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The structure of sets with cube-avoiding sumsets

Thomas Karam∗ Peter Keevash†

November 22, 2024

Abstract

We prove that if d ≥ 2 is an integer, G is a finite abelian group, Z0 is a subset of G
not contained in any strict coset in G, and E1, . . . , Ed are dense subsets of Gn such that

the sumset E1 + · · ·+Ed avoids Zn
0

then E1, . . . , Ed essentially have bounded dimension.

More precisely, they are almost entirely contained in sets E′

1
×GI

c

, . . . , E′

d
×GI

c

, where

the size of I ⊂ [n] is non-zero and independent of n, and E′

1
, . . . , E′

d
are subsets of GI

such that the sumset E′

1
+ · · ·+ E′

d
avoids ZI

0
.

1 Introduction

An important direction in combinatorial number theory and geometry considers questions that
are broadly of the following kind: given two subsets A,B of some ambient (abelian) group,
what may be deduced about the structure of A,B if the sumset A+B is somehow constrained?

Among various constraints that may be considered for A + B, the most basic and most
studied is bounding |A + B| in terms of |A| and |B|. For example, when A = B, there is a
long line of research describing the structure of finite sets A ⊂ Z with |A + A| ≤ K|A| for
some fixed K. Here the landmark result is Freiman’s theorem, which shows that such A must
be contained in some multidimensional arithmetic progression P with dim(P ) and |P |/|A|
both bounded by a constant depending only on K. Further milestones in this direction are
an extension to general (not necessarily abelian) groups by Breuillard, Green and Tao [3]
and a resolution of Marton’s Conjecture (aka the Polynomial Freiman-Ruzsa Conjecture) on
a polynomial quantitative improvement for abelian groups with bounded torsion by Gowers,
Green, Manners and Tao [5].

It is also natural to constrain A + B not by placing an upper bound on its size, but by
requiring that it avoids a specific structured set. For instance, a theorem of Sárközy [11]
provides upper bounds on the size of a subset A ⊂ [n] such that A−A does not contain any
prime integer, and Green [6] recently obtained a related result for shifted primes. Another
well-studied example is that of subsets A ⊂ [n] such that A−A does not contain any perfect
square, for which bounds were obtained by Sárközy [11] and Furstenberg [4], with a more
recent improvement by Bloom and Maynard [2].

Our own focus in the present paper will be on high-dimensional subsets E,F of a large
power Gn of some fixed finite abelian group G, satisfying the constraint that for some fixed
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Z0 ⊂ G the sumset E + F avoids the power Zn
0 . To illustrate this, we consider two subsets

A,B of Zn with constraints according to residues modulo some integer N . Here we give two
examples, the first being trivial, and the second already capturing the main difficulties of the
question. Suppose first that N = 2 and we require that there is no (a, b) ∈ A×B with ai + bi
even for every i ∈ [n]. Equivalently, projecting A,B modulo 2 to subsets E,F of Z

n
2 , we

require that E + F does not contain {0}n ∈ Z
n
2 , or equivalently that F is disjoint from −E.

In this example, we do not obtain any non-trivial structure for E and F .

Now suppose that N > 2 and A+ B avoids (NZ ∪ (NZ + 1))n. Equivalently, projecting
A,B modulo N to subsets E,F of Zn

N , we require E+F to be disjoint from {0, 1}n. Here it is
not clear what structure this imposes on E and F . Furthermore, one may hope that an answer
to this question may lead to progress on the longstanding Additive Basis Conjecture of Jaeger,
Linial, Payan and Tarsi (reported by Alon, Linial and Meshulam [1]), which is equivalent to
the statement that for any prime p there is a constant C = C(p) such that for any invertible
linear maps Ai ∈ GL(n,Zp) for 1 ≤ i ≤ C we have A1({0, 1}

n) + · · ·AC({0, 1}
n) = Z

n
p .

In a companion paper [8] we solve the corresponding continuous extremal problem for E
and F in the torus (R/Z)n, which can be rephrased in terms of extremal expansions by cubes:
given m, ℓ ∈ (0, 1) we describe the extremal examples (and show stability) for minimising
µ(E + [0, ℓ]n) among all E ⊂ (R/Z)n with µ(E) = m. One application of our extremal result
is another proof of the known bound C < O(log n) for the Additive Basis Conjecture. The
present paper concerns structural properties of E,F with (E + F ) ∩ {0, 1}n = ∅ that have
density bounded below but may be quite far from any extremal example.

1.1 Results

Next we make three basic observations that motivate our structural result for subsets E,F of
Z
n
N such that E + F avoids {0, 1}n (or more generally Zn

0 for some Z0 ⊂ ZN ).

1. Many natural examples are low-dimensional, e.g. E = F = {x ∈ Z
n
3 : x1 = 1}.

2. Any example in some dimension can be extended to any higher dimension: if E′, F ′ are
subsets of Zk

N such that E′+F ′ avoids {0, 1}k then we can extend E′, F ′ to subsets E,F
of Zn

N for any n > k simply by taking E = E′ × Z
n−k
N and F = F ′ × Z

n−k
N .

3. If E + F avoids {0, 1}n then so does E′ + F ′ for any E′ ⊂ E and F ′ ⊂ F .

Conversely, our main result will state that any E,F with (E + F ) ∩ Zn
0 empty can be

approximated by sets obtained by these three moves (starting with a low-dimensional set,
extending to a higher dimension, taking arbitrary subsets). We start with the formulation
when N is prime and E +F avoids Zn

0 for some Z0 ⊂ ZN with |Z0| > 1 (as illustrated above,
if |Z0| = 1 then E,F need not have any non-trivial structure). Throughout, if I is a subset of
[n] we write Ic for the complement of I in [n].

Theorem 1.1. Let p be a prime, let ε > 0, and let Z0 ⊂ Zp with |Z0| > 1. Then there exists
C = C(p, ε) such that for any subsets E,F of Zn

p with (E + F ) ∩ Zn
0 = ∅ there exist I ⊂ [n]

with 0 < |I| < C and subsets E′, F ′ of ZI
p satisfying

|E \ (E′ × Z
Ic
p )| ≤ ε|Zn

p |, |F \ (F ′ × Z
Ic
p )| ≤ ε|Zn

p |, (E′ + F ′) ∩ ZI
0 = ∅.
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We note that in Theorem 1.1 we require the set I of structured coordinates to have bounded
size, be non-empty (for non-triviality) and be the same for both E and F . If instead we showed
that E and F are structured with respect to some unrelated sets IE and IF then we could
recover the formulation above by taking I = IE ∪ IF , but in the converse direction we cannot
allow unrelated sets (e.g. if IE ∩ IF = ∅ then we may have E + F = Z

n
p).

Next we suppose that the modulus N is not necessarily prime. Compared to the case of
cyclic groups ZN it will cost us little to tackle the case of finite abelian groups, so we shall
present the corresponding generalisation of Theorem 1.1 in the latter setting. Throughout, if
G is a finite abelian group, then we will say that a strict coset in G is a set of the type H+{x}
where H is a subgroup of G with H 6= G, and x is an element of G.

Theorem 1.2. Let G be a finite abelian group and let ε > 0. Then there exists C = C(G, ε)
such that if Z0 ⊂ G is not contained in any strict coset in G and E,F are subsets of Gn with
(E+F )∩Zn

0 = ∅ then there exist I ⊂ [n] with 0 < |I| < C and subsets E′, F ′ of GI satisfying

|E \ (E′ ×GIc)| ≤ ε|Gn|, |F \ (F ′ ×GIc)| ≤ ε|Gn|, (E′ + F ′) ∩ ZI
0 = ∅.

The assumption on Z0 cannot be weakened, as if Z0 is contained in a coset of some strict
subgroup H of G then under the projection π : G → G/H we have |π(Z0)| ≤ 1, which leads
to a lack of structure similarly to the case |Z0| = 1 (see Example 3.1 for details).

Finally, we give a further extension of Theorem 1.2 that considers several summands.

Theorem 1.3. Let d ≥ 2 be an integer, let G be a finite abelian group, and let ε > 0. Then
there exists C = C(d,G, ε) such that if Z0 ⊂ G is not contained in any strict coset in G and
E1, . . . , Ed are subsets of Gn with (E1 + · · · + Ed) ∩ Zn

0 = ∅ then there exist I ⊂ [n] with
0 < |I| < C and subsets E′

1, . . . , E
′
d of GI satisfying

|Ej \ (E
′
j ×GIc)| ≤ ε|Gn| for all j ∈ [d], (E′

1 + · · ·+ E′
d) ∩ ZI

0 = ∅.

In Section 2 we will prove Theorem 1.1. Section 3 discusses the necessary modifications
to prove its two successive generalisations, Theorem 1.2 and Theorem 1.3. The final Section
4 contains some potential further generalisations and remaining open questions.

1.2 Notation and conventions

If X is a finite set, I is a subset of [n], and E is a subset of XI , then we refer to the ratio
|E|/|XI | as the density of E inside XI . Usually there will be no ambiguity as to which set
XI is being considered and we will denote this density by d(E). If y is an element of XI and
E is a subset of Xn, then we write EI→y for the set of points x ∈ E such that xi = yi for
every i ∈ I. Although the set EI→y is a subset of Zn

p rather than a subset of Z
Ic
p , we can

also view it as a subset of ZIc
p , and the notation d(EI→y) will always refer to the density of

EI→y as a subset of ZIc
p . If I, J are disjoint subsets of [n], y and z are elements of XI and

XJ respectively, and E is a subset of Zn
p , then we write EI→y,J→z for the set EI∪J,w where w

is the element of XI∪J defined by wi = yi for each i ∈ I and wi = zi for each i ∈ J .

2 Two summands and prime modulus

In the present section we prove Theorem 1.1. The two main technical ingredients of the proof
are (i) a simultaneous regularity lemma for two sets, and (ii) a result of Haz̨ła, Holenstein
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and Mossel on product space models of correlation. We present the first ingredient in the first
subsection, which is a minor modification of an existing result, although we include a proof
for the convenience of the reader. In the second subsection we prove Theorem 1.1 assuming
a lemma on summands in dense pseudorandom sets. We then conclude the proof in the third
subsection by using the second ingredient mentioned above to prove this lemma.

2.1 Pseudorandom sets and a simultaneous regularity lemma

In our context, a regularity lemma is a result on decomposing any subset of a product set Xn

into a bounded number of pieces, most of which are pseudorandom, in the following sense.

Definition 2.1. Let X be a finite set, let r be a nonnegative integer and let β > 0. We say
that a subset E of Xn is (r, β)-pseudorandom if for any subset I of [n] with size at most r
and every y ∈ XI we have |d(EI→y)− d(E)| ≤ β.

The following formulation is similar to that in [9, Lemma 3.2], with the slight complication
of simultaneously decomposing two sets; the required modification of the proof is straightfor-
ward, but we give the details for the convenience of the reader.

Lemma 2.2. Let X be a finite set, let r be a nonnegative integer, and let β, α > 0. Then
there exists C = Psr2(X, r, β, α) such that for any subsets E,F of Xn there exists I ⊂ [n] with
0 < |I| < C which simultaneously satisfies

Py∈XI (EI→y not (r, β)-pseudorandom) ≤ α, (1)

Py∈XI (FI→y not (r, β)-pseudorandom) ≤ α. (2)

Proof. We construct the set I using an inductive process. Let us begin by ignoring the
requirement that I is non-empty (which will be easy to also ensure). For a positive integer s,
at the sth iteration we proceed as follows, unless we have stopped before then.

Having obtained a set Is, if the inequalities (1) and (2) hold for I = Is then we stop. Let
us now assume that (1) fails (if instead (2) fails, then we proceed similarly with E replaced
by F ). We then define the set

Epsr
s = {y ∈ XIs : EIs→y not (r, β)-pseudorandom}.

For each y ∈ Epsr
s we can find some Is+1,y ⊂ Ics with size at most r satisfying

|d(EIs→y,Is+1,y→z)− d(EIs→y)| > β

for some z ∈ Is+1,y. To complete the inductive step we set

Is+1 = Is ∪
⋃

y∈Epsr
s

Is+1,y.

We next show that the process terminates after a number of iterations that is bounded
above depending on p, r, β, α only. We will do so by an energy-increment argument. For each
step s of the induction we define the energies

Es(E) = E
y∈XIs

d(EIs→y)
2, Es(F ) = E

y∈XIs

d(FIs→y)
2.
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The sets Is constitute an increasing sequence (with respect to inclusion), so the sequences
Es(E) and Es(F ) are nondecreasing by the Cauchy-Schwarz inequality. If some step s of the
induction involves E, then we may lower bound the difference

Es+1(E)− Es(E) = E
y∈XIs

(

E

z∈XIs+1\Is

d(EIs→y,Is+1\Is→z)
2 − d(FIs→y)

2

)

by interpreting for every y ∈ XIs the inner expectation as the variance of the variable
d(EIs→y,Is+1\Is→z) when z is chosen uniformly at random in XIs+1\Is . For every y ∈ Epsr

s ,
the variance of the variable d(EIs→y,Is+1\Is→z) when z is chosen uniformly at random in

XIs+1\Is is again (by the Cauchy-Schwarz inequality) at least the variance of the variable
d(EIs→y,Is+1,y→z) when z is chosen uniformly at random in XIs+1,y , which is always at least
p−rβ2 by definition of Epsr

s . Hence we obtain the lower bound

Es+1(E) − Es(E) ≥ p−rαβ2,

which is independent of s. Thus the sum of the energies Es(E) + Es(F ) increases by at least
p−rαβ2 at each step, and since it is always bounded above by 2, the number of steps is at
most 2prα−1β−2. At every step, the set Is+1 \ Is has size bounded above by p|Is|r.

To ensure that I is non-empty, at the very first iteration we continue (rather than stop)
regardless of whether (1) or (2) holds, and for that iteration the difference (E1(E) + E1(F ))−
(E0(E) + E0(F )) is lower bounded by 0 rather than by p−rαβ2.

2.2 Reducing to pseudorandom summands

Here we will reduce the structure theorem to the following proposition on pseudorandom dense
summands E and F , showing that not only does E+F meet Zn

0 but E×F contains a positive
proportion of the pairs with sum in Zn

0 . In what follows, we will continue to refer to subsets
E,F ⊂ Z

n
p for simplicity of notation, but the upcoming considerations will in fact be applied

to subsets EI→x′ and FI→y′ of ZIc
p obtained by applying Lemma 2.2.

Proposition 2.3. Let p be a prime, let ε > 0 and let Z0 be a subset of Zp with |Z0| > 1. Let
S = {(x, y) ∈ Z

n
p × Z

n
p : x + y ∈ Zn

0 }. Then there exist β > 0, c > 0, and a positive integer
r such that whenever E,F are (r, β)-pseudorandom subsets of Zn

p with density at least ε we
have |(E × F ) ∩ S| ≥ c|S|. In particular, there exist x ∈ E, y ∈ F satisfying x+ y ∈ Zn

0 .

Let us now explain how Theorem 1.1 follows from Lemma 2.2 and Proposition 2.3.

Proof of Theorem 1.1. Let ε > 0, and let E,F be subsets of Zn
p satisfying (E + F ) ∩ Zn

0 = ∅.
First we consider the trivial case that one of E or F is sparse, say d(E) ≤ ε. Then taking
I = {1} (say), E′ = ∅ and F ′ = Zp satisfies all three required conclusions. Likewise if d(F ) ≤ ε
by exchanging the roles of E and F , so we may now assume both d(E) ≥ ε and d(F ) ≥ ε.

We then let r, β be the parameters given by Proposition 2.3 for p,Z0,ε/2. Applying Lemma
2.2 with X = Zp, these r, β and α = ε/2, we obtain a non-empty subset I of [n] with size at
most Psr2(Zp, r, β, ε/2) satisfying both (1) and (2). We then consider the sets

Epsr = {x′ ∈ Z
I
p : EI→x′ is (r, β)-pseudorandom}, E′ = {x′ ∈ Epsr : d(EI→x′) > ε/2},

F psr = {y′ ∈ Z
I
p : FI→y′ is (r, β)-pseudorandom}, F ′ = {y′ ∈ F psr : d(FI→y′) > ε/2}.
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We note that any (x′, x′′) in E \ (E′ × Z
Ic
p ) satisfies x′ ∈ (Epsr)c or d(EI→x′) ≤ ε/2, so the

density of such (x′, x′′) in Z
n
p is at most α + ε/2 = ε, as required for the first conclusion of

Theorem 1.1. Similarly, F \ (F ′ × Z
Ic
p ) has density at most ε.

It remains to show that (E′ + F ′) ∩ ZI
0 = ∅. To see this, suppose on the contrary that we

have (x′, y′) ∈ E′×F ′ with x′+ y′ ∈ ZI
0 . By definition of E′ and F ′ we can apply Proposition

2.3 to EI→x′ and FI→y′ , thus obtaining (x′′, y′′) ∈ EI→x′×FI→y′ with x′′+y′′ ∈ ZIc
0 . However,

we then have x = (x′, x′′) ∈ E and y = (y′, y′′) ∈ F with x + y ∈ Zn
0 . This contradicts our

assumption on (E,F ), so (E′ + F ′) ∩ ZI
0 = ∅, as required.

2.3 Pseudorandom summands via correlation

To complete the proof of Theorem 1.1, it remains to establish Proposition 2.3, which we will
deduce from a result of Haz̨ła, Holenstein and Mossel [7]. We will state it in the simplified
setting of two correlated variables, deferring the more general setting to Section 3 where we
will use it extended to more summands.

Let (U, V ) be random variables following some probability distribution P on Ω2, where Ω
is some finite set. The correlation of P is

ρ(P) = sup{Cov(λ(U), σ(V )) : Var λ(U) = Var σ(V ) = 1},

where the supremum is over functions λ, σ : Ω → R with Var λ(U) = Varσ(V ) = 1. We have
ρ(P) ≤ 1 by the Cauchy-Schwarz inequality, and we may characterise the equality case as
follows.

Lemma 2.4. Let Ω be a finite set and (U, V ) be random variables following some probability
distribution P on Ω2. Then ρ(P) = 1 if and only if there exist non-constant λ, σ : Ω → R

such that λ(U) = σ(V ) with probability 1.

Proof. Since the quantities Cov(λ(U), σ(V )),Var λ(U),Var σ(V ) are unchanged after sub-
tracting constants from λ and σ, we can view ρ(P) as the supremum of Cov(λ(U), σ(V ))
over all λ, σ with expectation 0 and variance 1. This supremum is a maximum, as the set
of such pairs (λ, σ) is compact (since the set Ω is finite). We consider (λ, σ) attaining the
maximum and apply the Cauchy-Schwarz inequality

ρ(P) = Cov(λ(U), σ(V ))2 ≤ Var λ(U)Var σ(V ) = 1.

If ρ(P) = 1 then we have equality in this inequality, so λ(U) = σ(V ) with probability 1;
this gives the required conclusion, as λ, σ are non-constant (they have non-zero variance).
Conversely, if we can find non-constant λ, σ satisfying λ(U) = σ(V ) with probability 1, then
Var λ(U) > 0, so after multiplying λ and σ by (Var λ(U))−1/2 we get Varλ(U) = Var σ(V ) = 1
as well as Cov(λ(U), σ(V )) = Var λ(U) = 1, so ρ(P) = 1.

We now state the required result from [7] and deduce Proposition 2.3.

Theorem 2.5. [[7], Theorem 7.1, special case] For every µ > 0 and ρ < 1 there exist a positive
integer r and some β, c > 0 such that the following holds. Let (X,Y ) be a pair of random
variables taking values in Ωn × Ωn for some finite set Ω, such that the pairs (Xi, Yi) with
i ∈ [n] follow the same distribution P on Ω2 independently. Let f, g : Ωn → {0, 1} satisfying
the following three assumptions.

6



(i) The sets {f=1} and {g=1} are (r, β)-pseudorandom,

(ii) E f(X) ≥ µ and E g(Y ) ≥ µ,

(iii) ρ(P) ≤ ρ.

Then we have the lower bound

E f(X)g(Y ) ≥ c. (3)

Proof of Proposition 2.3. Let E,F be as in Proposition 2.3, for some r, β, c to be determined
below. In Theorem 2.5 we take Ω to be Zp, take f = 1E and g = 1F , and take P to be the
probability distribution on Z

2
p where each pair (x, y) with x+y ∈ Z0 has probability (p|Z0|)

−1

and all other pairs (x, y) have probability 0. Setting µ = ε, as P has uniform marginals on Zp

we have E f(X) = d(E) ≥ µ and E g(Y ) = d(F ) ≥ µ.

The remaining condition ρ := ρ(P) < 1 follows from Lemma 2.4. To see this, consider
any λ, σ : Zp → R such that λ(U) = σ(V ) with probability 1 when (U, V ) ∼ P. As |Z0| > 1
we can fix distinct elements u, v of Z0. For each x ∈ Zp, there is a non-zero probability that
(U, V ) = (u−x, x), so we must have λ(u−x) = σ(x). Similarly, we must have λ(v−x) = σ(x).
Thus λ(u−x) = λ(v−x), so λ is a constant function, and so is σ. Thus ρ < 1 by Lemma 2.4.

We can therefore apply Theorem 2.5, which provides the required parameters r, β, c for the
assumptions on E,F in Proposition 2.3. Recalling that S = {(x, y) ∈ Z

n
p × Z

n
p : x+ y ∈ Zn

0 },
the conclusion (3) of Theorem 2.5 is equivalent to |(E × F ) ∩ S| ≥ c|S|.

3 Extensions

In the present section we will generalise our result successively from cyclic groups of prime
order to finite abelian groups and then from two summands to several summands. The main
ideas of the proofs will be the same, although some non-trivial modifications are needed, and
the second generalisation will require more of the framework developed in [7].

3.1 Extending to finite abelian groups

We begin with an extension of Theorem 1.1 replacing Zp for p prime by any finite abelian
group G. As mentioned in the introduction, we will need to strengthen our assumption on Z0

to not being contained in any strict coset in G. The following construction shows that this
assumption on Z0 is necessary for us to obtain any non-trivial structure for E,F .

Example 3.1. Let G be a finite abelian group and let Z0 ⊂ H + {x}, where H is a strict
subgroup of G and x ∈ G. Let K be the quotient group G/H and let π : G → K be the
projection from G to K. Then π(Z0) = {κ} for some κ ∈ K.

Let EK ,FK be two subsets of Kn such that for any xK ∈ EK and yK ∈ FK we have
xK + yK 6= κ. Consider any E ⊂ (π⊗n)−1(EK) and F ⊂ (π⊗n)−1(FK). Then for any x ∈ E
and y ∈ F we have π⊗n(x) + π⊗n(y) ∈ EK + FK , so x + y /∈ Zn

0 . However, the sets EK ,FK

are fairly arbitrary: e.g. if κ = 0 then the only condition is that EK and −FK are disjoint.

Now we modify the proof of Theorem 1.1 to prove Theorem 1.2.

7



Proof of Theorem 1.2. The proof of Theorem 1.1 also proves Theorem 1.2, assuming that we
have the corresponding analogue of Proposition 2.3, so it suffices to show that the above proof
of Proposition 2.3 also works replacing ‘Z0 ⊂ Zp with |Z0| > 1’ by ‘Z0 ⊂ G not contained
in any strict coset in G’. We will apply Theorem 2.5 similarly to before: we take Ω = G,
f = 1E , g = 1F and the distribution P on G2 where each pair (x, y) with x + y ∈ Z0 has
probability (|G||Z0|)

−1. Similarly to before this satisfies conditions (i) and (ii) of Theorem
2.5, so it remains to check condition (iii), that is ρ(P) < 1.

We suppose for contradiction that ρ(P) = 1. By Lemma 2.4 we then have non-constant
λ, σ : G → R such that λ(U) = σ(V ) with probability 1 when (U, V ) ∼ P. For every x, y ∈ G
with x+ y ∈ Z0 the probability of the event {U = x, V = y} is positive, so λ(x) = σ(y). Thus
for any y1, y2 ∈ Z0 we have σ(y1 − x) = λ(x) = σ(y2 − x) for every x ∈ G. Equivalently,
σ(x) = σ(x+y) for all x ∈ G and all y ∈ Z0−Z0. Taking x = 0 and iterating this identity, we
see that σ is constant on the subgroup H generated by Z0−Z0. Furthermore, Z0 is contained
in a coset of H, as for any x ∈ Z0 we have Z0 − {x} ⊂ Z0 − Z0 ⊂ H. By assumption on Z0,
we therefore have H = G, so σ is constant. This is a contradiction, so ρ(P) < 1.

As a sanity check, it may be helpful to observe where the above proof fails (as it must)
in the case where Z0 is contained in a strict coset H + {x} of G, that is π(Z0) = {κ} with
notation as in Example 3.1. Fix any reals (ak : k ∈ K) and consider λ, σ : G → R defined
by λ(x) = aπ(x), σ(x) = aκ−π(x). These functions are not constant in general, but satisfy
λ(x) = σ(y) whenever x+ y ∈ Z0.

3.2 Extending to several summands

In this subsection we obtain our most general result, extending the previous result from two
summands to any number of summands. As for two summands, we need to assume that
Z0 ⊂ G is not contained in any strict coset in G. We start with a construction to show that
this assumption is necessary (in the case of two summands it reduces to a special case of
Example 3.1).

Example 3.2. Let K = G/H with H a strict subgroup of G and Z0 ⊂ H + {x} with
π(Z0) = {κ} be as in Example 3.1. Define S : Kn → K by S(y1, . . . , yn) = y1 + · · · + yn.
Fix a1, . . . , ad ∈ K such that a1 + · · · + ad 6= nκ, and define subsets K1, . . . ,Kd of Kn and
E1, . . . , Ed of Gn by Ki = S−1(ai) and Ei = (π⊗n)−1(Ki) for each i ∈ [d]. Then clearly
(K1 + · · ·+Kd) ∩ {κ}n = ∅ and so (E1 + · · ·+Ed) ∩ Zn

0 . However, the subsets Ei each have
density 1/|K| but do not satisfy the conclusion of Theorem 1.3 in general.

The remainder of this subsection will be devoted to the proof of Theorem 1.3. We start
by stating the appropriate generalisation of Lemma 2.2 (we omit the proof, as it is a straight-
forward adaptation of Lemma 2.2, considering the sum of energies of the d sets E1, . . . , Ed).

Lemma 3.3. Let X be a finite set, let d, r be positive integers, and let β, α > 0. Then there
exists C = Psrd(X, r, β, α) such that for any subsets E1, . . . , Ed of Xn there exists I ⊂ [n] with
0 < |I| < C which simultaneously satisfies

Py∈XI ((Ej)I→y not (r, β)-pseudorandom) ≤ α for every j ∈ [d]. (4)

Next we formulate the appropriate generalisation of Proposition 2.3.
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Proposition 3.4. Let d ≥ 2 be an integer, let G be a finite abelian group, let Z0 be a subset
of G that is not contained in any strict coset in G, and let ε > 0. Let

S = {(x1, . . . , xd) ∈ (Gn)d : x1 + · · ·+ xd ∈ Zn
0 }.

Then there exist β > 0, c > 0, and a positive integer r such that whenever E1, . . . , Ed are
(r, β)-pseudorandom subsets of Gn with density at least ε we have |S ∩

∏d
i=1 Ei| ≥ c|S|. In

particular, there exist x1 ∈ E1, . . . , x
d ∈ Ed satisfying x1 + · · ·+ xd ∈ Zn

0 .

Before proving Proposition 3.4, we present the deduction of Theorem 1.3, which is very
similar to the case of two summands, but we nonetheless write it in full for clarity.

Proof of Theorem 1.3. Let ε > 0, and let E1, . . . , Ed be subsets of Gn such that E1+ · · ·+Ed

avoids Zn
0 . As for two summands, the case where some Ei has density at most ε is trivial, so

we may assume d(Ei) ≥ ε for all i ∈ [d].

We take r, β to be the parameters given by Proposition 3.4 applied with d,G,Z0, ε/2.
Applying Lemma 3.3 with X = G, these r, β and α = ε/2, we obtain a non-empty subset I of
[n] with size at most Psrd(G, r, β, ε/2) satisfying (4). For each j ∈ [d] we consider

Epsr
j = {x′ ∈ GI : (Ej)I→x′ is (r, β)-pseudorandom}, and

E′
j = {x′ ∈ Epsr

j : d((Ej)I→x′) > ε/2}.

We note that any (x′, x′′) in Ej \ (E
′
j ×GIc) satisfies x′ ∈ (Epsr

j )c or d((Ej)I→x′) ≤ ε/2, so
the density of such (x′, x′′) in Gn is at most α+ ε/2 = ε.

It remains to show that (E′
1 + · · · + E′

d) ∩ ZI
0 = ∅. To see this, suppose on the contrary

that we have ((x1)′, . . . , (xd)′) ∈ E′
1 × · · · × E′

d with (x1)′ + · · · + (xd)′ ∈ ZI
0 . By definition

of E′
1, . . . , E

′
d we can apply Proposition 3.4 to (E1)I→(x1)′ , . . . , (Ed)I→(xd)′ , thus obtaining

((x1)′′, . . . , (xd)′′) ∈ (E1)I→(x1)′ × · · · × (Ed)I→(xd)′ with (x1)′′ + · · · + (xd)′′ ∈ ZIc
0 . However,

we then have xj = ((xj)′, (xj)′′) ∈ Ej for each j ∈ [d] with x1+ · · ·+xd ∈ Zn
0 . This contradicts

our assumption on (E1, . . . , Ed), so (E′
1 + · · · + E′

d) ∩ ZI
0 = ∅, as required.

To complete the proof of Theorem 1.3, it remains to establish Proposition 3.4, via the
result of [7], which we will now state in more generality. Let (U1, . . . , Ud) be random variables
following some probability distribution P on Ωd, where Ω is some finite set. Let

ρ(P) = max
j∈[d]

sup{Cov(λ(Uj), σ(Uj)) : Var λ(Uj) = Var σ(Uj) = 1},

where we write Uj for (U1, . . . , Uj−1, Uj+1, . . . , Ud) and consider functions λ : Ω → R and
σ : Ω[d]\{j} → R. We now state the required result from [7] and deduce Proposition 3.4.

Theorem 3.5. [[7], Theorem 7.1, special case] For every integer d ≥ 2, µ > 0 and ρ < 1
there exists a positive integer r and some β, c > 0 such that the following holds.

Let (X1, . . . ,Xd) be random variables taking values in (Ωn)d for some finite set Ω, such
that (X1

i , . . . ,X
d
i ) with i ∈ [n] follow the same distribution P on Ωd independently.

Suppose ρ(P) ≤ ρ and f1, . . . , fd : Ωn → {0, 1} are such that for every j ∈ [d] the set
{fj = 1} ⊂ Ωn is (r, β)-pseudorandom and E fj(X

j) ≥ µ. Then E f1(X
1) . . . fd(X

d) ≥ c.

9



Proof of Proposition 3.4. Let E1, . . . , Ed be as in Proposition 3.4. In Theorem 3.5 we take Ω to
be G and P to be the probability distribution on Gd where each (x1, . . . , xd) with x1+· · ·+xd ∈
Z0 has probability (|G|d−1|Z0|)

−1 and all other d-tuples (x1, . . . , xd) have probability 0. Each
marginal of P is uniform, so taking fj = 1Ej

we have E fj(X
j) = d(Ej) ≥ µ := ε for every

j ∈ [d].

As in the proof of Proposition 2.3, the proposition will follow from Theorem 3.5 once we
verify the remaining condition ρ(P) < 1. We can use the characterisation from Lemma 2.4
even for λ : G → R and σ : G[d]\{i} → R with i ∈ [d], since its proof did not rely on the
domains on which λ, σ are defined. The roles of the d coordinates are interchangeable, so it
suffices to show that if λ : G → R and σ : Gd−1 → R satisfy λ(U1) = σ(U2, . . . , Ud) with
probability 1 when (U1, . . . , Ud) ∼ P then λ, σ are constant.

Fix any (x3, . . . , xd) ∈ Gd−2 and consider the event A = {U3 = x3, . . . , Ud = xd}. (We can
assume d > 2, or regard A as the trivial event that always holds if d = 2.) Then P(A) > 0,
so we can consider the conditional distribution P(x3,...,xd) of (U1, U2) under P conditioned on

A, which satisfies λ(U1) = σ(U2, x
3, . . . , xd) with probability 1.

We note that P(x3,...,xd) is the distribution on G2 that is uniformly distributed on pairs

(x1, x2) with x1 + x2 in the translate Z0 − {x3 + · · · + xd} of Z0. Applying the d = 2 case
(which we proved in Proposition 2.3) to P(x3,...,xd), which is valid as Z0 − {x3 + · · · + xd} is
not contained in any strict coset in G, we have ρ(P(x3,...,xd)) < 1.

We then define σ(x3,...,xd) : G → R by σ(x3,...,xd)(x
2) = σ(x2, x3, . . . , xd) and apply Lemma

2.4 to λ and σ(x3,...,xd). As λ(U1) = σ(x3,...,xd)(U2) with probability 1 for (U1, U2) ∼ P(x3,...,xd),
we deduce that λ and σ(x3,...,xd) are constant, always taking some fixed value c.

It remains to show that σ is constant. Consider any (x2, x3, . . . , xd) ∈ Gd−1 and x1 ∈
Z0 − {x2 + x3 + · · · + xd}. Then (x1, x2) is in the support of (U1, U2) ∼ P(x3,...,xd), so

c = λ(x1) = σ(x3,...,xd)(x
2) = σ(x2, x3, . . . , xd).

4 Further discussion

Our first open problem is to improve the bound in our main theorems, starting with the
simplest setting.

Question 4.1. Can we for each prime p require |I| ≤ O(log(ε−1)) in Theorem 1.1 ?

Such a bound would be optimal, as is shown by the example of Z0 = {0, 1}, ε = p−(k+1),
E = (Zk

p \ {0, 1}
k)× Z

n−k
p , and F = {0}k × Z

n−k
p for some integer k. Indeed, if E′, F ′ satisfy

the conclusion of Theorem 1.1 for some non-empty I ⊂ [n] then F ′ 6= ∅ and E′ 6= Z
I
p, so

E0 := E \ (E′ × Z
Ic
p ) satisfies ε ≥ d(E0) ≥ p−|I| − (p/2)−k, giving |I| = Ω(k).

Our second problem is to consider other directions of generalising Theorem 1.1, besides the
extensions to finite abelian groups and more summands considered in this paper. Our general
setting (with two inputs for simplicity) is an arbitrary function f : X × Y → Z and its tensor
product f⊗n : Xn × Y n → Zn, where X,Y,Z are finite sets. We would like to characterise
pairs (f, Z0) with Z0 ⊂ Z satisfying the following statement analogous to that in Theorem
1.1: for every ε > 0 there is some C = C(f, ε) such that for any E ⊂ Xn and F ⊂ Y n with
f⊗n(E,F ) ∩ Zn

0 = ∅ there exist I ⊂ [n] with 0 < |I| < C and E′ ⊂ XI , F ′ ⊂ Y I satisfying

|E \ (E′ ×XIc)| ≤ ε|Xn|, |F \ (F ′ × Y Ic)| ≤ ε|Y n|, f⊗I(E′, F ′) ∩ ZI
0 = ∅.
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The following result gives a general condition on (f, Z0) that guarantees the existence of
the desired sets I,E′, F ′, for the trivial reason that there are almost complete sets En and Fn

such that f⊗n(En, Fn) ∩ Zn
0 = ∅. (To be formal, consider any ε > 0, let n′ be such that we

can find En′ , Fn′ as below with densities at least 1 − ε, and take I = [n], E′ = E,F ′ = F if
n < n′, or I = [n′], E′ = En′ , F ′ = Fn′ if n ≥ n′.)

Proposition 4.2. Let X,Y,Z be finite sets, let f : X × Y → Z and let Z0 ⊂ Z. Suppose that
there exist A ⊂ X and B ⊂ Y such that f(A×B) ∩ Z0 = ∅ and |A|/|X| + |B|/|Y | > 1.

Then there exist subsets En ⊂ Xn and Fn ⊂ Y n for every positive integer n such that
fn(En × Fn) ∩ Zn

0 = ∅ and min(d(En), d(Fn)) → 1 as n → ∞.

The condition in Proposition 4.2 is satisfied by some natural functions, such as the mini-
mum function [2k]× [2k] → [2k] for some k ≥ 2 with Z0 = [2k] \ [k + 1]. On the other hand,
it contrasts heavily with the case that f : G × G → G is addition on a finite abelian group
G, as for any A,B ⊂ G with A + B 6= G we have A disjoint from some translate of −B, so
d(A) + d(B) ≤ 1, and similarly d(E) + d(F ) ≤ 1 for any E,F ⊂ Gn with E + F 6= Gn.

Proof. Let r, s, n be positive integers such that rs ≤ n. We consider the ‘tribe-like’ sets

En = {x1 ∈ A ∨ · · · ∨ xr ∈ A} ∧ · · · ∧ {xr(s−1)+1 ∈ A ∨ · · · ∨ xrs ∈ A},

Fn = {y1 ∈ B ∧ · · · ∧ yr ∈ B} ∨ · · · ∨ {yr(s−1)+1 ∈ B ∧ · · · ∧ yrs ∈ B}.

We claim that f⊗n(En × Fn) ∩ Zn
0 = ∅. To see this, consider any (x, y) ∈ En × Fn. By

definition of Fn, there is some s′ ∈ [s] such that yi ∈ B for all i ∈ [r(s′ − 1) + 1, rs′]. By
definition of En, there is some i ∈ [r(s′ − 1) + 1, rs′] such that xi ∈ A, so (xi, yi) ∈ A×B. As
f(A×B) ∩ Z0 = ∅, we deduce f⊗n(x, y) /∈ Zn

0 , so the claim holds.

It remains to estimate the densities of En and Fn. We have

1− d(En) = 1− (1− (1− |A|/|X|)r)s ≤ s(1− |A|/|X|)r ,

1− d(Fn) = (1− (|B|/|Y |)r)s ≤ exp(−s(|B|/|Y |)r).

As 1−|A|/|X| < |B|/|Y |, for any ε > 0 we can choose r such that (1−|A|/|X|)r(|Y |/|B|)r < ε.
Then choosing s = ⌈(|Y |/|B|)r log(ε−1)⌉ gives 1 − d(Fn) ≤ ε and 1 − d(En) ≤ 2ε log(ε−1),
which can be both arbitrarily small, as required.

For further insight on the problem for general functions f , it seems natural to generalise
from addition in abelian groups, to multiplication in general groups, and then further to latin
squares, namely functions f : X ×X → X (for some finite set X) such that for every x, y in
X there is a unique z such that f(x, z) = y and a unique z′ such that f(z′, x) = y.

Question 4.3. Does some analogue of Theorem 1.1 hold for latin squares?
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