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Spiking neural networks: Towards bio-inspired multimodal perception

in robotics
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Abstract— Spiking neural networks (SNNs) have captured
apparent interest over the recent years, stemming from neuro-
science and reaching the field of artificial intelligence. However,
due to their nature SNNs remain far behind in achieving the
exceptional performance of deep neural networks (DNNs). As
a result, many scholars are exploring ways to enhance SNNs
by using learning techniques from DNNs. While this approach
has been proven to achieve considerable improvements in SNN
performance, we propose another perspective: enhancing the
biological plausibility of the models to leverage the advantages
of SNNs fully. Our approach aims to propose a brain-like
combination of audio-visual signal processing for recognition
tasks, intended to succeed in more bio-plausible human-robot
interaction applications.

I. INTRODUCTION

Spiking neural networks (SNNs) have been roughly stud-

ied in the last years. Unlike deep neural networks (DNNs),

SNNs are designed to mimic the way the mammal’s brain

works by using spiking spikes to encode and transmit infor-

mation. Due to their nature, they are energy-efficient, making

them particularly well-suited for many energy-constrained

robotics applications, such as aerial, underwater and assisted

living robots. To that end, SNNs have been utilized in many

robotics tasks from vision [1] and navigation [2] to grasping

and manipulation [3]. Yet, they are far behind the accuracies

achieved by DNNs. As a result, researchers have developed

numerous approaches to enhance SNNs’ performance. Some

of them involve transforming DNNs to SNNs [4], while

others focus on refining learning techniques, thus transferring

insights into learning rules from DNNs to SNNs, such as

the spatiotemporal backpropagation [5]. Certain approaches

concentrate on the representation of input data [6], while

others focus on handling network parameters and effectively

dealing with problematic neurons [7]. Meanwhile, to further

enhance robotics intelligence the integration of multiple

modalities such as image and audio can be highly effective.

In this work, we propose a novel bio-plausible approach to
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manage audio-visual data using different encoding schemes

for each input, inspired by the way mammals synchronously

process audio-visual information.

II. BACKGROUNG AND LEARNING METHODS

A. Multimodal Encoding Schemes

The choice of the encoding schemes between the different

modalities, i.e., image and audio, is crucial for leveraging

the strengths of each encoding method and optimizing the

performance of the SNN.

1) Rate Coding: Rate-coding schemes can be divided

into different categories, i.e., count, density and population

rate [8], with count rate being the most common one, defined

by the mean firing rate as follows:

f im
i =

ni

T
, (1)

where ni is the number of spikes and T the time window.

In count rate encoding, the intensity of each pixel can be

directly mapped to a firing rate, where higher pixel intensities

result in higher firing rates. Rate coding, which represents

information by firing rates of neurons, is well-suited for static

inputs. Images are static and spatially dense, consisting of

pixel intensities. Hence, the intensity of each pixel can be

directly mapped to a firing rate, with higher pixel intensities

resulting in higher firing rates.

2) Time-to-First Spike (TTFS) for Audio Inputs: Temporal

encoding schemes capture the temporal dynamics of data

by recording the precise time of the first spike. Time to

first spike encoding (TTFS) uses an exponential function to

compute the threshold; when the input pixel exceeds it, a

spike is generated. Thus, the input pixels are translated to

the exact timing of the first spike. The threshold equation is

described as:

fau
th = θ0 exp(−t/τth) (2)

Spectrograms are employed in audio preprocessing to convert

signals into a visual representation depicting their frequency

content across time. This transformation provides a two-

dimensional representation that captures the temporal dy-

namics of the audio data. Thus, a temporal encoding spec-

trogram would further enhance the temporal dynamics of the

representation.

B. Learning Mechanism

The spike-timing-dependent plasticity (STDP) learning

mechanism is widely used for many applications. STDP

updates the synaptic weights based on the timing difference
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of the pre and post-synaptic spikes. Given the two different

encoding schemes the STDP can be defined as follows:

1) Rate based STDP: For the rate-encoded image input,

the STDP is defined as follows:

∆wim
ij =

{

a+ exp(−∆t/τ+), if ∆t > 0

−a
−
exp(−∆t/τ

−
), if ∆t < 0.

(3)

where a+, a− the parameters defining the potentiation and

depression of the synaptic weights, respectively, τ+, τ− the

time constant parameters defining the exponential decay

during potentiation and depression respectively and lastly

∆t = thiddenj − timi .

2) Temporal based STDP: Similarly, with the rate-

encoded input, the STDP describing the temporal encoded

input can be defined as follows:

∆wau
ij =

{

b+(1− thiddeni /T ) exp(−∆t/τ
−
), if ∆t > 0

−b
−
(1− thiddeni /T ) exp(−∆t/τ

−
), if ∆t < 0.

(4)

III. RESEARCH DIRECTIONS

While designing SNNs, the encoding schemes and the

learning mechanism need to be carefully chosen. In this

work, we propose an audio-visual SNN approach, employing

different encoding schemes for each input, i.e., image and

audio, thus aiming to enhance data representation capacities

in the SNN. To achieve that, the neurons are properly

designed to handle both temporal and rate-coded inputs.

A. Neuronal Dynamics

The most common neurons used with SNNs are the leaky

integrated and fire (LIF) neurons. While deploying both

image and audio inputs to the membrane potential equation,

the last can take at time t the following form, ensuring that

both inputs influence the neurons’ dynamics:

τm
∆Vj(t)

dt
= −Vj(t) +

∑

i

wim
ij simi (t) +

∑

i

wau
ij δ(t− taui )

(5)

where τm is the membrane time constant, wim
ij and wau

ij are

the synaptic weights of the image and audio from neurons

i to j, simi the spike trains from image and δ(t − taui ) the

Dirac delta function indicating the audio’s contribution to the

neural dynamics at t = taui . When the membrane potential

of neuron j reaches its threshold Vth then it emits a spike.

Following that, the output neuron k generates a spike as

follows:

shiddenk = H(Vk(t)− Vth), (6)

where hidden = {im, au} and H(·) the Heaviside function.

B. Combined weight update

At time-step t, the combined weight update is described

as follows:

∆wij(t) = ηij(∆wim
ij (t) + ∆wau

ij (t)), (7)

where:

ηij =

{

ηim, for image input

ηau, for audio input.
(8)

C. Input Masking

One of the main constraints of such a multimodal approach

would be the choice of the proper decoding scheme, aiming

to achieve high accuracies during the evaluation process. By

masking the inputs, we can compute a bias value to exploit

during the evaluation process. By masking the audio input

fau
i = 0, the output of the forward pass is calculated only

with the image input output{f im
k , fau

k = 0} as well as the

accuracy a = aim, where a the accuracy of the network and

aim the accuracy of the image input. Similarly, by masking

the image input output{f im
k = 0, fau

k }, we can compute

the accuracy of the audio input a = aau. Following these

calculations, we obtain the bias terms:

bim =
aim

aim + aau
, bau =

aau
aau + aim

. (9)

Then, we can compute the biased decoding scheme for the

multimodal input as follows:

C = argmaxi(bim

T
∑

t=0

simi (t) + bau

T
∑

t=0

saui (t)). (10)

IV. CONCLUSIONS

To sum up, it is well established that by combining

different modalities robots can obtain a more comprehensive

understanding of their environment. Hence, we propose a

novel biologically inspired approach to handle audio-visual

input with an SNN, by leveraging the advantages of different

encoding schemes. In the field of SNN research, where the

focus lies on emulating various aspects of brain function,

utilizing event cameras to simulate the retina and employing

neuromorphic computing to develop energy-efficient plat-

forms, it becomes crucial for us to delve deeper into how

mammalian brains process different modalities.
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