this article. Section 3 is devoted to
proving the global existence of a solution for the symmetric interaction kernels, as men-
tioned in Theorem 2.2, and to establishing the local existence of a solution, as described in
Theorem 2.5. The occurrence of the gelation phenomenon, which prevents the existence
of global mass-conserving solutions, is addressed in Section 4. In Section 5, the occurrence
of instantaneous gelation is established, which guarantees the non-existence of solutions
to (1.1)–(1.3) for any time.

2. Notion of Solution and Main Results

We first introduce some notations. Define Y +
r as the positive cone of the Banach space

(Yr, ‖ · ‖r), where

Yr :=

{

f = (fj)j≥0 : ‖f‖r =

∞
∑

j=0

jr|fj| < ∞

}

,

for r ≥ 0. In other words, Y +
r := {f ∈ Yr : fj ≥ 0 for all j ∈ N0}, where N0 := {0, 1, 2, . . .}.

Definition 2.1. Let T ∈ (0,∞] and f(0) := (fj(0))j≥0 ∈ Y +
r . A mild solution f = (fj)j≥0

to the EDG system (1.1)–(1.3) on [0, T ), with the initial data f(0) = (fj(0))j≥0, is a
function f : [0, T ) 7→ Y +

r such that

(1) For all j ∈ N0, fj : [0, T ) → [0,∞) is continuous and supt∈[0,T ) ‖f(t)‖r < ∞,

(2) For all j ∈ N0, t ∈ [0, T ),
∫ t

0

∑∞

k=0Kj,kfkds < ∞,
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(3) For all j ∈ N, t ∈ [0, T ), the following hold

fj(t) = fj(0) +

∫ t

0

fj+1(s)
∞
∑

k=0

Kj+1,kfk(s)ds−

∫ t

0

fj(s)
∞
∑

k=0

Kj,kfk(s)ds

−

∫ t

0

fj(s)
∞
∑

k=1

Kk,jfk(s)ds+

∫ t

0

fj−1(s)
∞
∑

k=1

Kk,j−1fk(s)ds,

f0(t) = f0(0) +

∫ t

0

f1(s)
∞
∑

k=0

K1,kfk(s)ds−

∫ t

0

f0(s)
∞
∑

k=1

Kk,0fk(s)ds.

Let us now define the p-th moment of the solution (fj)j≥0 as

Mp(f) :=
∞
∑

j=0

jpfj and MN
p (f) :=

N
∑

j=0

jpfj ,

where p > 0, N ∈ N and the zeroth moment as M0(f) :=
∑∞

j=0 fj and MN
0 (f) :=

∑N
j=0 fj.

In particular, at time t, M0(f(t)) and M1(f(t)) represent the total number of particles
and the total mass of the system, respectively.

We are now ready to outline the primary outcomes of this paper.

Theorem 2.2 (Existence). Let the interaction kernel Kj,k satisfy (1.5), and let f(0) ∈ Y +
1

with the finite initial mass ρ := M1(f(0)) < ∞.

(a) If f(0) = (fj(0))j≥0 ∈ Y +
λ , then the system (1.1)-(1.3) has a global mild solution

f = (fj)j≥0 such that f(t) ∈ Y +
λ for each t ∈ [0,∞) with

λ := max{µ, ν} > 1. (2.1)

(b) Ifmax{µ, ν} ≤ 1, then the system (1.1)–(1.3) has a global mild solution f = (fj)j≥0

such that f(t) ∈ Y +
1 for each t ∈ [0,∞).

Remark 2.3. The main contribution of Theorem 2.2 is the selection of the initial data
space or the solution space according to the precise growth of the interaction kernel Kj,k.
This approach eliminates the need for the more restrictive condition on the initial data,
specifically, Mp(f(0)) < ∞ for some p > 2, as required in [10, Theorem 2].

The proof of Theorem 2.2 is based on the construction of approximating solutions by
defining a truncated system of equations (3.1)–(3.4) for the infinite EDG system (1.1)–
(1.3). Next, we establish uniform bounds for both the approximating solutions and their
derivatives. With the help of these bounds and the Arzelà-Ascoli theorem, a convergent
subsequence is extracted from the sequence of approximating solutions. Furthermore, it
is shown that the limit function of this convergent subsequence is indeed a mild solution
to (1.1)–(1.3). The main challenge in the existence proof is to pass the limit in the trun-
cated system (3.1)–(3.4). To achieve this, we need bounds for higher moments, which
are obtained through the implementation of a refined version of the de la Vallée-Poussin
theorem initially presented in [18, Proposition I.1.1] and later used in [3, Theorem 7.1.6].
Moreover, by improving the regularity of the mild solution, we establish the global exis-
tence of the classical solution that conserves both the total mass and the total number of
particles in the system.
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Corollary 2.4. Let f = (fj)j≥0 be the mild solution to (1.1)–(1.3) under the conditions
of Theorem 2.2. Then f = (fj)j≥0 is a continuously differentiable solution to (1.1)–(1.3)
satisfying M0(f(t)) = M0(f(0)) and M1(f(t)) = ρ for all t ∈ [0, T ).

The global existence of a solution to (1.1)–(1.3), particularly, depends on the growth
condition Kj,k ≤ C(jµkν + jνkµ) (µ + ν ≤ 3, µ, ν ≤ 2) stated in the Theorem 2.2.
This growth condition is consistent with findings from physical studies done in [5] under
similar assumptions about interaction kernels of specific forms. However, for symmetric
interaction kernels with the growth rates exceeding the ones specified in (1.5), the finite
time existence of solutions is shown through the following theorem.

Theorem 2.5. Let Kj,k be the symmetric interaction kernel satisfying Kj,k ≤ Cj2k2

for (j, k) ∈ N0 × N0 and C > 0. If f(0) = (fj(0))j≥0 ∈ Y +
2 and M2(f(0)) > 0, then

the system (1.1)–(1.3) has a continuously differentiable solution (fj)j≥0 ∈ Y +
2 to (1.1)–

(1.3) satisfying M0(f(t)) = M0(f(0)) and M1(f(t)) = M1(f(0)) for all t ∈ [0, T0] with
T0 < (2M2(f(0))C)−1.

Remark 2.6. Theorem 2.2 and Theorem 2.5 clearly extend the global and local existence
results established in [10, Theorem 2 and Corollary 3], respectively.

The work done in the physics literature [5] suggest that η = 3/2 is the critical exponent
beyond which the gelation phenomenon occurs, and occurrence of instantaneous gelation
takes place for interaction kernels growing super quadratically. In the next two results,
specifically in Theorem 2.7 and Theorem 2.9, we have mathematically established the
occurrence of finite-time gelation and instantaneous gelation to some extent, which were
open problems mentioned in [10, Section 4].

Theorem 2.7. (Finite time gelation) Suppose that the symmetric interaction kernel Kj,k

satisfies C1 (j
2kα + jαk2) ≤ Kj,k ≤ Cj2k2 for all (j, k) ∈ N0 × N0, where 1 < α ≤ 2 and

C,C1 > 0. Assume also that Mα(f(0)) > 0 and f(0) = (fj(0))j≥0 ∈ Y +
2+α. Then, the

gelation time Tgel for the solution (fj)j≥0 ∈ Y +
2 to (1.1)–(1.3), constructed in Theorem 2.5,

is finite. Additionally, for the specific class of interaction kernels Kj,k = Cj2k2 for all

(j, k) ∈ N0×N0 and C > 0, the gelation time can be expressed as Tgel = (2M2(f(0))C)−1.

The proof of Theorem 2.7 utilizes some higher moment bounds and Gronwall’s integral
inequality. The main difficulty in this proof lies in the selection of a suitable moment that
blows up in finite time; specifically, in this case, that moment isMα(f) for some α > 1. We
have demonstrated the existence of a local solution in Theorem 2.5 for interaction kernels
satisfying Kj,k ≤ Cj2k2. The subsequent Corollary 2.8 reveals that the local solution
cannot be extended to a global solution when the interaction kernel has a faster-growing
lower bound.

Corollary 2.8 (Non-existence of global solution). Consider the infinite EDG system
(1.1)–(1.3). Suppose that the symmetric interaction kernel Kj,k satisfies

C1

(

j2kα + jαk2
)

≤ Kj,k ≤ Cj2k2, for (j, k) ∈ N0 × N0,

where 1 < α ≤ 2 and C,C1 > 0. Further, assume that Mα(f(0)) > 0 and f(0) =
(fj(0))j≥0 ∈ Y +

2+α. Then, there is no global mass conserving solution (fj)j≥0 ∈ Y +
2 on

[0,∞) to (1.1)–(1.3).
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Theorem 2.9. (Instantaneous gelation) Let us consider the EDG system (1.1)–(1.3). Let
Kj,k be a non-negative symmetric interaction kernel satisfying Kj,0 = 0 for all j ∈ N0,
with Kj,k ≥ C

(

jβ + kβ
)

for some C > 0 and β > 2. Assume also that M0(f(0)) ≥ C2 > 0
and f(0) ∈ Y +

n for all n ∈ N. Then, the gelation time for any solution (fj)j≥0 ∈ Y +
2 to

(1.1)–(1.3) is given by Tgel = 0.

The proof of Theorem 2.9 relies on the finiteness of all the higher moments of the initial
data f(0) = (fj(0))j≥0. With the aid of these finite higher moments of the initial data,

we establish the finiteness of all higher moments of the solution to (1.1)–(1.3). Then, the
proof of Theorem 2.9 is given by Jensen’s inequality and Gronwall’s integral inequality.

Corollary 2.10 (Non-existence result). Let Kj,k be a non-negative symmetric interaction
kernel satisfying Kj,0 = 0 for all j ∈ N0, with Kj,k ≥ C

(

jβ + kβ
)

for some C > 0 and
β > 2. Additionally, for every n ∈ N, assume M0(f(0)) ≥ C2 > 0 and f(0) ∈ Y +

n . Then
there is no solution (fj)j≥0 ∈ Y +

2 to (1.1)–(1.3) on any interval [0, T ) for T > 0.

3. Truncated Problem

Following the approach of [1, 10], the proof of Theorem 2.2 involves taking the limit
of solutions derived from finite-dimensional systems of ordinary differential equations
obtained by truncating the infinite EDG system (1.1)–(1.3). Specifically, for N ≥ 2, we
examine the following truncated system consisting of N+1 ordinary differential equations

ḟN
0 = fN

1

N−1
∑

k=0

K1,kf
N
k − fN

0

N
∑

k=1

Kk,0f
N
k , (3.1)

ḟN
j = fN

j+1

N−1
∑

k=0

Kj+1,kf
N
k − fN

j

N−1
∑

k=0

Kj,kf
N
k (3.2)

− fN
j

N
∑

k=1

Kk,jf
N
k + fN

j−1

N
∑

k=1

Kk,j−1f
N
k , for 1 ≤ j ≤ N − 1

and ḟN
N = −fN

N

N−1
∑

k=0

KN,kf
N
k + fN

N−1

N
∑

k=1

Kk,N−1f
N
k , (3.3)

with

fN
j (0) = fj(0) ≥ 0, for 0 ≤ j ≤ N. (3.4)

It is evident from the classical theory of ordinary differential equations, specifically from
Picard’s theorem, that the truncated system (3.1)–(3.4) has a unique, continuously dif-
ferentiable local solution. Proceeding as in [10], we present the following lemma, which
will be used to establish the global existence of solutions to (3.1)–(3.4) and for future
reference.
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Lemma 3.1. Let (hj)
N
j=0 ∈ R

N+1 be a set of real numbers with hj ≥ 0 and N ≥ 2. If
Kj,k is the symmetric interaction kernel, then we have

N
∑

j=0

hj

dfN
j

dt
=

N−1
∑

j=1

(hj+1 − 2hj + hj−1)f
N
j

N−1
∑

k=1

Kj,kf
N
k

+
N−1
∑

j=1

((hj−1 − hj) + (h1 − h0))Kj,0f
N
j fN

0

+

N−1
∑

j=1

((hj+1 − hj) + (hN−1 − hN))f
N
j KN,jf

N
N

+ ((hN−1 − hN ) + (h1 − h0))f
N
N KN,0f

N
0 . (3.5)

The proof of Lemma 3.1 can be found in [10, Lemma 1]. Next, we collect the global
existence of non-negative solutions result to (3.1)–(3.4). We refer [10, Lemma 2 and
Corollary 1] for the existence of a unique non-negative global solution to (3.1)–(3.4), which

preserves the truncated zeroth and first moment of the truncated solution
(

fN
j (t)

)N

j=0
, i.e.,

N
∑

j=0

fN
j (t) =

N
∑

j=0

fN
j (0) =

N
∑

j=0

fj(0) ≤ M0(f(0)) (3.6)

and
N
∑

j=0

jfN
j (t) =

N
∑

j=0

jfN
j (0) =

N
∑

j=0

jfj(0) ≤ M1(f(0)), (3.7)

for all t ∈ [0,∞). For future use, we extend the finite sequence of solutions (fN
j )Nj=0 to an

infinite sequence (fN
j )∞j=0 by defining fN

j (t) := 0 for all t ∈ [0,∞) when j > N .

Lemma 3.2. Consider T ∈ (0,∞) and assume that the symmetric interaction kernel Kj,k

satisfies (1.5). Let f(0) ∈ Y +
1 . Then there exist constants CM , C > 0 depending only on

Cq and f(0) such that

(1) If f(0) ∈ Y +
λ , then

N
∑

j=0

jλfN
j (t) ≤ CMeCT , for each t ∈ [0, T ] (3.8)

and
∣

∣

∣
ḟN
j (t)

∣

∣

∣
≤ 8CqC

2
Me2CT , for 0 ≤ j ≤ N, for each t ∈ [0, T ], (3.9)

with

λ := max{µ, ν} > 1.

(2) If max{µ, ν} ≤ 1, then
∣

∣

∣
ḟN
j (t)

∣

∣

∣
≤ CqM

2
1 (f(0)), for 0 ≤ j ≤ N, for each t ∈ [0, T ]. (3.10)
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Proof. We begin with the proofs of (3.8) and (3.9). Define h(x) := xλ for all x ∈ [0,∞)
and hj := h(j) = jλ for 0 ≤ j ≤ N . Then, h′(x) = λxλ−1 and h′

j = h′(j). First, we
proceed to show that the second term on the right-hand side of (3.5) is non-positive. For
2 ≤ j ≤ N − 1, we have

(hj−1 − hj) + (h1 − h0) ≤ h′
1 − h′

j−1 ≤ 0,

since h′ is increasing. For j = 1, we obtain the following equation

(h0 − h1) + (h1 − h0) = 0.

Similarly, the third and fourth terms on the right-hand side of (3.5) are non-positive since

(hj+1 − hj) + (hN−1 − hN ) ≤ h′
j+1 − h′

N−1 ≤ 0, for 0 ≤ j ≤ N − 2,

(hN − hN−1) + (hN−1 − hN) = 0, for j = N − 1,

and
(h1 − h0)− (hN − hN−1) = h′

1 − h′
N−1 ≤ 0, for N ≥ 2.

Then, from (3.5), we deduce the following inequality

d

dt

(

N
∑

j=0

hjf
N
j

)

≤

N−1
∑

j=1

(hj+1 − 2hj + hj−1) f
N
j

N−1
∑

k=1

Kj,kf
N
k . (3.11)

An application of the mean value theorem gives

hj+1 − 2hj + hj−1 = h′′
j (θ(j)) = λ(λ− 1)θ(j)λ−2 for some θ(j) ∈ (j − 1, j + 1).

(3.12)

Since 1 < λ ≤ 2, we get

hj+1 − 2hj + hj−1 = h′′
j (θ(j)) ≤ 22−λλ(λ− 1)jλ−2 for j ≥ 2. (3.13)

For j = 1, we use hj = jλ to obtain

h2 − 2h1 + h0 = 2λ − 2. (3.14)

Inserting (3.13) and (3.14) into (3.11), we infer that

d

dt

(

N
∑

j=0

jλfN
j

)

≤ Cλ

(

N−1
∑

k=1

K1,kf
N
1 fN

k +

N−1
∑

j=2

N−1
∑

k=1

jλ−2Kj,kf
N
j fN

k

)

, (3.15)

where Cλ := max{2λ − 2, 22−λλ(λ− 1)}. Next, using (1.5) and (3.7) in (3.15), we obtain

d

dt

(

N
∑

j=0

jλfN
j

)

≤ 2CλCqM1(f(0))

N−1
∑

j=1

jλfN
j

+ CλCq

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k . (3.16)

Without loss of generality, we can assume that µ ≥ ν. It gives λ = µ ≥ ν. Since µ+ν ≤ 3,
we have the following

jλ−2 (jµkν + jνkµ) = j2λ−2kν + jµ+ν−2kν ≤ j2λ−2kν + jkν . (3.17)
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First, we consider the case when ν ≤ 1 or λ ≤ 3/2. In this case, from (3.17), we deduce
the following estimate

jλ−2 (jµkν + jνkµ) ≤ jλk + jkλ. (3.18)

Therefore, form (3.7) and (3.18), we have

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k ≤ 2M1(f(0))

N−1
∑

j=1

jλfN
j . (3.19)

Next, we consider the remaining case, i.e., ν > 1 and λ > 3/2. From (3.17), we obtain

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k ≤

N−1
∑

j=1

N−1
∑

k=1

(

j2λ−2kν + jkλ
)

fN
j fN

k . (3.20)

Applying Hölder’s inequality and (3.7) in (3.20), we get

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k ≤

(

N−1
∑

j=1

jfN
j

)

2−ν
λ−1
(

N−1
∑

j=1

jλfN
j

)

2λ+ν−4

λ−1

+M1(f(0))

N−1
∑

j=1

jλfN
j

≤ CL





(

N−1
∑

j=1

jλfN
j

)

2λ+ν−4

λ−1

+

N−1
∑

j=1

jλfN
j



 , (3.21)

where CL := max
{

M1(f(0))
2−ν
λ−1 ,M1(f(0))

}

. Now, using Young’s inequality in (3.21), we

deduce the following estimate

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k ≤ CL

[

1 + 2

N−1
∑

j=1

jλfN
j

]

. (3.22)

From (3.19) and (3.22), we infer that

N−1
∑

j=2

N−1
∑

k=1

jλ−2 (jµkν + jνkµ) fN
j fN

k ≤ 2CL

[

1 +

N−1
∑

j=1

jλfN
j

]

, (3.23)

for any µ and ν satisfying the conditions mentioned in (1.5). Hence, using (3.23) in (3.16),
we get

d

dt

(

N
∑

j=0

jλfN
j

)

≤ 2CλCqM1(f(0))

N−1
∑

j=1

jλfN
j + 2CLCλCq

[

1 +

N−1
∑

j=1

jλfN
j

]

,

≤ 2CLCλCq + [2CλCqM1(f(0)) + 2CLCλCq]
N
∑

j=0

jλfN
j .

Solving the above differential inequality, we conclude (3.8) with C = 2CλCqM1(f(0)) +
2CLCλCq and CM = 2CLCλCq +Mλ(f(0)). Next, we proceed to prove (3.9). For λ > 1,
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by using the non-negativity of the interaction kernel Kj,k and the truncated solution
(

fN
j (t)

)N

j=0
, and by applying (1.5) and (3.8) in (3.1), we obtain

|ḟN
0 | ≤ fN

1

N−1
∑

k=0

K1,kf
N
k + fN

0

N
∑

k=1

Kk,0f
N
k

≤ 2Cqf
N
1

N−1
∑

k=0

kλfN
k

≤ 2CqC
2
Me2CT . (3.24)

For 1 ≤ j ≤ N − 1, from (3.2),(1.5), and (3.8), we derive the following estimate

|ḟN
j | ≤ fN

j+1

N−1
∑

k=0

Kj+1,kf
N
k + fN

j

N−1
∑

k=0

Kj,kf
N
k

+ fN
j

N
∑

k=1

Kk,jf
N
k + fN

j−1

N
∑

k=1

Kk,j−1f
N
k

≤ 2Cq(j + 1)λfN
j+1

N−1
∑

k=0

kλfN
k + 2Cqj

λfN
j

N−1
∑

k=0

kλfN
k

+ 2Cqj
λfN

j

N
∑

k=1

kλfN
k + 2Cq(j − 1)λfN

j−1

N
∑

k=1

kλfN
k

≤ 8CqC
2
Me2CT . (3.25)

Similarly, from (3.3),(1.5), and (3.8), we deduce

|ḟN
N | ≤ fN

N

N−1
∑

k=0

KN,kf
N
k + fN

N−1

N
∑

k=1

Kk,N−1f
N
k

≤ 2CqN
λfN

N

N−1
∑

k=0

kλfN
k + 2Cq(N − 1)λfN

N−1

N
∑

k=1

kλfN
k

≤ 4CqC
2
Me2CT . (3.26)

Collecting the estimates from (3.24), (3.25) and (3.26), we conclude (3.9). For max{µ, ν} ≤
1, (3.10) directly follows from [10, Theorem 1]. �

Lemma 3.2 implies that the sequence (fN
j )j≥0 is uniformly bounded and equicontinuous.

Then, by the Arzelá-Ascoli theorem, there exists a subsequence (fN
j )j≥0 (not relabeled)

that converges uniformly to a continuous function, say (fj)j≥0. Next, we have Mλ(f(t)) <
∞, for all t ∈ [0, T ], which follows from the uniform convergence of (fN

j )j≥0 to (fj)j≥0 on
[0, T ] and (3.8), as demonstrated below

Mλ(f(t)) =
∞
∑

j=0

jλfj(t) = lim
M→∞

M
∑

j=0

jλfj(t) = lim
M→∞

lim
N→∞

M
∑

j=0

jλfN
j (t) ≤ Mλ(f(0))e

CT .
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Similarly, from (3.6) and (3.7), we have

M0(f(t)) ≤ M0(f(0)) and M1(f(t)) ≤ M1(f(0)), for each t ∈ [0, T ]. (3.27)

Next, we show that (fj)j≥0 is a mild solution to the original problem (1.1)–(1.3) on [0, T ]

by proving that the series
∑N

k=1Kj,kf
N
k converges uniformly on every bounded intervals

of time [0, T ]. To prove this, we need the boundedness of higher moments, as presented
in Lemma 3.5. Therefore, we introduce the convex function technique in the next part
to control the large size. We denote by G1,∞ the set of non-negative, convex functions
G ∈ C2([0,∞)) such that G(0) = G′(0) = 0 and G′ is a concave function satisfying
G′(x) > 0 for x > 0 with

lim
x→∞

G′(x) = lim
x→∞

G(x)

x
= ∞. (3.28)

It is clear that x 7→ xp belongs to G1,∞ if p ∈ (1, 2]. We are now in a position to find
the higher moment bounds of the initial data f(0) = (fj,0)j≥0. For this purpose, we
recall a consequence of a refined version of the de la Vallée-Poussin theorem for integrable
functions [18, Proposition I.1.1] and [17, Theorem 8].

Lemma 3.3. Let f(0) = (fj,0)j≥0 be the initial data to the problem (1.1)–(1.3). Then,
the following results hold

(a) If f(0) = (fj,0)j≥0 ∈ Y +
λ , then there exists a function Gλ ∈ G1,∞ such that

∞
∑

j=0

jλ−1Gλ(j)fj(0) < ∞.

(b) If f(0) = (fj,0)j≥0 ∈ Y +
1 , then there exists a function G1 ∈ G1,∞ such that

∞
∑

j=0

G1(j)fj(0) < ∞.

We collect the following properties of the function G ∈ G1,∞ for future use.

Lemma 3.4. For any G ∈ G1,∞, we have the following inequalities

0 ≤ G(x) ≤ xG′(x) ≤ 2G(x), (3.29)

0 ≤ G(rx) ≤ max
{

1, r2
}

G(x), (3.30)

and 0 ≤ xG′′(x) ≤ G′(x), (3.31)

for x ≥ 0 and r ≥ 0. Moreover, for x ≥ 2 and λ ∈ (1, 2], we obtain

(x+ 1)λ−1G(x+ 1)− 2xλ−1G(x) + (x− 1)λ−1G(x− 1) ≤ (4λ− 2)G′(x+ 1), (3.32)

and for x ≥ 1,

G(x+ 1)− 2G(x) +G(x− 1) ≤ G′(x+ 1). (3.33)

Proof. The proofs of the inequalities (3.29)–(3.31) can be found in [17, Proposition 2.14]
and [16, Appendix]. Therefore, we focus on proving the inequalities (3.32) and (3.33).
First, let us prove (3.32). Consider the following expression for x ≥ 2,

(x+ 1)λ−1G(x+ 1)− 2xλ−1G(x) + (x− 1)λ−1G(x− 1)
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=
[

(x+ 1)λ−1G(x+ 1)− xλ−1G(x)
]

−
[

xλ−1G(x)− (x− 1)λ−1G(x− 1)
]

=

∫ x+1

x

(yλ−1G(y))′ dy −

∫ x

x−1

(yλ−1G(y))′ dy. (3.34)

Clearly, y 7→ (yλ−1G(y))′ is an increasing function on (0,∞), which can be shown in the
following way

(yλ−1G(y))′′ = (λ− 1) (λ− 2) yλ−3G(y) + 2 (λ− 1) yλ−2G′(y) + yλ−1G′′(y). (3.35)

Since λ > 1, using (3.29) and (3.31) in (3.35), we conclude that

(yλ−1G(y))′′ ≥ λ (λ− 1) yλ−3G(y) + yλ−1G′′(y) ≥ 0.

Therefore, by using the monotonicity properties of the functions y 7→ (yλ−1G(y))′ and
y 7→ G′(y), along with (3.35), (3.31), and the condition 1 < λ ≤ 2 in (3.34), we obtain
the following inequality

(x+ 1)λ−1G(x+ 1)− 2xλ−1G(x) + (x− 1)λ−1G(x− 1)

≤
[

(x+ 1)λ−1G(x+ 1)
]′
−
[

(x− 1)λ−1G(x− 1)
]′

=

∫ x+1

x−1

(yλ−1G(y))′′dy

=

∫ x+1

x−1

[

(λ− 1) (λ− 2) yλ−3G(y) + 2 (λ− 1) yλ−2G′(y) + yλ−1G′′(y)
]

dy

≤

∫ x+1

x−1

[2 (λ− 1)G′(y) +G′(y)] dy ≤ (4λ− 2)G′(x+ 1),

which completes the proof of (3.32). Next, to prove (3.33), we consider

G(x+ 1)− 2G(x) +G(x− 1) = G(x+ 1)−G(x)− [G(x)−G(x− 1)]

=

∫ x+1

x

G′(y)dy −

∫ x

x−1

G′(y)dy,

for x ≥ 1. From the monotonicity and the non-negativity of G′, we infer that

G(x+ 1)− 2G(x) +G(x− 1) ≤ G′(x+ 1),

which completes the proof of (3.33). �

The following lemma shows the boundedness of the higher moments.

Lemma 3.5. Assume that the interaction kernel Kj,k is given by (1.5) and that T ∈
(0,∞). Suppose Gλ, G1 ∈ G1,∞, satisfying Lemma 3.3(a) and Lemma 3.3(b), respectively
with λ defined as in (2.1). Then, the following statements hold

(1) If f(0) = (fj,0)j≥0 ∈ Y +
λ , then there exists a positive constant C1,2(T ) > 0 depend-

ing only on the initial data (fj,0)j≥0, Cq and T such that

N
∑

j=0

jλ−1Gλ(j)f
N
j (t) < C1,2(T ), for t ∈ [0, T ] (3.36)
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and
∞
∑

j=0

jλ−1Gλ(j)fj(t) < C1,2(T ), for t ∈ [0, T ]. (3.37)

(2) If f(0) = (fj,0)j≥0 ∈ Y +
1 and max{µ, ν} ≤ 1 and min{µ, ν} < 1, then there exists

a positive constant C3(T ) > 0 depending only on initial data (fj,0)j≥0, Cq and T
such that

N
∑

j=0

G1(j)f
N
j (t) < C3(T ), for t ∈ [0, T ] (3.38)

and
∞
∑

j=0

G1(j)fj(t) < C3(T ), for t ∈ [0, T ]. (3.39)

Proof. Let us first prove the estimate (3.36). For this purpose, define

h(x) := xλ−1Gλ(x), h
′(x) := (λ− 1)xλ−2Gλ(x) + xλ−1G′

λ(x), for x ∈ (0,∞),

with

hj := h(j) = jλ−1Gλ(j), h
′
j := h′(j), j ∈ N and h0 := 0.

It is clear from the proof of (3.32) that x 7→ (xλ−1Gλ(x))
′ is an increasing function on

(0,∞). Therefore, we adopt a similar approach to that used in the proof of Lemma 3.2(1).
As a result, from (3.5), we obtain

d

dt

(

N
∑

j=0

jλ−1Gλ(j)f
N
j (t)

)

≤
N−1
∑

j=1

(hj+1 − 2hj + hj−1) f
N
j (t)

N−1
∑

k=1

Kj,kf
N
k (t). (3.40)

Now, from (3.32) and (3.29), we have

hj+1 − 2hj + hj−1 ≤ max{4λ− 2, 2λ−1λ}G′
λ(j + 1) for 1 ≤ j ≤ N − 1. (3.41)

Inserting (3.41) and (1.5) into (3.40), we infer that

d

dt

(

N
∑

j=0

jλ−1Gλ(j)f
N
j (t)

)

≤ C̃
N−1
∑

j=1

N−1
∑

k=1

G′
λ(j + 1)jλkλfN

j (t)fN
k (t), (3.42)

where C̃ := 2Cq max{4λ− 2, 2λ−1λ}. Using (3.29), (3.8), (3.30), and noting that λ > 1,
we obtain

d

dt

(

N
∑

j=0

jλ−1Gλ(j)f
N
j (t)

)

≤ 2C̃
N−1
∑

j=1

N−1
∑

k=1

Gλ(j + 1)jλ−1kλfN
j (t)fN

k (t)

≤ 2C̃CMeCT

N−1
∑

j=1

jλ−1Gλ(j + 1)fN
j (t)

≤ 2C̃CMeCT

N−1
∑

j=1

jλ−1

(

j + 1

j

)2

Gλ(j)f
N
j (t)
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≤ 8C̃CMeCT

N
∑

j=0

jλ−1Gλ(j)f
N
j (t).

Then, (3.36) follows from Lemma 3.3(a) and Gronwall’s differential inequality. Next,
(3.37) follows from the uniform convergence of (fN

j )j≥0 to (fj)j≥0 on [0, T ] and (3.36), i.e.,

∞
∑

j=0

jλ−1Gλ(j)fj(t) = lim
M→∞

M
∑

j=0

jλ−1Gλ(j)fj(t) = lim
M→∞

lim
N→∞

M
∑

j=0

jλ−1Gλ(j)f
N
j (t) ≤ C1,2(T ).

Now, we proceed to prove (3.38). From (3.5) and the monotonicity of the function x 7→
G′

1(x) on (0,∞), we deduce the following inequality

d

dt

(

N
∑

j=0

G1(j)f
N
j (t)

)

≤
N−1
∑

j=1

(G1(j + 1)− 2G1(j) +G1(j − 1)) fN
j (t)

N−1
∑

k=1

Kj,kf
N
k (t).

(3.43)

From (3.33), we can write

G1(j + 1)− 2G1(j) +G1(j − 1) ≤ G′
1(j + 1) for 1 ≤ j ≤ N − 1. (3.44)

Applying (3.44), (1.5), and using max{µ, ν} ≤ 1, (3.43) can be further estimated as

d

dt

(

N
∑

j=0

G1(j)f
N
j (t)

)

≤ 2Cq

N−1
∑

j=1

N−1
∑

k=1

G′
1(j + 1)jkfN

j (t)fN
k (t). (3.45)

Using (3.29), (3.7) and (3.30), we obtain

d

dt

(

N
∑

j=0

G1(j)f
N
j (t)

)

≤ 4Cq

N−1
∑

j=1

N−1
∑

k=1

G1(j + 1)kfN
j (t)fN

k (t)

≤ 4CqM1(f(0))

N−1
∑

j=1

(

j + 1

j

)2

G1(j)f
N
j (t)

≤ 16CqM1(f(0))

N
∑

j=0

G1(j)f
N
j (t).

Now, the inequality (3.38) follows from Lemma 3.3(b) and Gronwall’s differential inequal-
ity. Subsequently, (3.39) is obtained from the uniform convergence of (fN

j )j≥0 to (fj)j≥0

on [0, T ] and (3.38), i.e.,

∞
∑

j=0

G1(j)fj(t) = lim
M→∞

M
∑

j=0

G1(j)fj(t) = lim
M→∞

lim
N→∞

M
∑

j=0

G1(j)f
N
j (t) ≤ C3(T ),

which completes the proof of Lemma 3.5. �

We are now in a position to complete the proof of Theorem 2.2.
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Proof of Theorem 2.2. Let us proceed with the proof of Theorem 2.2. In order to
show part(a), we first claim that

∑N−1
k=0 Kj+1,kf

N
k converges uniformly to

∑∞

k=0Kj+1,kfk
on [0, T ] for every j ∈ N0. We observe that for M ∈ N,
∣

∣

∣

∣

∣

∞
∑

k=0

Kj+1,kf
N
k −

∞
∑

k=0

Kj+1,kfk

∣

∣

∣

∣

∣

≤
M
∑

k=0

Kj+1,k

∣

∣fN
k − fk

∣

∣+

∣

∣

∣

∣

∣

∞
∑

k=M+1

Kj+1,k(fk + fN
k )

∣

∣

∣

∣

∣

, (3.46)

where fN
k := 0 for k > N . Since λ > 1, substituting (1.5), (3.36) and (3.37) into the

second term on the right-hand side of (3.46) yields
∣

∣

∣

∣

∣

∞
∑

k=M+1

Kj+1,k(fk + fN
k )

∣

∣

∣

∣

∣

≤ 2Cq(j + 1)λ
∞
∑

k=M+1

kλ(fk + fN
k )

≤ 2Cq(j + 1)λ sup
k≥M+1

(

k

Gλ(k)

) ∞
∑

k=M+1

kλ−1Gλ(k)(fk + fN
k )

≤ Cs(T ) sup
k≥M+1

(

k

Gλ(k)

)

, (3.47)

where Cs(T ) := 4Cq(j + 1)λC1,2(T ). From (3.47), we infer that

sup
t∈[0,T ]

Kj+1,Nf
N
N (t) ≤ sup

t∈[0,T ]

∞
∑

k=N

Kj+1,kf
N
k (t) ≤ Cs(T ) sup

k≥N

(

k

Gλ(k)

)

. (3.48)

By applying (3.47) in (3.46) and using the triangle inequality, we get

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

Kj+1,kf
N
k −

∞
∑

k=0

Kj+1,kfk

∣

∣

∣

∣

∣

≤ sup
t∈[0,T ]

M
∑

k=0

Kj+1,k

∣

∣fN
k − fk

∣

∣+ sup
t∈[0,T ]

Kj+1,Nf
N
N

+ Cs(T ) sup
k≥M+1

(

k

Gλ(k)

)

.

Applying (3.48), the above inequality can be further estimated as

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

Kj+1,kf
N
k −

∞
∑

k=0

Kj+1,kfk

∣

∣

∣

∣

∣

≤ sup
t∈[0,T ]

M
∑

k=0

Kj+1,k

∣

∣fN
k − fk

∣

∣ + Cs(T ) sup
k≥N

(

k

Gλ(k)

)

+ Cs(T ) sup
k≥M+1

(

k

Gλ(k)

)

.

Taking the limit as N → ∞, we use (3.28) and the uniform convergence of (fN
j )j≥0 to

(fj)j≥0 on [0, T ] to obtain the following inequality

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

Kj+1,kf
N
k −

∞
∑

k=0

Kj+1,kfk

∣

∣

∣

∣

∣

≤ Cs(T ) sup
k≥M+1

(

k

Gλ(k)

)

.

Finally, passing the limit as M → ∞ and using (3.28), we conclude that

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

Kj+1,kf
N
k (t)−

∞
∑

k=0

Kj+1,kfk(t)

∣

∣

∣

∣

∣

= 0. (3.49)
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Similarly, since λ > 1, by using (1.5), (3.36), (3.37), (3.28), and the uniform convergence
of (fN

j )j≥0 to (fj)j≥0 on [0, T ], we can readily infer the following uniform convergence

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

Kj,kf
N
k (t)−

∞
∑

k=0

Kj,kfk(t)

∣

∣

∣

∣

∣

= 0, (3.50)

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N
∑

k=1

Kk,jf
N
k (t)−

∞
∑

k=1

Kk,jfk(t)

∣

∣

∣

∣

∣

= 0, (3.51)

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N
∑

k=1

Kk,j−1f
N
k (t)−

∞
∑

k=1

Kk,j−1fk(t)

∣

∣

∣

∣

∣

= 0, (3.52)

lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N−1
∑

k=0

K1,kf
N
k (t)−

∞
∑

k=0

K1,kfk(t)

∣

∣

∣

∣

∣

= 0, (3.53)

and lim
N→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

N
∑

k=1

Kk,0f
N
k (t)−

∞
∑

k=1

Kk,0fk(t)

∣

∣

∣

∣

∣

= 0. (3.54)

Upon expressing the truncated system (3.1)–(3.2) in the integral form, the equations can
be written as

fN
0 (t) = fN

0 (0) +

∫ t

0

fN
1 (s)

N−1
∑

k=0

K1,kf
N
k (s)ds−

∫ t

0

fN
0 (s)

N
∑

k=1

Kk,0f
N
k (s)ds,

and

fN
j (t) = fN

j (0) +

∫ t

0

fN
j+1(s)

N−1
∑

k=0

Kj+1,kf
N
k (s)ds−

∫ t

0

fN
j

N−1
∑

k=0

Kj,kf
N
k (s)ds

−

∫ t

0

fN
j (s)

N
∑

k=1

Kk,jf
N
k (s)ds+

∫ t

0

fN
j−1(s)

N
∑

k=1

Kk,j−1f
N
k (s)ds,

for j = 1, 2, 3, . . . , N − 1, N . Now, we can take the limit as N → ∞ in the above
equations, by using (3.49)–(3.54) and the uniform convergence of (fN

j )j≥0 to (fj)j≥0 on
[0, T ]. This demonstrates that (fj)j≥0, as the limit, serves as a mild solution to the EDG
system (1.1)-(1.3). This completes the the proof of Theorem 2.2(a). Similarly, to prove
Theorem 2.2(b), we only have to show that

lim
M→∞

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∞
∑

k=M+1

Kj,k(fk(t) + fN
k (t))

∣

∣

∣

∣

∣

= 0, (3.55)

when max{µ, ν} ≤ 1 and min{µ, ν} < 1 with fN
j := 0 for j > N . By using (1.5), (3.38)

and (3.39), we obtain
∣

∣

∣

∣

∣

∞
∑

k=M+1

Kj,k(fk(t) + fN
k (t))

∣

∣

∣

∣

∣

≤ 2Cq

∞
∑

k=M+1

jk(fk(t) + fN
k (t))
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≤ 2Cqj

∞
∑

k=M+1

k(fk(t) + fN
k (t))

≤ 2Cqj sup
k≥M+1

(

k

G1(k)

) ∞
∑

k=M+1

G1(k)(fk(t) + fN
k (t))

≤ 4CqC3(T )j sup
k≥M+1

(

k

G1(k)

)

.

This implies that

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∞
∑

k=M+1

Kj,k(fk(t) + fN
k (t))

∣

∣

∣

∣

∣

≤ 4CqC3j sup
k≥M+1

(

k

G1(k)

)

.

Next, by passing the limit as M → ∞ and using (3.28), we obtain (3.55), which completes
the proof of Theorem 2.2(b). �

Proof of Corollary 2.4. Let (fj)j≥0 be the mild solution to (1.1)–(1.3) under the con-
ditions of Theorem 2.2. Then, from the construction in Theorem 2.2, consider the integral
form of (1.1)–(1.3)

f0(t) = f0(0) +

∫ t

0

f1(s)

∞
∑

k=0

K1,kfk(s)ds−

∫ t

0

f0(s)

∞
∑

k=1

Kk,0fk(s)ds

and fj(t) = fj(0) +

∫ t

0

fj+1(s)

∞
∑

k=0

Kj+1,kfk(s)ds−

∫ t

0

fj(s)

∞
∑

k=0

Kj,kfk(s)ds

−

∫ t

0

fj(s)

∞
∑

k=1

Kk,jfk(s)ds+

∫ t

0

fj−1(s)

∞
∑

k=1

Kk,j−1fk(s)ds,

for all j ∈ N. It is clear that the integrands on the right-hand sides of the above equations
are continuous functions due to the uniform convergence of (fN

j )j≥0 to (fj)j≥0 on [0, T ]
and the conditions in (3.49)–(3.54). Therefore, the solution (fj)j≥0 is differentiable by
the fundamental theorem of calculus. Then, the conservation of number of particles,
i.e., M0(f(t)) = M0(f(0)) and total mass, i.e., M1(f(t)) = M1(f(0)) = ρ of the system
for all t ∈ [0, T ], is a consequence of (3.36), (3.6), (3.7), (3.27), (3.28) and the uniform
convergence of (fN

j )j≥0 to (fj)j≥0. In order to prove these conservation results, let us

consider two cases. In the first case, assume that f(0) = (fj(0))j≥0 ∈ Y +
λ with λ =

max{µ, ν} > 1. First, we proceed to prove M1(f(t)) = M1(f(0)) for all t ∈ [0, T ]. For
N ≥ M ≥ 2, from (3.7), (3.36), and noting that λ > 1, we have
∣

∣

∣

∣

∣

∞
∑

j=0

j (fj(0)− fj(t))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M−1
∑

j=0

j
(

fN
j (t)− fj(t)

)

∣

∣

∣

∣

∣

+

N
∑

j=M

jfN
j (t) +

∞
∑

j=N+1

jfj(0) +

∞
∑

j=M

jfj(t)

≤

∣

∣

∣

∣

∣

M−1
∑

j=0

j
(

fN
j (t)− fj(t)

)

∣

∣

∣

∣

∣

+ sup
j≥M

(

j

Gλ(j)

) N
∑

j=M

jλ−1Gλ(j)f
N
j (t)
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+

∞
∑

j=N+1

jfj(0) +

∞
∑

j=M

jfj(t)

≤

∣

∣

∣

∣

∣

M−1
∑

j=0

j
(

fN
j (t)− fj(t)

)

∣

∣

∣

∣

∣

+ C1,2(T ) sup
j≥M

(

j

Gλ(j)

)

+
∞
∑

j=N+1

jfj(0) +
∞
∑

j=M

jfj(t).

Then, passing the limit as N → ∞ and using the uniform convergence of (fN
j )j≥0 to

(fj)j≥0 on [0, T ] and M1(f(0)) < ∞, we infer that
∣

∣

∣

∣

∣

∞
∑

j=0

j (fj(0)− fj(t))

∣

∣

∣

∣

∣

≤ C1,2(T ) sup
j≥M

(

j

Gλ(j)

)

+
∞
∑

j=M

jfj(t).

Taking the limit as M → ∞ and using (3.28) and M1(t) < ∞, we conclude that

∞
∑

j=0

jfj(t) =
∞
∑

j=0

jfj(0).

Similarly, for N ≥ M ≥ 2, using (3.6), (3.7) and (3.27), we set
∣

∣

∣

∣

∣

∞
∑

j=0

(fj(0)− fj(t))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M−1
∑

j=0

(

fN
j (t)− fj(t)

)

∣

∣

∣

∣

∣

+

N
∑

j=M

fN
j (t) +

∞
∑

j=N+1

fj(0) +

∞
∑

j=M

fj(t)

≤

∣

∣

∣

∣

∣

M−1
∑

j=0

(

fN
j (t)− fj(t)

)

∣

∣

∣

∣

∣

+
2

M
M1(f(0)) +

∞
∑

j=N+1

jfj(0).

Again, taking the limit as N → ∞ and using the uniform convergence of (fN
j )j≥0 to

(fj)j≥0 on [0, T ] along with M1(f(0)) < ∞, we infer that
∣

∣

∣

∣

∣

∞
∑

j=0

(fj(0)− fj(t))

∣

∣

∣

∣

∣

≤
2

M
M1(f(0)).

Finally, passing the limit as M → ∞, we obtain

∞
∑

j=0

fj(t) =
∞
∑

j=0

fj(0).

Similarly, in the second case, i.e., when max{µ, ν} ≤ 1 and min{µ, ν} < 1, the proofs for
the conservation of the number of particles and the total mass of the system follow from
(3.6), (3.7), (3.27), (3.28), (3.38) and the uniform convergence of (fN

j )j≥0 to (fj)j≥0 on
[0, T ]. This completes the proof of Corollary 2.4. �

Proof of Theorem 2.5. The proof of Theorem 2.5 is based on the method analogous
to that used in the proof of Theorem 2.2. Assuming that Kj,k = Kk,j ≤ Cj2k2, let us first
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consider

d

dt

(

N
∑

j=0

j2fN
j (t)

)

≤ 2C

N−1
∑

j=0

N−1
∑

k=0

j2k2fN
j (t)fN

k (t) ≤ 2C

(

N
∑

j=0

j2fN
j (t)

)2

,

which implies that

N
∑

j=0

j2fN
j (t) ≤

1
1

MN
2 (f(0))

− 2Ct
≤

1
1

M2(f(0))
− 2Ct

for t <
1

2M2(f(0))C
. (3.56)

Despite this, we can still construct a subsequence (fN
j )j≥0 (not relabeled), as previ-

ously that converges uniformly to a limiting function (fj)j≥0 on [0, T0], where 0 < T0 <
1

2M2(f(0))C
. Subsequently, we can establish an upper bound for

∑∞

j=0 jG2(j)f
N
j (t) up to a

finite time T0 <
1

2M2(f(0))C
, for some G2 ∈ G1,∞ satisfying

∑∞

j=0 jG2(j)fj(0) < ∞, by using

the de la Vallée-Poussin theorem and the Gronwall inequality. Afterward, we can demon-
strate that the partial sums in the truncated system (3.1)–(3.2) converge uniformly up to
time T0, which shows the existence of continuously differentiable solution (fj)j≥0 ∈ Y +

2 to
the infinite EDG system (1.1)–(1.3) on [0, T0]. Moreover, the truncated solution (fN

j )j≥0

to (3.1)–(3.4) satisfies (3.6) and (3.7). Hence, similarly to the proof of Corollary 2.4, we
can prove that M0(f(t)) = M0(f(0)) and M1(f(t)) = M1(f(0)) for all t ∈ [0, T0], where
T0 <

1
2M2(f(0))C

. This is accomplished by employing (3.6), (3.7), (3.56), and (fj)j≥0 ∈ Y +
2 ,

thereby completing the proof of Theorem 2.5. �

4. Finite Time Gelation

Before proceeding to show the occurrence of finite time gelation, we need some higher
moment bounds. Therefore, we prove the following propagation of moments result.

Lemma 4.1 (Propagation of moments). Consider the infinite EDG system (1.1)–(1.3).
Let Kj,k be the symmetric interaction kernel and satisfy C1 (j

2kα + jαk2) ≤ Kj,k ≤ Cj2k2

for all (j, k) ∈ N0 × N0, where 1 < α ≤ 2 and C1 > 0. If f(0) = (fj(0))j≥0 ∈ Y +
r with

Mr(f(0)) > 0 for r ≥ 2, then the continuously differentiable local solution to (1.1)–(1.3)
on [0, T0], constructed in Theorem 2.5, satisfies (fj(t))j≥0 ∈ Y +

r for all t ∈ [0, T0], where
0 < T0 <

1
2M2(f(0))C

.

Proof. From Theorem 2.5, it is evident that the system (1.1)–(1.3) has a continuously
differentiable local solution (fj)j≥0 ∈ Y +

2 satisfying

M2(fj(t)) ≤
1

1
M2(f(0))

− 2CT0

, for each t ∈ [0, T0]. (4.1)

Hence, we only need to show that (fj(t))j≥0 ∈ Y +
r for all t ∈ [0, T0] with r ≥ 2. For N > 1,

define hj := min {jr, N r} for j ∈ N0. Since Kj,k is symmetric with Kj,0 = 0 = Kk,0 for all
j, k ∈ N, we infer from Definition 2.1 that

∞
∑

j=0

hjfj(t) =
∞
∑

j=0

hjfj(0) +

∫ t

0

∞
∑

j=1

(hj+1 − 2hj + hj−1)
∞
∑

k=1

Kj,kfj(s)fk(s)ds, (4.2)
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for each t ∈ [0, T0]. Then, using the non-negativity of Kj,k and (fj)j≥0, from (4.2), we
derive the following estimate

N
∑

j=1

jrfj(t) ≤

∞
∑

j=1

jrfj(0) +

∫ t

0

N−1
∑

j=1

(hj+1 − 2hj + hj−1)

∞
∑

k=1

Kj,kfj(s)fk(s)ds.

Then, by the mean value theorem (3.12), we get the identity

hj+1 − 2hj + hj−1 = h′′(θ(j)) = r(r − 1)θ(j)r−2 (4.3)

for some θ(j) ∈ (j − 1, j + 1) with j = 1, 2, . . . , N − 1. Therefore, by inserting (4.1) and
(4.3) into (4.2) and noting that r ≥ 2, we deduce the following estimate

N
∑

j=1

jrfj(t) ≤
∞
∑

j=1

jrfj(0) + Cr(r − 1)
N−1
∑

j=1

∞
∑

k=1

θ(j)r−2j2k2fj(t)fk(t)

≤ Mr(f(0)) + Cr(r − 1)

N−1
∑

j=1

∞
∑

k=1

(j + 1)r−2j2k2fj(t)fk(t)

≤ Mr(f(0)) + Cr(r − 1)2r−2
N
∑

j=1

∞
∑

k=1

jrk2fj(t)fk(t)

= Mr(f(0)) + Cr(r − 1)2r−2M2(f(t))

N
∑

j=1

jrfj(t) ≤ C̃⋆

N
∑

j=1

jrfj(t),

where C̃⋆ :=
Cr(r−1)2r−2M2(f(0))

1−2CT0M2(f(0))
. Subsequently, by applying Gronwall’s lemma, we derive

N
∑

j=1

jrfj(t) ≤ Mr(f(0))e
C̃⋆t.

By passing the limit as N → ∞, we finally obtain

Mr(f(t)) ≤ Mr(f(0))e
C̃⋆t, t ∈ [0, T0].

This completes the proof of Lemma 4.1. �

With this preparation, we are now ready to provide the proof of Theorem 2.7.

Proof of Theorem 2.7. Since M2+α(f(0)) < ∞, from Lemma 4.1, we have a continu-
ously differentiable local solution (fj(t))j≥0 to (1.1)–(1.3) in Y +

2+α, for t <
1

2M2(f(0))C
, such

that

Mα(f(t)) = Mα(f(0)) +

∫ t

0

∞
∑

j=1

((j + 1)α − 2jα + (j − 1)α)fj(s)
∞
∑

k=1

Kj,kfk(s)ds, (4.4)

for 1 < α ≤ 2. By using the mean value theorem (3.12) in the above equation, we infer
that

Mα(f(t)) = Mα(f(0)) + α(α− 1)

∫ t

0

∞
∑

j=1

∞
∑

k=1

θ(j)α−2Kj,kfj(s)fk(s)ds,
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where θ(j) ∈ (j − 1, j + 1). Since α− 2 ≤ 0 and α > 1, we have

Mα(f(t)) ≥ Mα(f(0)) + C1α(α− 1)

∫ t

0

∞
∑

j=1

∞
∑

k=1

(j + 1)α−2j2kαfj(s)fk(s)ds

≥ Mα(f(0)) + C1α(α− 1)2α−2

∫ t

0

M2
α(f(s))ds.

Solving the above integral inequality, we obtain

Mα(f(t)) ≥

[

1

Mα(f(0))
− C1α(α− 1)2α−2t

]−1

.

This inequality shows that Mα(f(t)) blows up at t = 1
C1α(α−1)2α−2Mα(f(0))

. Therefore,

Tgel ≤ 1
C1α(α−1)2α−2Mα(f(0))

, indicating the occurrence of finite-time gelation. Next, to

prove that Tgel =
1

2M2(f(0))C
when Kj,k = Cj2k2 for all (j, k) ∈ N0 ×N0, we set α = 2 and

C1 =
C
2
. From (4.4), we then deduce the following equation

M2(f(t)) = M2(f(0)) + 2C

∫ t

0

∞
∑

j=1

∞
∑

k=1

j2k2fj(f(s))fk(s) ds

= M2(f(0)) + 2C

∫ t

0

M2
2 (s) ds,

for 0 ≤ t < 1
2M2(f(0))C

. Solving the above integral equality, we find that

M2(f(t)) =

[

1

M2(f(0))
− 2Ct

]−1

,

which implies Tgel ≤
1

2M2(f(0))C
as M2(f(t)) blows up at t = 1

2M2(f(0))C
. However, from

Theorem 2.5, we have Tgel ≥
1

2M2(f(0))C
. Therefore, we conclude that Tgel =

1
2M2(f(0))C

.

This completes the proof of Theorem 2.7. �

Proof of Corollary 2.8. Suppose that the infinite EDG system (1.1)–(1.3) has a global
mass conserving solution (fj(t))j≥0 in the space Y +

2 , i.e., M2(f(t)) < ∞ for all t ∈ (0,∞).
This is a contradiction to the blow up of Mα(f(t)) at t =

1
C1α(α−1)2α−2Mα(f(0))

, for 1 < α ≤

2. �

5. Instantaneous Gelation

Finally, we focus on the possible occurrence of instantaneous gelation, which leads to
the non-existence of solutions to (1.1)–(1.3). The work done in [5] indicates that specific
interaction kernels of the form Kj,k = jµkν + jνkµ with µ, ν > 2 lead to the occurrence of
instantaneous gelation phenomena. Building on approaches from [2, 10], we demonstrate
that instantaneous gelation occurs with faster-growing interaction kernels. Understanding
the tail behavior of the solution to (1.1)–(1.3) with such faster-growing interaction kernels
is essential for proving Theorem 2.9. In order to control the tail of the solution, we consider
the following infinite system

ḟj = Ij−1(f)− Ij(f) for j ∈ N,
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where

Ij(f) = fj

∞
∑

k=1

Kk,jfk − fj+1

∞
∑

k=0

Kj+1,kfk. (5.1)

The following lemmas are crucial for establishing the aforementioned Theorem 2.9. We
now present the result from [10, Lemma 4].

Lemma 5.1. Let (fj(t))j≥0 ∈ Y +
2 be a mild solution of the EDG system (1.1)–(1.3) for

t ∈ [0, T ] and 0 < T < Tgel. Then, we have the following identities for 0 < σ < t ≤ T and
m ≥ 2

∞
∑

j=m

fj(t)−
∞
∑

j=m

fj(σ) =

∫ t

σ

Im−1(f(s))ds,

∞
∑

j=m

jfj(t)−

∞
∑

j=m

jfj(σ) =

∫ t

σ

∞
∑

j=m

Ij(f(s))ds+m

∫ t

σ

Im−1(f(s))ds,

∞
∑

j=m

j2fj(t)−

∞
∑

j=m

j2fj(σ) =

∫ t

σ

∞
∑

j=m

(2j + 1)Ij(f(s))ds+m2

∫ t

σ

Im−1(f(s))ds.

Lemma 5.2. Let (fj(t))j≥0 ∈ Y +
2 be a mild solution of the EDG system (1.1)–(1.3) for

t ∈ [0, T ] and 0 < T < Tgel. Assume that Kj,k is a non-negative symmetric interaction
kernel satisfying Kj,0 = 0 for all j ∈ N0. Then M0(f(t)) = M0(f(0)) and M1(f(t)) =
M1(f(0)) for any t ∈ [0, T ], and M2(f(·)) is a non-decreasing function on [0, T ].

Proof. Consider 0 < T < Tgel and 0 ≤ t1 ≤ t2 ≤ T . Since Kj,k is symmetric with
Kj,0 = 0 = Kk,0 for all j, k ∈ N, we infer from Definition 2.1 that

∞
∑

j=0

hjfj(t2) =

∞
∑

j=0

hjfj(t1) +

∫ t2

t1

∞
∑

j=1

(hj+1 − 2hj + hj−1)

∞
∑

k=1

Kj,kfj(s)fk(s)ds, (5.2)

for any non-negative sequence (hj)j≥0. Therefore, M0(f(t)) = M0(f(0)) for any t ∈ [0, T ]
can be proved by inserting and t1 = 0, t2 = t and hj := 1, for all j ∈ N0 into (5.2).
Similarly, M1(f(t)) = M1(f(0)) can be proved by taking hj := j, for all j ∈ N0 in (5.2).
Next, by applying hj := j2 for all j ∈ N0 and using the non-negativity of (fj)j≥0 and Kj,k,
we obtain

∞
∑

j=1

j2fj(t2)−
∞
∑

j=1

j2fj(t1) = 2

∫ t2

t1

∞
∑

j=1

fj(s)
∞
∑

k=1

Kj,kfk(s)ds ≥ 0.

It implies that
∞
∑

j=1

j2fj(t2) ≥
∞
∑

j=1

j2fj(t1).

Hence, M2(f(·)) is a non-decreasing function of time. �

In order to show the occurrence of instantaneous gelation, the upcoming lemma shows
that all higher-order moments are finite.
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Lemma 5.3. Let Kj,k be a non-negative symmetric interaction kernel satisfying Kj,0 = 0
for all j ∈ N0, with Kj,k ≥ C

(

jβ + kβ
)

for some C > 0 and β > 2. Suppose (fj(t))j≥0 ∈

Y +
2 is a mild solution to (1.1)–(1.3) on [0, T ] for some 0 < T < Tgel, with the initial

condition f(0) ∈ Y +
2 ,
∑∞

k=0 fk(0) ≥ C2 > 0. Then, for any p ∈ N, Mp(f(t)) < ∞ for all
t ∈ [0, T ).

Proof. Let (fj(t))j≥0 ∈ Y +
2 be a solution to (1.1)–(1.3) on [0, T ]. Then, M2(f(t)) < ∞ for

t < T . By utilizing the first and third identities of Lemma 5.1, we obtain

∞
∑

j=m

(j2 −m2)fj(t)−
∞
∑

j=m

(j2 −m2)fj(σ) =

∫ t

σ

∞
∑

j=m

(2j + 1)Ij(f(s))ds, (5.3)

for 0 < σ < t ≤ T . By extracting Ij(f(s)) from (5.1) and moving it to the right-hand
side of (5.3), and then adjusting the index for the term fj+1, the expression becomes

∫ t

σ

∞
∑

j=m

(2j + 1)Ij(f(s))ds =

∫ t

σ

∞
∑

j=m

(2j + 1)fj(s)

∞
∑

k=1

Kk,jfk(s)ds

−

∫ t

σ

∞
∑

j=m+1

(2j − 1)fj(s)

∞
∑

k=0

Kj,kfk(s)ds.

Using the symmetry of the interaction kernel Kj,k, the conditions K0,j = 0 = Kj,0 and
non-negativity of fj and Kj,k, we obtain

∫ t

σ

∞
∑

j=m

(2j + 1)Ij(f(s))ds = 2

∫ t

σ

∞
∑

j=m

fj(s)

∞
∑

k=0

Kk,jfk(s) +

∫ t

σ

(2m− 1)fm(s)

∞
∑

k=1

Kk,mfk(s)ds

+

∫ t

σ

∞
∑

j=m

(2j − 1)fj(s)
∞
∑

k=1

(Kk,j −Kj,k)fk(s)ds

≥ 2

∫ t

σ

∞
∑

j=m

fj(s)

∞
∑

k=0

Kk,jfk(s).

Then, inserting the above inequality into (5.3), we observe

∞
∑

j=m

(j2 −m2)fj(t)−
∞
∑

j=m

(j2 −m2)fj(σ) ≥ 2

∫ t

σ

∞
∑

j=m

fj(s)
∞
∑

k=0

Kk,jfk(s)ds. (5.4)

From (5.4) and Lemma 5.2, we can deduce the following by using the fact that Kj,k > Cjβ

∞
∑

j=m

j2fj(σ) ≤
∞
∑

j=m

j2fj(t) +
∞
∑

j=m

m2fj(σ)− 2C

∫ t

σ

∞
∑

j=m

jβfj(s)
∞
∑

k=0

fk(s)ds

≤ 2M2(f(T )) + 2CC2m
β−2

∫ σ

t

∞
∑

j=m

j2fj(s)ds.
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In the second line, we utilized
∑∞

k=0 fk(s) = M0(f(0)) ≥ C2 > 0 by Lemma 5.2. Solving
the above integral inequality, we infer that

∞
∑

j=m

j2fj(σ) ≤ 2M2(f(T ))e
−2CC2m

β−2(t−σ).

Using m2fm(t) ≤
∑∞

j=m j2fj(t) and the above inequality, we get

∞
∑

j=m

jpfj(σ) ≤ 2M2(f(T ))

∞
∑

j=m

jp−2e−2CC2j
β−2(t−σ), (5.5)

for 0 < σ < t ≤ T . Since for β > 2, we have

lim
j→∞

jβ−2

log j
= ∞.

Therefore, the series on the right-hand side of (5.5) is convergent, which implies that
Mp(f(t)) < ∞ for all t ∈ [0, T ) and for any p ∈ N. �

At this juncture, we are ready to wrap up the proof of Theorem 2.9.

Proof of Theorem 2.9. From the EDG system (1.1)–(1.3), we get

Mn(f(t)) = Mn(f(0)) +

∫ t

0

∞
∑

j=1

((j + 1)n − 2jn + (j − 1)n)fj(s)
∞
∑

k=1

Kj,kfk(s)ds,

for every natural number n ≥ 2 and t ∈ [0, T ] with 0 < T < Tgel. All the terms in the
above equation are finite by Lemma 5.3. Since

(j + 1)n − 2jn + (j − 1)n ≥ n(n− 1)jn−2 and Kj,0 = 0, forall j ∈ N0,

therefore, we obtain

Mn(f(t)) ≥ Mn(f(0)) + n(n− 1)

∫ t

0

∞
∑

j=1

jn−2fj(s)

∞
∑

k=0

Kj,kfk(s)ds.

By using Kj,k ≥ Cjβ, Lemma 5.2 and M0(f(0)) ≥ C2 > 0, the above inequality can be
further estimated as

Mn(f(t)) ≥ Mn(f(0)) + Cn(n− 1)

∫ t

0

∞
∑

j=1

jn−2+βfj(s)

∞
∑

k=0

fk(s)ds.

≥ Mn(f(0)) + CC2n(n− 1)

∫ t

0

Mn−2+β(f(s))ds. (5.6)

An application of Jensen’s inequality (see Appendix A) gives

Mn−2+β(f(s)) ≥ M−Λ
1 (f(0)) (Mn(f(s)))

1+Λ for s ∈ [0, t],

with Λ := β−2
n−1

. Inserting the above inequality into (5.6), we obtain

Mn(f(t)) ≥ Mn(f(0)) + CC2n(n− 1)M−Λ
1 (f(0))

∫ t

0

(Mn(f(s)))
1+Λ ds.
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Then, by solving the above integral inequality, we get

Mn(f(t)) ≥
[

M−Λ
n (f(0))− CC2M

−Λ
1 (f(0))(β − 2)nt

]
−1

Λ .

The last inequality shows that Mn(f(t)) blows up at t =
(

Mn(f(0))
M1(f(0))

)−Λ
1

CC2(β−2)n
. Since

Mn(f(0)) ≥ M1(f(0)) for n ≥ 2, the gelation time Tgel ≤
C

CC2(β−2)n
for all n ≥ 2. This

implies that Tgel = 0 by taking the limit as n → ∞. �

An immediate consequence of the aforementioned results in Lemma 5.3 and Theorem 2.9
is Corollary 2.10.

Proof of Corollary 2.10. For the sake of contradiction, suppose that (fj(t))j≥0 ∈ Y +
2

is a solution to (1.1)–(1.3) on some interval [0, T ) for T > 0. Clearly, Lemma 5.3 implies
that Mn(f(t)) < ∞ on [0, T ) for any n ∈ N. However, from Theorem 2.9, we have
Tgel = 0, which contradicts Mn(f(t)) < ∞ on [0, T ) for any n ∈ N. Therefore, there is no
solution (fj(t))j≥0 ∈ Y +

2 of (1.1)–(1.3) on any interval [0, T ). �

Appendix A. Let qj ≥ 0 satisfy
∑∞

j=1 qj = 1, and let Ψ(x) be a convex function. Then,
by Jensen’s inequality, we have

∞
∑

j=1

qjΨ(xj) ≥ Ψ

(

∞
∑

j=1

qjxj

)

.

Since M1(f(s)) = M1(f(0)) for all s ∈ [0, t] ⊂ [0, T ) by Lemma 5.2, we take qj =
jfj(s)

M1(f(0))
,

xj = jn−1, and Ψ(x) = x1+Λ (where Λ := β−2
n−1

> 0 for β > 2) in Jensen’s inequality. It
then follows that

Mn−2+β(f(s)) ≥ M−Λ
1 (f(0)) (Mn(f(s)))

1+Λ , for s ∈ [0, t].
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