
PIECEWISE QUASICONFORMAL DYNAMICAL SYSTEMS OF

THE UNIT CIRCLE
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Abstract. We study piecewise quasiconformal covering maps of the unit cir-

cle. We provide sufficient conditions so that a conjugacy between two such
dynamical systems has a quasiconformal or David extension to the unit disk.

Our main result generalizes the main result of [LMMN23], which deals with

piecewise analytic maps. As applications, we provide a classification of piece-
wise quasiconformal maps of the circle up to quasisymmetric conjugacy, we

prove a general conformal mating theorem for Blaschke products, and we study

the quasiconformal geometry of parabolic basins.
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1. Introduction

The purpose of the paper is to study piecewise quasiconformal covering maps of
the unit circle. The main theorem provides sufficient conditions so that a homeo-
morphism conjugating two such maps admits a quasiconformal or David extension
to the unit disk. Due to the technicalities of the results, we give rough formulations
in the introduction and defer the full statements to later sections.

1.1. Main extension theorem. Let f : S1 → S1 be a covering map and let
{a0, . . . , ar} be a Markov partition associated to f . For k ∈ {0, . . . , r} we de-
fine Ak to be the closed arc from ak to ak+1, where ar+1 = a0. We consider three
basic assumptions that will be described in more detail in Sections 3 and 4.
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Figure 1.1. Illustration of condition (2).

(1) (Endpoint behavior) Each point a ∈ {a0, . . . , ar} is either symmetrically
hyperbolic or symmetrically parabolic, as defined in Section 3.6. See con-
dition (M1).

(2) (Extension to neighborhood of the circle) For each k ∈ {0, . . . , r} there
exist open neighborhoods Uk of intAk and Vk of f(intAk) in C such that f
has an extension to a homeomorphism from Uk onto Vk. Furthermore, we
assume that Uj ⊂ Vk = f(Uk) whenever Aj ⊂ f(Ak) and that the regions
Uk, k ∈ {0, . . . , r}, are pairwise disjoint; see Figure 1.1. We still denote the
extension to

⋃r
k=0(Uk ∪ {ak, ak+1}) by f . See condition (M2).

(3) (Quasiconformality) The iterates of f on preimages of Uk, k ∈ {0, . . . , r},
are uniformly quasiconformal. See condition (M3).

We now state the main results. See Theorem 4.1 for more detailed statements.

Theorem 1.1 (QC extension). Let f, g : S1 → S1 be expansive covering maps with
the same orientation and {a0, . . . , ar}, {b0, . . . , br} be Markov partitions associated
to f, g, respectively, satisfying conditions (1), (2), and (3). Let h : S1 → S1 be a
homeomorphism that conjugates f to g such that, for each k ∈ {0, . . . , r}, h(ak) =
bk and

(H/P→H/P) if ak is symmetrically hyperbolic (resp. parabolic), then bk is symmet-
rically hyperbolic (resp. parabolic).

Then the map h has a quasiconformal extension to the unit disk.

Condition (H/P→H/P) states that the conjugacy h does not alter the hyperbolic
or parabolic nature of points. If we allow the possibility that hyperbolic points are
mapped to parabolic ones, then we cannot obtain a quasiconformal extension to
the unit disk. Instead, in that case we prove that the conjugacy h has an extension
to a David homeomorphism (also known as mapping of exponentially integrable
distortion). To prove this result, we need to add a modification of condition (3):

(3*) (Asymptotic conformality) The iterates of f on preimages of Uk, k ∈
{0, . . . , r}, are (1 + o(1))-quasiconformal. See condition (M3∗).
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This condition essentially compensates for the unavailability of Koebe’s distortion
theorem in the theory of quasiconformal maps.

Theorem 1.2 (David extension). Let f, g, h be as in Theorem 1.1 and suppose that
g satisfies condition (3*). Suppose that each pair ak, bk, k ∈ {0, . . . , r}, satisfies
either condition (H/P→H/P) or

(H→P) ak is symmetrically hyperbolic and bk is symmetrically parabolic.

Then h has a David extension to the unit disk.

These two results generalize the main result of [LMMN23] in two directions.
First, in [LMMN23] the maps f, g are assumed to be piecewise analytic rather
than piecewise quasiconformal. Second, the definition of symmetrically hyperbolic
and parabolic points is much less restrictive here (see Section 3.6) compared to
[LMMN23]. There, f |Ak

is required to have an analytic extension in neighborhoods
of the endpoints ak and ak+1, so hyperbolicity and parabolicity are defined in
the natural way, by studying the power series expansion of f . Here we do not
assume any extension to neighborhoods of the endpoints, but instead we distinguish
between hyperbolic and parabolic points based on how f distorts lengths of circular
arcs near the endpoints.

The main motivation for extending the results of [LMMN23] to the piecewise
quasiconformal setting is due to an application in the problem of uniformization
of gasket Julia sets. In [LN24] we use the present results to provide a charac-
terization of gasket Julia sets that can be uniformized by a round gasket using a
quasiconformal or David homeomorphism of the sphere.

Using Theorem 1.1 we obtain a classification of piecewise quasiconformal circle
maps up to quasisymmetries. See Theorem 5.1 and Remark 5.2. We formulate a
simplified version here.

Theorem 1.3 (QS classification). Let f : S1 → S1 be an expansive covering map
with a sufficiently fine Markov partition satisfying conditions (1), (2), and (3).
Then f is quasisymmetrically conjugate to a piecewise (anti-)Möbius map of the
unit circle.

1.2. Blaschke products and mating. We remark that, in practice, condition (2)
is not always easy to verify and the its validity depends on the choice of the Markov
partition. Let B be a Blaschke product whose Julia set is the unit circle. We say
that B is hyperbolic if it has an attracting fixed point in D. Otherwise, D is the basin
of a parabolic fixed point and we say that B is parabolic. In [LMMN23, Example
4.2], condition (2) is verified for a specific Markov partition associated to a certain
Blaschke product. We verify condition (2) for essentially every Markov partition
associated to any Blaschke product.

Theorem 1.4. Let f : S1 → S1 be a parabolic (resp. hyperbolic) Blaschke product,
and {a0, . . . , ar} be a Markov partition associated to f that contains the parabolic
fixed point. Then conditions (1), (2), (3), and (3*) are satisfied.

We use this in combination with Theorem 1.2 to show the next mating result,
which can also be obtained using deformation techniques in [HT04,Luo22,Luo24].

Theorem 1.5 (Blaschke mating). Let f, g be hyperbolic or parabolic Blaschke prod-
ucts of the same degree whose Julia set is the unit circle. Then f and g are con-
formally mateable along any conjugacy h from f |S1 to g|S1 .
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Figure 1.2. The pine tree Julia set, resulting from mating B(z) =
2z3+1
z3+2 with itself. Cusps are generated because parabolic points are
mated with repelling points.

Specifically, there exist a Jordan curve J with complementary regions A,B ⊂ Ĉ\J ,
a rational map R, and conformal maps ϕ : D → A, ψ : D → B such that ϕ conjugates
f to R, ψ conjugates g to R, and ϕ = ψ ◦ h on S1. Moreover, J is a David circle
and R is unique up to Möbius conjugacies.

An instance of Theorem 1.5 was proved in [LMMN23, Example 5.3], where the

Blaschke product B(z) = 2z3+1
z3+2 was mated with itself so that the parabolic point 1

is mated with the repelling point −1 and the repelling point −1 is mated with the
parabolic point 1. The Julia set of the resulting rational map is shown in Figure
1.2.

It is elementary to show that the converse of Theorem 1.5 holds. Namely, if R
is a rational map whose Julia set is a Jordan curve, then the second iterate R◦2

arises as the mating, in the sense of Theorem 1.5, of two Blaschke products of the
same degree whose Julia set is the unit circle. Thus, this observation and Theorem
1.5 provide a complete description of Julia sets that are Jordan curves. Moreover,
since David circles are conformally removable (in the sense of Theorem 2.5 below)
we obtain the following corollary.

Corollary 1.6. All Jordan curve Julia sets are conformally removable.

1.3. Geometry of parabolic basins. The Jordan curve J in Theorem 1.5 is the
image of the unit circle under a David homeomorphism H of the sphere. If f is
hyperbolic and g is parabolic, then the rational map R has a parabolic fixed point
with multiplicity 2. Hence, in that case, the David homeomorphism H maps D onto
a parabolic basin of multiplicity 2. Note that the inverse of a David homeomorphism
is not always a David homeomorphism. In Sections 6 and 7, we study the question
whether an arbitrary parabolic basin can be mapped to the unit disk with a David
or quasiconformal homeomorphism of the sphere. The proof is based on our main
extension theorem, Theorem 4.1.

Theorem 1.7. Let R be a rational map, a be a fixed point with R′(a) = 1 that has
parabolic multiplicity ν ≥ 2, and Ω be an immediate basin of a.
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Figure 1.3. The Julia set of the polynomial

f(z) = z − 1

b(3b− 2)
(z − 1)3(z − b)2.

The parabolic basin in the center is not a quasidisk.

(1) If ν = 2, then there exists no David homeomorphism ϕ of the sphere with
ϕ(Ω) = D.

Suppose, in addition, that Ω is a Jordan region and the critical and post-critical
sets intersect ∂Ω only at the point a.

(2) If ν = 2, then there exists a David homeomorphism ϕ of the sphere with
ϕ(D) = Ω.

(3) If ν ≥ 3, then there exists a quasiconformal homeomorphism ϕ of the sphere
with ϕ(D) = Ω.

We remark that in the last part the condition that the post-critical set intersects
∂Ω only at the parabolic point a is necessary. Consider the example of a geometri-
cally finite polynomial f(z) = z− 1

b(3b−2) (z− 1)3(z− b)2, where b = −1−
√
2/3. It

has two parabolic fixed points at a = 1 with multiplicity 3 and at b with multiplicity
2. There is a Fatou component Ω that is an immediate basin of a such that b ∈ ∂Ω.
The component Ω is not a quasidisk or a John domain as it has an outward cusp
at b; see Figure 1.3. We remark that this condition follows from condition (6.2) in
[CJY94, Theorem 6.1], which proves an analogue of (3) for the polynomial case.

2. Preliminaries

2.1. Quasiconformal and quasisymmetric maps. Let (X, dX), (Y, dY ) be met-
ric spaces. A homeomorphism f : X → Y is quasisymmetric if there exists a
homeomorphism η : [0,∞) → [0,∞) such that for all triples of distinct points
x1, x2, x3 ∈ X we have

dY (f(x1), f(x2))

dY (f(x1), f(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)
.
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In that case we say that f is η-quasisymmetric. The homeomorphism η is called
the distortion function associated to f . It is an elementary property (see [Hei01,
Proposition 10.8]) that if A ⊂ B ⊂ X and 0 < diamA ≤ diamB <∞, then

1

2η
(
diamB
diamA

) ≤ diam f(A)

diam f(B)
≤ η

(
2 diamA

diamB

)
.(2.1)

Let U, V ⊂ C be open sets and f : U → V be an orientation-preserving homeo-
morphism. We say that f is quasiconformal if f ∈W 1,2

loc (U) and there exists K ≥ 1
such that ∥Df(z)∥2 ≤ KJf (z) for a.e. z ∈ U . Here Df(z) is the differential of f ,
which exists at a.e. z ∈ U , ∥Df(z)∥ denotes its operator norm, and Jf (z) is the
Jacobian determinant of Df(z). In that case, we say that f is K-quasiconformal.
One can define quasiconformal homeomorphisms between domains in the Riemann

sphere Ĉ via local coordinates.
It is a fundamental result that quasisymmetric maps between planar domains are

also quasiconformal, quantitatively. We will need a refined version of the converse
of that statement, as stated below. Actually, this is a sharp version of Koebe’s
distortion theorem for quasiconformal maps.

Theorem 2.1 (Distortion theorem). Let K ≥ 1, δ > 0, and U, V ⊂ C be topological
disks with U ⊂ V and Mod(V \ U) ≥ δ. If f : V → C is a K-quasiconformal
embedding, then f |U and f−1|f(U) are η-quasisymmetric for

η(t) = C(K, δ)max{tK , t1/K}.

Here, if A ⊂ C is an annulus we denote by ModA its modulus, i.e., the quantity
(2π)−1 log 1

r , where r ∈ (0, 1) is the unique number with the property that D\B(0, r)
is conformally equivalent to A.

Proof. Consider a conformal map ϕ : D → V . Since Mod(V \ U) ≥ δ, we have
ϕ−1(U) ⊂ B(0, r) for some r = r(δ) ∈ (0, 1), as a consequence of the Grötzsch
modulus theorem [LV73, p. 54]. Let r′ = (1+ r)/2 ∈ (r, 1). We now apply [AIM09,
Lemma 3.6.1], which implies that there exists a conformal map ψ on B(0, r′) and a
K-quasiconformal map g : C → C such that g(B(0, r′)) = B(0, r′) and f ◦ϕ = ψ ◦ g
on B(0, r′). By Koebe’s distortion theorem, the map ϕ|B(0,r) satisfies

C(δ)−1 |z1 − z2|
|z1 − z3|

≤ |ϕ(z1)− ϕ(z2)|
|ϕ(z1)− ϕ(z3)|

≤ C(δ)
|z1 − z2|
|z1 − z3|

for all triples of distinct points z1, z2, z3 ∈ B(0, r). The map ψ|B(0,r) also satisfies
this condition; see [AIM09, Theorem 2.10.9]. Also, by [AIM09, Corollary 3.10.4], g
is η′′-quasisymmetric on C for

η′′(t) = C(K)max{tK , t1/K}.

The desired conclusion for f = ψ ◦ g ◦ ϕ−1, restricted to U , follows. For f−1|f(U)

it suffices to note that if a map is η-quasisymmetric, then its inverse is η̃-quasi-
symmetric for η̃(t) = 1/η−1(t−1). □

2.2. David maps. An orientation-preserving homeomorphismH : U → V between

domains in the Riemann sphere Ĉ is called a David homeomorphism or else mapping
of exponentially integrable distortion, if it lies in the Sobolev spaceW 1,1

loc (U) (defined
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via local coordinates) and there exists p > 0 such that∫
U

exp(pKH) dσ <∞,(2.2)

where σ is the spherical measure, and KH is the distortion function of H, given by

KH(z) =
1 + |µH |
1− |µH |

;

here

µH =
∂H/∂z

∂H/∂z

is the Beltrami coefficient of H. Condition (2.2) is equivalent to the existence of
constants C,α > 0 such that

σ({z ∈ U : |µH(z)| > 1− ε}) ≤ Ce−α/ε

for all ε ∈ (0, 1). We direct the reader to [AIM09, Chapter 20] for more background.
The main result in the theory of David homeomorphisms is the following integra-

bility theorem. If U is an open subset of Ĉ and µ : U → D is a measurable function
such that K = (1 + |µ|)/(1 − |µ|) is exponentially integrable in U (i.e., it satisfies
(2.2)), then we say that µ is a David coefficient (in U).

Theorem 2.2 (David integrability; [AIM09, Theorem 20.6.2]). Let µ : Ĉ → D be a

David coefficient. Then there exists a homeomorphism H : Ĉ → Ĉ of class W 1,1(Ĉ)
that solves the Beltrami equation

∂H

∂z
= µ

∂H

∂z
.(2.3)

Moreover, H is unique up to postcomposition with Möbius transformations.

The David Integrability Theorem is a generalization of the Measurable Riemann
Mapping Theorem [AIM09, Theorem 5.3.4, p. 170], which states that if ∥µ∥∞ < 1,

then there exists a quasiconformal homeomorphism H : Ĉ → Ĉ that solves the
Beltrami equation (2.3).

Theorem 2.3 (Uniqueness; [AIM09, Theorem 20.4.19]). Let Ω ⊂ Ĉ be an open set

and f, g : Ω → Ĉ be David maps with

µf = µg

almost everywhere. Then f ◦ g−1 is a conformal map on g(Ω).

Proposition 2.4 ([LMMN23, Proposition 2.5]). Let f : U → V be a David home-

omorphism between open sets U, V ⊂ Ĉ and g : V → Ĉ be a quasiconformal embed-
ding. Then g ◦ f is a David map.

Theorem 2.5 ([LMMN23, Theorem 2.8]). Let H : Ĉ → Ĉ be a David homeomor-
phism. Then the set E = H(S1) is locally conformally removable in the following

sense. For every open set U ⊂ Ĉ and each topological embedding f : U → Ĉ that is
conformal in U \ E, we have that f is conformal on U .
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2.3. Extensions of circle homeomorphisms. We will need an extension result
for David maps, which is a generalization of the well-known extension of Beurling
and Ahlfors [BA56]. Let h : S1 → S1 be an orientation-preserving homeomorphism.
We define the symmetric distortion function of h to be

ρh(z, t) = max

{
|h(e2πitz)− h(z)|
|h(e−2πitz)− h(z)|

,
|h(e−2πitz)− h(z)|
|h(e2πitz)− h(z)|

}
,

where z ∈ S1 and 0 < t < 1/2. The distortion function ρh(z, t) measures whether
h maps adjacent arcs of equal length t to adjacent arcs of equal length and how far
it is from that behavior. We define the scalewise distortion function of h to be

ϱh(t) = max
z∈S1

ρh(z, t),

where 0 < t < 1/2. If ϱh(t) is bounded above, then the function h is a qua-
sisymmetry and has a quasiconformal extension on D, by the theorem of Beurling
and Ahlfors [BA56]. Zakeri observed in [Zak08, Theorem 3.1], by applying a re-
sult of [CCH96], that there is a growth condition on ϱh(t) that is sufficient for a
homeomorphism h of the circle to have a David extension in the disk.

Theorem 2.6 (David extension; [CCH96, Theorem 3], [Zak08, Theorem 3.1]). Let
h : S1 → S1 be an orientation-preserving homeomorphism and suppose that

ϱh(t) = O(log(1/t)) as t→ 0.

Then h has an extension to a homeomorphism h̃ : D → D such that h̃|D is a David
map.

See also the recent work [KN22] for a stronger extension result, which asserts
that the weaker condition

exp ρh(·, ·) ∈ Lp(S1 × (0, 1/2)) for some p > 0

is sufficient for an extension.

3. Markov partitions and expansive circle maps

If a, b ∈ S1, we denote by
>
[a, b] and

>
(a, b) the closed and open arcs, respectively,

from a to b in the positive orientation. The arc
>
(b, a), for example, is the comple-

mentary arc of
>
[a, b]. We also denote the arc

>
(a, b) by int

>
[a, b]. We say that two

non-overlapping arcs I, J ⊂ S1 are adjacent if they share an endpoint.

Definition 3.1 (Markov partition). A Markov partition associated to a covering

map f : S1 → S1 is a covering of the unit circle by closed arcs Ak =
>
[ak, ak+1],

k ∈ {0, . . . , r}, r ≥ 1, where ar+1 = a0, that have disjoint interiors and satisfy the
following conditions.

(i) The map fk = f |intAk
is injective for k ∈ {0, . . . , r}.

(ii) If f(intAk)∩ intAj ̸= ∅ for some k, j ∈ {0, . . . , r}, then intAj ⊂ f(intAk).
(iii) The set {a0, . . . , ar} is invariant under f .

We denote the above Markov partition by P(f ; {a0, . . . , ar}).

Note that by definition, the points a0, . . . , ar are ordered in the positive orien-
tation if r ≥ 2; if r = 1, there is no natural order. Moreover, (ii) and (iii) are
equivalent under condition (i).
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3.1. Admissible words. Let f : S1 → S1 be a covering map and consider a Markov
partition P = P(f ; {a0, . . . , ar}). We can associate a matrix B = (bkj)

r
k,j=0 to P

so that bkj = 1 if fk(Ak) ⊃ Aj and bkj = 0 otherwise. In the case bkj = 1 we define

Akj to be the closure of f−1
k (intAj). If w = (j1, . . . , jn) ∈ {0, . . . , r}n, n ∈ N,

k ∈ {0, . . . , r}, and once Aw has been defined, we define Akw to be the closure of
f−1
k (intAw) whenever bkj1 = 1. A word w = (j1, . . . , jn) ∈ {0, . . . , r}n, n ∈ N, is
admissible (for the Markov partition P) if bj1j2 = · · · = bjn−1jn = 1. The empty
word w is considered to be admissible and we define Aw = S1. We also define
Aw = ∅ if w is not admissible. The length of a word w = (j1, . . . , jn) ∈ {0, . . . , r}n
is defined to be |w| = n and the length of the empty word is 0. It follows from
properties (i) and (ii) that for each n ∈ N the arcs Aw, where |w| = n, have disjoint
interiors and their union is equal to S1.

Inductively, we have Awj ⊂ Aw for all admissible words w and j ∈ {0, . . . , r}. If
Awj is non-empty, we say that Awj is a child of Aw and Aw is the parent of Awj .
Thus, Aw has at most r + 1 children. Also, if k ∈ {0, . . . , r}, w is a non-empty
word, and (k,w) is admissible, then f maps intAkw homeomorphically onto intAw.
Thus, f acts as a subshift on the space of admissible words.

3.2. Levels and complementary arcs. Let f : S1 → S1 be a covering map and
P(f ; {a0, . . . , ar}) be a Markov partition. We let Fn be the preimages of F1 =
{a0, . . . , ar} under n − 1 iterations of f and F0 = ∅. Observe that Fn ⊃ Fn−1 for
each n ∈ N. Indeed, F1 ⊃ f(F1) by condition (iii) in Definition 3.1, hence F2 =
f−1(F1) ⊃ f−1(f(F1)) ⊃ F1, so the conclusion follows by induction. We define the
level of a point c ∈

⋃
n≥1 Fn to be the unique n ∈ N such that c ∈ Fn \ Fn−1.

For each n ∈ N, the set S1 \ Fn consists of open arcs. For practical purposes
we will use the terminology complementary arcs of Fn to indicate the family of the
closures of the components of S1 \ Fn. Hence, all complementary arcs of Fn are
closed arcs. Note that the complementary arcs of Fn are the arcs Aw, where w is
an admissible word with |w| = n.

3.3. Canonical splitting. We continue to assume that P(f ; {a0, . . . , ar}) is a
Markov partition associated to f . Let l ∈ N and w = (j1, . . . , jl) be an admis-
sible word. Let m ∈ {0, . . . , l− 1} be such that m+ 1 is the minimum of the levels
of the endpoints of Aw. We set v = (j1, . . . , jm) and u = (jm+1, . . . , jl). We call
(v, u) the canonical splitting of the admissible word w and we write w = (v, u).
Note v can be the empty word if m = 0. Also, since Aw is a complementary arc of
Fl, we have m+ 1 ≤ l, so |u| ≥ 1 and u is not the empty word. Finally, note that
Au has a point of F1 as an endpoint, since it is the image of Aw under f◦m. We
define the canonical splitting (v, u) of the empty word to consist of empty words.

Lemma 3.2. Let f : S1 → S1 be a covering map and consider a Markov partition
P(f ; {a0, . . . , ar}). For each admissible word w with canonical splitting w = (v, u)
we have Aw ⊂ intAv.

Proof. If v is the empty word we have nothing to show, so suppose that |v| ≥ 1.
Since w = (v, u), we have Aw ⊂ Av. Since the endpoints of Av have level at most
m and both endpoints of Aw have level at least m + 1, we conclude that Aw and
Av have no common endpoint. Hence, Aw ⊂ intAv. □

3.4. Expansive maps. We give the definition of an expansive map of S1.
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Definition 3.3 (Expansive map). Let f : S1 → S1 be a continuous map.

(a) For a point a ∈ S1 we say that f is expansive at a if there exists δ > 0 such
that for every b ∈ S1 with a ̸= b we have |f◦n(a) − f◦n(b)| > δ for some
n ∈ N ∪ {0}.

(b) We say that f is expansive if there exists δ > 0 such that for every a, b ∈ S1
with a ̸= b we have |f◦n(a)− f◦n(b)| > δ for some n ∈ N ∪ {0}.

An expansive map of S1 is necessarily a covering map of degree d ≥ 2 [HR69,
Theorem 2]. We now list some important properties of expansive maps.

(E1) Let f : S1 → S1 be a continuous map and P(f ; {a0, . . . , ar}) be a Markov
partition. Then f is expansive if and only if

lim
n→∞

max{diamAw : |w| = n} = 0.

This can be proved easily using [PU10, Theorem 3.6.1, p. 143].
(E2) Let f : S1 → S1 be an expansive covering map of degree d. Then there exists

an orientation-preserving homeomorphism h : S1 → S1 that conjugates f to
either the map g(z) = zd or the map g(z) = zd, depending on whether f
is orientation-reversing or orientation-preserving, respectively. Moreover,
h is unique up to rotation by a (d + 1)-st root of unity if g(z) = zd or a
(d−1)-st root of unity if g(z) = zd. This property is a consequence of (E1).
A more general statement for expansive self-maps of a compact manifold
can be found in [CR80, Property (2′), p. 99].

(E3) A map f : S1 → S1 is expansive if and only if f◦p is expansive for each
p ∈ N. This is also a consequence of (E1).

(E4) If f : S1 → S1 is expansive at z0 and f(z0) = z0, then there exists a neigh-
borhood of z0 in which f has no other fixed points.

(E5) If f : S1 → S1 is expansive at z0 and p ∈ N, then f◦p is also expansive at
z0. This is a consequence of the uniform continuity of f .

A refined version of property (E2) that we will need for our considerations is
the following lemma. Its proof is straightforward, based on property (E1), and is
omitted.

Lemma 3.4. Let f, g : S1 → S1 be expansive covering maps with the same orienta-
tion and P(f ; {a0, . . . , ar}), P(g; {b0, . . . , br}) be Markov partitions. Consider the
map h : {a0, . . . , ar} → {b0, . . . , br} defined by h(ak) = bk for k ∈ {0, . . . , r} and
suppose that h conjugates the map f to g on the set {a0, . . . , ar}, i.e.,

h(f(ak)) = g(bk)

for k ∈ {0, . . . , r}. Then h has an extension to an orientation-preserving homeo-
morphism of S1 that conjugates f to g on S1.

Lemma 3.5. Let f : S1 → S1 be a covering map let z0 ∈ S1 be a fixed point of f .
Then f is expansive at z0 ∈ S1 if and only if the following statement is true.

There exist closed arcs I, J with z0 ∈ int I ⊂ I ⊂ int J such that f |I : I → J is
bijective, and if we set g = (f |I)−1 : J → I, then {g◦n}n∈N converges uniformly in
J to the constant function z 7→ z0.

Proof. Suppose that f is expansive at z0. This assumption and the fact that f is
locally injective imply that there exist closed arcs I, J with z0 ∈ int I ⊂ I ⊂ int J
such that f |I : I → J is bijective. By shrinking I, we may assume that it does
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not contain any fixed points of f and f ◦ f other than z0. Let g = (f |I)−1 and

define J =
>
[a0, b0] and In = g◦n(J) =

>
[an, bn], n ∈ N. Note that In+1 ⊂ In,

n ∈ N. We claim that
⋂∞

n=1 In = {z0}. If not, there exists a non-degenerate arc
[a, b] ⊂

⋂∞
n=1 In that contains z0. Without loss of generality, suppose that b ̸= z0.

Note that bn → b as n → ∞. If f is orientation-preserving, we have f(bn+1) = bn,
n ∈ N, so f(b) = b; otherwise, we have (f ◦f)(b2n+2) = b2n, n ∈ N, so (f ◦f)(b) = b.
This is a contradiction.

For the converse, it suffices to show that for each point w0 ∈ I \{z0} there exists
n ∈ N such that f◦n(w0) /∈ J . Suppose that a point w0 ∈ I has the property that
wn = f◦n(w0) ∈ J for each n ∈ N. Then w0 = g◦n(wn). Since {g◦n}n∈N converges
uniformly to the constant function z 7→ z0, we conclude that g◦n(wn) converges to
z0 as n→ ∞. Therefore w0 = z0. □

3.5. Primitive Markov partitions. Let f : S1 → S1 be a covering map with a
Markov partition P = P(f ; {a0, . . . , ar}). We say that P is primitive if for each
k ∈ {0, . . . , r} there exists n ∈ N such that f◦n(Ak) = S1. Equivalently, the matrix
B associated to the Markov partition is primitive, i.e., there exists n ∈ N so that
each entry in Bn is positive.

Recall that if f is expansive, then it is conjugate to z 7→ zd or z 7→ zd; see (E2).
Hence, in that case every Markov partition is primitive. On the other hand, not
every covering map with a primitive Markov partition is expansive.

Lemma 3.6. Let f : S1 → S1 be a covering map and P(f ; {a0, . . . , ar}) be a Markov
partition. The Markov partition is primitive if and only if there exists p ∈ N such
that each complementary arc of Fn, where n ∈ N, contains at least two complemen-
tary arcs of Fn+p. In that case, one may take p = r.

Proof. Suppose that the Markov partition is primitive. It suffices to prove that each
complementary arc A of F1 contains at least two complementary arcs of Fr+1. Let A
be a complementary arc of F1. We show that one of the arcs f(A), . . . , f◦r(A) con-
tains at least two complementary arcs of F1. If not, then each of A, f(A), . . . , f◦r(A)
is a complementary arc of F1. Consider two cases.

Case 1: Two of the arcs A, f(A), . . . , f◦r(A), f◦(r+1)(A) are identical. Then there
exists a complementary arc B of F1 and p ∈ N such that f◦p maps B onto itself and
is injective in the interior of B. In particular, f◦(np) maps B onto itself for each
n ∈ N. This contradicts the assumption that the Markov partition is primitive.

Case 2: The arcs A, f(A), . . . , f◦r(A), f◦(r+1)(A) are distinct. Then, the comple-
mentary arcs of F1 are precisely the arcs A, f(A), . . . , f◦r(A). By the above and
the properties of a Markov partition, f maps injectively S1 \f◦r(A) onto S1 \A and
f is injective in the interior of f◦r(A). Thus f(f◦r(A)) ⊃ A. By the assumption of
Case 2, we have f◦(r+1)(A) ̸= A, so f(f◦r(A)) ⊋ A. Therefore, each point of intA
has a unique preimage under f , but there exist points outside A with at least two
preimages, one in S1 \f◦r(A) and one in f◦r(A). This is a contradiction to the fact
that f is a covering map.

Conversely, suppose that there exists p ∈ N such that each complementary arc
of Fn, where n ∈ N, contains at least two complementary arcs of Fn+p. Let A be a
complementary arc of F1. For each k ∈ N, A contains at least 2k complementary
arcs of Fkp+1. Each of those arcs is mapped by f◦(kp) to a complementary arc of



12 YUSHENG LUO AND DIMITRIOS NTALAMPEKOS

F1. Hence, if 2k ≥ r+1, then, given that f is a covering map, we see that f◦(kp)(A)
covers at least r + 1 complementary arcs of F1, so it is equal to S1. □

3.6. Hyperbolic and parabolic points. We say that a finite collection of non-
overlapping arcs I1, . . . , Im ⊂ S1, m ∈ N, consists of consecutive arcs if every arc Ii
shares one endpoint with another arc Ij , j ̸= i. After renumbering if necessary, we
will use the convention that Ii has a common endpoint with Ii+1 for i = 1, . . . ,m−1.

Let f : S1 → S1 be a covering map and P(f ; {a0, . . . , ar}) be a Markov partition.

Definition 3.7 (Hyperbolic points). Let a ∈ {a0, . . . , ar}. We say that a+ (resp.
a−) is hyperbolic if there exist λ > 1 and L ≥ 1 such that the following statement
is true.

If I1, I2 are consecutive complementary arcs of Fn, n ≥ 1, a is an endpoint of I1,

and I1, I2 ⊂
>
[a, z0] (resp. I1, I2 ⊂

>
[z0, a]) for some z0 ̸= a, then for each i ∈ {1, 2}

we have

L−1λ−n ≤ diam Ii ≤ Lλ−n.(3.1)

In that case we set λ(a+) = λ (resp. λ(a−) = λ) and call this number the multiplier
of a+ (resp. a−).

Definition 3.8 (Parabolic points). Let a ∈ {a0, . . . , ar}. We say that a+ (resp.
a−) is parabolic if there exist N ∈ N and L ≥ 1 such that the following statement
is true.

If I1, I2 are consecutive complementary arcs of Fn, n ≥ 1, a is an endpoint of I1,

and I1, I2 ⊂
>
[a, z0] (resp. I1, I2 ⊂

>
[z0, a]) for some z0 ̸= a, then we have

L−1

n1/N
≤ diam I1 ≤ L

n1/N
and

L−1

n1/N+1
≤ diam I2 ≤ L

n1/N+1
.(3.2)

In that case we set N(a+) = N (resp. N(a−) = N) and call the number N(a+)+ 1
(resp. N(a−) + 1) the multiplicity of a+ (resp. a−).

Definition 3.9. Let a ∈ {a0, . . . , ar}. We say that a is symmetrically hyperbolic
if a+ and a− are hyperbolic with λ(a+) = λ(a−). In this case we denote by λ(a)
the common multiplier. We say that a is symmetrically parabolic if a+ and a− are
parabolic with N(a+) = N(a−). In this case we denote this common number by
N(a).

Remark 3.10. Let a ∈ {a0, . . . , ar} be a periodic point. If each of a+ and a− is
either hyperbolic or parabolic, then by Lemma 3.5, f is expansive at a.

Remark 3.11. If f : S1 → S1 is analytic and expansive, it is shown in Lemma 4.17
and Lemma 4.18 in [LMMN23] that each point a ∈ {a0, . . . , ar} is either symmet-
rically hyperbolic or symmetrically parabolic. In that case, if a is periodic and q is
its period, then λ(a)q (resp. N(a)+ 1) is the usual multiplier (resp. multiplicity) of
the analytic map f◦q.

4. Main extension theorem

Our main extension theorem provides conditions so that a homeomorphism
h : S1 → S1 that conjugates two covering maps of S1 extends to a quasiconformal
or David homeomorphism of D.
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Let f, g : S1 → S1 be covering maps with corresponding Markov partitions
P(f ; {a0, . . . , ar}), P(g; {b0, . . . , br}). We give the definitions below using the no-
tation associated to the map f . First we require the following condition.

(M1) For each a ∈ {a0, . . . , ar}, each of a+ and a− is either hyperbolic or para-
bolic, as defined in Section 3.6.

Define Ak =
>
[ak, ak+1] for k ∈ {0, . . . , r} and recall that fk = f |intAk

is injective
by the definition of a Markov partition. We impose the following condition.

(M2) For each k ∈ {0, . . . , r} there exist open neighborhoods Uk of intAk and Vk
of fk(intAk) in C such that fk has an extension to a homeomorphism from
Uk onto Vk. We denote the extension by fk. Furthermore, we assume that⋃

0≤j≤r
(k,j) admissible

Uj ⊂ Vk

for all k ∈ {0, . . . , r} and that the regions Uk, k ∈ {0, . . . , r}, are pairwise
disjoint.

We denote by f the map that is equal to fk on Uk, k ∈ {0, . . . , r}. Using con-
dition (M2), we can define Ukj = f−1

k (Uj) for k, j ∈ {0, . . . , r}, whenever (k, j) is
admissible; recall the definitions given after Definition 3.1. Note that Ukj ⊂ Uk and
fk maps Ukj onto Uj . Inductively, for each admissible word w we can find open
regions Uw with the following properties:

(i) Uwj ⊂ Uw, if (w, j) is admissible, and
(ii) fk maps Ukw homeomorphically onto Uw, if (k,w) is admissible.

If w = (k1, . . . , kn) is admissible, we define fw = fkn
◦ · · · ◦ fk1

= f◦n on the set⋃
{Uwj : 0 ≤ j ≤ r, (w, j) admissible}. It follows that fw maps homeomorphically

Uwj onto Uj . Observe that for each admissible word w the open arc intAw is
contained in Uw. Next, we impose the following condition.

(M3) There exists K ≥ 1 such that for each m ∈ N ∪ {0} and each admissible
word w with |w| ≥ m the map f◦m|Uw is K-quasiconformal.

Finally, we consider a technical condition that is a refinement of (M3) and com-
pensates for the unavailability of Koebe’s distortion theorem in our setting. Recall
the definition of the canonical splitting of a word from Section 3.3.

(M3∗) There exists C > 0 such that for each admissible word w with canonical
splitting w = (v, u), if |v| = m and |u| = n, then the map f◦m|Uw is
Kn-quasiconformal for Kn = 1 + C(1 + log(n+ 1))−1.

We now state the main extension theorem.

Theorem 4.1 (Main extension theorem). Let f, g : S1 → S1 be expansive cover-
ing maps with the same orientation and P(f ; {a0, . . . , ar}), P(g; {b0, . . . , br}) be
Markov partitions satisfying conditions (M1), (M2), and (M3). Suppose that the
map h : {a0, . . . , ar} → {b0, . . . , br} defined by h(ak) = bk, k ∈ {0, . . . , r}, conju-
gates f to g on the set {a0, . . . , ar} and assume that for each point a ∈ {a0, . . . , ar}
and for b = h(a) one of the following alternatives occurs.
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(H/P→H/P) There exists µ = µ(a) > 0 such that if a± is parabolic then b± is
parabolic with µ−1N(a±) = N(b±), and if a± is hyperbolic then b±

is hyperbolic with λ(a±)µ = λ(b±).

(H→P) a is symmetrically hyperbolic and b is symmetrically parabolic.

If the alternative (H→P) does not occur, then the map h extends to a homeomorphism

h̃ of D such that h̃|S1 conjugates f to g and h̃|D is quasiconformal.

If g satisfies condition (M3∗), then the map h extends to a homeomorphism h̃ of D
such that h̃|S1 conjugates f to g and h̃|D is a David map.

Remark 4.2. We note that alternative (H/P→H/P) covers the following cases:

• a−, b− are hyperbolic and a+, b+ are hyperbolic with λ(a±)µ = λ(b±)
• a−, b− are hyperbolic and a+, b+ are parabolic with λ(a−)µ = λ(b−) and
µ−1N(a+) = N(b+)

• a−, b− are parabolic and a+, b+ are hyperbolic with µ−1N(a−) = N(b−)
and λ(a+)µ = λ(b+)

• a−, b− are parabolic and a+, b+ are parabolic with µ−1N(a±) = N(b±)

The only restriction is that the multiplicities and multipliers of the points a+, a−

and b+, b− have to be related by the same number µ, which depends only on the
point a.

Remark 4.3. We can relax the assumption that f and g are expansive to the weaker
conditions that f and g are covering maps and the the associated Markov partitions
are primitive. Condition (M1) implies that f, g are expansive at each periodic point
of the Markov partition; see Remark 3.10. Upon imposing conditions (M2) and
(M3), we see that f and g satisfy the assumptions of Theorem 5.3 below. Therefore
they are expansive.

The theorem generalizes the recent result of [LMMN23], which instead assumes
that f and g are piecewise analytic. One of the main technicalities here is that we do
not have Koebe’s distortion theorem available, since the maps f and g are piecewise
quasiconformal. The other technical difficulty is that our definition of hyperbolic
and parabolic points (Section 3.6) is much weaker than the corresponding definitions
in the case of analytic maps.

We initiate the proof of Theorem 4.1, which occupies the rest of the section. We
will formulate most of the statements using the notation associated to the map f and
the Markov partition P(f ; {a0, . . . , ar}). The maps f, g are assumed, throughout,
to be covering maps of S1 with the same orientation. At the moment, we do not
assume that they are expansive, unless otherwise stated. We will formulate a series
of lemmas, indicating each time which of the conditions (M1), (M2), (M3), and
(M3∗) are assumed.

4.1. Quasiconformal elevator. Let I ⊂ S1 be a closed non-degenerate arc and
suppose that there exists an admissible word w with the property that I ⊂ Aw and
I is not contained in any child of Aw. We say that w is the word associated to I. If
f is expansive, then each non-degenerate closed arc has a unique associated word
by (E1). Note that w could be the empty word, in which case Aw = S1. We start
with a combinatorial lemma.
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Lemma 4.4. Suppose that P(f ; {a0, . . . , ar}) is a primitive Markov partition. Let
I ⊂ S1 be a non-degenerate closed arc. Let w be the word associated to I and set
l = |w| ∈ N ∪ {0}.

(I) If I contains a complementary arc of Fl+r+1, then it also contains a com-
plementary arc of Fl+r+1 that is disjoint from the endpoints of Aw.

(II) If I does not contain any complementary arc of Fl+r+1, then the following
statements are true.
(1) There exists a unique point c ∈ I ∩ Fl+1. Moreover, c ∈ int I and c

splits I into two closed arcs I− and I+.
(2) There exist two complementary arcs of Fl+r+1 containing the endpoints

of Aw that are disjoint from I.
(3) If w± is the word associated to I±, then the minimum of the levels of

the endpoints of Aw± is l + 1. In particular, the canonical splitting of
w± has the form w± = (w, u±).

(4) I± contains a complementary arc of F|w±|+1 that has c as an endpoint.

Proof. Recall that Aw is a complementary arc of Fl and Aw ⊃ I. The children of
Aw are complementary arcs of Fl+1. Since I is not contained in any child of Aw,
there exists a point c ∈ int I ∩Fl+1. In particular, Aw contains two complementary
arcs A+, A− of Fl+1 having c as an endpoint. By Lemma 3.6, A+ (resp. A−)
contains two complementary arcs B+

i (resp. B−
i ), i = 1, 2, of Fl+r+1, such that c is

an endpoint of B+
1 (resp. B−

1 ). See the bottom part of Figure 4.1.
Suppose that I contains a complementary arc of Fl+r+1, as in (I). Then it must

contain either B−
1 or B+

1 . None of these arcs contains the endpoints of Aw, so the
proof of this case is completed.

Next, suppose that I does not contain any complementary arc of Fl+r+1 as in
(II). Thus, the same holds for complementary arcs of Fl+1. As a consequence,
there exists a unique point in I ∩ Fl+1, namely the point c ∈ int I ∩ Fl+1 chosen
above. Denote by I± the closures of the components of I \ {c}, so that I± ∩ A±

has non-empty interior. We have completed the proof of (1).
By assumption, none of the complementary arcs B±

i , i = 1, 2, of Fl+r+1 is
contained in I±. Hence, B±

2 is disjoint from I. This completes the proof of (2).
Since B±

1 is not a complementary arc of Fl+1, the endpoint of B
±
1 that is different

from c has level larger than l + 1. Therefore the minimum of the levels of the
endpoints of B±

1 us l + 1. Now, if w± is the word associated to I±, we have
Aw± ⊂ B±

1 . Hence, the minimum of the levels of the endpoints of Aw± is also
l + 1. Consider the canonical splitting w± = (v±, u±), where |v±| = l = |w|. Since
Aw± ⊂ Aw, the first l letters of w± coincide with those of w. We conclude that
v± = w. This proves (3).

Finally, since I+ ⊂ Aw+ and c is an endpoint of Aw+ , the definition of w+ implies
that the child of Aw+ that has c as an endpoint is contained in I+. The analogue
of this statement is true for I−, as required in (4). □

For the proof of Theorem 4.1 we have to study the behavior of the conjugating
homeomorphism h in small arcs I ⊂ S1. Starting with an arbitrary non-degenerate
arc I ⊂ S1, we map it quasisymmetrically, by applying a suitable iterate of f , to
an arc I ′ that is located near a point a ∈ F1. This procedure is referred to as the
quasiconformal elevator and is described more precisely in Lemma 4.5. Note that
there is a fundamental dichotomy: either I ′ contains the point a (as in (A-ii) below),
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Awc

I

I− I+

A− A+

B−
2 B−

1 B+
1 B+

2

Figure 4.1. Illustration of the proof of Lemma 4.4.

or I ′ lies only on one side of a (as in (A-i) below). We remark that the presence of
parabolic points does not allow us to blow up the arc I quasisymmetrically to an
arc of large diameter, comparable to 1.

Lemma 4.5 (Quasiconformal elevator). Suppose that P(f ; {a0, . . . , ar}) is a primi-
tive Markov partition that satisfies conditions (M2) and (M3). There existM,γ ≥ 1
and a distortion function η such that for any non-degenerate closed arc I ⊂ S1 one
of the following alternatives holds. Let w be the word associated to I.

(A-i) The arc I contains a complementary arc of F|w|+r+1. Then there exist
consecutive complementary arcs I1, . . . , Ip of F|w|+r+1, where p ≤M , with

Ii0 ⊂ I ⊂ Aw =

p⋃
i=1

Ii for some i0 ∈ {2, . . . , p− 1}.

Let w = (v, u) be the canonical splitting of w, and set m = |v| and n = |u|.
Then Au has a point a ∈ F1 as an endpoint and

(a) f◦m|Aw
: Aw → Au is η-quasisymmetric or

(b) f◦m|Aw : Aw → Au is ηn-quasisymmetric under condition (M3∗), where
ηn(t) =M max{tKn , t1/Kn} for Kn = 1 +M(1 + log(n+ 1))−1.

(A-ii) The arc I does not contain any complementary arc of F|w|+r+1. Then

there exist non-overlapping arcs I−, I+ such that I = I− ∪ I+ and if w±

is the word associated to I±, then the canonical splitting is of the form
w± = (w, u±). Moreover, for m = |w|, f◦m maps the common endpoint
of I− and I+ to a point a ∈ F1 and I± contains a complementary arc of
F|w±|+r+1, so the first alternative (A-i) is applicable to each of I±. Finally,
f◦m|I is η-quasisymmetric.

In both cases, we have

diam f◦m(I) ≥M−1(diam I)γ .(4.1)

Proof. For each j ∈ {0, . . . , r}, let Bj be the union of all complementary arcs of
Fr+1 that are (compactly) contained in the open arc f(intAj) ⊂ Vj . Let B

′
j , V

′
j be

topological disks such that Bj ⊂ B′
j ⊂ B′

j ⊂ V ′
j ⊂ Vj . We set

δ = min{Mod(V ′
j \B′

j) : j = 0, . . . , r}.

Suppose that I satisfies alternative (A-i). The arc Aw is the union of at most
(r + 1)r+1 consecutive complementary arcs of F|w|+r+1. By Lemma 4.4 (I), one
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of these arcs that is disjoint from the endpoints of Aw is contained in I. This
completes the proof of the first part of (A-i) regarding the inclusions.

Consider the canonical splitting w = (v, u), and setm = |v| and n = |u|. Observe
that the case m = 0 is trivial, since then f◦m is the identity map. Suppose that
m ≥ 1, in which case we must have n ≥ 1; see Section 3.3.

By (M2), f◦m is a homeomorphism from Uv onto a region Vj , j ∈ {0, . . . , r}.
By Lemma 3.2, we have Aw ⊂ intAv ⊂ Uv. Thus, Aw is mapped under f◦m

onto Au ⊂ f(intAj) ⊂ Vj . In addition, since m + 1 is the minimum of the levels
of the endpoints of Aw, the arc Au has a point of F1 as an endpoint. Since Bj

contains the union of complementary arcs of Fr+1 that are contained in the open
arc f(intAj) ⊂ Vj , we conclude that Au ⊂ Bj . Under condition (M3), f◦m|Uv

is
K-quasiconformal for some uniform K ≥ 1. Denote by ω the inverse of f◦m|Uv

,
restricted to Bj . By Theorem 2.1, ω and its inverse are η-quasisymmetric, where

η(t) = C(K, δ)max{tK , t1/K}.(4.2)

In particular, f◦m|Aw
is η-quasisymmetric. If condition (M3∗) is assumed instead,

the same argument as above gives the desired conclusion with ηn in place of η.
Next, assume that I satisfies the second alternative (A-ii). By Lemma 4.4 (1),

there exist non-degenerate and non-overlapping arcs I−, I+ such that I = I− ∪ I+,
so that the common endpoint c of I− and I+ lies in Fm+1, where m = |w|. By
Lemma 4.4 (3), the canonical splitting of w± has the form w± = (w, u±). Note
that f◦m maps c to a point of F1. By Lemma 4.4 (4), I± contains a complementary
arc of F|w±|+r+1, so the first alternative is applicable to each of I±.

Next, we justify that f◦m|I is quasisymmetric. By (M2), f◦m is a homeomor-
phism from Uw onto a region Vj , j ∈ {0, . . . , r}. By Lemma 4.4 (2), I is contained
in a compact subset of Aw that is separated from the endpoints of Aw by two
complementary arcs of F|w|+r+1. Thus, f

◦m maps I homeomorphically onto an arc
I ′ that is separated from the endpoints of the arc f◦m(intAw) = f(intAj) by two
complementary arcs of Fr+1. In particular, I ′ ⊂ Bj . By condition (M3), f◦m|Uw

is K-quasiconformal. Denote by ω the inverse of f◦m|Uw
, restricted to Bj . Using

Theorem 2.1 as above, we conclude that ω and its inverse are η-quasisymmetric
with η as in (4.2). In particular, f◦m|I is η-quasisymmetric.

We finally show (4.1). In both alternatives (A-i) and (A-ii), the map ω is η-
quasisymmetric on Bj and ω(Bj) ⊃ I. By (2.1), we have

diam I

diamω(Bj)
≲ max

{(
diamω−1(I)

diamBj

)K

,

(
diamω−1(I)

diamBj

)1/K
}
.

Note that diamω(Bj) ≲ 1, diamBj ≃ 1, and diamω−1(I) ≲ 1, where ω−1(I) =
f◦m(I). Hence,

diam I ≲ (diam f◦m(I))1/K .

This completes the proof. □

4.2. Diameters of dynamical and non-dynamical arcs. The next lemma sup-
plements the properties of hyperbolic and parabolic points; see Section 3.6.

Lemma 4.6 (Diameters of consecutive arcs). Suppose that P(f ; {a0, . . . , ar}) is
a primitive Markov partition that satisfies conditions (M2) and (M3). For each
a ∈ F1, p ∈ N with p ≥ 2, and for all sufficiently large N0 ∈ N, there exists
a distortion function η and a constant L ≥ 1 with the following properties. If
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I1, . . . , Ip are consecutive complementary arcs of Fn, n ≥ 1, such that a is an
endpoint of I1, then

L−1 ≤ diam Ii
diam Ij

≤ L

for i, j ∈ {2, . . . , p}. Furthermore, if n ≥ N0, then the map f◦(n−N0) is η-
quasisymmetric on

⋃p
i=2 Ii.

In essence, this lemma allows us to blow up quasisymmetrically the arcs I2, . . . , Ip
to large complementary arcs of FN0 ; this type of conclusion is not provided by the
quasiconformal elevator in Lemma 4.5. Also, observe that the arc I1 is intentionally
excluded. In fact, we cannot guarantee that I1 can be blown up quasisymmetrically
to a large arc due to the presence of parabolic points.

Proof. Let p ∈ N, p ≥ 2, and consider N0 ∈ N so that

N0 > max{1 + log(p+ 1)/ log(r + 1), 1 + r(log2(p+ 1) + 1)}.

Also, let n ≥ N0 and I1, . . . , Ip, Ip+1 be consecutive complementary arcs of Fn so

that a ∈ F1 is an endpoint of I1. Suppose first that
⋃p+1

i=1 Ii is not a strict subset of
a complementary arc of F1. Then the number of complementary arcs of Fn that are
contained in a complementary arc of F1 is at most p+1. Hence, (r+1)n−1 ≤ p+1
and n ≤ 1 + log(p+ 1)/ log(r + 1) < N0. This is a contradiction.

Thus, I =
⋃p+1

i=1 Ii is a strict subset of a complementary arc of F1 having a as
an endpoint. Let w be the word associated to I and write w = (j1, . . . , jl). Note
that n > l and there exists a complementary arc A of Fl+1 that is contained in
I and has a as an endpoint. By Lemma 3.6, for i ∈ N ∪ {0}, A contains at least
2i complementary arcs of Fl+1+ir. If i is the largest index with l + 1 + ir ≤ n,
then A contains at least 2(n−l−1)/r−1 complementary arcs of Fn. On the other
hand, A contains at most p + 1 complementary arcs of Fn. We conclude that
n− l < 1 + r(log2(p+ 1) + 1). In particular, n−N0 < l < n.

By condition (M3), there exists a uniform constant K ≥ 1 such that f◦(n−N0)|Uw

is a K-quasiconformal map onto Ujk...jl , where k = n−N0+1. Note that f◦(n−N0)

maps J =
⋃p

i=2 Ii into a fixed compact subset of Ujk...jl , namely into the union of
all complementary arcs of FN0

that are contained in intAjk...jl . It is important here

that we exclude the first and last arcs I1 and Ip+1. By Theorem 2.1, f◦(n−N0)|J
is η-quasisymmetric for some distortion function η, depending on Ujk...jl . Since
l − k < N0 − 1, there is a bounded number of possibilities for the region Ujk...jl ,
so η may be chosen to be a uniform distortion function. This proves the second
conclusion of the lemma.

The first conclusion of the lemma follows the fact that f◦(n−N0)|J is quasisym-
metric when n ≥ N0, combined with (2.1), and the fact that there are finitely many
complementary arcs of Fn when n ≤ N0. □

The definitions of hyperbolic and parabolic points provide diameter bounds for
dynamical arcs, i.e., complementary arcs of Fn. The next technical lemma provides
diameter estimates for a non-dynamical arc I that is located near a point a ∈ F1.

Lemma 4.7 (Diameters of non-dynamical arcs). Suppose that P(f ; {a0, . . . , ar}) is
a primitive Markov partition that satisfies conditions (M1), (M2), and (M3). For
each a ∈ F1, p ∈ N with p ≥ 2, and M ≥ 1, there exists L ≥ 1 such that the
following statement is true. If I1, . . . , Ip are consecutive complementary arcs of Fn,
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n ≥ 1, a is an endpoint of I1, and I1 ⊂
>
[a, z0] for some z0 ̸= a, then for each closed

arc I ⊂ S1 with

I ⊂
p⋃

i=1

Ii, I ∩
p⋃

i=2

Ii ̸= ∅, and diam I ≥M−1 diam I2

one of the following alternatives holds.

• If a+ is parabolic and α = 1/N(a+), then

L−1n−α−1 ≤ diam I

min{l + 1, n}
≤ Ln−α−1,

where l ∈ N∪{0} is the smallest integer, if there exists one, such that there

exists a complementary arc of Fn+l contained in
>
[a, z0] that has a as an

endpoint and does not intersect I; if no such integer exists, we set l = ∞.
• If a+ is hyperbolic, then

L−1λ(a+)−n ≤ diam I ≤ Lλ(a+)−n.

The corresponding estimates hold for a− if I1 ⊂
>
[z0, a] for some z0 ̸= a.

The proof of Lemma 4.7 is identical to the proof of Lemma 4.20 in [LMMN23]
and we omit it. Conditions (M2) and (M3), are only used to apply Lemma 4.6,
which guarantees that diam Ii ≃ diam I2 for i ∈ {2, . . . , p}. The initial assumptions
about the relative position of I and the relative size of I, imply that the diameter
of I can be estimated using the dynamical complementary arcs of Fn. Specifically,
the estimates for diam I follow from the hyperbolic and parabolic estimates for the
point a ∈ F1, as provided by Definitions 3.7 and 3.8.

The next lemma guarantees that if Lemma 4.7 is applicable to an arc I, then it
is also applicable to the image h(I) under a homeomorphism conjugating f to g.

Lemma 4.8. Suppose that f and g are expansive and satisfy conditions (M2) and
(M3). Let h : S1 → S1 be a homeomorphism that conjugates f to g and satisfies
h(ak) = bk, k ∈ {0, . . . , r}. For each a ∈ F1, p ∈ N with p ≥ 2, and M ≥ 1, there
exists L ≥ 1 such that the following statement is true. If I1, . . . , Ip are consecutive
complementary arcs of Fn, n ≥ 1, and a is an endpoint of I1, then for each closed
arc I ⊂ S1 with

I ⊂
p⋃

i=1

Ii, I ∩
p⋃

i=2

Ii ̸= ∅, and diam I ≥M−1 diam I2

we have diamh(I) ≥ L−1 diamh(I2).

Proof. By Lemma 3.6 each of I1, . . . , Ip contains at least two complementary arcs of
Fn+r. Denote by Ji, i ∈ {1, . . . , p′}, the family of consecutive complementary arcs
of Fn+r that are contained in

⋃p
i=1 Ii, where a is an endpoint of J1 and J1∪J2 ⊂ I1.

Also, let i0 ∈ {3, . . . , p′} such that Ji0 ⊂ I2. Note that p′ ≤ p(r+1)r−1. By Lemma
4.6, we have

diam I2 ≤ diam

( p⋃
i=2

Ii

)
≤ diam

( p′⋃
i=2

Ji

)
≃ diam J2 ≃ diam Ji0 ≲ diam I2.

The same is true for the images under h, hence

diam I2 ≃ diam J2 and diamh(I2) ≃ diamh(J2).(4.3)
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Let I ⊂ S1 be a closed arc as in the statement, in particular, satisfying diam I ≥
M−1 diam I2. If I∩J1 ̸= ∅, then we have J2 ⊂ I, since I∩

⋃p
i=2 Ii ̸= ∅. If I∩J1 = ∅,

then I ⊂
⋃p′

i=2 Ji. In both cases, we have

diam J ≃ diam J2, where J = I ∩
p′⋃
i=2

Ji.(4.4)

By Lemma 4.6, there exists N0 ∈ N and a distortion function η such that if

n+ r ≥ N0, then f
◦(n+r−N0) and g◦(n+r−N0) are η-quasisymmetric on

⋃p′

i=2 Ji and

h(
⋃p′

i=2 Ji), respectively. Therefore, by (4.4) and (2.1) we have

diam f◦(n+r−N0)(J) ≃ diam f◦(n+r−N0)(J2).

Since f◦(n+r−N0)(J2) is a complementary arc of FN0 , its diameter is comparable to
1. The fact that h is a homeomorphism conjugating f to g implies that

diam g◦(n+r−N0)(h(J)) ≃ diam g◦(n+r−N0)(h(J2)) ≃ 1.

Since g◦(n+r−N0) is η-quasisymmetric on J , diamh(J) ≃ diamh(J2). As I ⊃ J , we
have diamh(I) ≳ diamh(J2). Finally, by (4.3), we have diamh(J2) ≃ diamh(I2).
This completes the proof in the case that n + r ≥ N0. If n + r < N0, then the
desired conclusion follows immediately from the uniform continuity of h. □

4.3. Distortion estimates and Proof of Theorem 4.1. Let f, g be as in The-
orem 4.1. The expansivity and Lemma 3.4 imply that the map h : {a0, . . . , ar} →
{b0, . . . , br} from the statement of Theorem 4.1 extends to an orientation-preserving
homeomorphism h of S1 that conjugates f to g.

Let I, J ⊂ S1 be adjacent closed arcs each of which has length t ∈ (0, 1/2).
Consider points a ∈ F1 and b = h(a) arising by applying Lemma 4.5 to the arc
I ∪ J . We will show that

diamh(I) ≃ diamh(J) under condition (H/P→H/P)(4.5)

for the points a, b and that

max

{
diamh(I)

diamh(J)
,
diamh(J)

diamh(I)

}
≲ log(1/t) under condition (H→P)(4.6)

for a, b. The above estimates, when combined with the Beurling–Ahlfors extension
theorem [BA56], which provides a quasiconformal extension, or with Theorem 2.6,
which provides a David extension, complete the proof of Theorem 4.1.

Let m be as in Lemma 4.5, so that f◦m|I∪J and g◦m|h(I∪J) are η-quasisymmetric
for some uniform distortion function η. We let I ′ = f◦m(I) and J ′ = f◦m(J). Since
diam I = diam J , we have diam I ′ ≃ diam J ′. We consider two main cases for the
proof, depending on which of the two alternatives of Lemma 4.5 applies to I ∪ J .

4.3.1. Alternative (A-i). Suppose that alternative (A-i) holds for I ∪J . Then there
exists p ∈ N that is uniformly bounded above, n ∈ N ∪ {0}, and consecutive
complementary arcs I ′1, . . . , I

′
p of Fs, where s = n+r+1, such that a is an endpoint

of I ′1 and

I ′i0 ⊂ I ′ ∪ J ′ ⊂
p⋃

i=1

I ′i(4.7)
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I ′ J ′

I ′1 I ′2 I ′3

J ′
1 J ′

2

Figure 4.2. Relative positions of arcs in the case of (A-i).

for some i0 ∈ {2, . . . , p − 1}. Without loss of generality, suppose that
⋃p

i=1 I
′
i ⊂

>
[a, z0] for some z0 ̸= a, and that I ′ is closer to a than J ′ within

⋃p
i=1 I

′
i. The

relative position of I ′ and J ′ implies that J ′ ∩
⋃p

i=2 I
′
i ̸= ∅; see Figure 4.2.

Let k ∈ N ∪ {0} be the smallest integer such that a complementary arc of
Fs+k not having a as an endpoint intersects I ′. By the definition of k there exist
consecutive complementary arcs J ′

1, . . . , J
′
p′ of Fs+k, where p

′ ≤ max{r+1, p}, such
that I ′ ⊂

⋃p′

i=1 J
′
i and I ′ ∩

⋃p′

i=2 J
′
i ̸= ∅; see Figure 4.2. Also, let l1 ∈ N ∪ {0,∞}

(resp. l2 ∈ N∪{0}) be the smallest number such that there exists a complementary

arc of Fs+k+l1 (resp. Fs+l2) contained in
>
[a, z0] that has a as an endpoint and does

not intersect I ′ (resp. J ′). Observe that k ≤ l2 ≤ k + 1.

Case H: a+ is hyperbolic. By Lemma 4.7, diam J ′ ≃ λ(a+)−s and diam I ′ ≃
λ(a+)−s−k. Since diam I ′ ≃ diam J ′, we conclude that k ≲ 1. Therefore,

diam I ′ ≃ diam J ′ ≃ λ(a+)−s.(4.8)

By Definition 3.7, we have diamJ ′
2 ≃ λ(a+)−s−k ≃ diam I ′. Therefore, Lemma 4.8

is applicable, and

diamh(J ′) ≳ diamh(I ′2) and diamh(I ′) ≳ diamh(J ′
2).(4.9)

These inequalities imply that Lemma 4.7 is applicable to the images h(I ′), h(J ′).

Case H→H: b+ is hyperbolic. By Lemma 4.7,

diamh(I ′) ≃ λ(b+)−s−k ≃ λ(b+)−s ≃ diamh(J ′).

Since g◦m|h(I∪J) is quasisymmetric, (4.5) follows.

Case H→P: b+ is parabolic. By (4.1) in Lemma 4.5, we have

diam I ′ ≳ (diam I)γ ≃ tγ .

Combined with (4.8) and the assumption that t ∈ (0, 1/2), this gives log(1/t) ≳
s ≃ n+ 1. By Lemma 4.7, combined with the facts that k ≲ 1 and k ≤ l2 ≤ k + 1,
we have

diamh(I ′) ≃ (s+ k)−β−1 min{l1 + 1, s+ k} ≃ s−β−1 min{l1 + 1, s} and

diamh(J ′) ≃ s−β−1 min{l2 + 1, s} ≃ s−β−1 min{1, s};

here β = 1/N(b+). Thus,

max

{
diamh(I ′)

diamh(J ′)
,
diamh(J ′)

diamh(I ′)

}
≲ s ≃ n+ 1.
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By the final part of (A-i) and assuming condition (M3∗) for the map g, we see that
g◦m|h(I∪J) is ηn-quasisymmetric. By (2.1), we conclude that, for Kn = 1 +M(1 +

log(n+ 1))−1, we have

max

{
diamh(I)

diamh(J)
,
diamh(J)

diamh(I)

}
≲ (n+ 1)Kn ≃ n+ 1 ≲ log(1/t).

Thus, (4.6) is true.

Case P→P: a+ and b+ are parabolic. Let α = 1/N(a+) and β = 1/N(b+). By
Lemma 4.7, since k ≤ l2 ≤ k + 1, we have

s−α−1 min{k + 1, s} ≃ diam J ′ ≃ diam I ′ ≃ (s+ k)−α−1 min{l1 + 1, s+ k}.
If k + 1 ≥ s, we obtain

s−α ≃ (k + 1)−α−1 min{l1 + 1, s+ k} ≲ (k + 1)−α−1(s+ k) ≃ (k + 1)−α.

We conclude that k + 1 ≲ s. In any case, 0 ≤ k ≲ s.
By Lemma 4.7 and Definition 3.8,

diam I ′ ≃ (s+ k)−α−1 min{l1 + 1, s+ k} ≳ (s+ k)−α−1 ≃ diam J ′
2.

Therefore, Lemma 4.8 can be applied to I ′, so diamh(I ′) ≳ diamh(J ′
2). The

relative position of I ′, J ′ and (4.7) imply that Lemma 4.8 applies to J ′ as well, so
diamh(J ′) ≳ diamh(I ′2). We now apply Lemma 4.7 to h(I ′) and h(J ′) and obtain

diamh(J ′)

diam J ′ ≃ s−β−1 min{l2 + 1, s}
s−α−1 min{l2 + 1, s}

≃ sα−β , and

diamh(I ′)

diam I ′
≃ (s+ k)−β−1 min{l1 + 1, s+ k}

(s+ k)−α−1 min{l1 + 1, s+ k}
≃ (s+ k)α−β ≃ sα−β .

Altogether, since diam I ′ ≃ diam J ′, we have diamh(I ′) ≃ diamh(J ′). The fact
that g◦m|h(I∪J) is quasisymmetric implies (4.5).

4.3.2. Alternative (A-ii). Suppose that alternative (A-ii) holds for I ∪ J . Without

loss of generality assume that J ′ ⊂
>
[a, z0] for some z0 ̸= a and I ′ = I ′1 ∪ I ′2, where

I ′2 ⊂
>
[a, z0] and I

′
1 ⊂

>
[z0, a]. According to (A-ii), I ′2 ∪ J ′ satisfies the conclusions of

(A-i). In particular, there exist p ∈ N, uniformly bounded above, n ∈ N ∪ {0}, and
consecutive complementary arcs J ′

1, . . . , J
′
p of Fs, where s = n+ r + 1, such that a

is an endpoint of J ′
1 and

J ′
2 ⊂ I ′2 ∪ J ′ ⊂

p⋃
i=1

J ′
i .

See Figure 4.3 for an illustration. For i = 1, 2, denote by wi the word associated
to I ′i and set si = |wi|+ 1. Let l ∈ N ∪ {0} be the smallest integer such that there

exists a complementary arc of Fs+l contained in
>
[a, z0] that has a as an endpoint

and does not intersect J ′. Observe that s2 = s+ l.

Case (H/P→H/P): There exists µ > 0 such that if a± is hyperbolic, then b± is also
hyperbolic with λ(a±)µ = λ(b±) and if a± is parabolic, then b± is also parabolic
with µ−1N(a±) = N(b±). Our goal is to show that in all of these cases we have

diamh(J ′) ≃ (diam J ′)µ and diamh(I ′i) ≃ (diam I ′i)
µ(4.10)

for i = 1, 2. These conditions imply that diamh(I ′) ≃ diamh(J ′), so (4.5) follows
since the map g◦m|h(I∪J) is a quasisymmetry.
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Figure 4.3. Relative positions of arcs in the case of (A-ii).

Case H→H: a+ and b+ are hyperbolic. By Definition 3.7, we have

diam I ′2 ≃ λ(a+)−s2 and diamh(I ′2) ≃ λ(b+)−s2

so diamh(I ′2) ≃ (diam I ′2)
µ. Moreover, by Lemma 4.7, we have

diam J ′ ≃ λ(a+)−s ≃ diam J ′
2.

Thus, we apply Lemma 4.8 to J ′ and obtain diamh(J ′) ≳ diamh(J ′
2). By Lemma

4.7 we now have

diamh(J ′) ≃ λ(b+)−s ≃ (diam J ′)µ.

If a− and b− are hyperbolic, then with the same argument we have diamh(I ′1) ≃
diam(I ′1)

µ.

Case P→P: a+ and b+ are parabolic. Let α+ = 1/N(a+) and β+ = 1/N(b+), so
µα+ = β+. By Definition 3.8,

diam I ′2 ≃ s−α+

2 and diamh(I ′2) ≃ s−β+

2 .(4.11)

Hence, diamh(I ′2) ≃ (diam I ′2)
µ. By Lemma 4.7, we have

diam J ′ ≃ s−α+−1 min{l + 1, s} and diamh(J ′) ≃ s−β+−1 min{l + 1, s}.

Given that s2 = s+ l, by (4.11) we obtain

(s+ l)−α+

≃ diam I ′2 ≲ diam I ′ ≃ diam J ′ ≃ s−α+−1 min{l + 1, s},

which implies that l + 1 ≳ s. Therefore,

diam J ′ ≃ s−α+

and diamh(J ′) ≃ s−β+

,

which give the desired diamh(J ′) ≃ (diam J ′)µ. If a− and a− are parabolic then
with the same argument as in I ′2 we obtain diamh(I ′1) ≃ (diam I ′1)

µ. We have
completed the verification of (4.10).

Case (H→P): a is symmetrically hyperbolic and b is symmetrically parabolic. We
set λ = λ(a) and β = 1/N(b). We can apply Lemma 4.7 and obtain

diam J ′ ≃ λ−s and diamh(J ′) ≃ s−β−1 min{l + 1, s},

diam I ′2 ≃ λ−s2 and diamh(I ′2) ≃ s−β
2 , and

diam I ′1 ≃ λ−s1 and diamh(I ′1) ≃ s−β
1 .

By (4.1) in Lemma 4.5, we have

diam J ′ ≳ (diam J)γ ≃ tγ .

Combined with the above and the assumption that t ∈ (0, 1/2), this gives log(1/t) ≳
s ≃ n+ 1.
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If diam I ′2 ≤ diam I ′1, then diam I ′1 ≃ diam J ′. Hence, s2 ≳ s1 and s1 ≃ s. These

conditions give diamh(I ′) ≃ s−β
1 ≃ s−β . If, instead, diam I ′1 ≤ diam I ′2, the same

analysis gives diamh(I ′) ≃ s−β
2 ≃ s−β . In both cases, we have

diamh(I ′) ≃ diamh(J ′
1) ≃ s−β .(4.12)

We conclude that

diamh(J ′)

diamh(J ′
1)

≃ s−1 min{l + 1, s} and max

{
diamh(J ′

1)

diamh(J ′)
,
diamh(J ′)

diamh(J ′
1)

}
≲ s.

Under condition (M3∗), the map g◦m|h(J′
1∪J′) is ηn-quasisymmetric, so by (2.1)

max

{
diamh(J1)

diamh(J)
,
diamh(J)

diamh(J1)

}
≲ sKn ≃ (n+ 1)Kn ≃ n+ 1 ≲ log(1/t).

Finally, g◦m|h(I∪J) is quasisymmetric, so (4.12) gives diamh(J1) ≃ diamh(I).
Thus,

max

{
diamh(I)

diamh(J)
,
diamh(J)

diamh(I)

}
≲ log(1/t),

as desired in (4.6). This completes the proof.

5. Classification of piecewise quasiconformal circle maps

Theorem 5.1. Let f : S1 → S1 be an expansive covering map with a Markov par-
tition P(f ; {a0, . . . , ar}) such that

(i) conditions (M1), (M2), and (M3) are satisfied,

(ii) the restriction of f to the arc Ak =
>
[ak, ak+1] is injective and at most one

of the endpoints of Ak is periodic for each k ∈ {0, . . . , r}, and
(iii) each point of {a0, . . . , ar} is either symmetrically hyperbolic or symmetri-

cally parabolic.

Then there exists an expansive covering map g : S1 → S1 with a Markov partition
P(g; {b0, . . . , br}) and an orientation-preserving homeomorphism h : S1 → S1 that
conjugates f to g with h(ak) = bk for each k ∈ {0, . . . , r} and such that

(I) conditions (M1), (M2), and (M3) are satisfied by P(g; {b0, . . . , br}),
(II) the restriction of g to the arc Bk =

>
[bk, bk+1] is the restriction of a Möbius

or anti-Möbius transformation Mk (depending on the orientation of f) of
the unit disk for each k ∈ {0, . . . , r}, and

(III) for each a ∈ {a0, . . . , ar} and for b = h(a), we can prescribe whether b is
symmetrically hyperbolic or symmetrically parabolic.

Recall that the indices are taken in modulo r + 1; e.g. ar+1 = a0 and a−1 = ar.

Remark 5.2. If in (III) we prescribe that b = h(a) is symmetrically hyperbolic (resp.
parabolic) if and only if a is symmetrically hyperbolic (resp. parabolic) for each
a ∈ {a0, . . . , ar}, then by Theorem 4.1 the conjugacy h is quasisymmetric. Hence,
Theorem 5.1 provides a classification of piecewise quasiconformal circle maps up to
quasisymmetric conjugacy.

Before proving the theorem, we establish a general criterion for the expansivity
of a map.
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Theorem 5.3. Let f : S1 → S1 be a covering map and P(f ; {a0, . . . , ar}) be a
primitive Markov partition satisfying conditions (M2) and (M3). Suppose that f is
expansive at each periodic point of {a0, . . . , ar}. Then f is expansive.

Proof. By replacing f with f ◦ f and changing appropriately the Markov partition,
we may assume that f is orientation-preserving; see (E3).

Suppose that f is not expansive. By (E1) there exists δ > 0, ji ∈ {0, . . . , r},
i ∈ N, and w(n) = (j1, . . . , jn) such that diamAw(n) → δ as n → ∞. We will
first reduce to the case that there exists a point a ∈ F1 and a nested sequence of
complementary arcs of Fn that have a as an endpoint and have large diameter.

Since the Markov partition is primitive, by Lemma 3.6, there exists a subsequence
{w(kn)}n∈N of {w(n)}n∈N such that Jn = Aw(kn) is a complementary arc of F|w(kn)|
but not of F|w(kn)|+1, n ∈ N. Thus, w(kn) is the word associated to Jn. By
Lemma 4.5 (A-i) applied to Jn, if we consider the canonical splitting w(kn) =
(v(n), u(n)) andm(n) = |v(n)|, then Au(n) has a point a(n) of F1 as an endpoint and

f◦m(n)|Jn : Jn → Au(n) is η-quasisymmetric for some uniform distortion function η.
Moreover, there exist consecutive complementary arcs I1(n), . . . , Ipn

(n), 3 ≤ pn ≤
M , of F|w(kn)|+r+1 such that Jn =

⋃pn

i=1 Ii(n). The notation is such that I1(n) is

the arc whose image I ′1(n) under f
◦m(n) has a(n) as an endpoint. We also denote

by I(n) the arc among I1(n), . . . , Ipn
(n) that contains all but finitely many arcs Jl,

l ∈ N, and hence diam I(n) → δ as n → ∞. In addition, by (4.1) in Lemma 4.5,
there exists δ′ > 0 such that diamAu(n) ≥ δ′ for all n ∈ N.

By Lemma 4.6, the images of I2(n), . . . , Ipn(n) under f◦m(n) have compara-

ble diameters. Since f◦m(n)|Jn
is η-quasisymmetric, by (2.1) we conclude that

I2(n), . . . , Ipn
(n) have comparable diameters. Given that diam I(n) → δ and

diam Jn → δ as n → ∞, we conclude that I1(n) = I(n) for all sufficiently large
n ∈ N. Moreover, diam(Jn \ I1(n)) → 0 as n → ∞. Hence, by (2.1), we have
diam(Au(n) \ I ′1(n)) → 0. This shows, that |u(n)| → ∞ as n→ ∞.

Thus, there exists a ∈ F1 and for each n ∈ N a complementary arc Bn of
Fn having a as an endpoint such that Bn+1 ⊂ Bn and diamBn ≥ δ′ for each
n ∈ N. By applying finitely many iterates of f , and using the uniform continuity
of (f |Bn

)−1, we may assume that a is a periodic point with period p. Let C1 = B1

and Cn = Bnp+1, so that f◦p maps Cn+1 onto Cn.
By (M2) and (M3), for each n ∈ N there exists a regionWn containing intCn such

that Wn+1 ⊂ Wn and f◦p|Wn+1
: Wn+1 → Wn is K-quasiconformal for a uniform

constant K ≥ 1. Consider the inverse map gn : Wn →Wn+1. We also define Gn =
gn ◦ · · · ◦ g1 : W1 → Wn+1, which is K-quasiconformal by (M3). Since Wn ⊂ W1

for each n ∈ N, Gn omits all values in the complement of W1. By [LV73, Theorem
II.5.2], Gn converges locally uniformly, after passing to a subsequence, to a constant
map or to aK-quasiconformal embedding G : W1 → C. By Lemma 3.5, we conclude
that G is the constant map z 7→ a.

For n ∈ N, let bn be the endpoint of Cn that is different from a and observe
that f◦p(bn+1) = bn, n ∈ N. Since diamCn ≥ δ′ for each n ∈ N, bn converges to a
point b ̸= a. Since the Markov partition is primitive, by Lemma 3.6 we conclude
that bk0 ∈ W1 for some k0 ∈ N. Note that as n → ∞, the points Gn(bk0) = bk0+n

converge to G(bk0
) = a. Thus, a = b, a contradiction. □

Proof of Theorem 5.1. Suppose that ak is a periodic point of f . By assumption (ii),
f |Ak

is injective and the points ak−1, ak+1 are not periodic. If ak−1 = ak+1, then we
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necessarily have f(ak+1) = ak, which contradicts injectivity. Thus, ak−1 ̸= ak+1.
This implies that there are at least 3 points in the Markov partition {a0, . . . , ar}.

Consider points b0, . . . , br ∈ S1 with the same cyclic order as the points a0, . . . , ar.
We require that the length of Bk is less than π for i ∈ {0, . . . , r}; this is possible since
there are at least 3 arcs. Define g(bi) = bj whenever f(ai) = aj , i, j ∈ {0, . . . , r}.
For each k ∈ {0, . . . , r} we will define g|Bk

to be an appropriate (anti-)Möbius
transformation such that Bi ⊂ g(Bk) if and only Ai ⊂ f(Ak).

For simplicity, suppose that f is orientation-preserving. Let k ∈ {0, . . . , r} and

suppose that f maps the arc Ak onto an arc
>
[ai, aj ]. By assumption, f |Ak

is
injective, so ai ̸= aj . We consider two cases.

Case 1: The endpoints of Ak are not periodic. We define g|Bk
to be the restriction

of a Möbius transformation Mk of the unit disk that maps the arc Bk onto
>
[bi, bj ].

Case 2: One of the endpoints of Ak, say ak, periodic. By assumption, ak+1 is not
periodic. If bk is prescribed in (III) to be symmetrically hyperbolic, we define g|Bk

to be the restriction of a Möbius transformation Mk of the unit disk that maps

Bk to
>
[bi, bj ] and such that (g|Bk

)′(bk) = 2 > 1. If, instead bk is prescribed to be
symmetrically parabolic, then we require that g|Bk

is a Möbius transformation Mk

of the unit disk that maps Bk to
>
[bi, bj ] such that (g|Bk

)′(bk) = 1 and Bk defines a
repelling direction.

By construction, g is a covering map that is expansive at each periodic point
of {b0, . . . , br}. Consider the Markov partition P(g; {b0, . . . , br}). Since the corre-
sponding Markov partition for f is primitive, we conclude that the same is true for
g. By Theorem 5.3, we conclude that g is expansive on S1, once we verify conditions
(M2) and (M3).

Let D ⊂ C be an open disk that contains for each k ∈ {0, . . . , r} the planar
disk that is orthogonal to the unit circle at the points bk and bk+1; here we use the
assumption that the length of Bk is less than π. For k ∈ {0, . . . , r}, let Vk ⊂ C
be the intersection of D with a disk in the sphere Ĉ that is orthogonal to the unit
circle at the pointsMk(bk) andMk(bk+1), and such thatMk(Bk) ⊂ Vk. Then define
Uk =M−1

k (Vk), which is contained in the planar disk that is orthogonal to the unit
circle at bk and bk+1. Observe that Uk ⊂ D by the choice of D. Moreover, if
Bi ⊂ g(Bk) then, by construction, Ui is contained in Vk, so (M2) holds. Condition
(M3) is automatic.

Finally, we verify condition (M1) and show that each point of {b0, . . . , br} is sym-
metrically hyperbolic or symmetrically parabolic. Since g : S1 → S1 is bi-Lipschitz,
it suffices to consider periodic points. Let bk be a periodic point with period p.
Suppose that bk is prescribed in (III) to be symmetrically hyperbolic. Then there
exists a neighborhood W of bk such that g◦p|Bk∩W and g◦p|Bk−1∩W are restrictions
of two hyperbolic Möbius transformations with a repelling point at bk and with the
same multiplier, equal to 2p. We now use [LMMN23, Lemma 4.17], which implies
that bk is indeed symmetrically hyperbolic.

Suppose that bk is prescribed to be symmetrically parabolic. By construction,
there exists a neighborhood W of bk such that g◦p|Bk∩W (resp. g◦p|Bk−1∩W ) is the
restriction of a parabolic Möbius transformation such that Bk (resp. Bk−1) defines
a repelling direction for the fixed point bk. The parabolic multiplicity for both
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transformations is 2. We now use [LMMN23, Lemma 4.18], which implies that bk
is indeed symmetrically parabolic. □

6. Cusps and obstructions for David homeomorphisms

In this section we prove the first part of Theorem 1.7. The main result in [IOZ21]
implies that there exists no David homeomorphism of the sphere that maps a Jordan
region that is smooth except at a quadratic cusp to the unit disk. This result does
not apply immediately in our setting because the boundary of a parabolic basin is
not necessarily smooth. Our proof is by contradiction and follows similar length-
area estimates as in [IOZ21].

6.1. Parabolic estimates. Let R be a rational map. Let Ω be an immediate basin
of a parabolic fixed point a of multiplicity 2 such that R′(a) = 1. After normalizing,
we assume that Ω ⊂ C, a = 0 is a fixed point, and R(z) = z + z2 + O(z3) in a
neighborhood of 0. We also assume that Ω is a Jordan region.

We introduce a coordinate change w =M(z) = z−1, which sends the fixed point
0 to ∞. We fix a large C > 0 and real values y− < y+ to be specified later. Let
V = M−1({w : Re(w) > C}), α± = M−1({x + iy± : x > C}), and W ⊂ V be the
region bounded by α±. Note that α± are parabolas meeting at 0. Also, for t > 0

define J̃t = { 1
t + iy : y ∈ R} and Jt = M−1(J̃t). See Figure 6.1 for an illustration.

The next lemma is independent of the dynamics.

Lemma 6.1. For each Borel function ρ : W → [0,∞] we have∫ C−1

0

∫
Jt∩W

ρ dH1dt ≃
∫
W

ρ.

Proof. Consider the projection map G : V → (0, C−1) defined by sending a point

z ∈ Jt to t. Note that G(z) = 1
Re( 1

z )
= x + y2

x , where z = x + iy. Since W is

bounded by the parabolas α±, we have y = O(x2) on W . Thus,

∇G =
[
1− y2

x2 ,
2y
x

]
=
[
1 +O(x2), O(x)

]
.

Thus, |∇G| is comparable to 1 on W . By the coarea formula [Fed69, Theorem
3.2.11], for each Borel function ρ : W → [0,∞] we have∫ C−1

0

∫
Jt∩W

ρ dH1dt =

∫ C−1

0

∫
G−1(t)∩W

ρ dH1dt =

∫
W

ρ|∇G| ≃
∫
W

ρ.

This completes the proof. □

The map R is conjugate to F (w) = w − 1 + cw−1 + O(w−2) near ∞ for some

constant c ∈ C. Let Ω̃ be the Fatou component Ω in this coordinate. Consider the
right half-plane {w : Re(w) > C} for some constant C > 0 sufficiently large.

Lemma 6.2. The following statements are true for a sufficiently large C > 0.

(1) There exist two disjoint arcs γ̃± in ∂Ω̃∩ {w : Re(w) > C} each having one
endpoint at ∞ and one endpoint at {w : Re(w) = C} that are backward
invariant under F .

(2) There exist values y± ∈ R so that γ̃± ⊂ {w : Im(w) ∈ (y−, y+)}.
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Re(w)=C

γ̃+

γ̃−

Im(w) = y+

Im(w) = y−

J̃t

Ĩt
Ũt M−1

0

V

Jt
α−

α+

γ−

γ+

ItUt

Figure 6.1. Illustration of the setup in Lemmas 6.2 and 6.1.

For t ∈ (0, C−1) let Ũt be the unbounded component of {w : Re(w) > 1
t } \ Ω̃ and Ĩt

be the interior of the linear set J̃t ∩ ∂Ũt. For all t ∈ (0, C−1) we have

(3) Ũt ∪ Ĩt ⊂ {w : Im(w) ∈ (y−, y+)} and l(̃It) ≃ 1.

Let It =M−1(̃It), γ± =M−1(γ̃±), and Ut =M−1(Ũt). For t ∈ (0, C−1) we have

(4) l(It) ≃ l(Jt ∩W ) ≃ t2 and

(5) |Ut| ≃ t3.

Here the length l is measured by means of the Hausdorff 1-measure, and |Ut| is
the area of Ut. See Figure 6.1 for an illustration of the conclusions of the lemma.

Proof. Since the parabolic multiplicity of R at 0 is equal to 2, for each δ > 0
there exists a neighborhood N of 0 such that ∂Ω ∩ N is contained in the cone
{reiθ : |θ| < δ}. Thus, if C is sufficiently large, there exist two disjoint arcs γ̃± in

∂Ω̃∩{w : Re(w) > C} with an endpoint at ∞ and an endpoint at {w : Re(w) = C}
that are backward invariant under F . This justifies Part (1). We assume that γ̃−

lies below γ̃+, as in Figure 6.1.
We consider the Fatou coordinate. Specifically, by [Shi00, Proposition 2.2.1],

if C is sufficiently large, there exists an injective holomorphic function Φ: {w :
Re(w) > C} → C so that Φ(F (w)) = Φ(w) − 1, and Φ has asymptotic expansion
w + O(logw) as w → ∞ within a sector {x + iy : x > b − k|y|}. Since the
arcs Φ(γ̃±) are backward invariant under z 7→ z − 1, it is easy to check that

they are contained in a horizontal strip and l(Φ(̃It)) is uniformly bounded from
below for t ∈ (0, C−1). Note that Im(logw) is bounded, so γ̃± are contained in
some horizontal strip {w : Im(w) ∈ (y−, y+)}. This justifies Part (2), which also
implies the first claim in (3). Since on a horizontal strip we have Im(logw) → 0 as

Re(w) → ∞, we see that l(̃It) is uniformly bounded from below for t ∈ (0, C−1).
This justifies Part (3).

Part (4) follows from (3) and the observation that |(M−1)′(z)| ≃ t2 when z ∈
J̃t ∩ {w : Im(w) ∈ (y−, y+)}. For part (5) note that Js ∩W ⊃ Ut ∩ Js ⊃ Is for
0 < s < t < C−1. By (4) we have l(Ut ∩ Js) ≃ t2. Now, Lemma 6.1, applied to the
characteristic function ρ = χUt

, gives

|Ut| =
∫
W

χUt ≃
∫ t

0

∫
Js∩W

χUt dH1ds ≃
∫ t

0

l(Ut ∩ Js) ds ≃ t3.
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Thsi completes the proof. □

6.2. Lp-distortion and Lp-quasidisks. We first introduce some notation and
basic properties of maps of finite Lp-distortion. We refer the readers to [IOZ21] for

more details. A homeomorphism f : C → C in the Sobolev class W 1,1
loc (C) is said

to have finite distortion if there exists a measurable function K : C → [1,∞) such
that |Df(z)|2 ≤ K(z)Jf (z) for a.e. z ∈ C. The smallest function K(z) ≥ 1 with
the above property is denoted by Kf (z).

Definition 6.3. Let 1 ≤ p ≤ ∞. A homeomorphism f : C → C is said to be a
map of Lp-distortion if f is a map of finite distortion and Kf ∈ Lp

loc(C). A domain
X ⊂ C is called an Lp-quasidisk if there exists a homeomorphism f : C → C of
Lp-distortion such that f(X) = D.

Note that a homeomorphism f : C → C of class W 1,1
loc (C) is quasiconformal if

and only if it is a map of L∞-distortion. Moreover, a David homeomorphism is a
map of Lp-distortion for all 1 ≤ p <∞, as a consequence of (2.2).

Suppose X ⊂ C is an Lp-quasidisk. Let f : C → C be a homeomorphism of Lp-

distortion. We extend f to Ĉ so that f(∞) = ∞. Let Ψ(z) = 1
z be the reflection

along the unit circle. Then the map

g = f−1 ◦Ψ ◦ f : Ĉ → Ĉ(6.1)

is a reflection in the boundary ∂X, i.e.,
• g(X) = Ĉ \ X, and
• g(z) = z for z ∈ X.

The following result is a consequence of [IOZ21, Theorem 3.2 and (5.7)].

Lemma 6.4. Let X ⊂ C be an Lp-quasidisk, and let g be the reflection in ∂X
given by (6.1). Then for any bounded domain U ⊂ C so that f−1(0) /∈ U , we have
g ∈W 1,1(U) and(∫

U

|Dg|p

|Jg|
p−1
2

) 1
p (∫

U

|Jg|
1
2

) p−1
p

≤ ∥Kf∥
1
2

Lp(U)∥Kf∥
1
2

Lp(g(U)) |U |
p−1
2p |g(U)|

p−1
2p .

Here, integration is with respect to Lebesgue measure in the plane; also, in the
end of the line, | · | denotes the area of a planar set.

Lemma 6.5. Let {an}n∈N be a sequence of positive real numbers and r > 0. Then
one of the following alternatives holds.

(1) an ≤ rn for all but finitely many n ∈ N.
(2) There exists a subsequence {akn

}n∈N of {an}n∈N and a constant M > 0
such that rkn < akn

≤Makn+1 for each n ∈ N.

Proof. Suppose an > rn for infinitely many n ∈ N. By passing to a subsequence,
we assume that this is the case for all n ∈ N. If limn→∞ an/an+1 = ∞, then
limn→∞ an+1/an = 0, so an ≤ rn for all sufficiently large n ∈ N. This is a contra-
diction. Therefore, lim infn→∞ an/an+1 < ∞ and there exists a constant M > 0
and a subsequence {akn

}n∈N of {an}n∈N such that akn
≤Makn+1. □

We are ready to prove the following more precise statement which immediately
implies Theorem 1.7 (1).
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Theorem 6.6. Let R be a rational map, a be a parabolic fixed point with R′(a) = 1
that has parabolic multiplicity 2, and Ω be an immediate basin of a. Then Ω is not
an Lp-quasidisk for p ≥ 5.

In the proof we use the notation introduced above.

Proof. Suppose, for the sake of contradiction, that Ω is an Lp-quasidisk for some
p ≥ 5. Let ϵ ∈ (0, C−1) and t ∈ (0, ϵ). Consider the reflection g defined above. The
closure of the set It ∪ g(It) contains a Jordan curve that bounds the set Ut ∪ g(Ut)

and the point 0. We have dist(0, It) ≃ t because Ĩt ⊂ {w : Re(w) = 1/t, Im(w) ∈
(y−, y+)}. Thus

l(It) + l(g(It)) ≥ l(It ∪ g(It)) ≥ diam(It ∪ g(It)) ≳ t.

By Lemma 6.2 (4), we have l(It) ≃ t2, so l(g(It)) ≥ l(It) and l(g(It)) ≳ t for all
sufficiently small t > 0. This implies that t ≲ l(g(It)) ≲ l(g(Uϵ ∩ Jt)), given that
It ⊂ Uϵ ∩ Jt. Therefore, for all sufficiently small ϵ > 0 and for t ∈ (0, ϵ), we have

ϵ2 ≲
∫ ϵ

0

l(g(Uϵ ∩ Jt)) dt.(6.2)

Next, by the isoperimetric inequality, |g(Ut)|
1
2 ≲ l(g(It)) ≲ l(g(Uϵ∩Jt)). Integrating

this from ϵ/2 to ϵ, we obtain

(ϵ− ϵ/2)|g(Uϵ/2)|
1
2 ≲

∫ ϵ

ϵ/2

l(g(Uϵ ∩ Jt)) dt ≲
∫ ϵ

0

l(g(Uϵ ∩ Jt)) dt.(6.3)

Combining (6.2) and (6.3), we obtain

max{ϵ2, ϵ|g(Uϵ/2)|1/2} ≲
∫ ϵ

0

l(g(Uϵ ∩ Jt)) dt.(6.4)

By Hölder’s inequality (see [IOZ21, Lemma 5.2]), we have that the following length
estimate for a.e. t ∈ (0, C−1):

l(g(Uϵ ∩ Jt)) ≤
∫
Uϵ∩Jt

|Dg| dH1 =

∫
Uϵ∩Jt

|Dg|

|Jg|
p−1
2p

|Jg|
p−1
2p dH1(6.5)

≤

(∫
Uϵ∩Jt

|Dg|p

|Jg|
p−1
2

dH1

) 1
p (∫

Uϵ∩Jt

|Jg|
1
2 dH1

) p−1
p

.

Combining (6.4), (6.5), and Hölder’s inequality, we obtain

max{ϵ2, ϵ|g(Uϵ/2)|1/2} ≲
∫ ϵ

0

l(g(Uϵ ∩ Jt)) dt

≲

(∫ ϵ

0

∫
Uϵ∩Jt

|Dg|p

|Jg|
p−1
2

dH1 dt

) 1
p (∫ ϵ

0

∫
Uϵ∩Jt

|Jg|
1
2 dH1 dt

) p−1
p

.

By Lemma 6.1, we have

max{ϵ2, ϵ|g(Uϵ/2)|1/2} ≲

(∫
Uϵ

|Dg|p

|Jg|
p−1
2

) 1
p (∫

Uϵ

|Jg|
1
2

) p−1
p

.

Therefore, by the area estimate in Lemma 6.4 we have

max{ϵ2, ϵ|g(Uϵ/2)|1/2} ≲ ∥Kf∥
1
2

Lp(Uϵ)
∥Kf∥

1
2

Lp(g(Uϵ))
|Uϵ|

p−1
2p |g(Uϵ)|

p−1
2p .
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Combined with Lemma 6.2 (5), this gives

max{ϵ2p, |g(Uϵ/2)|p} ≲ C(ϵ)ϵp−3 |g(Uϵ)|p−1
,(6.6)

where C(ϵ) = ∥Kf∥pLp(Uϵ)
∥Kf∥pLp(g(Uϵ))

, which satisfies limϵ→0 C(ϵ) = 0.

We apply (6.6) for ϵn = 2−n, where n ∈ N, and we set an = |g(U2−n)|. Then,
for each n ∈ N, we have

max{ϵ2pn , a
p
n+1} ≲ C(ϵn)ϵ

p−3
n ap−1

n .(6.7)

We apply Lemma 6.5 with r = 1/4. If the first alternative of the lemma holds, then
an ≤ ϵ2n for all but finitely many n ∈ N. Therefore, by (6.7), for all large n ∈ N we
have

ϵ2pn ≲ C(ϵn)ϵ
p−3
n ϵ2p−2

n .

Since p ≥ 5, this leads to a contradiction. Thus, the second alternative of Lemma
6.5 holds and there exists a subsequence {akn

}n∈N of {an}n∈N such that ϵ2kn
≲

akn
≲ akn+1 for all n ∈ N. By (6.7), we conclude that

apkn
≲ apkn+1 ≲ C(ϵkn)ϵ

p−3
kn

ap−1
kn

so

1 ≲ C(ϵkn
)ϵp−3

kn
a−1
kn

≲ C(ϵkn
)ϵp−3

kn
ϵ−2
kn

for all n ∈ N. Since p ≥ 5, this leads again to a contradiction. □

7. Uniformization of parabolic basins

In this section we prove parts (2) and (3) of Theorem 1.7. We first prove the
following preliminary statement.

Lemma 7.1. Let R be a rational map, a be a fixed point with R′(a) = 1 that has
parabolic multiplicity ν ≥ 2, and Ω be an immediate basin of a. Suppose that Ω is
a Jordan region and the critical and post-critical sets intersect ∂Ω only at the point
a. For ϵ > 0 let Nϵ be the ϵ-neighborhood of γ := ∂Ω \ {a} in the hyperbolic metric

dX of X := Ĉ \ PR.

(1) For all sufficiently small ϵ > 0 and for each component I of R−1(γ) ∩ γ,
the component Nϵ,I of R−1(Nϵ) containing I is a subset of Nϵ.

(2) Suppose that ν ≥ 3. Then for all sufficiently small ϵ > 0, Nϵ is contained

in a simply connected domain in Ĉ \ V, where V is the set of critical values
of R. In particular, the map R : Nϵ,I → Nϵ is a conformal isomorphism.

Proof. Let PR be the post-critical set of R. To prove (1), by choosing an appropriate
normalization, we may assume that X ⊂ C, i.e., ∞ ∈ PR. We set Y = R−1(X)
and note that R : Y → X is a covering map.

Since R has no critical point on ∂Ω, if γ′ is a component of R−1(γ) that is disjoint
from γ, then γ′ is disjoint from ∂Ω. Thus, we can choose ϵ > 0 small enough so
that for any component γ′ of R−1(γ) that is disjoint from γ, we have

dY (γ ∩ Y, γ′) ≥ 3ϵ.(7.1)

Let U be the ϵ-neighborhood of R−1(γ) in the hyperbolic metric of Y . Note that
U may be disconnected as R−1(γ) may be disconnected. Since R : Y → X is a local
isometry, we have U = R−1(Nϵ), so Nϵ,I is the component of U that contains I. Let
γ′ be a component of R−1(γ) that is disjoint from γ. By (7.1), the ϵ-neighborhood
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a

Ω

E+

E−

a W

L+

L−

Figure 7.1. Left: An immediate basin Ω of a parabolic point
a with multiplicity ν = 4. Shown are the six cones Dδ (with
black and red stripes) containing PR \ {a} and the two cones E±

containing the segments L±. Right: The segments L± and the
simply connected region W that contains Nϵ.

of γ′ in Y is disjoint from the ϵ-neighborhood of R−1(γ) ∩ γ in Y . Thus, we have
Nϵ,I ∩R−1(γ) = Nϵ,I ∩ γ.

Let x ∈ Nϵ,I , so R(x) ∈ Nϵ. Let α be a geodesic in X that connects R(x)
and γ so that the hyperbolic length lX(α) is equal to dX(R(x), γ) < ϵ and α
lies in Nϵ. Let α̃ be the lift of α starting at x. Then α̃ lies in a component of
R−1(Nϵ), so it must lie in Nϵ,I . Moreover, α̃ a geodesic in Y connecting x and
R−1(γ) and lY (α̃) = lX(α). Since Nϵ,I ∩ R−1(γ) = Nϵ,I ∩ γ, α̃ connects x and
R−1(γ) ∩ γ. Thus, dX(x, γ) ≤ lX(α̃). Note that Y ⊂ X, so by the Schwarz–
Pick lemma [BM07, Theorem 10.5] the inclusion map decreases distances. Thus,
lX(α̃) ≤ lY (α̃) (c.f. the argument in [McM94, Theorem 3.5]). Therefore, we have

dX(x, γ) ≤ lX(α̃) ≤ lY (α̃) = lX(α) = dX(R(x), γ) < ϵ.

Thus, x ∈ Nϵ. This proves part (1).
To prove (2), we note that by the theory of parabolic points there exist 2(ν − 1)

vectors at a corresponding to the attracting and repelling directions. For a small
δ > 0 we consider, for each attracting and repelling direction v, an open cone
centered at a of radius 1 and total angle δ that is symmetric with respect to the
vector v. Then there exists a small r > 0 such that the union Dδ of these cones
contains the part of the Julia set that lies inside B(a, r), except for the point a,
and also contains the tail of the orbit of each critical point that is attracted to a;
see Figure 7.1. In particular, the post-critical set in B(a, r) lies in Dδ ∪ {a}. By
choosing r sufficiently small, we may assume that B(a, r) contains no critical value
of R, except possibly for a.

Consider a line segment L+ (resp. L−) of length r/2 in Ω ∩X (resp. in X \ Ω)
with an endpoint at a so that L+ (resp. L−) is disjoint from Dδ; see Figure 7.1. The
existence of L− is precisely what requires that the multiplicity ν satisfies ν ≥ 3.
Consider cones E± centered at a, of radius 1 and angle δ, in the direction of L±

and symmetric with respect to L±. If δ is small, we can ensure that the cones E±
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are disjoint from Dδ. For z ∈ X, let δX(z) be the Euclidean distance between z
and ∂X = PR. Then δX(z) is proportional to |z − a| for z ∈ E± ∩ B(a, r). Let
xz ∈ ∂X be a point so that |z − xz| = δX(z). By the parabolic dynamics near
a, we can find a point yz ∈ ∂X so that |yz − xz| is proportional to |z − xz| for
z ∈ E± ∩B(a, r) (in fact, for any point y that is attracted to the parabolic point a
we have |a−Rk(y)| ≃ k−ν+1 for all k ∈ N). Therefore, the quantity

βX(z) := inf

{∣∣∣∣log |z − u|
|v − u|

∣∣∣∣ : u, v ∈ ∂X, |z − u| = δX(z)

}
is uniformly bounded from above in E± ∩ B(a, r). By [BP78, Theorem 1], there
existsM > 0 such that the hyperbolic density ρX satisfies ρX(z) ≥M−1δX(z)−1 for
z ∈ E±∩B(a, r). This implies that the hyperbolic distance in X between γ and L±

is uniformly bounded from below. As a consequence, we have Nϵ ⊂ X \ (L+ ∪L−)
provided that ϵ is small enough. We consider a Jordan curve that surrounds Ω∪L−

and passes through the endpoint of L− that is different from a. We also consider a
Jordan curve inside Ω\L+ that passes through the endpoint of L+ that is different
from a. LetW be the simply connected region that is bounded by these two Jordan
curves and L+ ∪ L− ∪ {a}; see Figure 7.1. Then we may ensure (by choosing the
above Jordan curves very close to ∂Ω) that W does not contain any critical value
of R; this uses the assumption that PR ∩ ∂Ω = {a}. Finally, if we choose ϵ to be
small enough, we can ensure that Nϵ ⊂W . This proves part (2). □

Proof of Theorem 1.7: (2) and (3). Note that Ω is invariant under R. Let ϕ : D →
Ω be a conformal map, so that its continuous extension to the boundaries satisfies
ϕ(1) = a. Then f := ϕ−1 ◦R ◦ ϕ is a Blaschke product with a parabolic fixed point

at 1. We denote its degree by r+ 1. Similarly, let Ω∗ := Ĉ \Ω. Let ψ : Ĉ \D → Ω∗

be a conformal map so that ψ(1) = a. Since R leaves Ω invariant and has no
critical points on ∂Ω, for every point x ∈ ∂Ω, there exists a neighborhood Ux so
that R(Ux ∩ Ω∗) ⊂ Ω∗. Thus g := ψ−1 ◦ R ◦ ψ is defined in a neighborhood of S1

in Ĉ \ D. By the Schwarz reflection principle, g defines an analytic covering map
on S1 of degree r + 1. Note that the preimages f−1(1) = {a0 = 1, a1, . . . , ar} and
g−1(1) = {b0 = 1, b1, . . . , br}, written in cyclic order, define Markov partitions for f
and g, respectively. The map h = ψ−1 ◦ϕ on S1 is a topological conjugacy between
f and g that maps ak to bk, k ∈ {0, . . . , r}.

Lemma 7.2. If a has parabolic multiplicity ν ≥ 3, then g has a parabolic fixed
point at 1. If ν = 2, then g has a repelling fixed point at 1.

Proof. Suppose that ν ≥ 3. Since g maps the circle S1 to itself and g is analytic
at 1, we see that g′(1) is a real number. Suppose that |g′(1)| ̸= 1, so 1 is either
a repelling or an attracting fixed point for g. In the first case, there exists some
neighborhood U of a so that U ∩ Ω∗ ⊂ R(U ∩ Ω∗), while in the second case, there
exists some neighborhood V of a so that R(V ∩Ω∗) ⊂ V ∩Ω∗. Either is not possible,
as a has both attracting and repelling petals in Ω∗. Thus, g has a parabolic fixed
point at 1. The proof for the other case is similar. □

We verify that f satisfies conditions (M1), (M2) and (M3). As remarked, f is
a Blaschke product with a parabolic fixed point at 1 and f |D is conjugate to R|Ω.
Points in the unit disk and its exterior lie in the Fatou set of f and are attracted to
1. Thus, the Julia set is contained in S1. By the conjugacy, we see that the Julia
set of f is all of S1. This implies that the multiplicity of the parabolic point 1 of f is
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equal to 3. Moreover, f |S1 is expansive; see the discussion in [LMMN23, Example
3.5]. We apply Lemma 7.1 to f to find a neighborhood Y of S1 \ {1} so that
f−1(Y ) ⊂ Y . For k ∈ {0, . . . , r} let Xk be the component of f−1(Y ) that contains

the arc
>
(ak, ak+1). Then by Lemma 7.1, Xk ⊂ Y and f : Xk → Y is a conformal

map. Therefore, P(f ; {a0, . . . , ar}) satisfies condition (M2). Conditions (M1) and
(M3) are satisfied as f is analytic and expansive; see Remark 3.11. Since f is
conjugate to g on S1, we conclude that g is also expansive.

In order to prove part (3) of the theorem, by the fundamental theorem of con-
formal welding [AIM09, Theorem 5.10.1], it suffices to show that the conjugacy h
is a quasisymmetry. We choose ϵ small enough so that Lemma 7.1 applies to the

map R and let Ṽ := ψ−1(Nϵ ∩Ω∗). Let V := Ṽ ∪ (S1 \ {1}) ∪ σ(Ṽ ), where σ is the
reflection along the circle S1. For k ∈ {0, . . . , r} let Uk be the component of g−1(V )

that contains the arc
>
(bk, bk+1). Then by Lemma 7.1, Uk ⊂ V and g : Uk → V is a

conformal map. Therefore, P(g; {b0, . . . , br}) satisfies condition (M2). Conditions
(M1) and (M3) are satisfied as g is analytic and expansive on S1. Finally, note that
the conjugacy h maps the parabolic point 1 of f to the parabolic point 1 of g. By
Theorem 4.1, the map h is quasisymmetric. This completes the proof of (3).

Next, we prove part (2). Since R is locally univalent on ∂Ω, we conclude that
g is locally univalent on S1, so it has no critical points on S1. For a small δ > 0
consider two circles C± centered at 0 and of radii 1± δ, so that the annular region
Aδ between C± lies in the range of g. Since g has no critical points on S1, we may
choose a smaller δ > 0 so that the component A′

δ of g−1(Aδ) that contains S1 has
no critical points. Thus, g : A′

δ → Aδ is a covering map. We use the local dynamics
at the repelling point 1 of g and choose a smaller δ if necessary to find a Jordan arc
L passing through the point 1, so that L ⊂ g(L) and the endpoints of L are on C±,
but otherwise L is disjoint from C±. Then C± and L bound a simply connected
region Z. By applying Lemma 7.1 (1) to R, upon choosing a small ϵ, we can find
a neighborhood V ′ of S1 \ {1} so that g−1(V ′) ⊂ V ′ and V ′ \ L ⊂ Z. We define
V := V ′ \ L. For k ∈ {0, . . . , r} let Uk be the component of g−1(V ) that contains

the arc
>
(bk, bk+1). Then by construction, Uk ⊂ V , and g : Uk → V is a conformal

map, because Z is simply connected. So P(g; {b0, . . . , br}) satisfies conditions (M1),
(M2) and (M3). Note that the conjugacy h−1 maps the hyperbolic point 1 of g to
the parabolic point 1 of f . By Theorem 4.1, the map h−1 extends to a David map
on the disk, which we denote by h−1.

Define a Beltrami coefficient µ as follows. In D we let µ be the pullback of the

standard complex structure under h−1. In Ĉ \ D we define µ to be the standard
complex structure. By the David integrability theorem (Theorem 2.2) there exists

a David homeomorphism H of Ĉ with µH = µ. Consider the map

α =

{
ϕ ◦ h−1 ◦H−1 in H(D)
ψ ◦H−1 in H(Ĉ \ D).

The two definitions agree on J = H(S1) because h = ψ−1 ◦ ϕ, so α is a homeomor-

phism of Ĉ. By Theorem 2.3, h−1◦H−1 is a conformal map, so α maps conformally

H(D) onto Ω. Also, H−1 is conformal in H(Ĉ\D) so α maps conformally H(Ĉ\D)
onto Ω∗. By Theorem 2.5, α is conformal on Ĉ and thus it is a Möbius transfor-
mation. The map α ◦H is a David homeomorphism (e.g. by Proposition 2.4) that
maps the unit disk onto Ω. This proves part (2). □
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8. Blaschke products

Proof of Theorem 1.4. We will verify condition (M2). Assuming that, conditions
(M1), (M3) and (M3∗) are trivially satisfied; see Remark 3.11. To verify the con-
dition (M2), we consider the hyperbolic and parabolic cases separately.

Hyperbolic case. Choose r0 < 1, and let Cr0 be the circle centered at the ori-
gin with radius r0. Let Ar0 be the annulus bounded by Cr0 and S1. Since f is
hyperbolic, f is expanding near S1. Thus, for r0 sufficiently close to 1, we have
A′

r0
:= f−1(Ar0) ⊂ Ar0 . Since ak is either a repelling periodic point or is eventually

mapped to some repelling periodic point, we can inductively construct proper arcs
Lk ⊆ A′

r0 connecting ak and ∂A′
r0 so that Lj ⊂ f(Lk) if f(ak) = aj . These proper

arcs cut A′
r0 into r + 1 regions Ũk, where ∂Ũk ∩ S1 =

>
[ak, ak+1], k = 0, . . . , r. Let

Uk := Ũk ∪ int(Ak) ∪ r(Ũk) where r is the reflection along S1, and Vk := f(Uk).
Then it is easy to check that condition (M2) is satisfied in this case.

Parabolic case. Note that a0 has parabolic multiplicity 3; see the discussion in
[LMMN23, Example 3.5]. By Lemma 7.1, there exists a neighborhood V ′ of S1\{a0}
so that for each component U ′ of f−1(V ′), we have f : U ′ → V ′ is conformal and
U ′ ⊂ V ′. Note that a0 ∈ ∂V ′, as otherwise V ′ contains S1, and the map f : U ′ → V ′

has degree at least 2. Let l be the smallest number so that for any ak ∈ {a0, . . . , ar}
in the grand orbit of the parabolic fixed point a0, we have f l(ak) = a0. Let
U ′
0, . . . , U

′
m be the components of f−l(V ′) in cyclic order. Observe that f : U ′

i →
f(U ′

i) is conformal and f(U ′
i) contains U

′
j whenever U ′

j ∩ f(U ′
i) ̸= ∅.

We take a small round disk Da0
centered at a0 of radius δ. Let a ∈ f−l(a0)

with pre-period q. Denote by Da the component of f−q(Da0
) that contains a. By

choosing δ small, we may assume that

• if a ∈ f(U ′
i), then Da ⊂ f(U ′

i) and
• if a ̸= a0, then f : Da → Df(a) is a conformal isomorphism.

Let U ′′
0 , . . . , U

′′
n be the components of the open set

m⋃
i=0

U ′
i ∪

⋃
a∈f−l(a0)\{a0,...,ar}

Da.

Then by construction, we have that

• ∂U ′′
i ∩ S1 ⊂ {a0, . . . , ar},

• f : U ′′
i → f(U ′′

i ) is conformal (because this is a proper map onto a subset
of V ′), and

• f(U ′′
i ) contains U

′′
j whenever U ′′

j ∩ f(U ′′
i ) ̸= ∅.

Let ak ∈ {a0, . . . , ar} be a point not in the grand orbit of the parabolic fixed
point a0. Then ak is eventually mapped to a repelling periodic point. We have
ak ∈ U ′′

i for some unique i ∈ {0, . . . , n}. We can inductively construct proper arcs
Lk ⊂ U ′′

i passing through ak so that Lj ⊂ f(Lk) if f(ak) = aj . By cutting each U ′′
i

into finitely many pieces using these proper arcs Lk, we obtain a collection of r+1

open neighborhoods Uk of Ak =
>
(ak, ak+1), k ∈ {0, . . . , r}. Let Vk = f(Uk). Then

one can verify that (M2) is satisfied. □

Proof of Theorem 1.5. We follow closely the steps of the proof of [LMMN23, The-
orem 5.2]. Let d be the degree of f and g and let P (z) = zd. By (E2), there exist
homeomorphisms h1, h2 : S1 → S1 that conjugate P to f, g, respectively. Note that
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P

f

g

h1

h2

h

R
H

Figure 8.1. The conjugacies in the proof of Theorem 1.5.

both h2 and h ◦ h1 conjugate P to g. By the uniqueness part in (E2), we may
precompose h2 with a rotation so that it agrees with h ◦ h1. See the diagram in
Figure 8.1.

We claim that h1 has a David extension to the disk. Consider a Markov partition
associated to P that contains all fixed points. Then h1 induces a Markov partition
associated to f that contains the parabolic fixed point, if any. Both Markov parti-
tions of P and f satisfy conditions (M1), (M2), (M3), and (M3∗) by Theorem 1.4.
Moreover, each point of the Markov partition of P is symmetrically hyperbolic. By
Theorem 4.1, h1 has a David extension to D, which we still denote by h1. With the

same argument, h2 has a David extension to Ĉ \ D.
We define a Beltrami coefficient µ as follows. In D we let µ be the pullback of

the standard complex structure under h1. In Ĉ \D, µ is defined to be the pullback
of the standard complex structure under h2. By the David integrability theorem

(Theorem 2.2), there exists a David homeomorphismH of Ĉ with µH = µ. Consider
the map

R =

{
H ◦ h−1

1 ◦ f ◦ h1 ◦H−1 in H(D)
H ◦ h−1

2 ◦ g ◦ h2 ◦H−1 in H(Ĉ \ D).

Note that the two definitions agree on J = H(S1) because h conjugates f to g and
h2 = h ◦ h1 on S1.

By Theorem 2.3, h1 ◦H−1 is a conformal map from H(D) onto D. Let ϕ be the

inverse of that map. Similarly, h2 ◦H−1 is a conformal map from H(Ĉ \ D) onto

Ĉ \ D, and we let ψ be its inverse. By Carathéodory’s theorem, ϕ and ψ extend
homeomorphically to the closures of their domains and conjugate f and g to R,
respectively. Therefore, R is holomorphic outside H(S1). Moreover, ϕ = ψ ◦ h on
S1.

It remains to show that R is holomorphic on H(S1), which will imply that R is
rational. Note that R is a branched cover with no critical points on H(S1). Thus,
each point of H(S1) has a neighborhood in which R is conformal. By Theorem 2.5,
H(S1) is locally conformally removable, so R is holomorphic on H(S1).
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Finally, we show the ultimate uniqueness statement in Theorem 1.5. Suppose
that there exist another Jordan curve J0 with complementary regions A0, B0 ⊂
Ĉ \ J0, a rational map R0, and conformal maps ϕ0 : D → A0, ψ : D → B0 such that
ϕ0 conjugates f to R0, ψ0 conjugates g to R0, and ϕ = ψ ◦ h on S1. We define

G(z) =

{
ϕ0 ◦ ϕ−1(z), z ∈ A

ψ0 ◦ ψ−1(z), z ∈ B

and note that the two definitions agree on J = ∂A = ∂B. The map G is a

homeomorphism of Ĉ that is conformal in Ĉ \ J and conjugates R to R0. By

Theorem 2.5, J is conformally removable, so G is conformal in Ĉ, and thus it is a
Möbius transformation. □
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