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Abstract—In sensitive scenarios, such as meetings, negotiations,
and team sports, messages must be conveyed without detection
by non-collaborators. Previous methods, such as encrypting
messages, eye contact, and micro-gestures, had problems with
either inaccurate information transmission or leakage of in-
teraction intentions. To this end, a novel gesture-free hand
intention recognition scheme was proposed, that adopted sur-
face electromyography(sEMG) and isometric contraction theory
to recognize different hand intentions without any gesture.
Specifically, this work includes four parts: (1) the experimental
system, consisting of the upper computer software, self-conducted
myoelectric watch, and sports platform, is built to get sEMG
signals and simulate multiple usage scenarios; (2) the paradigm
is designed to standard prompt and collect the gesture-free sEMG
datasets. Eight-channel signals of ten subjects were recorded
twice per subject at about 5-10 days intervals; (3) the toolbox
integrates preprocessing methods (data segmentation, filter, nor-
malization, etc.), commonly used sEMG signal decoding methods,
and various plotting functions, to facilitate the research of the
dataset; (4) the benchmark results of widely used methods are
provided. The results involve single-day, cross-day, and cross-
subject experiments of 6-class and 12-class gesture-free hand
intention when subjects with different sports motions. To help
future research, all data, hardware, software, and methods are
open-sourced on the following website: click here.

Index Terms—Gesture-free hand intention recognition, surface
electromyographic (sEMG), open-source dataset, benchmark re-
sults, human-computer interaction.

I. INTRODUCTION

IN the scenario where collaborators and non-collaborators
coexist, how to achieve message transmission between

collaborators without being noticed by non-collaborators is of
great significance for team cooperation in conference nego-
tiations or team sports. Previous research has focused on the
concealment of interactive information, ensuring that it is diffi-
cult for non-collaborators to decode. For example, Katriel et al.
[1] utilize end-to-end encryption and decryption technologies
to prevent messages from being stolen and exploited. Another
typical approach is to develop a specialized code language for
collaborators, such as eye contact [2] and gestures [3], [4], that
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are difficult to understand for non-collaborators. Although the
above methods prevent non-collaborators decode the meaning
of the message, the process of sending the message is exposed,
which may easily arouse the perception and vigilance of non-
collaborators. In recent years, extensive research on human-
computer interaction has satisfied the concealment, but there
are shortcomings in other aspects. Typically, brain-computer
interaction directly decodes human intentions for transmitting
messages without body movements [5], but has problems
such as dependence on stimulus paradigms, low accuracy, and
poor wearing comfort. Gaze-based interaction only produces
slight head displacement, but it is limited by the Midis touch
problem [6] in high-eye load application scenarios. Therefore,
it is necessary to design a novel interaction method, that can
convey messages accurately without obvious body movements
or explicit signals.

The gesture recognition system based on surface elec-
tromyography (sEMG) signals has been widely studied and
achieved robust performance[4]. As a weak electrobiological
signal, it reflects information related to surface muscle and
bone activity in the human body. It is a motor unit action
potential train sequence generated by the recruited motor
units during muscle excitation, which is filtered by muscles,
subcutaneous fat, and skin tissue, and superimposed on the
electrode on the skin surface to form a signal. The sEMG
signals are the neural electrical signals accompanying muscle
contractions, which can truly reflect the intention of the human
body to make movements, and the relationship between inten-
tion and movement is not sufficient or necessary. A typical
case is the isometric contraction of muscles [7], where the
muscles produce excitation and output force, but their length
remains unchanged. The muscle isometric contraction refers
to the contraction of muscles that maintain a constant length
while experiencing changes in tension. In this contracted state,
muscle tension can increase to its maximum. However, due to
the absence of displacement, physically speaking, muscles do
not perform any external work, yet still require a significant
amount of energy consumption. The active contraction of mus-
cle components generates significant tension, which causes the
elastic components of the muscle to elongate and counteract.
Therefore, regardless of whether the limbs produce movements
or not, sEMG signals can always accurately determine whether
a person has the intention to control limb movements. This is
the theoretical basis for selecting sEMG signals to recognize
gesture-free hand intentions in this work.
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Based on the isometric contraction theory, the experimental
system is built to acquire sEMG data without any gesture.
The system first designs a myoelectric wristband, that can
acquire eight-channel sEMG signals and three-axis acceler-
ation signals with a 500Hz sampling rate. The supporting
host computer software has two pages, one is to help users
control, store, and visualize the data, and another is used
to control the experimental paradigm and prompt subjects to
apply the correct hand force. Considering users may use this
interaction technology in various sports scenarios, we have
specially customized a sports platform that supports simulating
usage at different sports speeds.

To standardize the recording process of sEMG, the cor-
responding experimental paradigm has been designed. The
experimental procedure consists of 12 blocks × 12 trials of
data recording. The trail number corresponds one-to-one with
the hand intention. Block denotes the current sports state of
the subject, which includes three rounds of switching between
four different sports states. Each trial records the sEMG signals
for ten seconds with the prompts of voice, text, image, and
progress bar. Ten subjects take part in the above procedure
twice, with an interval of 5-10 days. The data format has 15
channels, which denotes the real-time sEMG data, IMU data,
and information on the block, speed, time stamp, and trigger,
respectively.

To promote future research, we have developed a toolbox for
this dataset that supports the function for data preprocessing,
sEMG classification, and visualization. The data preprocessing
section converts the collected sEMG dataset into data samples
for model training through steps such as data slicing, filtering,
baseline correction, and dataset preparation. We have summa-
rized and reproduced the representively sEMG signal decoding
methods in recent years, and will use them as the baseline
to test the classification performance of the gesture-free hand
intention recognition task. Finally, the toolbox provides most
of the visualization analyse methods, such as t-distributed
stochastic neighbor embedding (t-SNE), confusion matrix,
spectrogram, and etc.

Based on the dataset recorded by the experimental system
and paradigm, and the analysis tools and methods supported
by the toolbox, the mainstream sEMG classification methods
have been tested and the benchmark results for the gesture-free
hand intention recognition task have been provided. The ex-
periments involve three types: single-day, cross-day, and cross-
subject. To adapt to the different application scenarios, the
length of the time window is set to 250ms, 500ms, and 750ms,
respectively, The classification categories are set to 6 and 12.
The former only includes samples of single-finger force and
resting state, while the latter expands samples of multiple-
finger combination force. In addition, we further obtained the
details of the classification results by the confusion matrix tool
and analyzed the impact of different sports modes on the task.
Finally, we conducted online experiments to demonstrate the
effectiveness of the proposed scheme.

This work first proposes the scheme of gesture-free hand
intention recognition based on the sEMG signal and the
isometric contraction theory. The detailed contribution and
significance of this work lie in:

1) Designed a sEMG-based gesture-free hand intention
recognition experimental system, which enhances the
concealment of information transmission while ensuring
accurate and efficient information transmission;

2) Based on this system, we designed the paradigm and
recorded the gesture-free sEMG dataset containing ten
subjects. Considering real-world application scenarios,
the data is collected when the subjects are standing, slow,
fast, and jogging;

3) For the convenience of data analysis, we have developed
a data analysis toolbox, which includes functions such as
dataset management, data processing, and visualization
analysis;

4) To promote further research, benchmark results of repre-
sentative sEMG signal processing algorithms were pro-
vided on this dataset.

II. EXPERIMENTAL SYSTEM

As illustrated in Fig. 1, the experimental system consists of
three parts: 1) the self-conducted myoelectric wristband, which
is designed for recording the real-time sEMG signals. The sub-
figure on the right shows the details of external structure and
PCB circuit design; 2) the matched host computer software,
consists of two graphical user interface (GUI) pages. The first
page is responsible for managing data, including the functions
of data receiving, storage, and visualization, while the second
page is responsible for managing paradigms, including the
functions of paradigm control and task prompts; 3) Umay U3H
sports platform, considering the different application scenario,
we adopt a treadmill to simulate the various motion patterns
possible for the user. The detailed introduction of the first two
parts is as follows:

A. Self-conducted myoelectric wristband

Before designing the myoelectric wristband, we considered
the problem of the sEMG source, which part of the body is
used to collect the signals. Due to the well-developed muscle
group in the forearm, previous studies have often recorded
sEMG signals in this area, but this may not be effective for
gestures involving fine finger movements. Botros et al. [8],
[9] show that classifiers trained and tested using wrist EMG
signals are significantly higher than the former in both single-
finger and multi-finger gestures. This is because controlling
the muscle group extension range of human fingers covers
the wrist, which means that electromyographic signals repre-
senting human finger movement intention can be effectively
collected in the wrist, demonstrating the theoretical basis for
realizing gesture-free hand intention recognition. In addition,
using wrist EMG signals can be more easily integrated into
wristband devices, making consumers wear more comfortable.

From part A of Fig. 1, the myoelectric wristband consists
of two parts: the host and the strap. The host is composed of
a PCB circuit board and a corresponding outer shell, while
the strap is made of soft silicone. The wires between each
electrode and the host are hidden in an inner silicone compos-
ite molding technology cavity. The spindle adopts a hollow
design, and the cables in the silicone band are connected to the
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Fig. 1. Experimental system for sEMG-based gesture-free hand intention recognition. It comprises the self-conducted myoelectric wristband, the matched host
computer software, and the Umay U3H sports platform. The myoelectric wristband is responsible for recording real-time sEMG signals; The host computer
software has two pages, one is designed for data parameter setting and visualization, and another is for paradigm parameter settings and task prompts; The
sports platform simulates different application scenarios.

PCB main board of the main body casing through the hollow
spindle. Eight pairs of 4.0mm medical standard female buckles
are arranged longitudinally on the inside of the wristband,
which is compatible to be used with electrode pads of 3.9mm
standard interface. Considering the requirement for low power
consumption, the STM32L151CBU6 chip is selected to control
the data acquisition and forwarding process. In terms of
analog-to-digital converters (ADC), we have chosen ADS1299
from Texas Instruments (TI) company to collect weak surface
electromyography signals, which is an integrated acquisition
chip specifically designed for physiological electrical signals.
Its features include an eight-channel 24 bit ADC analog-
to-digital sampling module with a programmable gain pro-
grammable gain amplifier (PGA) added to the front-end, as
well as a right leg drive circuit for denoising. In addition,
a three-axis accelerometer supported by QMI8658A is built
to measure x, y, and z three-dimensional acceleration signals.
Based on the size of the comprehensive data transmission,

speed requirements, and power consumption, the system se-
lects MX-06 and uses Bluetooth SPP protocol to transmit
the sEMG data to the host computer software. Overall, the
self-conducted myoelectric wristband supported to collect and
transmit the eight-channel wrist sEMG signals for monitoring
the tension/relaxation state of the hand muscles or the intention
of the movement, and 2) three-axis acceleration signals for
monitoring the movement state of the wearer.

B. Design of the host computer software

From part B of Fig. 1, the host computer consists of two
pages that switch with a button: (1) data manager; and (2)
paradigm manager, which uses a button to switch. These
graphical user interfaces are developed to receive the sEMG
data, visualize the multi-channel signals, and record necessary
experimental information. The following is a detailed intro-
duction to the functions of each page:
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Fig. 2. Software architecture of the page1: data manager, which consists of
three layers, i.e. the user layer for human-computer interface; the manager
layer controls device and plot operations; and the data layer for data save,
decode, preprocess, and plot.

1) Page1: data manager: The host computer has three real-
time functions, i.e. receiving the byte stream data from the
myoelectric wristband; decoding the sEMG signals based on
the data protocol; and visualizing the multi-channel signals.
Fig. 2 shows the hierarchical software architecture of this page,
which consists of user, manager, and data layers. The GUI of
the user layer is shown in Fig. 1(B1), implemented based on
the PyQt library. The top column is operable and used to set
parameters for various functions. The following two columns
cannot be operated, they are used to display the waveforms
of sEMG signals and acceleration signals, respectively. All
functions are divided into device functions and plot functions,
running on two different threads and sharing data through
memory-sharing technology. To facilitate the management of
functions, we have set up two managers to implement the
classification management and calling of functions.

2) Page2: paradigm manager: This page is designed for
paradigm parameter settings and task prompts. To facilitate
information management and assist subjects in accurately
completing experimental tasks, we have developed a graphical
interface that prompts subjects to switch and maintain the
corresponding gesture-free hand intention state from four
aspects: images, text, sound, and progress bar. The GUI is
shown in Fig. 1(B2), with the experimental prompt area on
the left and the experimental settings area on the right.

III. PARADIGM AND DATASET

Based on the above experimental system, an experimental
paradigm was designed to construct the sEMG-based gesture-
free hand intention recognition dataset. The paradigm collected
eight-channel sEMG data and three-channel accelerometer
signals with a 500Hz sampling rate from ten subjects.

A. Subjects

Before each experiment procedure, the subject needs to
fill in personal information in the upper right corner of Fig.
1(B2). According to the statistics, ten subjects (6 males and
4 females, aged between 22-28 years old) participated in our
experiments. All subjects had no muscle or nervous system
injuries. The experiment strictly adheres to the provisions of
the Helsinki Declaration, providing a detailed introduction to

the experimental process and signing an informed consent
form before the experiment begins. It should be noted that
each subject is required to complete two experiments, with an
interval of 5-10 days, to construct a cross-day dataset.
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Fig. 3. The sEMG-based gesture-free hand intention recognition paradigm.
Each experiment includes 12 blocks and each block includes 12 trials. The
motion speed corresponds to each block and the hand force mode corresponds
to each trial are different. The specific correspondence is shown in the table.

B. Procedure

Before the paradigm, some preparatory work needs to be
completed, such as checking the experimental equipment, set-
ting the host computer software parameters correctly, cleaning
the subjects’ hands, and wearing the self-conducted myoelec-
tric wristband. Like a smartwatch, the myoelectric wristband
is placed directly above the back of the wrist. The experiment
consists of twelve blocks, and each block contains twelve
trials. In this work, we designed twelve types of gesture-free
hand intention states, each corresponding to a trial. Consider-
ing the application requirements of decoding intention without
gesture in sports scenes, the paradigm sets motion speeds of
0km/h, 4km/h, 6km/h, and 8km/h to simulate four motion
states: stationary, slow walking, fast walking, and jogging.
The experimental system would select corresponding image
tips and motion platform speed settings based on the block
and trial number, as shown in the table below Fig. 3. The
fingers marked in red indicate that this gesture requires the
finger to maintain a vigorous state, while the fingers marked in
blue remain relaxed. During the experiment, the subjects were
required to hold a cylindrical object (simulate holding things
in hand) with their hands and maintain a tight grip on the
object with their fingers during the force application process
to ensure that sEMG signals were collected gesture-free.

C. Dataset format

The sEMG-based gesture-free hand intention recognition
dataset includes two experiments from ten subjects in two
days. In each experiment, the system records a source file of
shape (T , C) with a .dat suffix. The parameter T denotes the
sampling points during the experiments, which is the product
of recording time and sampling rate. At each sampling point,
the experimental system would record 15-channel signals. As
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shown in Fig. 4, channels 1-8 record the eight-channel sEMG
signals, and channels 9-11 record the axis-x, axis-y, and axis-
z of the IMU data. Channel 12 is the sampling timestamp
of the data for these 15 channels. Channel 13-15 denote the
parameters of the paradigm, i.e. trigger, block, and speed
information.

Gesture-Free

sEMG Dataset

Subject_01

Subject_02

Subject_03

…
…

Subject_10

Day_01

Day_02

raw_data.dat

data format

(T, C)

No. 1 2 3 4 5

Ch. 

Name

sEMG

ch1

sEMG
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No. 6 7 8 9 10

Ch. 
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sEMG

ch8

IMU

x

IMU

y

No. 11 12 13 14 15

Ch. 
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IMU

z

Time

stamp
trigger block speed

Fig. 4. Dataset format. The dataset includes data from two experiments
involving ten subjects. Each experiment records a source file of shape (T ,
C), where T and C denote the number of sampling points and channels
respectively. There are a total of 15 channels, and the meaning of each channel
is shown in the table.

IV. DATA ANALYSE TOOLBOX

A. Preprocess Tool
To help future researchers in processing and analyzing

data, we have developed multiple data preprocessing methods,
which are described in detail as follows:

1) Data segmentation: Obtain all sample data that meet
the conditions from the raw data based on the label of
the gesture, as well as the set time window size and
window movement step size. The function head code
can be expressed as ”def data segmentation(raw data,
gesture id, window size, step)”;

2) Data filter: According to the cutoff frequency, various
common filters such as low-pass, high pass, band-pass,
and notch are provided. It should be noted that all
filters are zero phases to ensure the integrity of phase
information. The pseudo-code of the function head is ”def
data {filtername} filter(raw data, [cut off params])”;

3) Baseline correction: sEMG data is non-stationary and
exhibits significant time drift. To solve this problem,
baseline correction methods are often used to ensure
distribution consistency between signals collected at dif-
ferent times. The calculation method is to subtract the
signal mean in a calm state at the beginning of the
trial from the current time data. The pseudo-code of the
function head is ”def data baseline correction(raw data,
baseline len)”;

4) Train / test dataset preparation: This function man-
age all recorded sEMG data. Based on the type of
experiment, such as single-day, cross-day, or cross-
subject experiments, it would produce the training and
testing datasets, which are required for the decoding
algorithm. The pseudo-code of the function head is
”def data divide {experiment-type}(dataset, [subject id,
day id, and etc.])”.

B. Decoding Method

By researching existing literature, we have implemented the
following ten widely used sEMG signal decoding methods.
The traditional methods are LDA [10]), NaiveBayes [11], k-
nearest neighbor (KNN) [12], SVM [13], and Random Forests
[14] and the deep learning methods are LSTM [15], 1DCNN
[16], 2DCNN [17], CNN-LSTM [18]), and L-EMGNet [19],
respectively. For traditional classification methods, the time-
frequency characteristics of sEMG signals are extracted as
classification features, including signal mean, root mean
square (RMS) value, average frequency, and spectral density.
It should be noted that all methods can run end-to-end to meet
practical application needs, and the code is open-sourced on
the project website.

C. Visualization Tool

Data visualization can help us assess signal quality, dis-
cover objective patterns, and further optimize research. For
this purpose, we have developed various function scripts and
implemented commonly used visualization methods, including
(1) 1D / 2D waveform plotting, for observing and comparing
sEMG temporal dynamics; (2) The spectrum diagram used
to analyze the main frequency components of sEMG signals
and design filters accordingly; (3) confusion matrix is used to
analyze the details of algorithm classification results, to screen
out the most discriminative force application method; (4) t-
SNE distribution, used to observe the distribution of sEMG
features, and etc.

V. EXPERIMENTS AND BENCHMARK RESULTS

A. Experiments setting

To evaluate the performance of the gesture-free hand in-
tention recognition system, we designed single-day, cross-
day, and cross-subject experiments to test the existing sEMG
classification algorithms. In the single-day experiment, the first
eight blocks of data are used for training, while the rest are
used for testing. On the one hand, it can avoid the class
imbalance problem, and on the other hand, it ensures that
the test data is collected after the training data to simulate
actual application scenarios [20]. The cross-day experiment
uses the data from the first experiment as the training set to
test the performance of the model in the second experiment. As
for cross-subject experiments, Leave-One-Out cross-validation
[21] has been adopted to test the performance of the gesture-
free hand intention recognition system. Considering that the
requirements for interactive instructions vary in different ap-
plication scenarios, the experiment is divided into 6 and 12
classes of finger force modes. Among them, the 6 classes
of force modes only include resting state and single-finger
force, while the 12 classes of force modes add 6 classes of
combined force modes on the basis of the former. Through the
literature review, the window sizes of sEMG signals were set to
250ms, 500ms, and 750ms, respectively, with a moving step
size of 250ms to ensure real-time interaction response [22].
All classification methods in our toolbox have been tested.
Consistent with most studies, we only use accuracy to measure
the performance of model classification.
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TABLE I
BENCHMARK RESULTS OF SINGLE-DAY, CROSS-DAY, AND CROSS-SUBJECT EXPERIMENTS WITH DIFFERENT WINDOW SIZES (MEAN ± STANDARD

DEVIATION). THE BASIC AND ADVANCED GESTURE-FREE HAND INTENTION RECOGNITION TASKS INCLUDE 6 AND 12 POWER MODES RESPECTIVELY.
THE LENGTHS OF THE TIME WINDOWS ARE 250MS, 500MS, AND 750MS, RESPECTIVELY.

Method Type
6-classes 12-classes

(Year) 250ms 500ms 750ms 250ms 500ms 750ms

LDA SD 0.8618 ± 0.0807 0.8877 ± 0.0769 0.8925 ± 0.0834 0.6227 ± 0.0921 0.6690 ± 0.0956 0.6869 ± 0.0953
CD 0.6352 ± 0.1776 0.6572 ± 0.1815 0.6590 ± 0.1818 0.3885 ± 0.1354 0.4066 ± 0.1442 0.4113 ± 0.1459

(2019) CS 0.5546 ± 0.1608 0.5700 ± 0.1604 0.5755 ± 0.1623 0.2978 ± 0.0936 0.3100 ± 0.0984 0.3070 ± 0.1000

NaiveBayes SD 0.7438 ± 0.1105 0.7657 ± 0.1160 0.7778 ± 0.1178 0.4668 ± 0.1029 0.5055 ± 0.1099 0.5250 ± 0.1114
CD 0.5675 ± 0.1769 0.5712 ± 0.1827 0.5709 ± 0.1838 0.3441 ± 0.1224 0.3564 ± 0.1319 0.3618 ± 0.1408

(2021) CS 0.4878 ± 0.1413 0.5122 ± 0.1498 0.5090 ± 0.1302 0.2566 ± 0.0978 0.2649 ± 0.1022 0.2674 ± 0.1025

KNN SD 0.7459 ± 0.1502 0.7554 ± 0.1542 0.7557 ± 0.1555 0.4838 ± 0.1281 0.5094 ± 0.1401 0.5102 ± 0.1433
CD 0.5072 ± 0.1608 0.5040 ± 0.1716 0.5005 ± 0.1721 0.2858 ± 0.1059 0.2908 ± 0.1228 0.2881 ± 0.1234

(2024) CS 0.4624 ± 0.1158 0.4674 ± 0.1184 0.4612 ± 0.1130 0.2231 ± 0.0535 0.2264 ± 0.0541 0.2251 ± 0.0551

SVM SD 0.7952 ± 0.1215 0.8105 ± 0.1252 0.8114 ± 0.1270 0.5520 ± 0.1291 0.5845 ± 0.1392 0.5899 ± 0.1426
CD 0.5511 ± 0.1668 0.5495 ± 0.1693 0.5476 ± 0.1762 0.3354 ± 0.1302 0.3359 ± 0.1352 0.3359 ± 0.1376

(2012) CS 0.5161 ± 0.1181 0.5199 ± 0.1304 0.5304 ± 0.1254 0.2499 ± 0.0751 0.2562 ± 0.0798 0.2575 ± 0.0787

Random
Forests

SD 0.8872 ± 0.0633 0.9018 ± 0.0627 0.9050 ± 0.0666 0.6577 ± 0.0916 0.6941 ± 0.0959 0.7129 ± 0.0931
CD 0.6685 ± 0.2080 0.6814 ± 0.2174 0.6861 ± 0.2169 0.4361 ± 0.1639 0.4519 ± 0.1725 0.4697 ± 0.1741

(2015) CS 0.5808 ± 0.1290 0.5933 ± 0.1388 0.5988 ± 0.1300 0.3184 ± 0.0867 0.3275 ± 0.0897 0.3253 ± 0.0876

LSTM SD 0.8677 ± 0.0709 0.8907 ± 0.0610 0.8824 ± 0.0744 0.6639 ± 0.1003 0.7216 ± 0.0965 0.7304 ± 0.1022
CD 0.5963 ± 0.1553 0.6030 ± 0.1587 0.6069 ± 0.1795 0.3862 ± 0.1357 0.3936 ± 0.1557 0.3884 ± 0.1709

(2018) CS 0.5734 ± 0.1285 0.6066 ± 0.1236 0.6192 ± 0.1206 0.3044 ± 0.0797 0.3287 ± 0.0863 0.3485 ± 0.1024

1DCNN SD 0.7521 ± 0.1168 0.7692 ± 0.1194 0.7722 ± 0.1335 0.4911 ± 0.1163 0.5230 ± 0.1328 0.5205 ± 0.1280
CD 0.4991 ± 0.1226 0.5257 ± 0.1493 0.5236 ± 0.1456 0.3155 ± 0.1104 0.3204 ± 0.1341 0.3113 ± 0.1189

(2017) CS 0.4873 ± 0.1234 0.5087 ± 0.1250 0.4952 ± 0.1151 0.2149 ± 0.0483 0.2127 ± 0.0497 0.2064 ± 0.0515

2DCNN SD 0.9047 ± 0.0595 0.9273 ± 0.0625 0.9242 ± 0.0830 0.6971 ± 0.1075 0.7439 ± 0.0951 0.7542 ± 0.1098
CD 0.6409 ± 0.1902 0.6248 ± 0.1970 0.6209 ± 0.2197 0.4002 ± 0.1753 0.4214 ± 0.1839 0.4082 ± 0.1658

(2021) CS 0.6044 ± 0.1477 0.6216 ± 0.1575 0.6138 ± 0.1411 0.3222 ± 0.1174 0.3327 ± 0.1268 0.3517 ± 0.1367

CNN-LSTM SD 0.8420 ± 0.1704 0.8507 ± 0.1708 0.8515 ± 0.1730 0.6355 ± 0.1253 0.6771 ± 0.1111 0.6604 ± 0.1684
CD 0.6051 ± 0.1687 0.6057 ± 0.1942 0.5810 ± 0.1936 0.3620 ± 0.1275 0.3576 ± 0.1525 0.3538 ± 0.1623

(2018) CS 0.5830 ± 0.1366 0.5895 ± 0.1312 0.6011 ± 0.1347 0.3141 ± 0.0850 0.3292 ± 0.0937 0.3523 ± 0.1146

L-EMGNet SD 0.9107 ± 0.0534 0.9254 ± 0.0550 0.9367 ± 0.0483 0.7051 ± 0.0783 0.7386 ± 0.0786 0.7917 ± 0.0740
CD 0.6803 ± 0.2099 0.7136 ± 0.1938 0.6905 ± 0.2065 0.4451 ± 0.1688 0.4548 ± 0.1855 0.4465 ± 0.1803

(2024 ) CS 0.5559 ± 0.1875 0.5513 ± 0.1748 0.5613 ± 0.1670 0.3143 ± 0.1151 0.3290 ± 0.1039 0.3321 ± 0.1218
* The type SD, CD, and CS denote single-day, cross-day, and cross-subject experiments, respectively;
* The results highlighted in bold red/green/blue indicate that the model achieved the first/second/third ranking on the respective metric.

B. Benchmark Results

Before analyzing the benchmark results, we used the
Shapro-Wilk test [23] to verify that the classification results
on benchmark methods followed the normal distribution hy-
pothesis. Therefore, we adopted mean ± standard deviation to
record the experimental results. Tab. I shows all classification
results of single-day, cross-day, and cross-subjects with ten
benchmark methods.

1) Results of single-day experiments: focus on the first row
of each classification method, the model L-EMGNet achieves
the best performance with 250ms and 750 ms window size, and
the 2DCNN achieves the best in 500ms. Their performance
advantages relative to the second and third rank is as follows:
0.6% and 2.35% in the 6-classes experiment with a 250ms
window. The gaps in 500ms and 750ms are 0.19%, 2.55%
and 1.25% and 3.17%. In the 12-classes experiment, the ad-
vantages are 0.8%, 0.53%, and 3.75% compared to the second
rank and 4.12%, 2.23%, and 6.13% compared to the third
rank. Generally, the sEMG-based gesture-free hand intention
recognition task achieves excellent classification performance,
especially in 6-class experiments.

2) Results of cross-day experiments: observe the second
row, the model L-EMGNet achieves the best performance
except for the 12-classes experiment with the 750ms window
compared to Random Forests. The performance between the
top-2 is relatively close, the gap is 1.18%, 3.22%, 0.44%,
0.9%, 0.29%, and 2.32%, respectively. The third rank of per-
formance distributes scattered, including LDA, 2DCNN, and
CNN-LSTM. The performance gap is 3.94%, 5.64%, 3.15%,
4.49%, 3.34%, and 5.86% compared to the best method.

3) Results of cross-subject experiments: the third row of
Tab. I shows the cross-subject results. The results of L-
EMGNet are no longer excellent, while the results of 2DCNN
are better, achieving four first ranks and two second ranks.
Specifically, the performance gap from the second rank to
the best method is 2.13%, 1.5%, 0.54%, 0.38%, 0.35%, and
0.06%. Similar to the cross-day experiment, the third rank is
distributed, appearing in four different methods. Compared to
cross-day experiments, the performance gap is not significant,
2.36%, 2.83%, 1.81%, 0.79%, 0.37%, and 0.38%.

4) Comparative analysis: comprehensively compare the
results of single-day, cross-day, and cross-subject experiments,
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we have the following three observations:
• The results of cross-day and cross-subject experiments

have significantly decreased. Compared to single-day
experiment, the performance gap based on the best
method is 23.04%, 21.37%, 24.62%, 26%, 28.91%, and
32.2% in cross-day experiments and 30.63%, 30.57%,
31.75%, 38.29%, 41.12% and 43.94% in cross-subject
experiments. This may be due to displacement deviation
caused by two wearing attempts, as well as physiological
differences among different subjects and on different
days.

• L-EMGNet achieved the best performance in the single-
day and cross-day experiments but lagged behind 2DCNN
in the cross-subject experiment. The reason may be that
L-EMGNet is a lightweight model that performs well
in experiments with small amounts of data. The cross-
subject experiment involves a very large amount of data,
which is more suitable for 2DCNN with a larger number
of parameters.

• Increasing the window size is beneficial for improving
recognition accuracy, but it also increases the system’s
latency. Using the best methods as statistical objects, the
performance of the 750ms window is higher than that
of the 250 window is 2.6%, 1.02%, and 1.48% in 6-
classes experiments. The improvement is 8.66%, 2.46%,
and 3.01% in 12-classes experiments. This is because
a longer time window is beneficial for obtaining more
stable sEMG data.

VI. DISCUSSION AND ANALYSES

To ensure fairness, all discussed algorithms use L-EMGNet,
with data sourced from single-day experiments and sliced
based on a 500ms window length.

A. Evaluation of sEMG signal quality

To evaluate the sEMG signal quality, we choose the follow-
ing three metrics: (1) Signal-to-Noise Ratio (SNR), which is
used to quantify the increase in sEMG signal amplitude during
activation compared to background noise level recorded when
the muscle is not contracting; (2) Signal-to-Motion Artifact
Ratio (SMR): Motion artifacts are low-frequency noises that
contaminate sEMG signals and are introduced by fine elec-
trode movements and changes in contact at the electrode–skin
interface; and (3) Power Spectrum Deformation (Ω): which
is sensitive to symmetry and peaking in the power spectrum
and to additive disturbances in the low- and high-frequency
ranges. The calculation formula for all metrics is as follows:

SNR = 20log(rmsActivation filtered/rmsResting filtered)

SMR = 10log([
500∑
f=0

PSDfiltered/

20∑
f=0

PSDAboveLine raw])

Ω = 10 log[
(M2/M0)

1/2

M1/M0
], Mi =

500∑
f=0

PSD.f i

(1)

Regarding force mode 1 as a resting state, we calculated
the SNR, SMR, and PSD of five other single-finger force

modes, the results shown in Tab. II. The results in Botros
et al. [8] research are also included in the table as a reference
to determine the quality of our collected sEMG data. On the
most critical SNR metric, the results are relatively close, but on
SMR and Ω metric, the results are relatively poor, indicating
that the data contains severe motion artifacts, possibly due to
our data being collected in multiple motion modes. In addition,
we found that the signal quality of the middle finger, ring
finger, and little finger is better, which may be due to the
fact that when holding a cylindrical object, its gravity will
involuntarily drive the thumb and index finger to exert force.

TABLE II
SIGNAL QUALITY OF THE COLLECTED SEMG DATA, WITH THE

6-CLASSES FORCE MODES.

Mode SNR ↑ SMR ↑ Ω ↓

mode 2 12.3 (6.6) / 8.0 (3.6) 11.9 (6.2) / 1.5 (2.8) 1.04 (0.64) / 3.10 (0.52)
mode 3 11.5 (4.7) / 8.3 (2.4) 11.4 (5.2) / 1.6 (2.3) 1.03 (0.48) / 3.00 (0.41)
mode 4 7.8 (4.9) / 12.6 (3.7) 7.8 (5.2) / 5.0 (2.7) 1.34 (0.89) / 2.24 (0.54)
mode 5 11.4 (5.2) / 14.0 (3.4) 11.2 (4.8) / 6.4 (3.4) 0.97 (0.42) / 2.05 (0.60)
mode 6 11.0 (4.2) / 11.8 (3.9) 10.7 (4.3) / 4.2 (3.4) 0.98 (0.36) / 2.48 (0.65)
* The results on the left are from [8], and the results on the right are from this study;
* Higher values of SNR and SMR and lower values of Ω are better.

B. Details of the classification results

It is important to explore the classification details of the
gesture-free hand intention recognition task, this is beneficial
for screening out poor force modes, thereby improving the
robustness of the system. The confusion matrices for 6 and
12 classes on a single-day experiment, as shown in Fig. 5.
Observations have shown that the accuracy of patterns that
include the use of index finger force is relatively low. For
example, in the single-finger experiment of class 6, the index
finger performed the worst. In the combined finger experiment,
the results of the third, seventh, eleventh, and twelfth force
modes were poor, while patterns that do not include index
finger force were relatively good, except for the eighth force
mode. This suggests that in future research, we can increase
the use of the middle finger, ring finger, and little finger, and
reduce the use of the index finger.
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Fig. 5. Confusion matrix in single-day experiments with the 500ms window
size using L-EMGNet. (a) 6-classes force modes; (b) 12-classes force modes.

C. The factor of different speeds

Considering multiple application scenarios, it is necessary
to explore the interaction accuracy of the system in different
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motion modes. To achieve this purpose, we recalculate the
results according to its sports speeds, e.g. 0, 4, 6, 8 km/h.
As illustrate in Tab. III, we found that there is no significant
difference in classification performance among various motion
modes. Two reasons are considered: on the one hand, deep
learning has the ability to extract features from sEMG signals
containing motion noise; On the other hand, motion noise is
mainly distributed in low frequencies (below 20Hz) and is
filtered out in the preprocessing stage.

TABLE III
PERFORMANCE WITH DIFFERENT SPORTS SPEED.

Speed 6-classes 12-classes

0 km/h 0.9279 ± 0.0521 0.7360 ± 0.0879
4 km/h 0.9251 ± 0.0583 0.7386 ± 0.0851
6 km/h 0.9238 ± 0.0597 0.7383 ± 0.0696
8 km/h 0.9248 ± 0.0567 0.7416 ± 0.0797
Mixed 0.9254 ± 0.0550 0.7386 ± 0.0786

D. The factor of different force intensities

Different finger force intensities may affect the recognition
accuracy of the system, which is worth exploring for their rela-
tionship. As shown in Fig. 6, we have designed a force sensor
to measure the force intensity of each finger. Considering that
it is difficult to control force, the experiment only includes 6-
classes of experiments using a single finger. Experiments were
conducted on three subjects, S04, S06, and S08, which are the
best, average, and worst subjects in benchmark experiments.
The force intervals include as follows: [0, 100N], (100N,
200N], (200N, 300N], (300N, 400N], (400N, 500N], (500N,
+∞). The accuracy of system recognition will be calculated
based on the interval to which the force belongs. As shown
in Fig. 7, the accuracy continues to improve and the trend
of improvement gradually slows down with the finger force
increases. This is because after exerting a certain degree of
force, muscles have already contracted in place.

force 
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finger pressure 

sensor

myoelectric 

wristband

GUI

Fig. 6. Schematic diagram of the force pressure test system.
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Fig. 7. Average results of each level force intensities. The curve is fitted by
a 5th-order polynomial.

E. Online experiments

Accuracy and system response time are the two most
important aspects of online experiments. This experiment is
based on the same three subjects, and the testing system
is shown in Fig. 8. Based on the keyboard experiment, the
average reaction time of the three subjects was about 0.4s,
which denotes the time from visual tips to the subject’s
reactions and should not be included in the system’s reaction
time. Thus, the system response time can be euqated as
∆t = t3 − t1 ≈ t3 − t0 − 0.4s, because the t1 is unable to
accurately calculate. Each subject must complete 50 random
force mode tests. Each test randomly prompts one force mode
except for the resting state, and the first non-resting state
prediction of the system is the predicted result and completion
time, i.e. t3. The accuracies of the three subjects are 94%,
90%, and 88%, and system response times are 0.35s, 0.31s,
and 0.3s, respectively. The excellent online results further
validated the robustness in practical applications.
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Result

feedback:
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Visual 
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UDP
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myoelectric wristband

Fig. 8. Schematic diagram of the online experiment system.

VII. CONCLUTION

This work proposes the sEMG-based gesture-free hand
intention recognition, which is a novel scheme for covert mes-
sage transmission between collaborators in scenarios where
collaborators and non-collaborators coexist. This scheme hides
the action of sending messages, making it difficult for non-
collaborators to detect, thereby protecting privacy and infor-
mation security. To verify the feasibility, we designed the
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experimental system and paradigm, collected the dataset, and
developed the signal processing toolbox, ultimately obtaining
benchmark results on various decoding methods. All data,
software, and hardware designs and code had been open-
sourced to promote the development of this research field. The
benchmark results and discussion analysis indicate that the
system performs well in a single-day experiment, but needs
to be improved in cross-day and cross-subject experiments.
Therefore, methods such as domain adaptation and testing
adaptation that are suitable for solving distribution shift prob-
lems will be attempted in the future.
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