
1

Compact Visual Data Representation for Green
Multimedia - A Human Visual System Perspective

Peilin Chen, Xiaohan Fang, Meng Wang, Shiqi Wang, Senior Member, IEEE, and Siwei Ma, Fellow, IEEE

Abstract—The Human Visual System (HVS), with its intricate
sophistication, is capable of achieving ultra-compact information
compression for visual signals. This remarkable ability is cou-
pled with high generalization capability and energy efficiency.
By contrast, the state-of-the-art Versatile Video Coding (VVC)
standard achieves a compression ratio of around 1,000 times for
raw visual data. This notable disparity motivates the research
community to draw inspiration to effectively handle the immense
volume of visual data in a green way. Therefore, this paper
provides a survey of how visual data can be efficiently represented
for green multimedia, in particular when the ultimate task is
knowledge extraction instead of visual signal reconstruction. We
introduce recent research efforts that promote green, sustainable,
and efficient multimedia in this field. Moreover, we discuss how
the deep understanding of the HVS can benefit the research com-
munity, and envision the development of future green multimedia
technologies.

Index Terms—Compact data representation, visual data com-
pression, green technology, sustainable multimedia, energy effi-
ciency

I. INTRODUCTION

In the digital era, the proliferation of visual data has surged
to unprecedented levels, fueled by the widespread use of
visual data acquisition sensors [1] and the rise of artifi-
cial intelligence-generated content (AIGC) [2]. The booming
presents significant challenges in “green”, in terms of effi-
ciently storing, transmitting, and analyzing visual information
at low cost. For example, high-resolution video streaming,
which accounts for the majority of internet traffic, necessitates
substantial computational resources and bandwidth, leading to
a significant carbon footprint. The traditional infrastructure,
relying heavily on centralized data centers, further exacerbates
this impact due to energy-intensive cooling requirements and
long-distance data transmission. According to Cisco’s Annual
Internet Report, video streaming and downloads constituted
over 82% of all internet traffic in 2022, emphasizing the need
for more efficient visual data handling mechanisms.

In general, green multimedia encompasses a series of inno-
vative strategies aimed at reducing the carbon footprint of mul-
timedia handling, which includes diverse aspects ranging from
data storage, processing, and transmission. This paper explores
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three critical dimensions of green multimedia technologies that
could significantly enhance energy efficiency across various
multimedia platforms. Green Storage through Compression:
The first aspect focuses on the storage of multimedia content.
By employing advanced compression techniques, it is possible
to drastically reduce the data size, thereby lowering the stor-
age requirements and associated energy costs, and enabling
more efficient data management. Although video compres-
sion standards such as H.264/AVC [3], H.265/HEVC [4],
as well as H.266/VVC [5], AV1 [6] and AVS3 [7] have
considerably reduced data sizes at the same quality level,
their theoretical limits of compression efficiency [8] is being
constantly approached. This highlights the urgent need for
innovative breakthroughs for compact visual data representa-
tion for “green”. Green Processing by Direct Feature Usage:
The second dimension examines the processing methodologies
within multimedia frameworks. Traditional approaches often
involve decoding and then processing to extract features from
data for downstream usage, which can be computationally
expensive due to the operations in these two stages. However,
by integrating processing capabilities directly at the decoder
level and eliminating the need for separate decoding steps,
significant energy reductions can be achieved. For example, the
feature stream in the Digital Retina [9] can enable the receiver
to directly use the received features in object detection, which
achieves comparable task performances with several hundred-
fold lower bandwidth as well as fewer inference operations.
This strategy can enhance processing efficiency and reduce the
energy overhead of multimedia systems, facilitating greenness.
Dynamic Green Operations: The third facet surveys the
dynamic aspects of multimedia data handling. By enabling end
systems to take full advantage of available resources or use
only the necessary data needed for specific tasks adaptively,
it ensures that no superfluous data processing occurs along
the communication chain. This adaptability not only mini-
mizes unnecessary energy expenditure but also enhances the
overall responsiveness and efficiency of multimedia services.
For instance, the scalable coding framework [10] suggests
using a modular bitstream based on network conditions. This
approach reduces encoder operations by skipping bitstream
construction for the enhancement layer when bandwidth is
low. Nonetheless, the decoder can still reconstruct results
through adaptive operations, which meets the envision of green
multimedia. Furthermore, according to recent studies in Green
Metadata [11]–[13], the reduction of decoding complexity
could vastly decrease energy savings.

When advancing green multimedia technologies, the Human
Visual System (HVS) [14] presents an intriguing benchmark
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Fig. 1. This diagram depicts how the psychophysical HVS features can be utilized for compact visual data representation.

in this context, which can achieve an astounding compression
efficiency, and compact visual information around 100,000
times while maintaining high generalization and energy ef-
ficiency [15]. It vastly outperforms the current Versatile Video
Coding (VVC) standard, which manages a compression ratio
of only about a thousand times for raw visual data. Drawing
inspiration from the HVS’s capabilities in artificial systems
for visual data representation marks a promising research
direction [16].

Despite the existing technological gaps, considerable efforts
are underway to incorporate novel ideas from the HVS to
advance visual data compression. Noteworthy developments
such as perceptual video coding, Video Coding for Ma-
chines (VCM) [17] and ultra-low bitrate generative compres-
sion [18] illustrate strides toward significantly minimizing data
sizes while preserving essential information for perceptual
reconstruction, downstream analysis, and semantic restora-
tion. These innovations indicate a shift toward more compact
and energy-efficient multimedia representation beyond the
traditional signal-based visual data coding, aligning with the
broader goal of green technology development.

This paper provides a survey of the current landscape in
visual data representation aiming at green multimedia, empha-
sizing how HVS can motivate compact video representation, in
particular perceptual coding, compact feature representation,
and collaborative representation. We also delve into recent
efforts to transcend the limitations of traditional hybrid video
coding frameworks, spotlighting cutting-edge strategies that
promise ultra-low bitrate representation to achieve greenness
in the bitstream. Moreover, we discuss how these advance-
ments influence the efficiency and sustainability of multimedia
analytics frameworks. Through this review, we aim to pro-
vide a comprehensive understanding of how advancements in
compact data representation can foster greener multimedia,

which underscores the ongoing importance of research and
innovation in achieving optimal compression efficiency along-
side environmental sustainability for managing visual data.

II. EXPLORING THE HUMAN VISUAL SYSTEM: INSIGHTS
AND IMPLICATIONS FOR GREEN MULTIMEDIA

As we strive toward environmentally sustainable multimedia
systems, understanding the principles underlying the HVS
provides invaluable insights into developing energy-efficient
and resource-conscious technologies for green multimedia.
The HVS exemplifies a system evolved to interpret vast
amounts of visual information with remarkable efficiency,
offering a model for multimedia processing that balances high-
quality perception with low resource usage [14], [19]. By em-
ulating these efficiencies, green multimedia technologies can
minimize bandwidth, storage, and computational requirements,
thereby reducing their environmental footprint. This system’s
ability to discern minute details, recognize patterns, and pro-
cess complex scenes in real-time offers invaluable insights for
developing green multimedia systems. In particular, the HVS
is adept at transforming light into electrical signals through
intricate biochemical organizations in the retina, primarily via
rods and cones. These signals are then refined and relayed
through various cortical areas, each specializing in different
aspects of vision, such as color, spatial frequency, and motion
perception [20]. This process highlights a hierarchical and
highly efficient method of visual data processing, from basic
sensory input to complex perceptual interpretations. Central to
this efficiency is the HVS’s ability to operate at extremely low
bitrate representations, particularly from the primary visual
cortex (V1) to extrastriate cortical areas [21].

Therefore, there are three distinguished properties of HVS
that can be leveraged in the design of compression algorithms
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Fig. 2. The roadmap of compact visual data technologies regarding signal-based perception, semantic-based understanding, as well as unified perception and
decision-making.

toward green multimedia, as shown in Fig. 1. First, the non-
uniform distributions of cone photoreceptors and ganglion
cells, the varying sensitivity with respect to spatial/temporal
frequency, and the adaptation to lighting motivate the unique
characteristics of the visual system that are used to develop
perceptual coding algorithms. In addition, the memory mech-
anism of HVS also inspires effective compression algorithms
based on cloud/external resources. Second, the task-driven
feature extraction based on the brain’s selective attention
and processing of visual information motivates the paradigm
of “visual coding for machine”. In particular, the features
instead of textures play the central role, and compact feature
representation technologies have been subsequently developed.
Third, neural communication that occurs within the layers
of the visual cortex motivates the collaborative and scalable
coding approach that adapts to different purposes in utilizing
the visual information. Such capabilities inspire the design of
systems that not only mimic these biological efficiencies but
also adapt them for digital multimedia purposes.

In this context, the “Digital Retina” as a transformative

framework [9], [22], [23] envelopes most of the characteristics
of HVS in designing green multimedia systems. This novel
architecture emphasizes a dual representation strategy: signal-
based compact textures for essential visual information reten-
tion and semantic-based compact features crucial for machine
vision applications. The signal component ensures that neces-
sary details for human perception and comprehensive analytics
are preserved, while the semantic component abstracts higher-
level features into more compact forms, significantly reducing
data size and enhancing analytical processes [9]. The Digi-
tal Retina also introduces a dynamic adaptation mechanism
through model parameter updating, where deployed models
can continuously refine their data interpretation capabilities.
This flexibility can extend to its transmission protocols, which
adjust data throughput based on current network conditions
and analytic demands, optimizing overall resource usage and
ensuring efficient real-time data processing. Moreover, by fo-
cusing on transmitting abstracted feature-level data, the Digital
Retina can take full advantage of the front-end intelligence
while maintaining user privacy.
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While achieving ultra-compact and energy-efficient process-
ing capabilities comparable with the HVS remains a distant
goal, numerous research initiatives are actively pushing the
boundaries of compact visual data representation. These works
are steadily advancing the field, providing innovative solutions
that bring us closer to the efficiency and effectiveness of bio-
logical systems. The following sections of this paper will delve
into these developments, focusing on the three critical areas of
compact video compression, compact feature representation,
and collaborative representation, each of which plays a vital
role in the ongoing quest for greener multimedia systems. In
particular, a roadmap was provided as Fig. 2. Finally, we will
discuss the connections of these technologies with the recent
advances in edge-cloud computing, AIGC models, and large
vision language models.

III. COMPACT VISUAL DATA REPRESENTATION

As multimedia usage expands, the demand for efficient
data representation has intensified, especially in video-centric
applications that consume substantial bandwidth and energy
resources. In the context of green multimedia, compact visual
data representation addresses the critical need to reduce carbon
footprint, energy consumption, and resource usage without
compromising the quality and usability of visual data. This
section explores various techniques and technologies focused
on compressing and efficiently representing visual data, each
contributing uniquely to the objectives of green multimedia.

A. Compact Video Compression

Efficient video compression is paramount for green multi-
media, as it reduces data volume, storage demands, and trans-
mission energy. Traditional video compression standards and
end-to-end coding technologies aim to minimize the bitstream
size while preserving visual fidelity, directly reducing the
bandwidth and storage required for video applications. Percep-
tual compression techniques optimize data representation by
focusing on the parts of visual content most relevant to human
perception. By simulating how HVS perceives the information,
these methods achieve a more efficient data size without
impacting user experience. In the green multimedia context,
perceptual compression techniques enhance energy efficiency
by prioritizing the processing, storage, and transmission of
perceptually critical data, which can be implemented via HVS-
guided rate-distortion optimization. Compression based on
external data utilizes additional information, such as prior
models or reference datasets, to facilitate higher compression
efficiency. This approach enables a substantial reduction in bit
rate, lowering both storage and transmission energy demands.
Within green multimedia, external data compression offers a
promising route for sustainable data handling by minimizing
resource requirements.

1) Video Coding Standards: The widely applied hybrid
video coding framework strategically combines prediction,
transformation, quantization, and entropy coding modules,
which collectively work to eliminate diverse redundancies
across spatial, temporal, perceptual, and statistical dimensions.

While traditional coding technologies may not be the cen-
tral theme of this paper, they form the foundational basis,
and many subsequent methods reflect their underlying design
principles. In particular, Versatile Video Coding (VVC) [5],
or H.266, is the latest standard from the MPEG that of-
fers significant compression improvements, potentially halv-
ing data needs compared to HEVC while maintaining video
quality, ideal for 8K and VR applications. AOMedia Video
1 (AV1) [6], [24] is an open, royalty-free codec designed
for internet video, outperforming HEVC in efficiency and
supported by major industry players for improved performance
in streaming scenarios. AVS3 [7], from China’s Audio Video
Coding Standard Workgroup, targets ultra-high-definition con-
tent with high compression and robust error recovery, address-
ing the vast data demands of network transmission and online
services in China and beyond. Additionally, as digital devices
proliferate and the volume of visual data swells, the state-of-
the-art video coding standards such as VVC and AVS3 have
adopted advanced coding tools, including the more flexible
partitioning schemes [25], [26] with quad-tree plus binary-tree
and ternary tree structures, alongside advanced intra and inter
prediction techniques [27].

More specifically, 67 modes have been designed for accom-
modating diverse video content textures [28]. This granularity
enhances prediction accuracy and reduces residual signaling
burdens. Meanwhile, the adoption of multiple reference lines
and the Cross-Component Linear Model (CCLM) predictions
further leverage inter-channel redundancies for chroma intra
coding [29]–[31], showcasing significant efficiency in handling
color components. Moreover, the VVC and AVS3 standards
incorporate a range of sophisticated intra prediction tools tai-
lored for processing non-natural video content. These include
intra block copy [32], [33], palette mode [34], and string
copy prediction [35]. On the inter prediction front, the stan-
dards excel at reducing temporal redundancies. To handle the
complex motions in real-world scenes, VVC and AVS3 have
integrated affine motion compensation techniques [36], [37],
designed to handle non-translational movements like zooming
and rotation. The rise in video resolution further complicates
MV signaling, prompting the development of sophisticated
MV coding and refinement strategies. These include adaptive
motion vector resolution (AMVR) [38], history-based motion
vector prediction (HMVP) [39], advanced motion vector pre-
diction (AMVP) [40], bi-directional optical flow (BDOF) [41],
merge mode with motion vector difference (MMVD) [42],
and decoder-side motion vector refinement (DMVR) [43].
For residual representation in both intra and inter prediction,
trellis-coded quantization (TCQ) [44] is employed, where
coefficients within a coding block are mapped onto a trellis
graph to determine the path with the lowest rate-distortion cost,
effectively minimizing redundancies. These standards support
multiple discrete cosine or sine-based transform (DCT/DST)
cores, which help to more efficiently concentrate residual
energies in VVC [45] and AVS3 [46]. Historically, overlapped
block motion compensation has been used to enhance the
accuracy of inter prediction [47]. Finally, the elimination of
statistical redundancy is achieved through context-adaptive bi-
nary arithmetic coding (CABAC) [48], which merges adaptive
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binary arithmetic coding with context modeling for statistical
redundancy removal. Recently, the Enhanced Compression
Model (ECM), a further enhancement of the VVC, has un-
dergone extensive studies with a variety of advanced coding
tools. These tools encompass various coding modules such
as intra/inter prediction, aiming to further enhance its perfor-
mance [49]–[54].

In addition to traditional two-dimensional (2-D) videos, a
variety of three-dimensional (3-D) visual representations is
becoming increasingly popular for creating vivid, immersive
virtual user experiences, which facilitates the development
of volumetric videos. These representations include point
clouds [55], [56], meshes [57], 360-degree VR videos [58],
Neural Radiance Fields [59], and 3D Gaussian Splatting [60].
Although volumetric video offers an immersive experience
that surpasses traditional 2-D video, it commonly comes
with the challenge of large raw data sizes. To address this,
specialized visual data compression methods are essential to
compact them and manage energy consumption, particularly in
applications that require low-latency interactions and efficient
storage solutions, which facilitate the achievement of green
multimedia. Efficiently compressing volumetric video involves
various innovative techniques. One strategy is reshaping the
data into 2D-frame-like video sequences, which can then
be processed using established video coding schemes. For
instance, light field data can be decomposed by view direction
and arranged into inter-correlated sequences for encoding
with VVC standards. Similarly, the Video-based Point Cloud
Compression (V-PCC) technique developed by the MPEG
projects 3-D point clouds onto 2-D maps, allowing existing
2-D video codecs to compress the data effectively, with
remapping back to 3-D conducted at the decoder [61]–[64].
Another method for compact volumetric video compression
utilizes the geometry characteristics from 3-D data, such as the
Geometry-based Point Cloud Compression (G-PCC) standard,
which employs a pruned octree format to approximate the
original data efficiently [65], [66]. To enhance the efficiency
of MPEG Immersive Video (MIV) coding, researchers have
proposed a method [67] based on modifying patch average
color and adjusting the dynamic range of depth atlases.

2) End-to-end Video Coding Technologies: The end-to-end
(E2E) coding framework serves as an alternative solution for
compression. Unlike traditional methods that often involve
separate components for different stages of compression, E2E
frameworks integrate all coding processes from input to output
into a unified system. This integration allows the system
to learn and optimize the compression pipeline holistically,
using deep learning techniques to adaptively manage data
based on content complexity and desired fidelity levels. By
training these systems directly on the target data, they can
potentially achieve higher efficiency and better quality com-
pared to modular approaches. In exploring end-to-end visual
data compression, a notable pioneer contribution is made by
Ballé et al., who designed an end-to-end architecture that
includes a decorrelation layer known as Generalized Divisive
Normalization (GDN), and replaced traditional step quantiza-
tion with uniform noise addition during training to highlight
the advantages of end-to-end methods [68], [69]. Subsequent

studies have typically utilized the upper bound entropy of
latent codes as a surrogate for the rate term in rate-distortion
optimization. Ballé et al. enhanced their architecture with a
hyper-prior network that aids in decoding by leveraging side
information extracted from latent codes, presuming a Gaussian
distribution [70]. This approach was further refined by Cheng
et al., who employed a Gaussian mixture model instead of a
simple Gaussian for a more precise entropy estimation [71].
Chang et al. proposed a framework that utilizes deep structural
and textural information to enhance compression versatility
[72]. Recently, a hybrid video compression framework based
on the ECM [73] has been proposed to integrate deep learn-
ing techniques, achieving significant BD-rate savings for Y,
U, and V components under random access configuration.

The field of end-to-end video compression has also seen
significant advancements. Lu et al. developed deep video
compression (DVC), which is the first comprehensive model
for video compression that optimizes nearly all aspects of
the framework, including the use of a hyper-prior model
for intra-frame compression and an optical flow network for
effective motion estimation and compensation [74]. They later
enhanced this model with an adaptive quantization layer to
support variable bitrate coding [75]. Building on traditional
video coding techniques, Yang et al. introduced a strategy that
incorporates hierarchical quality sub-models, yielding results
competitive with the fastest modes of the HEVC standard
[76]. Recently, Li et al. introduced a deep contextual video
compression method named DCVC [77], which shifts from
the traditional residual coding strategy to a conditional coding
framework. Instead of using subtraction to eliminate temporal
redundancy, DCVC treats temporal prediction as conditions,
enabling the codec to mine the potential dependencies implic-
itly. Subsequently, Sheng et al. introduced DCVC-TCM [78],
which enhances DCVC by integrating multi-scale temporal
predictions throughout the encoding process and using them
for entropy modeling. Li et al. expanded on this with DCVC-
HEM [79], adding a latent prior to further optimize tem-
poral correlation. By increasing the diversity of contexts in
DCVC, DCVC-DC was proposed to achieve superior coding
performance compared with VVC [80]. Recently, DCVC-
FM [81] adopted feature modulation to support a wider
quality range and maintain performance under long prediction
chains, achieving significant bitrate savings and computational
efficiency improvements. NVC-1B [82] is the first neural video
coding model with over 1 billion parameters, demonstrating
significant improvements in video compression performance
and setting a new state-of-the-art in compression efficiency.

3) Perceptual Compression: In the context of green multi-
media, perceptual coding offers an energy-efficient approach
by leveraging the HVS to focus computational resources
on areas that significantly impact perceived quality. By re-
ducing the processing complexity in regions less critical to
visual experience, perceptual coding techniques can decrease
the amount of data required for transmission and storage,
thus reducing bandwidth and energy consumption across the
multimedia pipeline without compromising user experience.
Perceptual compression is a long-standing research topic that
has attracted numerous attentions [83], [84]. The fundamental
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principle is to optimize compression efficiency by simulating
visual perception and exploiting visual redundancies. While
PSNR remains a widely used metric due to its simplicity and
friendly hardware implementations, various visual sensitivity
models have been developed to better align with perceptual
quality requirements. Hence, many visual sensitivity models
have been proposed by studying the characteristics of visual
distortions. Specifically, the feature-similarity (FSIM) index
has been introduced, which considers the contribution of low-
level features perceived by HVS [85]. The nature of com-
pression artifacts that affect HVS also necessitates research
to characterize and mitigate their impact on perceptual qual-
ity [86]. The Video Multimethod Assessment Fusion (VMAF)
metric [87] offers a highly efficient full-reference video quality
assessment method suitable for a wide range of video coding
scenarios. Recent advancements reveal that deep features from
neural networks can significantly enhance perceptual similarity
assessments, proposing a paradigm shift in how perceptual
quality is evaluated in compression [88]. The utilization of
visual Just Noticeable Difference (JND) modeling is also one
of the research directions of perceptual compression [89]–[92].
These approaches leverage the fact that human eyes cannot
detect changes below the JND threshold around a pixel, due
to their inherent spatial and temporal sensitivity as well as the
masking properties [93]. Visual Attention (VA), which is also
referred to as saliency, is a cognitive process that directs the
eye’s focus toward Regions of Interest (ROI) to capture finer
details. This mechanism can also be leveraged to effectively
advance the perceptual compression [94], [95]. Furthermore,
Chen et al. introduced a novel approach with the proxy
network to optimize the end-to-end compression model against
quantitative perceptual performance [96]. Rouis et al. adapts
the Lagrangian multiplier based on perceptual criteria within
the HEVC standard, aiming to enhance coding efficiency
by focusing on visually significant areas of the video [97].
The perceptually tuned ECM has also been studied [98],
which aims to maximise the perceived quality. Additionally,
spatial domain pre-processing is a popular strategy where blur
intensity is tailored to make less significant regions more
easily encodable. To make preprocessing compatible with di-
verse codecs, Chadha et al. proposed a rate-aware perceptual-
oriented framework comprised of dedicated perceptual loss
and rate loss to achieve single-pass operation before video
coding [99]. Arai et al. [100] proposes a novel GOP-based
method that enhances rate-distortion performance in terms
of PSNR and other quality metrics by jointly optimizing a
preprocessing model with the video compression model. One
of the primary benefits of these preprocessing techniques is
their compatibility with any standard codec, eliminating the
need for modifications. Nonetheless, since the quality con-
trol and encoding processes are independent, the gains from
preprocessing are generally considered a lower bound on the
potential improvements in perceptual compression. Moreover,
combining visual encoding with existing standards allows for
seamless integration into current systems without additional
hardware or decoder updates. In general, video coding stan-
dards, including H.264/AVC, AVS2, HEVC, AVS3, and VVC,
support flexible encoding parameters across different regions,

enabling the assignment of varied quality parameters in a
frame. This approach allows for finer quality distinctions, with
critical visual areas encoded at higher quality due to lower
QPs.

4) Compression based on External Data: Apart from the
compression methods that aim to leverage the original signal
statistics for redundancy removal, there are also compact
representation extraction methods based on cloud or external
resources, which utilize the memory scheme of HVS for
external-based coding or priors-guided generative compres-
sion. As a pioneer work, Yue et al. proposed to leverage a
large-scale image database to compress images based on their
down-sampled versions and local feature descriptors [101].
This approach uses descriptors to search for similar images
in the cloud, identifies matching patches, and stitches them
to reconstruct high-quality images. To take full advantage of
existing video data in the cloud, Wang et al. proposed a graph-
based clustering approach and corresponding compression
framework to compactly represent the abundant near-duplicate
video data [102]. Recently, it has also been shown that external
resources could provide abundant guidance during the deep
reconstruction in decoding, which facilitates both promising
machine analysis and human perception performance under
ultra-low bitrate conditions [103].

In general, generative coding approaches can also be re-
garded as a type of compression based on external data, be-
cause they commonly model pre-collected data characteristics
and extract useful priors that could be treated as reconstruction
context in the decoding. Specifically, Oquab et al. proposed
using generative models for the chat video compression, which
adopts the facial landmarks as the compact representation
and generative priors, achieving noticeable bandwidth saving
[104]. Tang et al. studied the face key point as the compact
representation for efficiently denoting the non-key frames in a
generative compression framework, which not only maintains
reconstructed signal fidelity but also achieves ultra-low bitrate
communication [105]. Li et al. proposed utilizing the pre-
defined 3-D descriptors to compactly model the appearance
representation, which can achieve over 50% reduction in
coding bits compared to VVC under ultra-low bitrate condi-
tions [106]. To comprehensively model the complex dynamics
between frames and construct ultra-compact bitstream for gen-
erative face reconstruction, Chen et al. implicitly projects mo-
tion to high-dimensional space as the intermediate data, which
largely reduces the bandwidth requirement while providing a
vivid animation performance with the decoding frame [107].
Chang et al. proposed a novel conceptual compression ap-
proach, utilizing a dual-layered model with structure and
texture components encoded separately and synthesized via
a hierarchical fusion GAN (HF-GAN) for high-quality visual
reconstruction, showcasing enhanced versatility in bitrate effi-
ciency and content manipulation [108]. Wang et al. introduced
a dynamic multi-reference prediction method for ultra-low
bitrate generative face video compression that effectively han-
dles large head motions. By utilizing key maps and multiple
dense motion maps from current and diverse references, the
method dynamically refreshes the reference frame to minimize
motion discrepancies [109]. Zhang et al. introduced a unified
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Cross-Modality Video Coding (CMVC) paradigm that lever-
ages Multimodal Large Language Models (MLLMs) for video
compression. This approach disentangles video into spatial and
motion components, optimizing video reconstruction through
distinct encoding-decoding modes, such as Text-Text-to-Video
(TT2V) and Image-Text-to-Video (IT2V), with experimental
results demonstrating superior semantic reconstruction and
perceptual consistency [10], [110].

B. Compact Feature Compression

Beyond raw visual data, feature-based compression focuses
on reducing the size of extracted features rather than full
video frames. This technique enables efficient downstream
tasks such as object recognition or motion analysis directly
from compressed feature representations, bypassing the need
for full data reconstruction. In green multimedia, feature com-
pression contributes by reducing the computational overhead
of decoding entire frames, thus saving energy and reducing
latency. Specifically, enabling the transmission of feature
stream is the most unique characteristic of digital retina [9].
It is fundamentally inspired by the fact that when facing
dynamic vision tasks, the human brain has a unique feedback
mechanism that fulfills different demands and purposes [16]
by extracting the corresponding features. The development of
compact feature descriptors is driven by the requirements of
front-end intelligence, where features extracted at very low
bit rates from edge devices can trigger simple downstream
tasks such as object search queries. This approach follows the
“analyze-then-compress” paradigm, which contrasts with the
traditional “compress-then-analyze” method, where images or
videos are first compressed at the signal level [111]. Specif-
ically, the well-known handcrafted descriptor, Scale Invariant
Feature Transform (SIFT), can undergo compression through
methods like spectral hashing [112], transform coding [113],
and product quantization [114], [115]. Furthermore, to meet
the demands for high-speed Hamming distance comparisons,
binary descriptors such as Binary Robust Independent Ele-
mentary Features (BRIEF) [116], Oriented FAST, and Ro-
tated BRIEF (ORB) [117], Binary Robust Invariant Scalable
Keypoints (BRISK) [118], and UltraShort Binary Descriptor
(USB) [119] have been introduced. For global descriptor
compression, which integrates local descriptors, approaches
such as Vector of Locally Aggregated Descriptors (VLAD)
[120] and Fisher Vectors (FV) [121] have been extensively
studied [122]–[124]. With advancements in learning-based
methods, techniques such as Kernel-based Supervised Hashing
(KSH) [125] have emerged to provide concise yet discrim-
inative representations using kernel-based models. A similar
supervised hashing framework was also introduced using regu-
larization techniques [126]. More recently, deep learning-based
hashing methods [127] have been developed to deliver end-to-
end hashing representations for more efficient retrieval, includ-
ing center-based binary neural network optimization [128],
deep product quantization [129] and cross-modal hashing
techniques [130].

Recently, deep learning methods have made substantial
contributions to a variety of computer vision applications via

extracted features, marking significant progress across nu-
merous domains through their data-driven capabilities. These
features offer robust representational strength and reduce the
dimensionality of the pixel space in the original visual data.
The introduction of Hybrid Nested Invariance Pooling (HNIP)
has further enhanced feature representation by encoding trans-
lation, scale, and rotation invariances directly into the features
[131]. Building on these concepts, new methods in video
coding have been adapted for deep feature compression,
defining three distinct feature categories: independently-coded,
predictively-coded, and skip-coded features [132]. To mini-
mize redundancy, both local and global features are combined
for more effective visual searches [133]. This approach leads
into the broader idea of collaborative intelligence, where
computational tasks are divided between edge devices and
the cloud, optimizing both inference and feature handling
[134]. Research in feature compression, feature completion,
and bit allocation has expanded, as evidenced by various
studies [135]–[138]. Additionally, Chen et al. have system-
atically explored the compression of intermediate features
for intelligent sensing applications [139], and have proposed
methods such as repacking modes and pre-quantization to
enhance data fidelity [140]. Based on the concept of end-to-
end visual data compression frameworks, Wang et al. have
conducted an extensive study on neural network architec-
tures and optimization objectives to achieve compact seman-
tic representations of features [141]. A unified optimization
framework was subsequently proposed to enhance the end-
to-end image compression method for more efficient task-
oriented feature compression, which sheds on how the compact
feature construction can take advantage of existing visual data
compression methods. In a similar vein, a novel end-to-end
learned image codec was designed for machine consumption
and demonstrates significant improvements in object detec-
tion and instance segmentation tasks over traditional human-
targeted codecs [142], which leverages neural networks and
customized training strategies to enhance task-specific perfor-
mance while maintaining efficiency. For video understanding
under low-bitrate conditions, a comprehensive study has been
conducted to fully investigate the promising principles for
making compact representation [143]. Recently, researchers
have proposed the Collaborative Intelligence (CI) [144], [145]
scheme to systematically formulate the compact representation
of intermediate features between edge devices and the cloud.
Notably, to transfer the existing codecs from human perception
to machine perception without fine-tuning, a transformer-
based framework was proposed to use instance-specific and
task-specific prompts, significantly outperforming competing
methods [146].

The evolution of standards for the compact representation
of both traditional handcrafted features and modern deep
learning-derived features facilitates enhanced interoperability
through a unified bitstream syntax. The MPEG-developed
Compact Descriptors for Visual Search (CDVS) standard [147]
outlines methods for feature extraction and defines the bit-
stream syntax for still images, incorporating both local [148]–
[151] and global [124] descriptors derived from handcrafted
features. Expanding upon this, the Compact Descriptors for
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Video Analysis (CDVA) standard [152], also by MPEG,
represents the first initiative to standardize visual descriptor
compression specifically for video content. CDVA integrates
handcrafted and deep learning features, including the novel
HNIP approach for condensing CNN features [131]. Reflecting
the rapid advancements in deep learning, which have signif-
icantly broadened the application spectrum of deep learning
features in computer vision, MPEG launched the Video Coding
for Machines (VCM) [17] in 2019 to standardize feature
compression for machine vision. Recently, to systematically
demonstrate the rapid development of VCM, Yang et al. [153]
conducted a comprehensive survey for compact visual rep-
resentation compression in intelligent collaborative analytics.

Additionally, the Audio Video Coding Standard group in
China is actively pursuing the standardization of compact
representations for deep learning features and models, aiming
to support the diverse requirements of modern multimedia
applications.

C. Unified Representation for Dynamic Tasks

Unified representation frameworks aim to generate a single
compressed representation suitable for multiple dynamic tasks.
By enabling adaptable data streams that adjust to task-specific
requirements, these frameworks eliminate redundant data pro-
cessing and transmission. In green multimedia, this approach
enhances energy efficiency by dynamically aligning resource
usage with task needs, reducing the overall data load and
processing requirements. This is aligned with the mechanism
of the human brain, where the input signals across different
regions and hierarchical levels can be adaptively integrated
according to the demands of various tasks. However, the
traditional coding targets at the reconstruction of only feature
or texture, which cannot support multiple tasks simultaneously.
Regarding the diverse goals of downstream tasks, recent ef-
forts have been devoted to scalable layered coding, including
features and textures that uniquely contribute to the efficient
representation of visual information from different aspects. For
example, in [154], the base layer accounts for the compact
feature and the enhancement layer reconstructs the texture.
Lin et al. proposed to divide the bitstream into semantic,
structure, and texture layers to achieve both machine and
human vision [155]. These integrated approaches, though still
far from the true mechanism of HVS which has not been well
understood, still offers several unique benefits. For example,
the compact representation of high-quality features extracted
directly from the original texture could largely enhance the an-
alytical capabilities. Second, on the decoding end, features can
be processed directly, significantly reducing the computational
load compared to standard video decoding and separate feature
extraction. Thirdly, the synergy between feature and texture
coding improves the overall efficiency of the joint bitstream,
since the redundancy among the two representations has been
already removed.

The effectiveness of the unified coding approach has been
explored in terms of both analytical and reconstructive capabil-
ities, paving the way for advanced unified schemes for visual
information compression [156]. Zhang et al. have shown that

encoding SIFT features alongside texture not only preserves
but can enhance performance in mobile video applications
compared to coding textures alone [157]. Moreover, Li et al.
introduced the Texture-Feature-Quality-Index (TFQI), which
optimizes bit allocation for maximum utility, encompassing
both analysis and monitoring purposes [158]. The concept
of Joint Features and Textures Coding (JFTC) has been
developed to maximize both visual analysis and compression
effectiveness [156]. Additionally, Wang et al. have examined
the interactions between deep learning features and textures
within a scalable framework, where the base layer is used for
analytics and the enhancement layer augments the unrecover-
able texture details. This approach significantly improves both
the comprehension and reconstruction of visual signals [154].
Mao et al. exploited the priors from pre-trained generative
models and proposed a scalable face compression framework,
which achieves both promising machine analysis and human
perception performance under ultra-low bitrate conditions. Sun
et al. proposed a semantic structure bitstream construction
method to code visual data and achieve diverse intelligent tasks
at the decoder side [159]. By dividing the bitsteam into a base
layer and enhanced layer, Wang et al. proposed a joint feature
and texture representation framework, facilitating multitask
learning [160].

Dynamic green operations not only promote significant
energy savings but also enhance the adaptability and efficiency
of multimedia systems. By tailoring computational efforts
to task needs, these operations optimize resource allocation,
minimizing unnecessary power consumption and extending
the operational lifespan of devices. Furthermore, the dynamic
adaptation of multimedia processing mirrors the flexibility and
efficiency of biological systems, such as the human brain,
which optimizes its functions based on environmental demands
and internal states [161]. By integrating such biologically-
inspired approaches, dynamic green operations pave the way
for more sustainable and intelligent multimedia technologies.

Specifically, to further elaborate on the potential of scal-
able coding schemes, Choi et al. presented an end-to-end
learned image codec optimized for both human viewing and
machine vision tasks, which utilizes a layered approach where
the base layer is dedicated to simple tasks and additional
layers enhance capability for more complex tasks [162]. To
jointly leverage the priors from the external database and face
sketch, an ultra-low bitrate face compression was developed
to reconstruct perceptually meaningful results while providing
analytical performance [103]. Recently, Shen et al. proposed
a versatile neural video coding (VNVC) framework, which
not only designs highly compact representations for interme-
diate features but also enables their generalization in diverse
downstream tasks, including reconstruction, enhancement, and
analysis [163]. Ge et al. designed an innovative encoder
controller for DVC that employs mode prediction and Group
of Pictures (GoP) selection to adapt the pre-trained DVC
decoder for various tasks [164]. Li et al. introduced a human-
machine collaborative image coding framework utilizing Im-
plicit Neural Representations (INR) [165]. This framework
balances high-efficiency visual data compression for human
vision with reduced information transmission for machine
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vision tasks. Zhang et al. proposed a Unified and Scalable
Deep Image Compression (USDIC) framework that adopts
a novel approach by introducing an Information Splitting
Mechanism (ISM) that effectively segregates semantic and
visual features for optimized machine analysis and human
viewing, respectively [166].

D. Connections with AI and Networking

The principles, techniques, and applications of compact
visual representation in green multimedia are deeply connected
with a number of sectors in networking and AI. In particular,
AI-based approaches can enable intelligent decision-making
for data prioritization, compression, and transmission, while
network optimizations may ensure data is handled in an
energy-efficient manner. There are four aspects this subsection
wants to discuss for the greener multimedia infrastructure
connected with AI.

• Artificial Intelligence Generated Content (AIGC). AIGC
is expected to yield vast amounts of data with its rapid
development in recent years [167]–[169]. Consequently,
a significant challenge is how to represent such data
in a compact form, leading to sustainable multimedia.
Ideally, the end-users of AIGC could range from human
beings to various machine systems. In this context, the
compression of textures and semantic features, along with
their effective integration, emerges as a promising area of
development. However, AIGC data possesses an inherent
machine-born attribute, which allows for the seamless
integration of AIGC models into the decoding process,
thereby facilitating an extremely compact representation.
This integration could be pivotal in enhancing efficiency.
However, how to reduce the environmental footprint of
data generation and consumption still needs to be further
investigated.

• Large vision language models (LVLMs). Despite LVLMs’
significant computational requirements, play a pivotal
role in the future of green multimedia. They have the
potential to be the ultimate consumers of visual data,
necessitating efficient methods for compact representation
of such data. The exploration of these methods is of great
importance. Research has demonstrated that leveraging
LVLMs for optimizing the compression can yield sub-
stantial coding gains [170]. However, the costs associated
with their use, particularly on the decoder side, are a
significant consideration. However, evidence has shown
that the integration of LVLMs into the decoding process
could be a key strategy for achieving ultra-compact data
representation [110]. In the future, how the light weigh
LVLMs can be incorporated into the coding process still
needs further exploration.

• Knowledge Centric Networking (KCN). KCN [171] aims
to address the pressing demand for knowledge extraction
and dissemination over networks. Feature extraction can
be treated as the process of distilling descriptive knowl-
edge from raw data collected by acquisition devices or
edge sensors. This approach reduces the volume of data
that needs to be transmitted, thereby increasing system

intelligence and enhancing communication capability at
a reduced cost. KCN achieves this by harnessing the
network’s computing, storage, and communication re-
sources to efficiently produce and disseminate knowledge
throughout the network.

• Edge Computing (EC). In principle, the representation
that involves data analytics is intrinsically correlated with
edge computing, which aims to push the data processing
and analytics to edge [172]. In this manner, low response
time, latency, and bandwidth consumption can be ensured.
The capability of edge computing also benefits the rele-
vant compact representation technologies. For example,
in compact feature representation, the feature extraction
in the edge end can be subsequently transmitted to the
cloud side for information fusion. Moreover, the models
at the edge end can be frequently updated with the model
communication technologies.

IV. ENVISIONS

Although green computing for videos has achieved signif-
icant progress, there is still a considerable gap compared to
the performance of the human visual system. At the same
time, the purpose of video representation is to reconstruct
rather than to understand visual information as the HVS does.
These two different objectives ultimately make it impossible
to bridge the performance gap, even if the compression per-
formance is significantly improved in each generation of the
video coding standard. However, in the future, we believe
that new technologies will continue to emerge to promote
the development of this field. In particular, the deep learn-
ing algorithms, which numerous state-of-the-art compression
algorithms rely on, are rather more complicated than the
human brain (12-25 watts). Recently, there have also been
alternative solutions that attempt to avoid the huge amount
of training resources. For instance, the subspace approxima-
tion with augmented kernels (SAAK) transform, as discussed
in [173], has proven efficient in various processing and pattern
recognition tasks. This approach presents a promising avenue
for reducing the energy footprint of video processing tech-
nologies. Nonetheless, attaining high compression efficiency
while simultaneously minimizing energy consumption presents
challenges. Reduced energy usage typically correlates with
fewer processing operations, leading to diminished video qual-
ity. Moreover, existing hardware may not be optimized for
energy-efficient processing, necessitating innovations in both
software and hardware design. These challenges may serve as
key motivators for pioneering research in the realm of green
computing for videos.

Another promising direction is communication among AI
agents, which will probably open up a fascinating frontier
in the field of artificial intelligence and information commu-
nication. Semantic communication [174], which is a long-
standing research topic, has been widely studied in the lit-
erature recently, paving the way toward the next generation
of communication. However, the process of achieving brain-
like semantic communication for AI agents is still in its
infancy. This form of communication focuses on how to create
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the language for machines, and translators between different
machine languages. The linguistic structure among AI agents
requires a redesign, a task that is likely best suited for AI
capabilities. However, without any doubt, such communication
is greener than human-centric communication, and AI agent
systems are expected to interact seamlessly within this. Fur-
thermore, ensuring that communications between AI agents are
not only efficient but also secure and interpretable by human
overseers to prevent miscommunications and potential misuse
is also a challenge for developing a machine language that can
encapsulate complex ideas succinctly and accurately.

Moreover, neuromorphic computing [175], [176] is also
expected to greatly enhance communication efficiency, leading
to green communication. Neuromorphic systems which are
typically designed to mimic the neural structure and func-
tionalities of brains, could potentially allow for more efficient
communication between AI agents, as well as between humans
and AI agents. However, building systems that accurately
mimic human neural architectures is technically challenging
and demands innovations in materials science and electronic
engineering. Additionally, the high cost of developing and pro-
ducing neuromorphic chips may impede their broad adoption
and commercial integration, which necessitates researchers to
explore relevant fields. Besides, one potential research direc-
tion of neuromorphic computing is to integrate it with existing
AI frameworks to enhance their computational efficiency and
reduce power consumption. Furthermore, developing scalable
neuromorphic systems that can be scaled up efficiently to
handle complex computations akin to those required for real-
time AI communications, can significantly contribute to more
sustainable and efficient computing and communication solu-
tions.

V. CONCLUSIONS

In this survey, we have explored the progression and future
directions of compact visual data representation within the
context of green multimedia systems. We have demonstrated
how insights from the HVS can be integrated into digital
systems to achieve not only higher compression ratios but
also enhanced energy efficiency. Our discussion encompassed
compact video compression, in particular the perceptual cod-
ing and cloud based coding which leverage the perceptual
characteristics and memory of HVS. In terms of compact fea-
ture compression, the push towards front-end intelligence has
fostered developments in compact feature representations that
support efficient downstream tasks on edge devices. Moreover,
the concept of unified perception, which combines texture
and feature coding, was highlighted as a novel approach to
meet the dual needs of human perception and machine-based
analytics. This strategy not only preserves the quality of visual
information but also simplifies the processing and analysis,
paving the way for more efficient multimedia systems.

As AI and machine learning continue to evolve, alongside
advancements in edge computing, these technologies promise
to further reduce energy consumption and enhance the effi-
ciency of multimedia data handling. The path forward involves
bridging the current capabilities of digital systems with the

biological efficiency of the HVS, which will be pivotal in
ushering in an era of truly green multimedia technologies.
The continuing research in this domain is expected to focus on
narrowing the performance gap between digital systems and
the HVS, thus fostering a more sustainable approach to green
multimedia technology development.
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