
Translating C To Rust: Lessons from a User Study†

Ruishi Li*
liruishi@u.nus.edu

National University of Singapore
Singapore

Bo Wang*

bo wang@u.nus.edu
National University of Singapore

Singapore

Tianyu Li
tianyuli@u.nus.edu

National University of Singapore
Singapore

Prateek Saxena
prateeks@comp.nus.edu.sg

National University of Singapore
Singapore

Ashish Kundu
ashkundu@cisco.com

Cisco Research
San Jose, CA, USA

Abstract—Rust aims to offer full memory safety for programs,
a guarantee that untamed C programs do not enjoy. How difficult
is it to translate existing C code to Rust? To get a complementary
view from that of automatic C to Rust translators, we report on a
user study asking humans to translate real-world C programs to
Rust. Our participants are able to produce safe Rust translations,
whereas state-of-the-art automatic tools are not able to do so. Our
analysis highlights that the high-level strategy taken by users
departs significantly from those of automatic tools we study. We
also find that users often choose zero-cost (static) abstractions
for temporal safety, which addresses a predominant component of
runtime costs in other full memory safety defenses. User-provided
translations showcase a rich landscape of specialized strategies
to translate the same C program in different ways to safe Rust,
which future automatic translators can consider.

I. Introduction

Memory safety vulnerabilities in C programs are still a
prominent category of CVEs reported in commodity software,
and number in thousands each year [28]. Several approaches
to secure such unsafe code are being investigated.

Full memory safety through runtime checks inserted by
compiler instrumentation is achievable. However, it incurs high
performance overhead (≥ 50%) and is often not deployed in
production [42], [43]. Instead, partial memory safety defenses
which have overheads below 20% have found deployment [52].
Emerging hardware features can reduce performance over-
heads of partial safety techniques, but even then, faulty pro-
grams that will often ungracefully abort in production systems
have limited appeal. Similarly, automatic patching techniques
that can localize bugs and suggest fixes for them are being
developed [27], [31], [48], [49]. But these approaches do not
aim to rule out the existence of memory safety bugs altogether.

*
Contributed equally to this work.

†
This is the extended version of the paper. The definitive Version of Record

is to be published in NDSS 2025.

A different approach has been to write secure code which
is free of memory safety bugs from the ground up. The idea is
to have a stricter language and compiler that forces developers
to rewrite unsafe code to use safe patterns everywhere. The
advantage is that full memory safety can be achieved mostly
statically, while a few runtime checks incur low overheads.

Designing safe C dialects with that goal has a long history.
These dialects largely aim to retain low-level features of C for
compatibility, making it difficult to move away from unsafe C
patterns entirely while keeping overheads low [33], [44]. More
recent designs aim for better compatibility by allowing mixed
(statically) safe and unsafe C [21], but when temporal memory
safety is desired in them, overheads can exceed 30% [39].

Rust is an alternative mainstream language that offers
low-level control over memory, while providing full memory
safety. It has a growing ecosystem and increasing support from
commodity OSes. It departs from the conventional approaches
to safe C dialects in that it largely abandons the programming
abstractions in C, such as the use of unchecked raw pointers
and unsafe type casts. It is natural to ask: How difficult is it
to translate existing C code to Rust then?

In the last few years, automatic techniques to translate
C code to Rust have started to emerge. There are two main
approaches, one based on compiler-based analysis [23], [32]
and another based on large language models (LLMs) [24], [57].
But both approaches have had very limited effectiveness so
far, even on small programs of about 100 lines of code. For
example, Emre et. al. report that only about 11% of raw C
pointers can be converted to safe Rust references through static
analysis [23]. Similarly, recent work on Flourine [24] reports
that less than half of the small C programs they consider can
be auto-translated to Rust using LLM-based repair.

It is unclear what strategies, if any, enable a successful
search for C to Rust translations. In order to gain a com-
plementary perspective, in this paper, we study how human
users approach the C to Rust translation task. We conducted
a user study in which we asked undergraduate students taking
a course in computer security to translate a given set of real-
world C programs to safe Rust. Our participants are familiar
with C and memory safety issues, but have minimal prior
exposure to Rust. To the best of our knowledge, this is the
first such analysis of a user study on C to Rust translation.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241407
www.ndss-symposium.org

ar
X

iv
:2

41
1.

14
17

4v
1

 [
cs

.S
E

]
 2

1
N

ov
 2

02
4

mailto:liruishi@u.nus.edu
mailto:bo_wang@u.nus.edu
mailto:tianyuli@u.nus.edu
mailto:prateeks@comp.nus.edu.sg
mailto:ashkundu@cisco.com

33 of our user study participants consented to their trans-
lated programs being analyzed and reported on. Most of the
users succeed in providing reasonable translations of our C
benchmark to Rust, whereas state-of-the-art automatic C to
Rust translation tools are ineffective. Analyzing how users
succeed is our main goal. We highlight several high-level
principles and strategies that are common across the user trans-
lations, which could be useful for future automatic translators.

First, we find that all user-provided Rust translations se-
mantically lift from the low-level abstractions used in the C
code to re-express the logic in Rust, rather than trying to mimic
the original program and data-flow structure too closely. This
approach helps break free of the low-level constraints present
in the original C code, which would violate the strict rules
in Rust if preserved. Rust enforces stricter rules on pointer
aliasing than C. Users decomposed the object lifetimes in
different ways that are specialized to access patterns used
for the object to satisfy Rust rules. This shows that there are
multiple strategies to translate the same C program to safe
Rust, with room for context-specific translation strategies.

Second, we find that resulting Rust translations often
contain zero-cost statically-checked safety abstractions. Tem-
poral memory safety, which is a source of significant runtime
overhead in many prior defenses [39], [43], is achieved mostly
statically. The resulting Rust programs have comparable per-
formance to C, and rarely more than 20% slower than the
corresponding C code, even though our participants are not
explicitly asked to optimize for performance. At the same
time, known spatial and temporal vulnerabilities in our C
benchmarks are eliminated in the translated Rust code. This
suggests that C to Rust translation is worth it, as the trade-off
between performance and security we observe in translations
by non-expert Rust users is desirable.

Third, nearly all Rust translations have functional discrep-
ancies compared with the corresponding C code. These dis-
crepancies are easy to find with fuzzing and Rust translations
of the same C program have correlated failures, i.e., they often
fail the same tests. Some of these discrepancies are expected
since undefined behavior present in C programs are handled
differently by different users. But, several others are logical
errors, suggesting a “last mile” phenomenon at play: While
users find it feasible to convert most C functionality to its Rust
counterpart, making a 100% correct translation is tedious.

Lastly, in order to examine the broader validity of our
observations, we perform a post-hoc investigation of a mature
open-source Rust project that mirrors the functionality of a set
of popular C programs. Several findings from our user study,
which involves non-experts, are also seen in the open-source
project maintained by more experienced Rust developers.

Contribution. We report on the lessons garnered from the
first user study on translating real-world C programs to Rust
by non-expert Rust users. Our work sheds light on strategies
and policy decisions that users have to make, which are com-
plementary to automatic mechanisms. We highlight the end
gains in user-provided translations, such as the ubiquitous use
of zero-cost temporal safety abstractions, elimination of unsafe
code patterns, and the trade-offs with functional correctness.

fn change_buf(i: usize) {

 let mut buf: Vec<i32> = vec![0; 2];

 let a: &Vec<i32> = &buf;

 let a1: &i32 = &buf[1];

 println!("a[0]: {:?}, a1: {:?}", a[0], a1);

 println!("a[{:}]: {:?}", i, a[i]);

 // Runtime bounds check: The above line might panic

 let x: &mut Vec<i32> = &mut buf;

 x[0] = 1;

 let x0: &mut i32 = &mut (*x)[0];

 *x0 = 2;

 x.clear();

 // *x0 = 3; // cannot use `x0` anymore

 use_buf(buf); // fn use_buf(buf: Vec<i32>) {...}

}

Ownership

Mutable Borrow (x)

Immutable Borrow (a)
Immutable Borrow (a1)

Transferred
to use_buf

Re-Borrow (x0)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 1: A Rust code example showing the concepts of owner-
ship transfer, mut./immut. borrowing, and reference lifetime.

II. Background

Rust allows programs to have fine-grained control over
memory but with spatial and temporal memory safety.

A. A Tour of Safe Rust

We briefly explain Rust design principles for achieving full
memory safety with a running example shown in Figure 1.

Ownership. Rust ensures that each data object has an exclu-
sive owner at any given program point [17]. When the variable
owning an object goes out of scope, the compiler automatically
deallocates the object. The single-owner principle ensures that
the object is deallocated only once, avoiding double-free bugs
prevalent in C programs. The compiler knows the scope of
all objects in the program. Stack variables have statically
determined block/function scope, and so do globals. Objects
can be owners of other objects, creating a transitive chain of
ownership. The chain starts with a stack/global variable, so the
compiler can track ownership of all objects.

Ownership can not be duplicated but only transferred
between variables through assignment or parameter passing.
The Rust compiler, therefore, tracks the unique owner of every
object at every program point. For example, the buf variable
in the example of Figure 1 is on the stack and encapsulates
a (smart) pointer to Vec object allocated on the heap. The
object allocated on Line 2 in Figure 1 has a unique owner
buf from Line 2-14, after which the ownership transfers to the
first parameter of use_buf() . The object will be deallocated
when the new owner goes out of scope, i.e., at the end of the
function scope of use_buf() .

Borrowing. Exclusive ownership, by itself, disallows all alias-
ing altogether, which is too restrictive. Rust relaxes this restric-
tion by introducing a borrowing mechanism. It allows creating
references (also called borrows) to temporarily access the data
value without transferring the ownership. References a , a1 ,
and x borrow from the owner buf , whereas x0 reborrows
from x in the example. This allows limited forms of aliasing.

Lifetime. With borrowed references, it becomes essential to
ensure that a reference never points to an object that has been
deallocated. The Rust compiler statically tracks the lifetime of

2

variables: the region of code that the variable must be valid
for. Rust enforces that the lifetime of all references is a strict
subset of the lifetime of the owner statically. Since the object
will be deallocated only when the lifetime of the owner expires,
all live references point to valid objects, eliminating use-after-
free vulnerabilities that arise in C programs. The example in
Figure 1 creates multiple references to an array object. The
variable buf gets ownership of the heap-allocated array on
Line 2. There are four borrowed references created directly or
indirectly from buf on lines 3, 4, 9, and 11. Their lifetimes are
enforced to be smaller than that of buf and are highlighted.
The object is automatically deallocated only when the lifetime
of the owner buf ends, thereby ensuring that all references
point to valid memory throughout their lifetime.

Aliasing Xor Mutability (AXM). Aliasing references can up-
date the object storage, possibly moving them, and associated
allocation metadata (e.g. size, internal pointers) can become
inconsistent. When multiple references are pointing to the
same object (e.g. a vector type) to insert/delete elements or
change its capacity, the location of its internal buffer and size
metadata might change. Consequently, this will invalidate other
references to the same object, including iterators and references
to its elements. Memory-unsafe languages like C leave careful
management of aliased pointers to the programmer, which
has been a source of mistakes. To avoid this, Rust proposes
Aliasing Xor Mutability (AXM) principle. First, references are
divided into two types: mutable (&mut) and immutable (&).
Mutable references can read and write the referent object,
while immutable ones have read-only access. Second, the
Rust compiler enforces that either only one mutable reference
or multiple (aliasing) immutable references are active at a
program point. Mutable aliased references can not be active
at the same program point. The AXM principle eliminates the
need for careful pointer invalidation by the programmer and
helps memory safety in concurrent code as well.

Specifically in the example of Figure 1, Lines 3-6 have
multiple immutable references to buf , and Lines 9-13 have
one mutable reference at each point, created using &mut type
declaration. The compiler can statically infer the lifetime of x
and other mutable references that may alias it, such as x0 . It
automatically splits their range of legal use such that there will
be a single mutable reference to the object active in scope at
each statement, i.e, x is permitted on Line (9−10, 13) and x0
on Lines 11-12. The compiler would forbid using x0 on or
after line 13 as it would create two mutable references to the
vector elements, highlighted by commented code on Lines 14
for illustration. In the equivalent C code, dereferencing x0 on
Line 14 would be legal and lead to undefined behavior, since
x0 refers to a vector whose underlying elements were cleared
(possibly deallocated) via x on Line 13. This can result in out-
of-bound access due to a dangling dereference. Such memory
errors are disallowed by the AXM principle in Rust.

Runtime AXM and Thread Safety. The AXM principle
can be too restrictive in certain circumstances. When multiple
mutable references are necessary, Rust programs can resort
to runtime borrow checks and reference counting for memory
safety, through the use of data types such as RefCell<T> and
Rc<T> for single-thread synchronization and Mutex<T> and
Arc<T> for multi-thread synchronization. These generic types
are implemented in the Rust standard library with internal use

of unsafe Rust and have been proven sound [35]. Mutable
pointers are particularly common in multi-threaded code, and
in fact, concurrent C code is notoriously difficult to analyze
for memory safety bugs. The Rust compiler enforces that
concurrent access or data copying across threads will never
result in memory safety violations. Thus, when Rust allows
relaxations to the AXM principle, runtime checks are used for
memory safety. We will refer to all such references that carry
dynamic checks as dynamic references to avoid confusion with
regular Rust references that obey the AXM principle.

Spatial Bounds Checking. The Rust compiler aims to ensure
that the accesses by owners or references to the referent
are within spatial bounds. For several types of objects, the
compiler can do so statically, but when it cannot, it adds
runtime bounds checks. In line 6 of Figure 1, a[i] operation is
checked to see if i is within the boundary of buf . If passing 3
to i , the Rust code would abort the execution of the program.

Type Safety. Rust is a type-safe language and supports safe
type casting among data types using APIs provided in the
standard library. All type casts guarantee that the converted
values are within the legal range of the target type. Safe Rust
disallows direct reinterpretation of memory to an unsafe type.
For example, the conversion between pointers (void*), non-
primitives (struct , union , etc.) and primitives (bool , enum ,
etc.) can cause memory errors in C, but safe Rust forbids them.

B. Existing Automatic C to Rust Translation

There have been 2 main approaches to automatic C-to-Rust
translation: One based on compiler or static analysis, while the
other using large language models (LLMs) for code synthesis.

Compiler-based Approach. Most of the work in this direction
decomposes the code translation problem into two stages: (1) C
to unsafe Rust, and (2) unsafe Rust to safe Rust [22], [23], [59].
A mature tool called c2rust performs a robust line-by-line
syntactic translation from C to corresponding unsafe Rust
code blocks [32]. The use of unsafe{...} keyword allows
bypassing the Rust safety checks mentioned above in the en-
closed code block. The resulting Rust translation can thus rely
on raw pointers (mut*), C-compatible data types, and foreign
function calls to C libraries (extern "C" fn). The second
stage of the translation is where the bulk of the challenges lie.
The goal of prior automatic tools is to refactor the unsafe
Rust code into safe Rust and reduce unsafe code. Laertes
proposed a trial-and-error approach leveraging Rust compiler
feedback to lift a certain subset of raw pointers into safer Rust
references [23]. However, a later work reports that the majority
of raw pointers (79% in their benchmarks) cannot be translated
to safe references via such techniques [22]. Crown proposed
improvements using ownership analysis based on constraint
generation and SAT-solving, for a subset of pointer types such
as Box<T> [59]. We present an evaluation of these state-of-
the-art tools later and find that a majority of C pointers are
not lifted into safe Rust abstractions by present tools.

LLM-based Approach. Another line of work uses LLMs to
translate C programs to Rust [24], [57]. The LLM-guided
approach tends to produce code that is much more readable
and idiomatic. Modern LLMs can suggest safe Rust data types,
APIs, and coding conventions to use. However, LLM-based
translation is often difficult to control as LLMs can make

3

semantic mistakes [14]. One of the most recent tools called
Flourine, reports that with current LLMs (GPT-4, claude3,
and so on), less than 20% for C programs longer than 150
lines of code can be satisfactorily translated to Rust [24]. We
evaluate Flourine as well, and we have similar findings.

In summary, existing automatic techniques are insufficient
to translate even small C programs of about 200 LoC to Rust.
Our observations from the user study hope to offer a holistic
perspective on how users get past the inherent challenges.

III. User Study

Prior literature has taken a bottom-up approach to the
problem of C to Rust translation, aiming to show how au-
tomatic tools can address particular sub-problems encountered
in translation. Our study offers a complementary perspective
on how human users approach the same task. This gives us
a top-down view of the problem: We can see what common
strategies do users use and what challenges remain thereafter.

Our participants are undergraduate students enrolled in
a course on computer security. All participants are familiar
with memory safety errors in C/C++ programs and were
given an introduction to Rust1. The task, which is part of a
graded course project, is to translate 8 real-world C programs
we collected into safe Rust. Each participant is randomly
assigned one out of 8 such C programs and is asked to provide
a translated program in safe Rust within 20 days2. The C
programs are taken from GitHub and are small due to the
20-day time limit, with lengths varying from 322 to 536 LoC.
The participants were permitted to consult the web freely and
use any existing tools, for example, c2rust and LLMs.

Ethical Concerns. This study has been granted an IRB exemp-
tion from the NUS School of Computing DERC (Department
Ethics Review Committee). We followed the procedure advised
by the IRB to protect the privacy of the participants and avoid
bias. 73 undergraduate students who undertook the study were
initially invited to give consent towards the use of their sub-
missions. 33 participants gave their consent and only their data
is included in this study. The participant data was anonymized
and kept confidentially on our research infrastructure, without
being hosted on third-party cloud services. Aggregate statistics
are reported here as far as possible, and wherever code snippets
are shown for illustration of a concept, they are constructed
synthetically by retaining the high-level patterns seen in user
submissions (not replicated). Analysis of the participants’ data
was conducted only after grades were finalized to avoid any
influence resulting from the study on the grades.

Benchmarks. Table I shows the C programs we collected
for the user study. These programs are representative of C
programs that implement lower-level functionality and self-
manage memory where memory safety errors arise. Such
functionalities are often implemented in C and used by higher-
level software systems. We also considered the translation
difficulty and chose programs between 300 and 600 LoC,
considering the time and effort of the participants. Thus, we

1The content described in Section II-A with example exercises constitutes
the introduction given, after the participants are familiar with C memory errors.

2The participants conducted their work in April 2024.

TABLE I: C Benchmarks for the User Study.

Prog. Name LoC Description
csplit (bsd3) 322 Split files based on patterns
expr (bsd) 451 Evaluate expressions
fmt (bsd) 415 Format text files
join (bsd) 472 Join lines of two files
printf (bsd) 375 Print formatted text
test (bsd) 536 Check file attributes and values
shoco 388 String Data Compression
urlparser 437 Parse URLs

chose 6 C programs3 from the BSDCoreUtils [40] collection
of system utilities and 2 libraries, i.e., shoco and urlparser .

All of the chosen programs (Table I) are self-contained,
requiring only the C standard library as a dependency. Four
programs—csplit , fmt , join , and test—perform file
processing. The expr and printf are pure computation
utilities for strings and numbers. The shoco library is for data
compression, and the urlparser library parses URL strings.

Task Requirements. Each individual participant is tasked to
translate the assigned C program into safe Rust, satisfying two
requirements, i.e., safety and functional correctness.

1) Safety. The translated program must be written in safe
Rust only. The use of keyword unsafe is strictly for-
bidden. For dependencies, only the Rust standard library
should be used by default. When that is insufficient to
implement certain functionalities, additional third-party
dependencies can be used if they are well-maintained.

2) Functional correctness. The translated Rust program
should have the equivalent external behavior to the C
source program. Since most of the chosen C programs do
not come with high-quality unit tests by default, we asked
the participants to write their own tests with line coverage
aiming for at least 85% on the original C program to
test correctness. If the source program and the translation
behave the same (i.e., output, return code, effects on the
file system, etc.) on those tests, we say that the translated
program is correct if it passes all test cases created
by users. Besides the final version of their translated
program, we also asked the participants to submit an
initial version of the translation that could compile before
they developed tests, so we could analyze the changes.

Collected Translations. The 33 participants provided 31 final
translations that can compile and achieved 70% to 98% line
coverage on the C program under their respective tests. 26
of the 31 translations pass tests that reach 85% coverage and
nearly all of them4 have coverage above 80%. All of the 31
final translations are written in pure safe Rust, without the use
of unsafe . They form the main target of our analysis. 17
participants also submitted their compilable initial versions.

Our Goal. We analyze these 31 final translations to gain
insights into the following research questions:
RQ1. Is there a set of common strategies that users used for
successful translation?
RQ2. How is the security vs. performance balance in the Rust
translation?

3Obtained from the BSDCoreUtils [40] code repository (version d2b28e0).
4Except for 2 translations with coverage less than 80%.

4

https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/csplit
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/expr
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/fmt
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/join
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/printf
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849/src/test
https://github.com/Ed-von-Schleck/shoco/tree/4dee0fc850cdec2bdb911093fe0a6a56e3623b71
https://github.com/jwerle/url.h/tree/a65623ad107be19ca4efb5a36379f3440eb48091
https://github.com/DiegoMagdaleno/BSDCoreUtils/tree/d2b28e08bd02da5076a876608d6431638f929849

1 static void center_stream(FILE *stream, const char *name)
2 {
3 char *p1, *p2; // aliased pointers
4 size_t len; int w1, w2; wchar_t wc;
5 // ...
6 while ((p1 = get_line(stream)) != NULL) {
7 len = 0;
8 for (p2 = p1; *p2 != ’\0’; p2 += w2) {
9 if (*p2 == ’\t’)

10 *p2 = ’␣’;
11 // ... skipped
12 if (len == 0 && iswspace(wc)) p1 += w2;
13 else len += w1;
14 }
15 while (l < goal_length) {
16 putchar(’␣’);
17 len += 2;
18 }
19 puts(p1);
20 } ...
21 }

Example C Program (above) → c2rust Translation (below)

1 unsafe extern "C" fn center_stream(
2 mut stream: *mut FILE, mut name: *const libc::c char)
3 {
4 let mut p1: *mut libc::c char = 0 as *mut libc::c char;
5 let mut p2: *mut libc::c char = 0 as *mut libc::c char;
6 let mut wc: wchar_t = 0; // ...
7 loop {
8 p1 = get_line(stream);
9 if p1.is_null() { break; }

10 len = 0 as libc::c int as size_t;
11 p2 = p1;
12 while *p2 as libc::c int != ’\0’ as i32 {
13 if *p2 as libc::c int == ’\t’ as i32 {
14 *p2 = ’ ’ as i32 as libc::c char; }
15 // ...
16 if len == 0 ... && iswspace(wc as wint_t) != 0 {
17 p1 = p1.offset(w2 as isize);
18 } else { len = ...; }
19 p2 = p2.offset(w2 as isize);
20 }
21 while len < goal_length {
22 putchar(’ ’ as i32);
23 len = (len as libc::c ulong).wrapping_add(2) ...;
24 }
25 puts(p1);
26 } ...

Fig. 2: (Top) An example of C program with aliasing pointers,
i.e., multiple pointers pointing to the same region of memory.
(Bottom) A line-by-line translation by c2rust. Uses of unsafe
raw pointers and libc APIs/types are highlighted in red.

RQ3. What are the common errors and correctness gaps in
translated Rust programs?
RQ4. How do the state-of-the-art automatic C to Rust trans-
lation tools perform on the same task?

IV. High-Level Approach Taken by Users

Fig. 2 shows an example of C code from the fmt bench-
mark and the translation produced by the c2rust tool. The
latter is created by preserving the structure of the original
code, line-by-line and variable-to-variable, but contains unsafe
Rust code blocks. The main challenge is to refactor the unsafe
code to safe Rust. A straightforward removal of the keyword
unsafe does not work as there are two immediate challenges:

a) the unsafe Rust code, much like the original C code,
uses low-level raw pointers and C library calls that are
disallowed in safe Rust; and

1 fn center_stream<R: BufRead>(mut stream: R, _name: &str, config:
&Config) {

2 let mut p1 = String::new();
3 while let Ok(bytes_read) = get_line(stream, &mut p1) {
4 if bytes_read == 0 { break; }
5 let len: usize = p1.trim().chars().map(|c| if c == ’\t’

{ ’ ’ } else { c }).map(char::len_utf8).sum();
6 let padding = (config.goal_length - len) / 2; //

Calculate padding to center the line
7 for _ in 0..padding { print!("␣"); }
8 println!("{}", p1.trim());
9 } ...

Fig. 3: A safe Rust translation of the C program (Version A)

TABLE II: Dissimilarities between source C programs and
Rust translations. Numbers are averaged over all translations.

Benchmark #user- #function #signature #pointer decl.
translations (kept/rm./add.) (sim./dissim.) (kept/rm.)

csplit 5 7 / 2 / 3 5 / 2 54% / 46%
expr 2 8 / 10 / 8 4 / 4 61% / 39%
fmt 4 10 / 2 / 2 6 / 5 82% / 18%
join 2 6 / 6 / 11 4 / 2 70% / 30%
printf 3 11 / 2 / 4 5 / 6 71% / 29%
test 4 16 / 2 / 3 10 / 6 89% / 11%
shoco 6 6 / 0 / 2 2 / 5 72% / 28%
urlparser 5 18 / 3 / 3 3 / 15 79% / 21%

char*

int16_t*

int*

size_t*

FILE*

int64_t*

wchar_t*

C library
pointer types

Rust library types
Owned types References Description

String 23 &String, &str 29 UTF8 string type

Option<String> 9 Option<&str> 3 Optional String

Vec<String> 18 &Vec<String>, &[String] 6 Dynamically sized array

Mutex<String> 1 / Primitive for thread safety

OnceCell<String> 1 / Write-once String

Vec<u8> 4 &Vec<u8>, &[u8] 19 Array of bytes

char 0 &char 2 A single Unicode scalar value

[u8; N] 0 &[u8] 17 Stack array

[i16; N] 0 &[i16] 6 Stack array

i16 / usize 4 / Primitive types

File 7 &File 2 A file handle

Box<dyn BufRead> 7 &mut dyn BufRead 7 Dynamic trait object

Long tail (30+ types) … …

/ / Eliminated

Fig. 4: Raw C pointers to Rust data types lifted in translations
and the number of programs using each Rust type (in blue).

b) even if there exists a way to replace all pointers with
references, the resulting code will violate safe Rust rules.

In fact, for our shown example, there is no translation that
keeps the original control-flow structure as-is and maps all
the original C pointers to Rust references. This is because
preserving the original lifetime and read/write semantics of
the C variables in the Rust code will always violate the AXM
principle, since p2 needs to be a mutable reference and remain
alive from Lines 8-14, and that interferes with the use of p1 .

Despite this apparent challenge, there are ways out of
the quandary, and our participants translated such programs
correctly. We explain what strategies they used and how often.

A. Semantic Data Type Lifting

Several users recognize that the low-level char* pointers
used in the example C code are semantically operating on
a higher-level data type and they lift the object’s type to a

5

● Direct Mapping
● Map to Expression
● API Emulation
● Eliminated
● 3rd party APIs

Direct Mapping (36.7%):
 isdigit
 is_ascii_digit

Map to Expr (39%):
 fopen(file, "w+")
 File::options()
.read(true)
.write(true)
.create(true)
.truncate(true)
.open(file)?;

API Emulation (13.4%):
 sscanf
 sscanf_before,
sscanf_after

Eliminated (7.6%):
 malloc, free, fclose

3rd party APIs (3.3%):
 geteuid
 nix::unistd::get
euid

Fig. 5: Breakdown of C library API translations with examples.

relevant Rust abstract data type. Figure 3 shows one such suc-
cessful translation that lifts the char* buffer in C to String
type. The C code with library calls is replaced with invocations
to the Rust String methods. For example, the C code in
Lines 6-20, which is responsible for counting the whitespace
characters and center-justifying the string, is implemented with
safe Rust String methods in the translation. The result of
such type lifting is that the Rust code is less similar to the
original C code in the control-flow structure and variables used.
Table II summarizes the amount of dissimilarity we observe
in 31 final translations and their corresponding C code.

Multiple choices for the Rust data types exist here. For
example, char* may be lifted to Rust String , Vec<u8> ,
Box<[u8]> , and so on. Figure 4 shows the top Rust data
types that our participants lifted from C pointers across 8
benchmarks in their final 31 translations. Note that there
are subtle differences between the original C type and the
corresponding lifted data type that the user chose. In Version A,
the code uses a String type, which does not support strings
with invalid UTF-8 characters (unlike the original C code). The
corresponding Rust translation elides that particular behavior
present in the original C code. Section VI quantitatively
analyzes such semantic discrepancies in more detail.

A different sub-challenge with type lifting is how to
translate operations on the original data type, which is often
implemented with standard C library API, to corresponding
Rust data type methods. Foreign function interface (or FFI)
calls to C libraries are disallowed in safe Rust. User transla-
tions used the strategies below to translate C library API calls:

(a) Direct Mapping to Safe Rust APIs. 36.7% of the API calls
are translated to single safe Rust method calls.

(b) Translating to expressions. 39% of the API calls are
translated into expressions that make use of multiple Rust
methods and operators to achieve similar effects.

(c) API Emulation. 13.4% of the API calls are translated into
calls to user-implemented functions that emulate them.

(d) Elimination. 7.6% of the calls for manual memory and
resource management are eliminated since Rust data types
can automatically achieve similar effects.

(e) Third-party Libraries. 3.3% of the calls are translated to
API calls provided by third-party libraries (crates).

The breakdown of these choices with examples is summarized
in Figure 5. As a result of the above challenges, we observed
that the initial guess of the lifted data type chosen by a user
was often not optimal. Of the 17 participants who shared their

1 fn center_stream<R: BufRead>(mut stream: R, name: &str) {
2 // ...
3 while let p1: Vec<char> = get_line(stream) {
4 for c in p1 { // implicit mutable borrow by the loop
5 if c == ’\t’ {
6 c = ’ ’;
7 } ...
8 if (l == 0 && isWhiteSpace(wc))
9 p1.drain(..wcl); // AXM violation (FAIL!)

10 // ...
11 } ...
12 println!("{:?}", p1);
13 } ...

Fig. 6: A Line-by-line Rust translation that fails to compile.

initial version of Rust code, 10 refined or changed their initial
types chosen to other ones in the final version.

User-provided translations break away from the low-level
structure of the original C code by semantically mapping
C data types and APIs to similar ones in Rust. They often
refine their initial guess of such C to Rust mappings.

B. Dealing with Aliasing

Fig. 6 shows another example of translation wherein, after
data types have been lifted, the Rust compiler checks are
violated. This example illustrates a separate challenge: Users
have to decide how each one of the original C pointers should
be mapped to Rust references while satisfying Rust borrowing
rules in the presence of aliases (borrows). Rust provides the
option to use reference-counted dynamic references, which
have accompanying runtime costs, but we see that users did
not use them for heap and stack data references. Instead, users
found 2 strategies, specialized to the access patterns used by
the C program, that satisfy static checks of the Rust compiler.

Strategy (a): Elision. When objects are lifted from C to Rust,
many of the original C pointers do not need to be mapped to
Rust references and can be elided in the translated code. For
example, code in Version A (Figure 3) elides the C pointer
p2 because its functionality is encapsulated by Rust String
methods. Version A satisfies the Rust compiler checks.

Strategy (b): Cloning. The translation shown in Version
B (Figure 7) embodies a different strategy. It satisfies the
Rust borrow checking rules by separating the read and write
accesses of the original object into two separate objects. In
Figure 6, the p1 reference and the iterator are simultaneously
trying to modify the object, hence violating the AXM principle.
In Version B, however, a new copy of the original String
object is made. The p1 reference can thus remain immutable
and refer to the original object, while all writes are made to the
copy by the mutable reference ans . Later on, only the writable
copy of the object is used. Such a rewrite mechanism satisfies
the borrow rules in safe Rust and compiles successfully.

Two pointers to a read-only object can both access the
object without any restriction in C. But in Rust, if one reference
is (re)borrowed from the other, it should have a statically
determined shorter lifetime than that of the other, which is
more restrictive than C. The cloning strategy is thus also useful
when translating C code with multiple immutable pointers. It

6

1 fn center_stream<T: BufRead>(&mut self, stream: T, name: &str) {
2 for line in stream.lines() {
3 let p1 = match line {
4 Ok(line) => line, Err(e) => { ... }
5 };
6 let mut ans = String::new();
7 let mut len = 0;
8 for c in p1.chars() {
9 // ... if c is a space, skip

10 if c == ’\t’ {
11 ans.push(’ ’);
12 } else {
13 ans.push(c);
14 }
15 len += c.width().unwrap_or(1);
16 }
17 println!("{:>width$}", ans, width = ...);
18 ...

Fig. 7: Possible translations of the C program (Version B)

disentangles the lifetime of two immutable pointers referring
to an object by making a copy of it with the same value.

How often are the above strategies used? Elision is the most
frequently used specialization strategy when translating code
fragments involving aliasing references. We find that it is used
in 25 final translations. Cloning is used in 13 translations.

Rust translations provided by users choose specialized
strategies to satisfy static Rust safety rules, rather than resort
to dynamic references (ref-counted), to handle aliasing.

V. Security and Performance of User Translations

One of the most important motivations for translating C to
Rust is to guarantee full memory safety without sacrificing
performance. Some Rust safety abstractions are completely
static, thereby having zero runtime costs, while others employ
runtime checks. We analyze the usage of Rust abstractions in
the translations obtained in our study to understand how often
zero-cost safety abstractions are used. We then measure end-
to-end performance of the Rust translations. We also highlight
prominent examples of code patterns known to be dangerous
in C. These are forbidden in safe Rust, and we explain how
they were translated to safe Rust code by our participants.

A. Breakdown of Safe Abstractions Used

Rust offers smart references (pointers) and safe data type
abstractions which can replace raw pointers in C. We analyze
(1) how often the Rust translations use those data type abstrac-
tions that encapsulate pointers, and (2) whether the memory
safety properties on those types are enforced at compile time
(statically) or run time (dynamically).

Breakdown of Different Types of References. Table III
summarizes the different types of smart references and data
types that our users used, along with their frequency of usage.
There are 1261 explicitly declared reference-like variables
in the 31 final Rust translations in total. Those variables
can be classified into either owning references (49.2%) or
borrowing references (50.8%). The owning references consist
of references of stack data (14.2%), heap data (31.4%), and
global data (4.4%). Among borrowed references, 11.6% are
mutable references, and 39.2% are immutable references.

TABLE III: Temporal and spatial memory safety of data
references used in Rust translations.

References Fraction Temporal Safety Spatial Safety

static dynamic static dynamic

Owning 49.2% 95.6% 4.4% 1.6% 98.4%
- stack 14.2% 100.0% 0.0% 12.7% 87.3%
- heap 31.4% 100.0% 0.0% 0.0% 100.0%
- global 4.4% 45.9% 54.1% 0.0% 100.0%

Borrowing 50.8% 99.7% 0.3% 9.1% 90.9%
- mut. 11.6% 98.6% 1.4% 21.2% 78.8%
- immut. 39.2% 100.0% 0.0% 5.5% 94.5%

Nullable 8.3% 100.0% 0.0% 10.8% 89.2%

DST 79.7% 99.6% 0.4% 0.0% 100.0%
- string 62.5% 99.7% 0.3% 0.0% 100.0%
- buffer 16.4% 99.0% 1.0% 0.0% 100.0%
- poly. 0.8% 100.0% 0.0% 0.0% 100.0%

Spatial and Temporal Safety of References. All the refer-
ences in safe Rust are strongly typed so that the Rust compiler
can enforce certain safety invariants when using those types.
For temporal safety guarantees, most of the owning references
(95.6%) and borrowing references (99.7%) are compile-time
checked, which are statically proven to be free of temporal
memory errors. This includes almost all of the stack and heap
data references. The remaining are dynamic references, which
involve either partial or full dynamic checks. Typical types
in the translations include OnceCell<T> (runtime check on
the first write) and Mutex<T> (check on every code region
of access). Most of the dynamic references are for global
variables. For spatial safety, most references used (90.9%) may
require runtime checks on access.

Two sub-categories of references, i.e., nullable references
(8.3%) and references to dynamically-sized types (79.7%), af-
fect abort handling and performance and are worth mentioning.

Nullable References. Nullable references are typically rep-
resented by Option<T> , which piggybacks on static type
safety to separate the case where a reference is NULL from
when it is not. It is often a zero-cost abstraction when T
is a non-null reference, while preventing ungraceful aborts.
Usage of nullable references forces the developer to specify
how the code should handle null pointer deference, preventing
the software from aborting ungracefully when memory safety
is violated. If the user does not want to specify how such
exceptions should be handled, Rust gives a default way in
which the compiler inserts null checks. They result in runtime
panic on safety-violating inputs. It is explicitly reflected in the
syntax (e.g., unwrap(..)). In the user translations, 63.1%
of the accesses use such default null checks that may cause
runtime panic on null pointer access, while the other 37% use
of Option<T> are panic-free (not raising runtime aborts).

Dynamically Sized Types. Dynamically sized types (DSTs)
are useful to support strings, buffers, as well as runtime
polymorphism (e.g., Box<dyn T>) [4]. References of DSTs
are typically “fat” pointers that store additional information
to facilitates dynamic checks for spatial safety. In our Rust
translations, 79.7% of the variables are DST references.5

5We count String and Vec as dynamically-sized types as well, even
though those smart pointers themselves have fixed size.

7

Temporal safety is achieved mostly statically (95.6%),
whereas spatial safety is mostly through runtime checks.

Case Studies: Known Vulnerabilities Eliminated. It is
evident, even in our small-scale user study, that C to Rust
translation directly addresses the root cause of memory safety
vulnerabilities, namely insecure coding practices. 2 out of 8
of our benchmarks, shoco and urlparser, have 3 known
vulnerabilities in our chosen versions. The data compression
library shoco has one spatial memory vulnerability (CVE-
2017-11367) on the access of an array called packs . All
users who translated this benchmark eliminated the spatial
error and the out-of-bound is caught at runtime. Similarly, a
heap-buffer overflow on a string buffer in urlparser is caught
at runtime as well. The C char* pointers pointing to the string
are lifted into String , &str , or &String with spatial safety
guarantees. For temporal safety, there is a use-after-free (UAF)
vulnerability 6 in the urlparser C program when the input
string to the parser does not live long enough before calling
certain library APIs such as url_data_inspect . This bug is
statically eliminated as the lifetime and borrowing rules in Rust
forbid such code patterns. All participants created a copy of
the borrowed input string that needed to live longer than the
original, thereby eliminating the vulnerable pattern in the C
code. More details on the case studies are in the Appendix A.

All the known memory safety vulnerabilities in C programs
are eliminated in each one of the Rust translations.

B. Performance Comparison

csp
lit expr fmt join

printf
shoco test

urlparser
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
Ti

m
e

Co
st

(a) Compiled with -O2

csp
lit expr fmt join

printf
shoco test

urlparser
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
Ti

m
e

Co
st

(b) Compiled with -O3

Fig. 8: Running time of the most similar Rust translation
compared to the original C at different optimization levels.
The time for the baseline C (dashed line) is normalized to 1.

We now turn to a comparison of performance overheads
introduced when one migrates the same C code to Rust. An
issue here is that our user-provided translations do not have
the exact same behavior as the original C code on all inputs.
Furthermore, there are multiple candidate translations for each
of 8 C benchmarks to compare with, each with differences
from the original C code. To deal with these, we choose the
Rust program which is most similar to the corresponding C
program on tests. Specifically, we select the Rust translation
with the highest test coverage as the main comparison baseline,
tie-breaking in favor of the shorter translation. All the tests
provided by all the participants for the C benchmarks are

6The fix commit changed the ownership from borrowing (line 100 of the
left side) to owning (line 188-192 of the right side) in url.c .

considered when computing the (line) coverage. This gives
us 8 Rust translations, one for each C benchmark.

We report performance only on test cases for which the
Rust code and corresponding C have the same output and both
exit normally7, thereby eliminating unfair comparisons.

The running time is calculated between the entry and exit
of the main function of the programs to exclude differences
in the load and initialization time8. We report the average over
70 repeated trials, removing the first 10 rounds, which warm
up hardware and OS caches, as well as the fastest and slowest
10 rounds of the remaining. The ratio of running time Rust
compared to the corresponding C is given in Fig. 8. We have
that for 5 out of the 8 C benchmarks, their most similar Rust
translations run faster. 6 out of 8 have corresponding Rust
translations well below 10% overheads, while the remaining 2
have about 10% and 40% overhead at -O3 optimization level.

It is worth noting that our performance analysis is post-hoc.
We did not ask users to measure or optimize for performance.
We only specified correctness and safety as the objectives.

For Rust translations most similar to the original C code,
the overhead is mostly within 20% and Rust is often faster.

C. Examples of Security-Enhancing Code Patterns

Certain code patterns in C are considered unsafe and
are forbidden in safe Rust. However, there are often safe
abstractions in Rust designed to achieve similar goals at low
cost. We focus on two kinds of patterns present in our C
programs, including mutable globals and unions, to analyze
how users translate such code patterns into safe Rust.

Mutable Globals. Mutable global variables in C are prone to
be corrupted and exploited in real-world attacks due to their
extensive lifetime across many functions and relatively pre-
dictable address [34], [36]. Besides being a convenient target
for attackers, mutable globals are also sources of various hard-
to-find temporal memory errors, and are thus discouraged by
various coding guidelines [1], [5], [7]. Safe Rust forbids plain
mutable globals because they violate the AXM principle even
in single-threaded programs. Otherwise, different call frames
can obtain mutable references to globals with overlapping
lifetimes, leading to memory errors and incorrect optimizations
in Rust. To translate C code using globals into safe Rust,
we see that users devised several strategies using safe Rust
abstractions, which are listed below:

A) From global to locals. A performant strategy is to identify
where the global is used first and last in the program.
Then, one can replace the original global variable with a
local (stack or heap) object spanning the lifetime of actual
use. A reference can be passed into functions that need
them. When multiple mutable globals are transformed
this way, they can be grouped into a single struct
object for better performance and to reduce code bloat.
One reference to the grouped struct object with the
original globals as fields at different offsets is sufficient.
This optimizes for performance as it lowers the cost of

7We do not measure performance on unit tests for error handling.
8We also measure end-to-end performance. Details are in the Appendix C.

8

https://nvd.nist.gov/vuln/detail/CVE-2017-11367
https://nvd.nist.gov/vuln/detail/CVE-2017-11367
https://github.com/jwerle/url.h/commit/752635e46be6b13ad045f7216a28417fdf533950#diff-8eb10715daa9aa605b4e2c5e539f7b6641564a7fc2f2a329869ebc22187163baL101

parameter passing by reference for many moved globals
with similar lifetimes of use in the original C code.

B) Dynamic references. The fallback strategy is to create dy-
namic references, declared either as thread locals or true
globals in Rust. For thread-local variables, single-thread
synchronization (e.g., RefCell) is still needed [10], but
multi-thread synchronization (e.g., Mutex) is not neces-
sary. Such references incur some runtime costs.

C) Atomic integer types. For mutable global variables that are
integers, dynamic references are not needed if declaring
them as Atomic . For Atomic types, special APIs can
mutate their values without mutable references to them.

19 participants chose to move the globals to locally refer-
enced objects. 11 of them also grouped multiple globals into
an aggregate struct object. 3 users kept mutable globals as
globals or thread-local variables through dynamic references.
4 used atomics for mutable globals. Code examples illustrating
each strategy are shown in the Appendix D.

C Unions. Unions in C allow overlapping objects of incompat-
ible types. However, programmers are responsible for ensuring
that operations on unions are type safe. Otherwise, type safety
violations can lead to both spatial and temporal memory
errors [20]. In safe Rust, unions are not allowed, but various
abstractions can be used to achieve similar functionality. 2
of the 8 C programs in our benchmarks use unions. Users
translated C unions depending on different use cases:

A) Zero-cost type casting (type punning [11]). The string
compression library shoco uses union to access integers
as raw bytes. Its behavior depends on the endianness of
the target architecture. Some users translate such code
into safe Rust API calls (to(from)_le(be)_bytes) that
convert between primitives and constant-size byte arrays.
Note that the conversion is zero-cost since those APIs
will be optimized away during compilation. They can also
be used together with conditional compilation supported
in safe Rust to match the endianness of the architecture.
Please see Fig. 21 in the Appendix D for examples.

B) Sum type (variant record). Another C program expr uses
unions to implement variant records (sum types). For such
use cases, some users translate them into enum and access
them using statically-checked match statements. Rust
enum is memory efficient, and the memory occupied by a
Rust enum depends on its largest discriminant, similar to
unions in C. An example (Fig. 22) is in the Appendix D.

For relevant use cases of unions, 3 users used zero-cost type
casting APIs in safe Rust, and 2 users used Rust enums.
Another 3 users did not use those abstractions but emulated
the C unions using structs and methods with higher overhead.

Users often translate known unsafe C code patterns to
equivalent statically-checked low-cost safe Rust code.

VI. The Gap In Functional Correctness

As mentioned in Section III, each participant submitted
their final translation and tested it with test cases they created.
Most participants created tests that covered more than 85% of
the original C program and reported that their final Rust trans-
lations passed their tests. We analyze how many behavioral
differences are missed by tests self-created by participants.

all fail 2 fail 1 fail no fail

shoco tes
t

join exp
r

csp
lit fm

t
prin

tf

urlp
ars

er
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Te

st
s

all fail 2 fail 1 fail no fail
(a) Greybox fuzzing tests

shoco tes
t

urlp
ars

er fm
t

csp
lit join prin

tf
exp

r
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Te

st
s

all fail 2 fail 1 fail no fail
(b) User-provided tests

Fig. 9: Rust translations of the same C program all fail on a
large fraction of fuzz tests (Subfig (a)) and all pass on a large
fraction of user-provided tests (Subfig(b)).

We employ automated fuzz-testing to check for behavioral
differences between Rust and the corresponding C source. We
use AFL++ [25] to generate tests for each of the 8 C programs
for 1 hour per program. We then sample 300 distinct tests
per program, except for programs with less than 300 tests
available, in which case we took all tests9. On these tests, we
compare each of the 31 Rust programs to its corresponding C
program. We omit minor non-semantic discrepancies such as
the error message format when computing the difference.

We find that none of the 31 translations is fully equivalent
to the original C code. Fig. 9 shows that 37%-100% (68% on
average) of the fuzz tests exhibit a discrepancy across different
Rust translations of the same C program.

Many translations fail the same way. Given that all the trans-
lations have behavioral differences from the corresponding C
code, we examine whether their failures are correlated. We
count how many translations for the same C program fail on
the same test case. Fig. 9 shows that nearly all Rust translations
fail on about the same 38% tests on shoco, the same 50%
on test, and so on. We investigated some of the tests that
all translations failed, finding that they are often corner cases
involving C library calls that are tedious to emulate in safe
Rust, and hence missed by all translations. An illustrative
example is provided in the Appendix B for interested readers.

Breakdown of Behavioral Differences. The behavioral dif-
ferences can be classified into three categories, including:

A) I/O encoding/decoding errors. Standard Rust APIs have
different I/O formatting and encoding behavior from
similar C APIs. For example, the input arguments and
string APIs often assume UTF-8 encoding, which might
abort the program if the string buffer is not valid UTF-8.

B) Runtime safety aborts. The Rust has runtime checks about
spatial errors and null pointer dereferences that safely
abort, while C may continue arbitrarily and crash.

C) Logical differences. Both C and Rust can finish the
execution and normally exit, but the output is different.

Fig. 10 shows the distribution of category of differences for
each of the 31 translations. Nearly all translations (27/31)
behave differently on more than half of the newly created tests

93 programs had fewer than 300 tests: shoco (200 tests), csplit (211
tests), and urlparser (22 tests)

9

0 20 40 60 80 100

test-4
test-3
test-2
test-1

expr-2
expr-1

printf-3
printf-2
printf-1

join-2
join-1

csplit-5
csplit-4
csplit-3
csplit-2
csplit-1

fmt-4
fmt-3
fmt-2
fmt-1

shoco-6
shoco-5
shoco-4
shoco-3
shoco-2
shoco-1

urlparser-5
urlparser-4
urlparser-3
urlparser-2
urlparser-1

(percentage of fuzzer-generated tests)

Fig. 10: Behavioral differences across 31 translations with tests
from greybox fuzzing. Legends from left to right mean “equiv-
alent behaviors” (green), “I/O enc. errors” (gray), “Runtime
safety aborts” (brown), and “Logical differences” (red).

from fuzzing. Logical differences (category C) exist across all
translations, highlighting the gap in functional equivalence. I/O
encoding/decoding errors (category A) are frequent in general,
while safety-violating inputs (category B) are more frequent in
translations of shoco and urlparser. Note that Category B
cases do not lead to undefined behavior in Rust due to runtime
safety checks, but exhibit behavioral differences to C. These
differences are to be expected—Rust is eliminating potentially
unsafe (undefined) behavior from untamed C code.

Differences in I/O. Although the gap between the trans-
lations and full functional equivalence is non-negligible and
common, we find that some of the differences may not matter
for many intended usage scenarios. One example is that the
differences in I/O encoding/decoding behaviors are a major
source of behavioral differences, as shown in the gray bars in
Fig. 10. Such differences may not matter if the intended inputs
to the programs are valid UTF-8 strings. The UTF-8 encoding
is widely assumed in the Rust standard library on string-
related APIs. Those APIs provide convenient ways to work
with UTF-8 encoded strings compared with other encodings.
If the intended use case requires processing other encodings,
the same data types and APIs may no longer be useful.
Rewriting of related API functions or external emulation would
be necessary, leading to a more verbose translation.

Panic-free Translations. 7 out of 8 C benchmarks have at
least one user-provided Rust translation that is panic-free10.
The urlparser benchmark is an example where we have
2 translations that do not have any runtime safety aborts
(brown bar in Fig. 10), while the remaining 3 translations have
panics. On the contrary, the 2 panic-free translations avoid all
use of Option<T>::unwrap() . These differences across Rust
translations are only artifacts of how different users handle
safety aborts, arising out of undefined behavior in C.

None of the Rust translations is fully equivalent to the
corresponding C, but some differences are due to Rust pro-

10Excluding the abort due to I/O encoding/decoding errors.

grammers handling safety aborts differently. Several logical
differences and incompatibilities in the external I/O remain.

VII. Efficacy of State-of-the-art Automatic Tools

We evaluate 4 state-of-the-art C to Rust translation tools
on our C benchmarks to analyze whether their approach is
effective and, when not, where the immediate gaps are.

A. Compiler-based Tools

Both Laertes and Crown are compiler-based systems that
post-process the unsafe Rust code produced by the c2rust
compiler [32]. Our results, shown in Table IV, confirm that
while both tools have the potential to produce Rust programs
that compile, the generated code is still largely unsafe and far
from safe Rust. We summarize their missing features next.

Fraction of Raw Pointers. The fraction of raw pointers that
can be lifted by Laertes and Crown is limited. For Laertes,
Most of the data references (94.0% on average) are still unsafe
raw pointers. For Crown, the majority of the references are
also raw pointers, and safe Rust references account for less
than 8.0% averaged over all the benchmarks.

Lifted Safe Rust Data Types. Both of the translation tools
have limited support for higher-level data types. Both Laertes
and Crown are limited to three types of Rust references that
are closely related to C pointers. The three types include
Option<&T> (similar to const T* in C), Option<&mut T>
(similar to T*), and Option<Box<T>> (owning T*) where
T is a C-compatible type. Most of the higher-level smart
references that participants frequently use are out of the scopes
of those tools, including String , &str , Vec<T> , BufRead ,
and so on, which are shown in Fig. 4.

Handling of C Library Calls. C library calls turn into FFI
calls from Rust to C in the translation of both Laertes and
Crown. C library functions generally do not have direct safe
Rust mappings, and the translation is often not straightforward.
Calling C functions through FFI is easy, but such handling of
library calls permits unsafety. Such operations are only allowed
in unsafe Rust. At the same time, C APIs often require raw
pointers as parameters, which may also constrain related Rust
code to operate on raw pointers. In contrast, users in our study
addressed the API translation problem by utilizing safe Rust
code in creative ways, as shown previously in Fig. 5.

Dealing with Aliasing and Lifetimes. Aliasing references
in Rust can frequently violate borrowing rules and thus can
be challenging to translate. Laertes and Crown aim to lift
pointers to references while preserving the low-level control
flow and data flow of the C program. The strategies highlighted
in our work, for instance in Section IV-B, are not used by these
tools. These prior tools do not aim to eliminate unsafe C code
patterns such as mutable globals or unions that may be present
in the c2rust compiler output used as their first stage.

Memory Safety. The end result of the code produced from
prior compiler-based tools might be safer than C, but is not
guaranteed to have full memory safety. Recall that there are 3
known vulnerabilities in our C benchmarks. The translation
resulting from these tools eliminates 1 of these vulnerabilities,
a read overflow of a global array, as shown in Fig. 11 in

10

TABLE IV: Comparison of Existing Tools on Our Benchmarks

Prog.
Tools Laertes Crown Flourine Vert

Compile Safe Code (%) Passed
Tests

Compile Safe Code (%) Passed
Tests

Compile Safe Code (%) Passed
Tests

Compile Safe Code (%) Passed
Tests#Line #Ref. #Line #Ref. #Line #Ref. #Line #Ref.

csplit ✓ 16.7% 5.0% 100% ✗ 1.8% 20.0% - ✗ 100% 100% - ✗ 97.2% 100% -
expr ✓ 5.8% 5.3% 95.3% ✗ 1.8% 7.7% - ✗ 85.3% 100% - ✗ 98.8% 93.1% -
fmt ✗ 7.2% 4.3% - ✗ 1.8% 7.1% - ✗ 73.1% 100% - ✗ 60.1% 100% -
join ✓ 8.9% 17.1% 100% ✗ 1.4% 5.6% - ✗ 74.3% 100% - ✗ 94.3% 100% -
printf ✓ 8.6% 5.3% 100% ✗ 2.1% 14.3% - ✗ 77.1% 100% - ✗ 95.9% 100% -
test ✓ 6.3% 11.1% 100% ✗ 1.6% 4.3% - ✗ 81.8% 88.2% - ✗ 62.9% 84.6% -
shoco ✓ 2.7% 0% 100% ✓ 1.7% 0% 100% ✗ 96.3% 100% - ✗ 99.4% 100% -
urlparser ✓ 1.6% 0% 100% ✓ 0% 4.8% 100% ✗ 100% 100% - ✗ 84.1% 78.6% -

the Appendix A. The original global array declaration in
C is syntactically translated into an equivalent global array
declaration in Rust. Access to such an array (rather than
via a raw pointer) is bounds-checked automatically in Rust.
The remaining 2 vulnerabilities persist in the Rust translation
produced by both these tools, one of which is a spatial violation
and the other temporal. Raw C pointers (not integers) are
involved in the unsafe code in the 2 cases, and Laertes and
Crown are not yet able to lift them to safe Rust references.

State-of-the-art compiler-based C to Rust tools output trans-
lations that extensively use unsafe Rust while rigidly retain-
ing many structural similarities to the original C code.

B. LLM-based Tools

There are 2 recent tools, Flourine and Vert, that are state-
of-the-art for C to Rust translation utilizing large language
models (LLMs). We report on our experience in running them
on our 8 benchmark programs. Flourine explores 4 test-driven
repair strategies in concert with LLMs. Vert uses a different
approach. It creates two translations of the given C program,
one is unsafe Rust decompiled from WASM, and the other is
an LLM-generated safe Rust code. Then, it uses fuzzing and,
if needed, model-checking techniques to find tests that exhibit
differences and subsequently run an automatic repair. The work
on Vert claims that if their tool terminates normally, the
resulting translation is expected to be functionally equivalent
to the C code. We use ChatGPT4 as the LLM backend when
evaluating Flourine and Vert.

We observe that code generated from these LLM-based
tools is more idiomatic and uses safe Rust abstractions more
often than compiler-based tools, and thus can serve the goal of
useful translation aids for human developers on code snippets.
However, neither tool generates a runnable translation for any
of the C programs we consider, as shown in Table IV. This is
because both tools have certain structural assumptions on the C
code given to them as input. Specifically, both tools expect that
the C program can be decomposed into components such that
each can be independently translated and tested, since present
LLMs work reasonably well on small code fragments.

The decomposition of C programs into such components
and merging of their Rust translations are not automated by
the tools. We encountered many difficulties when trying to em-
ulate the decomposition strategies described in their respective
works. These difficulties point to a broader technical challenge
that may be of independent interest for further research.

Decomposition Failures. 6 out of 8 of our C benchmarks
are real-world standalone programs, and the remaining 2 are
libraries. Functions in standalone programs are connected by a
call graph. We find it difficult to decompose such functions into
independently testable modules using the strategies described
in the works of Flourine or Vert. For example, if a function
f calls g, then the component containing f is required to
contain g since it is a dependency. This implies that on our
standalone C program benchmarks, the function main depends
on all other functions and the component containing it includes
nearly the whole program, making it too large to obtain
repairable translations from LLMs. The 2 library benchmarks
are marginally better since there is no main function, but the
challenge persists in part here as well.

We note that the decomposition strategy proposed in
Flourine or Vert can produce multiple translations of the same
function that are inconsistent and cannot be merged into one.
Say we have two components, one containing function { f , g}
and another containing function {h, g}. The two components are
translated independently and thus multiple Rust translations
of the function g are obtained. We often find that these
translations have conflicting type definitions and incompatible
types that are difficult to merge into a single translation.

We are not aware of better ways to decompose our C
programs in components small enough to feed to Flourine
or Vert. We fed the whole program to these tools and the
translated Rust code does not compile. We then experimented
with several versions manually to best split each function in a
separate component, while including only a minimal number of
dependencies, such that the size of component is small enough
to work with LLMs. We are able to produce Rust translations
reported in Table IV with some compilable components, but
unable to merge them back into a single compilable program.

State-of-the-art LLM-based C to Rust translators produce
idiomatic safe Rust snippets, but not safe Rust programs
that compile. Existing tools share a common challenge in
devising workable decomposition strategies for long C code.

C. Do existing LLMs help in user-provided translation?

We revisit whether LLMs, taken standalone, are helpful to
users who followed their own translation strategies. Recall that
we placed no restrictions on the participants to employ external
tools. We asked our participants to specify which tools they
used and provide qualitative feedback on their experience. In
their feedback, 31 of the 33 participants reported that they tried
to use LLMs for assistance. 14 users mentioned that LLMs are

11

helpful indirectly in the translation process, including tasks
such as explaining the C code and suggesting Rust data types
and APIs. However, most of the participants (20/31) reported
that the code generated by LLMs is error-prone and hard to
debug. 2 users reported that they abandoned LLMs for direct
code translation and translated manually from scratch.

VIII. Extensibility of Findings to Real-world Code

To test whether our findings generalize beyond our chosen
programs or our user group, we conduct a post-hoc analysis
of a mature open-source Rust project uutils/coreutils 11

(uutils), which mirrors the GNU coreutils written in C. The
uutils project aims for compatibility with GNU coreutils and
passing the same GNU test suite. The uutils Rust repository
has 17.6k Github stars and 5 of its most active contributors
have Rust experience of more than 2 years at the time of
this writing. We examine 6 uutils Rust programs that share
names and functionality with the 6 BSDCoreUtils programs
in our benchmarks. Similar to our user study, we compare
those Rust programs to their C counterparts in GNU coreutils.

Program Dissimilarity. Recall that the Rust translations in our
user study are dissimilar from the C source (Sec. IV-A). We
find that a larger dissimilarity between the structure of uutils
Rust programs and their corresponding GNU C programs
compared with our user study is observed. We manually
checked 142 and 165 C and Rust functions, respectively, across
the 6 programs. We were only able to find 9 pairs of functions
semantically similar, and they were all relatively small.12

Security-Enhancing Code Patterns. The code patterns in-
volving mutable globals and unions in C are changed in Rust
programs in our user study (Sec. V-C). It is the same for the
uutils project. The original GNU C programs also have many
global variables (on average 13.2 globals per program), and the
corresponding Rust programs in uutils avoid global variables
almost completely. These Rust programs group variables into
struct -typed objects (strategy A for globals in Sec. V-C),
more often than in our study. One program expr , which
involves unions in C, is implemented with Enums in safe Rust.

Semantic Data Type Lifting. In our study, users lift raw point-
ers into various safe Rust data types, as shown previously in
Fig. 4. We find that Rust data types used in uutils programs
are similar to the types seen in this study. 83% of the data types
in uutils programs also exist in translations by our users.
The most frequent Rust types in uutils programs are string-
related types such as String (18%), &str (14%), OsString
(6%), and OsStr (4%). One difference is that OsString
and OsStr types do not exist in translations by our users.
These types bridge the gap between platform-native strings
and Rust Strings and are useful for uutils/coreutils as
it aims to be cross-platform. Our user study only specified the
requirements that the Rust code should work on Linux.

Library API Calls. Recall that in our user study, users
translate many C library API calls using various strategies
listed in Fig. 5. We also investigate how library API calls in
GNU C coreutils are expressed in the uutils programs. Due

11We download a version on Sept. 26th, 2024 with commit hash a0d258d.
12Such large dissimilarity may be due to the fact that uutils/coreutils

is re-implemented in Rust from scratch to avoid license issues.

to a large number of library API calls (561 in total) and large
program dissimilarity, we focus on the top 10 frequently used
APIs that covered 53% of all the API calls. We manually look
into at least 5 call sites per API and check Rust code fragments
that implement corresponding functionalities. Most API calls
in C can be mapped to safe Rust API calls and expressions.
Third-party crates are used for some APIs. One example is
the quote C API that handles special characters. The Rust
program implements the same functionality using quote API
provided by the Rust crate os_display . We find no API calls
handled using the API emulation strategy, however.

Dealing with Aliasing. Recall that users in our study use
strategies including (A) reference elision and (B) cloning to
deal with aliasing (Section IV-B). For the uutils programs,
we find C code locations involving aliasing pointers and then
check how a similar functionality is implemented in Rust. Due
to large dissimilarities from the C source, we manually check
around 20 places in C and find 4 with clear matching code
fragments in Rust. Those code fragments are all examples of
reference elision, and one worth mentioning is the mapping of
a linked list in C to a Vec in Rust in the csplit program.
Such type lifting eliminates code blocks with aliasing pointers
that manipulate linked lists. We also find many instances of
object cloning in Rust uutils to satisfy ownership constraints
when calling functions. But none are specifically used for
handling aliased references as was done in our user study.

Functional Equivalence. In Section VI, we reported that
user translations are not fully equivalent to the C source
and multiple differences are exposed by differential fuzzing.
The phenomenon is observed in the uutils project, which
currently passes around 80% of the GNU test suite. We find
that for 5 of the 6 uutils programs we investigated, there
are known correctness gaps with GNU Coreutils when using
its test results, as reported in the uutils repository13. One
program, test , seems to be close to functional equivalence
since it passes the full GNU test suite. We further compare the
Rust version of test to the GNU C version using differential
fuzzing in a setup similar to Section VI. Among 300 fuzzer-
generated tests sampled, we find 50.6% test cases exhibit
different behaviors. With a deeper investigation, we find that at
least 23.6% of the tests reveal non-trivial logical differences.
More specifically, C and Rust programs have different results
(i.e., return code) on 2.3% tests and semantically different error
messages on 21.3% tests. We observe no I/O encoding errors
or runtime safety aborts. We also find that the maintainers are
aware of several semantic differences that need to be fixed
according to comments in their additional test file.

Use of Unsafe Rust. Among the 6 Rust programs, only
one program (test) has one line of unsafe Rust to call
libc::isatty . This C library call checks if the open file
descriptor is a terminal. It can perhaps be replaced with safe
Rust APIs in third-party crates, such as atty or termion .

Most of the findings in our user study are also applicable to
a Rust project mirroring GNU Coreutils written by experts.

13According to their gnu-full-result.json of commit a0d258d.

12

https://github.com/uutils/coreutils
https://www.gnu.org/software/coreutils/
https://github.com/uutils/coreutils/tree/a0d258d3f29cbe6b6714b4758554dba0e84264c8
https://github.com/uutils/coreutils-tracking/blob/6cd735e861ee67773ad2dee41157d8abc6796db7/gnu-full-result.json

IX. Discussion and Takeaways

Our analysis of user-provided translations highlights sev-
eral points where automatic translation strategies deviate from
those taken by human users. We reflect on why there is such
a gap and summarize takeaways for automatic translation.

Separate Policy from Mechanism. Our observation is that
there are many choices to be considered when translating a
C program to Rust, i.e., there is no one-size-fits-all strategy
to take. The resulting translations, while satisfying memory
safety, can have varying levels of functional correctness, per-
formance, and grace in handling runtime safety exceptions.
The balance between them is a matter of policy. For example,
the level of functional equivalence to achieve is one crucial
policy decision. Full functional equivalence can require sig-
nificant effort and may even go against the purpose of code
migration [54]. To characterize what behaviors must be kept
and what behaviors can change in the translation, we may
need more thorough unit tests or other forms of specifications.
Another example of an important policy decision is about the
data types and APIs to use, which can lead to multiple ways
of translating the same program with different trade-offs in
performance, memory overhead, compatibility, and so on. In
summary, users may want explicit control over policy decisions
even when using automatic tools.

Improving LLM-based Search for Translations. Once policy
decisions are clear, automatic mechanisms can enable search
for translations. Our observation is that there are several
immediate and open problems that, if addressed, can make
C to Rust code automatic translator much more usable.

(1) Modeling of Data Types and APIs. So far, few of the
previous work explicitly models data types and APIs in the
Rust standard library, such as the ones summarized in Fig. 4.
We believe it is essential to overcome the language differences
between C and Rust and move away from unsafe code.
(2) Mergeable Decomposition. Finding the right way to de-
compose programs into smaller components is challenging but
appears necessary for LLMs with limited context windows. At
the same time, decomposition need not be one-shot. It is useful
to explore if it is possible to incrementally transform identified
components, such that a partial Rust translation can be used
alongside the untranslated part of C.
(3) The Last Mile Problem. Some users reported in their
(optional) qualitative feedback about their experience. 10 users
reported that debugging was tedious in locating the root cause
of certain semantic differences. 6 users mentioned that fixing
some semantic differences involving library calls (e.g., regex)
is not easy. 14 users mentioned that LLMs are ineffective in
directly generating correct long code due to issues like type
inconsistency across functions and multiple inter-related errors.
4 participants who used LLMs for assistance reported that they
often needed to restart with clean context to get better output.

Promising Static or Dynamic Analysis. Based on our find-
ings, we foresee 3 program analyses as immediately useful:

(1) Refactoring Global Variables Through Lifetime and Def-
Use Analysis. Use of mutable globals differentiates C and safe
Rust programs. As observed in our user study, many globals
are accessed within a thread and can be moved to the heap or
stack, possibly in grouped struct -typed objects for efficiency.
Precise analysis of lifetime of globals is a promising next step.

(2) Lifting Data Types Semantically Before Lifting References.
Data type analysis directly impacts how references are lifted
to Rust. Code blocks and pointers in C can often be elided
after type lifting, which is observed from both translations by
our users and in our extensibility analysis on public code(e.g.,
Linked list pointer manipulations to Vec API calls). LLMs can
be useful for pattern recognition tasks, according to qualitative
feedback received from our users, and it would be promising
to use them for type mapping suggestions of C objects to Rust.
(3) Lifting Unions. Automatic analysis to (a) tell apart different
use cases of C unions and (b) associate tag values with valid
fields for variant records can help convert unions to enums.

Threats to Validity. Our user study is with a relatively small
number of users and on relatively small programs. These
present limits are an artifact of time constraints and the
inherent difficulty of the task at hand for users who have
limited prior experience with Rust. We point out that Rust has
a relatively new developer community. A survey by JetBrains
in 2023 involving over 26k developers worldwide reports the
majority of Rust developers (56%) have less than 6 months
of experience [3]. To partially assess which of our findings
extend to code written by more experienced developers, we
reported on our post-hoc analysis on more mature real-world
Rust programs mirroring GNU C coreutils in Section VIII.
Most of the key findings we highlight extend beyond our users.

X. RelatedWork

In practice, many motivations for code migration to new
languages exist, such as legacy code modernization, com-
patibility improvement with newer platforms, N-versioning
for fault tolerance, and so on. Memory safety is a unique
driver for C to Rust translation. For example, Mozilla Firefox
is actively migrating components written in C/C++ to Rust
with memory safety as a key consideration [8]. Towards
memory safety as a goal, a long line of memory defenses has
been investigated. They achieve different trade-offs between
performance, compatibility, and security.

Memory Safety in C/C++. SoftBound [42] and CETS [43]
are compiler-based solutions that provide full memory safety
in C. The performance overheads of enforcing full memory
safety in software-based approaches are often reported to be
higher than 50%. In recent years, specialized hardware features
have emerged to accelerate both spatial [38], [46], [55], [58]
and temporal checks [13], [58], but overheads below 10−20%
for full safety appear elusive. Runtime defenses for spatial
safety can be acceptably low [29], but complete temporal
safety still bears a bulk of the runtime overheads. Languages
like Rust can help developers explicitly manage object life-
times in a way that eliminates temporal memory management
mistakes. In our user study, we see that users make heavy
use of zero-cost abstractions for temporal safety. Owing to the
costs of full memory safety, partial safety defenses have been
investigated and have a rich history [50]. Prominent among
these are CFI [52], ASLR [51], stack canaries [19], guard
pages [16], and DEP [53] which have found wide deployments.
These defenses have good performance characteristics but do
not rule out all memory safety errors. For example, exploits
that bypass these deployed defenses without violating control-
flow properties [6], [30] are known [12].

13

Another approach is based on proactive discovery of bugs
and subsequent automatic repair at the source C code level.
Greybox fuzzing [25], [28], symbolic execution [15], [47], and
their combination [41] for finding security vulnerabilities is
an active area of research. Automatic localization of buggy
code [31], [48] and generation of suggestions for fixes are
being actively explored [27], [49]. This find-and-fix approach
offers a continual process to improve software quality and
reduce patching effort once flaws are discovered.

Memory Safe Dialects for C. Writing code that is free of
memory safety bugs is a desirable goal. Several works focus on
finding language subsets or extensions of C/C++ that are easier
to statically analyze and dynamically retrofit safety checks
than untamed C. CCured explored spatial safety via “fat”
pointers and relies on garbage collection for temporal memory
safety [45]. Xu et. al achieved temporal memory safety using a
global capability store instead of a garbage collector [56]. Cy-
clone has similar spatial safety mechanisms as CCured but uses
memory regions for temporal safety [33]. Flow-sensitive type
qualifier analysis can leverage user-provided type annotations
for static analysis [26]. More recently, work on the Checked
C language [21] aims to enable mixed legacy C pointers
with safe ones for incremental migration, by allowing parts
of the code to be type-annotated and proven safe. However,
it does not provide full memory safety. Efforts to dispatch
more spatial safety statically at compile-time are underway,
which can further reduce costs of spatial safety [18], [37],
[39]. There are also efforts to introduce temporal safety into
Checked C with runtime overheads of about 30% or more [60].
Overall, while designing safe C dialects continues to be a
promising endeavor, low-overhead designs that eliminate all
memory safety bugs have yet to be found.

Translating C to Rust. Safe Rust abstractions force develop-
ers to move away from raw C pointers. The abstractions offered
by safe Rust—lifetime [9], ownership [17], and the AXM
principle [9]—force a significant departure from untamed C
or C dialects in how programmers write code. In the previous
sections, we have compared various previous work [23], [24],
[57], [59], and scalable solution is still an open challenge.

XI. Conclusion

We have presented the lessons learned from a user study
on how users can translate C programs to safe Rust, with good
performance and security gains. Our analysis reveals that they
share a high-level approach and common specialized strategies
to overcome the challenges that encumber automatic tools.
Zero-cost abstractions are ubiquitously used, significantly re-
ducing the costs of runtime temporal safety checks, which
highlights why Rust offers a promising road ahead.

Acknowledgment

We thank the anonymous reviewers and our shepherd for
giving us valuable feedback on an earlier draft of this paper.
This research is supported in part by the research funds of the
Crystal Centre at the National University of Singapore and the
Cisco University Research Program Fund, a corporate advised
fund of Silicon Valley Community Foundation.

References

[1] “C++ core guidelines.” [Online]. Available:
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#
i2-avoid-non-const-global-variables

[2] “A command-line benchmarking tool.” [Online]. Available: https:
//github.com/sharkdp/hyperfine

[3] “Developer echosystem 2023: Rust.” [Online]. Available: https:
//www.jetbrains.com/lp/devecosystem-2023/rust/

[4] “Dynamically sized types.” [Online]. Available: https://doc.rust-lang.
org/reference/dynamically-sized-types.html

[5] “Google c++ style guide: Static and global variables.”
[Online]. Available: https://google.github.io/styleguide/cppguide.html#
Static and Global Variables

[6] “The heartblead bug (cve-2014-0160).” [Online]. Available: https:
//heartbleed.com/

[7] “Linux kernel coding style.” [Online]. Available: https://www.kernel.
org/doc/html/next/process/coding-style.html

[8] “Oxidation.” [Online]. Available: https://wiki.mozilla.org/Oxidation

[9] “References and borrowing - the rust programming
language.” [Online]. Available: https://doc.rust-lang.org/book/
ch04-02-references-and-borrowing.html

[10] “Thread local storage (rust standard library).” [Online]. Available:
https://doc.rust-lang.org/src/std/thread/local.rs.html

[11] “Type punning.” [Online]. Available: https://en.wikipedia.org/wiki/
Type punning

[12] “”the web/local” boundary is fuzzy: A security study of chrome’s
process-based sandboxing,” Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:7573477

[13] “Arm MTE architecture: Enhancing memory safety,” 8 2019.
[Online]. Available: https://community.arm.com/arm-community-blogs/
b/architectures-and-processors-blog/posts/enhancing-memory-safety

[14] “Lost in Translation: A Study of Bugs Introduced by Large Language
Models while Translating Code,” Jan. 2024, arXiv:2308.03109 [cs].
[Online]. Available: http://arxiv.org/abs/2308.03109

[15] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementation,
2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:
2520229

[16] T. cker Chiueh and F.-H. Hsu, “Rad: a compile-time solution to
buffer overflow attacks,” Proceedings 21st International Conference
on Distributed Computing Systems, pp. 409–417, 2001. [Online].
Available: https://api.semanticscholar.org/CorpusID:32026510

[17] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad, “Ownership types: A
survey,” in Aliasing in Object-Oriented Programming, 2013. [Online].
Available: https://api.semanticscholar.org/CorpusID:15940253

[18] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula,
“Dependent types for low-level programming,” in Proceedings of the
16th European Symposium on Programming, ser. ESOP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, p. 520–535.

[19] C. Cowan, “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks,” in USENIX Security Symposium, 1998.
[Online]. Available: https://api.semanticscholar.org/CorpusID:2358856

[20] G. J. Duck and R. H. C. Yap, “Effectivesan: type and memory
error detection using dynamically typed c/c++,” SIGPLAN Not.,
vol. 53, no. 4, p. 181–195, Jun. 2018. [Online]. Available:
https://doi.org/10.1145/3296979.3192388

[21] A. S. Elliott, A. Ruef, M. W. Hicks, and D. Tarditi, “Checked c: Making
c safe by extension,” 2018 IEEE Cybersecurity Development (SecDev),
pp. 53–60, 2018. [Online]. Available: https://api.semanticscholar.org/
CorpusID:53413266

[22] M. Emre, P. Boyland, A. Parekh, R. Schroeder, K. Dewey, and B. Hard-
ekopf, “Aliasing limits on translating c to safe rust,” Proceedings of the
ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 551–579,
2023.

[23] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf, “Translating c

14

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i2-avoid-non-const-global-variables
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i2-avoid-non-const-global-variables
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://www.jetbrains.com/lp/devecosystem-2023/rust/
https://www.jetbrains.com/lp/devecosystem-2023/rust/
https://doc.rust-lang.org/reference/dynamically-sized-types.html
https://doc.rust-lang.org/reference/dynamically-sized-types.html
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://heartbleed.com/
https://heartbleed.com/
https://www.kernel.org/doc/html/next/process/coding-style.html
https://www.kernel.org/doc/html/next/process/coding-style.html
https://wiki.mozilla.org/Oxidation
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/src/std/thread/local.rs.html
https://en.wikipedia.org/wiki/Type_punning
https://en.wikipedia.org/wiki/Type_punning
https://api.semanticscholar.org/CorpusID:7573477
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
http://arxiv.org/abs/2308.03109
https://api.semanticscholar.org/CorpusID:2520229
https://api.semanticscholar.org/CorpusID:2520229
https://api.semanticscholar.org/CorpusID:32026510
https://api.semanticscholar.org/CorpusID:15940253
https://api.semanticscholar.org/CorpusID:2358856
https://doi.org/10.1145/3296979.3192388
https://api.semanticscholar.org/CorpusID:53413266
https://api.semanticscholar.org/CorpusID:53413266

to safer rust,” Proceedings of the ACM on Programming Languages,
vol. 5, no. OOPSLA, pp. 1–29, 2021.

[24] H. F. Eniser, H. Zhang, C. David, M. Wang, B. Paulsen, J. Dodds, and
D. Kroening, “Towards translating real-world code with llms: A study
of translating to rust,” arXiv preprint arXiv:2405.11514, 2024.

[25] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: combining
incremental steps of fuzzing research,” in Proceedings of the 14th
USENIX Conference on Offensive Technologies, ser. WOOT’20. USA:
USENIX Association, 2020.

[26] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type qualifiers,”
in Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, 2002, pp. 1–12.

[27] X. Gao, Y. Noller, and A. Roychoudhury, “Program repair,” 2022.
[Online]. Available: https://arxiv.org/abs/2211.12787

[28] Google, “Oss-fuzz vulnerabilities github repository,” accessed: July,
2024. [Online]. Available: https://github.com/google/oss-fuzz-vulns

[29] F. Gorter, T. Kroes, H. Bos, and C. Giuffrida, “Sticky tags: Efficient and
deterministic spatial memory error mitigation using persistent memory
tags,” in 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2024, pp. 217–217.

[30] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[31] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties
to generate vulnerability patches,” 2019 IEEE Symposium on
Security and Privacy (SP), pp. 539–554, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:106401501

[32] Immunant, “c2rust: Migrate C code to Rust,” https://github.com/
immunant/c2rust, accessed: July 4, 2023.

[33] T. Jim, G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c,” in USENIX Annual
Technical Conference, General Track, 2002. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5958340

[34] B. Johannesmeyer, A. Slowinska, H. Bos, and C. Giuffrida, “Practical
{Data-Only} attack generation,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 1401–1418.

[35] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: Securing
the foundations of the rust programming language,” Proceedings of the
ACM on Programming Languages, vol. 2, no. POPL, pp. 1–34, 2017.

[36] G. Li, H. Zhang, J. Zhou, W. Shen, Y. Sui, and Z. Qian, “A hybrid
alias analysis and its application to global variable protection in the
linux kernel,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 4211–4228.

[37] L. Li, Y. Liu, D. Postol, L. Lampropoulos, D. Van Horn, and M. Hicks,
“A formal model of checked c,” in 2022 IEEE 35th Computer Security
Foundations Symposium (CSF), 2022, pp. 49–63.

[38] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “Pac it up: Towards pointer integrity using arm pointer
authentication,” ArXiv, vol. abs/1811.09189, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53721743

[39] A. Machiry, J. Kastner, M. McCutchen, A. Eline, K. Headley, and
M. W. Hicks, “C to checked c by 3c,” Proceedings of the ACM on
Programming Languages, vol. 6, pp. 1 – 29, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:247748774

[40] D. Magdaleno, “Bsd coreutils is a port of many utilities from bsd
to linux and macos,” accessed: April, 2024. [Online]. Available:
https://github.com/DiegoMagdaleno/BSDCoreUtils

[41] R. Majumdar and K. Sen, “Hybrid concolic testing,” 29th International
Conference on Software Engineering (ICSE’07), pp. 416–426, 2007.
[Online]. Available: https://api.semanticscholar.org/CorpusID:6760091

[42] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“Softbound: highly compatible and complete spatial memory safety
for c,” in ACM-SIGPLAN Symposium on Programming Language
Design and Implementation, 2009. [Online]. Available: https://api.
semanticscholar.org/CorpusID:248719

[43] ——, “Cets: compiler enforced temporal safety for c,” in International
Symposium on Mathematical Morphology and Its Application to
Signal and Image Processing, 2010. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:914358

[44] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477–526, 2005.

[45] ——, “Ccured: type-safe retrofitting of legacy software,” ACM Trans.
Program. Lang. Syst., vol. 27, pp. 477–526, 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8303920

[46] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel {MPK}),” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
241–254.

[47] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in USENIX Security Symposium, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:221178890

[48] S. Shen, A. Kolluri, Z. Dong, P. Saxena, and A. Roychoudhury,
“Localizing vulnerabilities statistically from one exploit,” in
Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 537–549.
[Online]. Available: https://doi.org/10.1145/3433210.3437528

[49] Y. SONG, X. GAO, W. LI, W.-N. CHIN, and A. ROYCHOUDHURY,
“Provenfix: Temporal property guided program repair,” 2024.

[50] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[51] T. P. Team, “Address space layout randomization.” [Online]. Available:
https://pax.grsecurity.net/docs/aslr.txt

[52] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in USENIX Security Symposium, 2014. [Online].
Available: https://api.semanticscholar.org/CorpusID:6034518

[53] A. van de Ven and I. Molnar, “Exec shield,” 2004.
[54] C. Verhoef and A. Terekhov, “The realities of language conversions,”

IEEE Software, vol. 17, no. 6, pp. 111–124, Dec. 2000. [Online].
Available: http://ieeexplore.ieee.org/document/895180/

[55] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka,
B. Laurie, S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son,
and M. Vadera, “Cheri: A hybrid capability-system architecture
for scalable software compartmentalization,” 2015 IEEE Symposium
on Security and Privacy, pp. 20–37, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:7346980

[56] W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and backwards-
compatible transformation to ensure memory safety of c programs,” in
Proceedings of the 12th ACM SIGSOFT twelfth international sympo-
sium on Foundations of software engineering, 2004, pp. 117–126.

[57] A. Z. H. Yang, Y. Takashima, B. Paulsen, J. Dodds, and D. Kroening,
“VERT: Verified Equivalent Rust Transpilation with Large Language
Models as Few-Shot Learners,” May 2024. [Online]. Available:
http://arxiv.org/abs/2404.18852

[58] J. Yu, C. Watt, A. Badole, T. E. Carlson, and P. Saxena, “Capstone:
A capability-based foundation for trustless secure memory access
(extended version),” ArXiv, vol. abs/2302.13863, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:257220126

[59] H. Zhang, C. David, Y. Yu, and M. Wang, “Ownership guided c to rust
translation,” arXiv preprint arXiv:2303.10515, 2023.

[60] J. Zhou, J. Criswell, and M. W. Hicks, “Fat pointers for temporal
memory safety of c,” Proceedings of the ACM on Programming
Languages, vol. 7, pp. 316 – 347, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:251903483

Appendix

A. Case Studies with Memory Safety Vulnerabilities

Case Studies. we took a closer look at the translations of
shoco and urlparser, which are the two C programs with
spatial and temporal memory errors. We investigate if the
memory errors are eliminated or detected at runtime in the
Rust translation.

15

https://arxiv.org/abs/2211.12787
https://github.com/google/oss-fuzz-vulns
https://api.semanticscholar.org/CorpusID:106401501
https://github.com/immunant/c2rust
https://github.com/immunant/c2rust
https://api.semanticscholar.org/CorpusID:5958340
https://api.semanticscholar.org/CorpusID:53721743
https://api.semanticscholar.org/CorpusID:247748774
https://github.com/DiegoMagdaleno/BSDCoreUtils
https://api.semanticscholar.org/CorpusID:6760091
https://api.semanticscholar.org/CorpusID:248719
https://api.semanticscholar.org/CorpusID:248719
https://api.semanticscholar.org/CorpusID:914358
https://api.semanticscholar.org/CorpusID:914358
https://api.semanticscholar.org/CorpusID:8303920
https://api.semanticscholar.org/CorpusID:221178890
https://doi.org/10.1145/3433210.3437528
https://pax.grsecurity.net/docs/aslr.txt
https://api.semanticscholar.org/CorpusID:6034518
http://ieeexplore.ieee.org/document/895180/
https://api.semanticscholar.org/CorpusID:7346980
http://arxiv.org/abs/2404.18852
https://api.semanticscholar.org/CorpusID:257220126
https://api.semanticscholar.org/CorpusID:251903483

Case Study 1: shoco library. The C string data compression
library shoco has one spatial memory vulnerability (CVE-
2017-11367)14. The global array packs will be overread when
the byte to be decompressed is malformed. In this case, the
return value by the header decoding function will be larger
than the length of packs array. When the return value is
used to index packs , the global buffer overflow happens, as
highlighted in line 5 in Fig 11 1-(a).

This spatial memory issue is detected at runtime in all
Rust translations from our users. Since array packs is read-
only, most translations lift it to a constant global array with
type [Pack; 3] . Rust’s spatial bounds checking on arrays
ensures any out-of-bound array access will not happen. The
Rust compiler inserts runtime checks before the index access
PACKS[mark] . This is because it cannot statically infer the
validity of this access since the value of mark is determined
by the input. Fig 11 1-(b) shows one translation, where the
binary will panic if the buffer overflow is about to happen.

It is worth noting that existing c2rust-based tools (in-
cluding Laertes and Crown) are also able to eliminate this
vulnerability. They perform the same syntactic transformation
in their first stage to convert the global array declaration in C
to an equivalent declaration in Rust. Such array declarations
are bounds-checked on access. Since their translation of this
global array and the access are similar, we show one example
of the translated code snippet by their tools relevant to the
vulnerability in Fig. 11 1-(c).

Case Study 2: urlparser library. The urlparser C library
(commit a65623ad) has multiple memory-related vulnerabili-
ties, including a spatial memory vulnerability causing informa-
tion leaks and a temporal memory vulnerability that can cause
programs using this library to crash. Both vulnerabilities have
been fixed in their latest version.

Temporal memory errors. This library aliases the input URL
string pointer and stores it as a field in its custom structure
when parsing this string. In addition to the parsing API, it
offers APIs that read the parsing result, such as the inspect
API. This is problematic because this library does not own
the memory referred to by this aliased pointer. Use-after-free
can happen if a program using this library calls the parse API
providing a string that does not live long enough before calling
other APIs, such as inspect. Fig. 12 2-(a) shows the related
source code and a small example program that triggers use-
after-free. This issue has been fixed in commit 752635e.

This temporal issue is eliminated in all Rust translations
because of the temporal safety statically enforced by borrowing
rules and the String type. Any code pattern that can result
in double-free or use-after-free cannot be compiled. To satisfy
borrow rules, user translations copy the input string so that
the struct representing the parsing result can hold an owning
reference to the string, as shown in Fig. 12 2-(b). This copy
is automatically deallocated when the lifetime of the parsing
result (i.e., UrlData) ends.

Spatial memory errors. This library can overread the input
string and print extra memory value if the input URL is
malformed. The root reason is that it directly increments
the URL pointer to skip the scheme separator :// without

14https://nvd.nist.gov/vuln/detail/CVE-2017-11367

Case study 1 - shoco library:
(a) The source code related to a spatial memory issue

1 static const Pack packs[PACK_COUNT] = { ... };
2
3 size_t shoco_decompress(...) {
4 while (in < in_end) {
5 if (mark < 0) { ... }
6 else {
7 if (o + packs[mark]...) // Global buffer overflow!
8 }
9 }

10 }

(b) Safe Rust translation of the above C code by our user
1 const PACKS: [Pack; PACK_COUNT] = [...];
2
3 fn shoco_decompress(...) {
4 while in_index < in_end {
5 if mark < 0 { ... }
6 else {
7 if o_index + PACKS[mark as usize]... // BoF caught

by runtime check
8 }
9 }

10 }

(c) Rust translation by compiler-based tools (Laertes/Crown)
1 static mut packs: [Pack; 3] = ...;
2
3 pub unsafe extern "C" fn shoco_decompress(...) {
4 ...
5 while in_0 < in_end {
6 mark = ...;
7 if ... {}
8 else {
9 if o.offset(packs[mark as usize].bytes_unpacked as

size) > out_end ... // BoF caught by runtime check
10 }
11 }
12 }

Fig. 11: Case Study 1: The spatial memory issue in the shoco
library is detected in all Rust translations.

checking if the separator exists in the URL. When it does
not exist, the pointer is incremented to be outside of the
input string buffer. This bug is caught at runtime by all Rust
translations. This pointer is lifted to &str or &String types,
which enforce spatial bounds checking on access. Several other
heap buffer overflow issues exist as well, all due to saving
strings to allocated memory regions with insufficient space,
i.e., having an allocated size smaller than the string length.
Such spatial issues do not exist in safe Rust translations by
users due to automated memory management.

B. Examples of Logical Translation Errors by Users

Here we describe several logical translation errors we
observed in translations of fmt program, along with a possible
fix for each.

1) Logical Errors that Require More Thorough Testing

The full program of the translation A we have seen before
(Fig. 3), although passing all tests with 85% code coverage,
has at least two more semantic discrepancies from the source
program. Surprisingly, the bugs are in code lines covered by
passing tests. We have two failing tests demonstrating each of
the translation bugs in Fig. 13. one bug is revealed when there
are multi-byte characters rather than just ASCII characters in

16

https://github.com/jwerle/url.h/tree/a65623ad107be19ca4efb5a36379f3440eb48091
https://nvd.nist.gov/vuln/detail/CVE-2017-11367

Case study 2 - urlparser library:
(a) Code example related to the temporal memory issue

1 // urlparser.c
2 url_data_t *url_parse (char *url) {
3 url_data_t *data = malloc(sizeof(url_data_t));
4 data->href = url; // Store the pointer
5 }
6 void url_data_inspect (url_data_t *data) {
7 printf("#url␣=>\n");
8 printf("␣␣␣␣.href:␣\"%s\"\n", data->href); // use the pointer
9 }

10
11 // poc.c
12 int main() {
13 // our_url points to a URL string stored on the heap
14 url_data_t *parsed = url_parse(our_url);
15 assert(parsed);
16 free(our_url);
17 url_data_inspect(parsed); // Use-after-free here!
18 }

(b) One corresponding Rust translation of the above C code
1 fn url_parse(url: &str) -> Option<UrlData> {
2 // data is a default UrlData instance
3 data.href = Some(url.to_string());
4 // href has Option<String> type
5 // ...
6 }
7 fn url_data_inspect(data: &UrlData) {
8 println!("#url␣=>");
9 println!("␣␣␣␣.href:␣{:?}", data.href); // Owned String. No

temporal issue.
10 }

Fig. 12: Case Study 2: The temporal memory issue in the
urlparser library is eliminated in all Rust translations.

the input. Another bug is revealed when there are odd numbers
rather than even numbers of padding spaces. The unit tests
written by the user miss those cases.

The first discrepancy is due to calling the wrong API when
computing the display width of the characters. The translation
used char::len_utf8 which computed the size in bytes of
a Unicode character instead of display width. For the frequent
ASCII characters, the size in bytes happens to be 1, which
coincides with their display size. However, the failing input
”z\u00df\u6c34\U0001d10b” is an example where the size
in bytes is different from the display width. It contains 4
valid Unicode characters, each occupying 1, 2, 3, and 4 bytes
respectively. But the total display width of the input string
is 5 bytes, not equivalent to the total size in bytes. It does
not get revealed by the passing unit test where characters are
all simple ASCII characters. The fix is to use the c.width
method, shown in Fig. 13.

The second discrepancy is due to an off-by-one error in the
computation of padding spaces, making the Rust translation
correct only when the number of spaces is even. The Rust
program uses a slightly different computation to split the
padding spaces into leading and trailing ones, compared to
the C program. While the C program behaves like a round-up
division, the Rust program takes the floor division. The passing
test does not reveal this difference. The correct fix is shown
in Fig. 13.

2) Semantic Differences that are Not Easy to Fix

There is another semantic discrepancy that exists in all
user translations for the fmt program. They all omit the

Passing Test (Translation A)
Executed command: ./fmt -c -w 10
Input: "Center"
C Output: " Center" // 2 leading padding spaces
Rust Output: " Center" // same as C

Failing Test 1
Executed command: ./fmt -c -w 10
Input: "z\u00df\u6c34\U0001d10b"
C Output and Rust Output have different display

width

Failing Test 2
Executed command: ./fmt -c -w 10
Input: "Center*"
C Output: " Center*" // 2 leading padding spaces
Rust Output: " Center*" // off-by-one error!

The bugfix (Translation A)
...
+ use unicode_width::UnicodeWidthChar;
if bytes_read == 0 { break; }
let len: usize = p1.trim().chars().map(

|c| if c == ’\t’ { ’ ’ } else { c }
-).map(char::len_utf8).sum();
+).map(|c| c.width().unwrap_or(1)).sum();
let padding =
- (config.goal_length - len) / 2;
+ (config.goal_length - len + 1) / 2;
...

Fig. 13: The Translation Version A wrongly computes the
display width. Part (a): 1 passing and 2 failing tests when
aligning the input centrally in a 10-byte line (executed com-
mand: ./fmt -c -w 10). Part (b): Bugfix for two semantic
discrepancies.

functionality of replacing invalid Unicode characters with ? .
With a deeper investigation, we find that this is not easy to fix
due to various differences in data types and APIs across the
two languages.

Fig. 14 highlighted the branch of C code to handle this
functionality, which was previously skipped in Fig. 2 for sim-
plicity. All users assigned this program omit this functionality
in their translation.

With a deeper look, it turns out that such behavior is not
easily implementable when using String type to represent
p1 . In Rust, characters stored in a String data type are
limited to Unicode characters rather than arbitrary raw bytes.
When they use the Rust API read_line to read a String
from the stream, it either returns a String instance or Err re-
sult if there are any invalid characters. When it returns an Err ,
there is no API to tell where are the invalid characters. With a
more careful search, we find an API from_utf8_lossy that
is closer to what we want. This API can create a String
from a buffer with each invalid character replaced with a
single Unicode ? . We soon realize that this API also does
not bridge the semantic gap. The C code not only outputs ?
at the position of invalid characters, but also outputs the same
number of ? as the number of invalid bytes, which can vary.
The from_utf8_lossy API is not behaving the same way.
In summary, we cannot find APIs on String to preserve the
same semantics when using String to represent a p1 .

17

static void
center_stream(FILE *stream, const char *name)
{

char *p1, *p2;
wchar_t wc;
size_t len; /* Display width of the line. */
int w1; /* Display width of one character. */
int w2; /* Length in bytes of one character. */

while ((p1 = get_line(stream)) != NULL) {
len = 0;

for (p2 = p1; *p2 != ’\0’; p2 += w2) {
// ... omitted
if ((w2 = mbtowc(&wc,p2,MB_CUR_MAX))==-1) {

(void)mbtowc(NULL,NULL,MB_CUR_MAX);
*p2 = ’?’;
w2 = 1;
w1 = 1;

} else if ((w1 = w1idth(wc)) == -1)
w1 = 1;

// ... omitted
}
// ... print whitespace padding
puts(p1);

}
// ...

}

Fig. 14: A highlighted block of code of the C example program
(previously omitted for simplicity).

1 use unicode_width::UnicodeWidthChar;
2 fn center_stream<R: BufRead>(mut stream: R, _name: &str, config:

&Config) {
3 let mut p1 = vec![];
4 while let Ok(bytes) = stream.read_until(b’\n’, &mut p1) {
5 if bytes == 0 { break; }
6
7 let mut res = String::new();
8 for chunk in p1.utf8_chunks() {
9 let s = chunk.valid();

10 if !s.is_empty() {
11 if s == "\t" {
12 res.push_str("␣");
13 } else {
14 res.push_str(s);
15 }
16 } else {
17 res.push_str("?");
18 }
19 }
20 let len = ...; // same as lines after the display width

fix
21 // ...
22 }
23 }

Fig. 15: The fixed Translation A where the data type of p1
is refined from String to Vec<u8> . The code to parse the
Unicode character is updated accordingly.

As a result, we can consider refining the choice of Rust
data types for p1 . The type of p1 should carry sufficient
information and support APIs to identify (1) the locations of
invalid characters, and (2) the number of invalid bytes at each
location.

Many Rust data types can represent a string but not all of
them can meet our requirements. One example is to consider
using types Vec<io::Result<char>> to represent a line. It
is roughly a vector of Unicode chars, and invalid chars inside
it can be represented by a special character. Another possible
choice is std::ffi::OsString , which is a platform-native
string type. It supports holding invalid UTF-8 characters.
Vec<u8> is another suitable choice that can store invalid
Unicode characters and supports per-byte control. Here we use

Vec<u8> as an example.

Now the question is about how to use Vec<u8> to achieve
the intended program behavior, i.e., to parse Unicode charac-
ters and replace invalid ones with the correct number of ques-
tion marks. One option is to use std::str::Utf8Chunks
structure from the Rust standard library. This structure allows
iteratively check u8 bytes referred by an immutable slice and
convert them to Unicode characters if valid. Fig. 15 shows
the fixed version of Translation A with the correct Unicode
character parsing logic when using Vec<u8> type for p1 .
Because of this new choice of type, the original code to read
lines and parse characters needs to be updated accordingly. We
update multiple lines in the method calls on stream to read
the input and iteratively save the line-separated input into a
Vec<u8> . The eventually fixed translation (shown in Fig. 15)
can pass the differing test mentioned in Fig. 13.

C. End-to-End Performance Results of User Translations

Besides the performance results explained in Sec. V-B,
we also measure the end-to-end performance on tests using
hyperfine [2], which considers the load/start-up time of pro-
grams, in addition to the execution of the main functionality.
The average overhead is around 13% across the eight Rust
translations. Details of the performance measure for each
program are shown in Fig. 16. This measure might not reflect
the performance we care about since initialization costs are
usually amortized for long-running programs and libraries.

csp
lit expr fmt join

printf
shoco test

urlparser
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
Ti

m
e

Co
st

(a) Compiled with -O2

csp
lit expr fmt join

printf
shoco test

urlparser
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
Ti

m
e

Co
st

(b) Compiled with -O3

Fig. 16: End-to-end running time measured by hyperfine [2]
of the most similar Rust translation compared to the original
C at different optimization levels. The time for the baseline C
(dashed line) is normalized to 1.

D. Details of Code Patterns involve Globals and Unions

Translating Mutable Globals. There are four strategies ob-
served from the user translations on the translation of global,
as previously explained in Sec. V-C. Here, we show a code
example for each strategy.

(A) From Globals to Locals. Fig. 17 shows an example
where globals are moved to stack. The top of Fig. 17 shows
a piece of code from the printf C program that declared a
mutable global variable named gargv . This variable is used as
a cursor that shifts around to access arguments (argv) passed
to the main function. A Rust translation by our user simply
declares what is equivalent to such a cursor on the stack (argv
and idx). The Rust code passes them by reference to the
function that needs to access them (i.e., getchr).

18

Translating Mutable Globals (Strategy A)

1 // printf.c
2 char **gargv;
3 static int getchr(void)
4 {
5 if (!*gargv)
6 return((int)’\0’);
7 return((int)**gargv++);
8 }
9 ...

1 // printf.rs
2 fn getchr(argv: &Vec<String>, idx: &mut usize) -> char {
3 if *idx >= argv.len() {
4 return ’\0’;
5 }
6 let c: char = argv[*idx]...; // access argv
7 *idx += 1; // change idx (equivalent to incrementing gargv)
8 return c;
9 }

10 int main() {
11 let mut argv: Vec<String> = env::args().collect();
12 let mut idx: usize = 1; // globals moved to stack
13 // ...
14 let c: char = getchr(&argv, &mut idx); // passing references
15 }
16 ...

Fig. 17: (Top) A part of the printf C program with a mutable
gargv . (Bottom) A Rust translation using strategy A: Moving
globals to locals.

Translating Mutable Globals (Strategy A + Structs)

1 // fmt.c
2 static int centerP = 0;
3 static size_t x;
4 // ... 15 globals in total
5 static void new_paragraph(size_t indent)
6 {
7 // ... modifying 4 globals
8 x = indent;
9 }

10 ...

1 // fmt.rs
2 pub struct TextInfo {
3 center: bool, // globals become struct fields
4 x: usize,
5 // ... other semantically related fields
6 }
7 impl TextInfo {
8 pub fn new_paragraph(&mut self, indent: usize) {
9 // ... modifying multiple fields in &mut self

10 self.x = indent;
11 ...
12 }
13 }
14 ...

Fig. 18: (Top) A part of the fmt C program with mutable
globals. (Bottom) A Rust translation using strategy A and
group globals into structs.

When there are many global variables, globals that are used
together with similar lifetimes can be grouped into structs.
Fig. 18 shows a piece of code from the fmt program in our
benchmark that uses more than ten mutable global variables for
sharing states between functions. A user translation (bottom of
Fig. 18) groups the relevant global variables that are accessed
together into a struct named TextInfo . Operations on those
global variables (such as the new_paragraph function) are
turned into methods implemented on the struct TextInfo .

Translating Mutable Globals (Strategy B)

1 // csplit.c
2 long nfiles;
3 void cleanup(void)
4 {
5 char fnbuf[PATH_MAX];
6 for (i = 0; i < nfiles; i++) {
7 snprintf(fnbuf, ...) // details omitted
8 unlink(fnbuf);
9 }

10 }
11 ...

1 // csplit.rs
2 static FILES: Lazy<Arc<Mutex<Vec<String>>>> = Lazy::new(|| ...);
3 // ref-counted with lock
4 fn cleanup() -> io::Result<()> {
5 let mut files = FILES.lock().unwrap();
6 for file in files.iter() {
7 fs::remove_file(file)?;
8 }
9 files.clear();

10 Ok(())
11 }
12 ...

Fig. 19: (Top) A part of the csplit C program with mutable
globals. (Bottom) A Rust translation using strategy B: dynamic
references.

Translating Mutable Globals (Strategy C)

1 // csplit.c
2 long nfiles;
3 const char *prefix;
4 void cleanup(void)
5 {
6 char fnbuf[PATH_MAX];
7 ...
8 for (i = 0; i < nfiles; i++) {
9 snprintf(fnbuf, ..., prefix, ...);

10 unlink(fnbuf);
11 }
12 } ...

1 // csplit.rs
2 static COUNT: AtomicU32 = AtomicU32::new(0);
3 static PREFIX: OnceCell<String> = OnceCell::new();
4 fn clean_up_handler() -> io::Result<()> {
5 ...
6 let count = COUNT.load(Ordering::Acquire);
7 let pref = PREFIX.get().unwrap();
8 for i in 0..count {
9 let filename = format!("{}...", pref, ...);

10 let _ = fs::remove_file(...);
11 }
12 Ok(())
13 } ...

Fig. 20: (Top) A part of the csplit C program with mutable
globals. (Bottom) A Rust translation using strategy C: atomics.

(B) Dynamic References. Fig. 19 shows an example where
global mutable variables are translated into dynamic refer-
ences. The top of Fig. 19 is a piece of the csplit C
program. The cleanup is a function to be called as a signal
handler. A user translation (bottom of Fig. 19) uses a dynamic
reference Arc<Mutex<T>> to implement this global variable.
Correspondingly, the Rust translation uses lock().unwrap()
to guard the access to the content of the variable. It is
worth noting that while signal handlers, in general, need
synchronization, it is not necessary in this specific program

19

considering its possible behaviors.

(C) Atomics. Fig. 20 shows a different Rust translation
from Strategy (C) of the same piece of code in csplit . This
time, the code is leveraging an AtomicU32 type declared as
a mutable global variable. A nice property of Atomic types
is that “immutable” references to it (from the perspective of
the Rust language) allow both read and write access to the
variable in safe Rust using specific APIs, similar to the interior
mutability pattern. Thus, every function can freely obtain
“immutable” references and write to Atomic types without
violating borrowing rules. At the same time, the runtime cost
is also potentially lower than that of locks.

Translating Unions as Enum

1 // shoco.c
2 union Code {
3 uint32_t word;
4 char bytes[4];
5 };
6 size_t shoco_compress(...) {
7 union Code code;
8 while // ...
9 // ... code lines modifying code.word

10 for (unsigned int i=0; i<packs[pack_n].bytes_packed; ++i)
11 o[i] = code.bytes[i];
12 // ...
13 } ...

1 // shoco.rs
2 pub fn shoco_compress(...) {
3 let mut code: u32;
4 while // ...
5 // ... code lines modifying code
6 for i in 0..packs[pack_n].bytes_packed {
7 if cfg!(target_endian = "little") {
8 out[out_index + i] = code.to_le_bytes()[i];
9 } else {

10 out[out_index + i] = code.to_be_bytes()[i];
11 }
12 } ...
13 } ...

Fig. 21: (Top) A part of the shoco C program that uses tagged
unions. (Bottom) A Rust translation that translates tagged
union into enum.

Translating Unions. There are two different use cases of C
union observed in our benchmarks, including (A) type punning
and (B) variant record. One example of each is shown here.

(A) Type Punning. Fig. 21 shows an example of type
punning in the shoco C program. The C union Code is
used to access bytes of an integer (uint32_t). An example
Rust translation (bottom of Fig. 21) uses to_le_bytes and
to_be_bytes that convert an integer (u32) into a byte array
([u8; 4]). The choice of API is guarded by a compile-time
constant cfg!(target_endian = "big") that is similar to
conditional compilation in C (such as #ifdef). The type
conversion and the if branch in the Rust code have zero
cost when optimization is turned on. Moreover, the differ-
ences between the to_le_bytes and to_be_bytes are also
small after optimization. On x64 architecture (little endian),
to_be_bytes will result in code with just one more bswap
instruction.15

(B) Variant Record. Fig. 22 shows an example of using
tagged unions in C. The top of Fig. 22 shows a slice of the

15Tested with rustc 1.81.0 with option -C opt-level=2 .

Translating Unions as Enum

1 // expr.c
2 struct val {
3 enum { integer, string } type;
4 union {
5 char *s;
6 int64_t i; } u;
7 };
8 int is_zero_or_null(struct val *vp)
9 {

10 if (vp->type == integer)
11 return vp->u.i == 0;
12 else
13 return *vp->u.s == 0 ||
14 (to_integer(vp, NULL) && vp->u.i == 0);
15 } ...

1 // expr.rs
2 enum Val {
3 Integer(i64),
4 String(String),
5 }
6 impl Val {
7 fn is_zero_or_null(&self) -> bool {
8 match self {
9 Val::Integer(i) => *i == 0,

10 Val::String(s) => s.is_empty() || s.parse::<i64>().map_or(
false, |i| i == 0),

11 }
12 } ...

Fig. 22: (Top) A part of the expr C program that uses tagged
unions. (Bottom) A Rust translation that translates tagged
union into enum.

expr C program that declares a variant record (val) and code
accessing the field u which is a union. From the code, we can
infer that semantically there is a mapping between the value of
tag type and the valid field in the union u . Such a mapping is
an important type-safety invariant, but it is not explicit in the
type system of C. The Rust translation, shown at the bottom
of Fig. 22, implements the same functionality with statically
enforced type safety. The code implements the variant record
using enum in Rust, which explicitly associates tag values to
valid fields in the record. Code accessing an enum in Rust is
checked statically, preventing type safety violations as well as
logical errors such as missing the handling of certain tags.

20

	Introduction
	Background
	A Tour of Safe Rust
	Existing Automatic C to Rust Translation

	User Study
	High-Level Approach Taken by Users
	Semantic Data Type Lifting
	Dealing with Aliasing

	Security and Performance of User Translations
	Breakdown of Safe Abstractions Used
	Performance Comparison
	Examples of Security-Enhancing Code Patterns

	The Gap In Functional Correctness
	Efficacy of State-of-the-art Automatic Tools
	Compiler-based Tools
	LLM-based Tools
	Do existing LLMs help in user-provided translation?

	Extensibility of Findings to Real-world Code
	Discussion and Takeaways
	Related Work
	Conclusion
	References
	Appendix
	Case Studies with Memory Safety Vulnerabilities
	Examples of Logical Translation Errors by Users
	End-to-End Performance Results of User Translations
	Details of Code Patterns involve Globals and Unions

