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Exact solution for a class of quantum models of interacting bosons

Valery Shchesnovich
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-170 Brazil

Quantum models of interacting bosons have wide range of applications, among them the propa-
gation of optical modes in nonlinear media, such as the k-photon down conversion. Many of such
models are related to nonlinear deformations of finite group algebras, thus, in this sense, they are
exactly solvable. Whereas the advanced group-theoretic methods have been developed to study the
eigenvalue spectrum of exactly solvable Hamiltonians, in quantum optics the prime interest is not
the spectrum of the Hamiltonian, but the evolution of an initial state, such as the generation of
optical signal modes by a strong pump mode propagating in a nonlinear medium. I propose a simple
and general method of derivation of the solution to such a state evolution problem, applicable to a
wide class of quantum models of interacting bosons. For the k-photon down conversion model and
its generalizations, the solution to the state evolution problem is given in the form of an infinite se-
ries expansion in the powers of propagation time with the coefficients defined by a recursion relation
with a single polynomial function, unique for each nonlinear model. As an application, I compare
the exact solution to the parametric down conversion process with the semiclassical parametric
approximation.

I. INTRODUCTION

Finding the exact solution to a physically relevant
model is of high value even in the age of widespread com-
puter simulations. Some crucial features of the solution,
such as the asymptotic or qualitative behavior, could be
only studied by the analytical approach. Widely appli-
cable algebraic methods have been discovered in order to
derive exactly solvable models and to obtain the exact
solutions to the eigenvalue problem. The first of such
methods was the famous Bethe’s ansatz for the Heisen-
berg antiferromagnetic chain model [1], extended also to
the Bose gas with the zero-range interaction potential [2]
and to the one-dimensional Hubbard model [3]. Other al-
gebraic methods have been developed in order to find and
analyze exactly solvable models in Quantum Mechanics,
e.g., the method of factorization of second-order differ-
ential operator (representing the quantum Hamiltonian)
into a product of two first-order differential (ladder) oper-
ators [4], the Darboux transformations [5], and the Quan-
tum Inverse Scattering Method [6].
Exactly solvable models are abundant also in quantum

optics. The effective potential method for the generating
function approach has been found for the Dicke model
[7] and the spin systems [8], the Bethe ansatz allows to
derive the energy spectra of the three-boson model [9].
Moreover, it was found that some quantum Hamiltonians
of the forth order in the boson creation and annihilation
operators allow exact solutions for a part of the energy
spectra subject to a hidden symmetry [10]. The latter
models, which include the k-photon down conversion and
multiple photon cascades, are the so-called quasi-exactly
solvable models, allowing for analytical analysis of some
part of the energy spectra [11]. With the help of the
group-theoretic methods the Hamiltonian can sometimes
be mapped onto the generators of a deformed Lie algebra,
which allows one to derive the equations for the eigen-
values and eigenfunctions of a nonlinear quantum optical
Hamiltonian, including the second-harmonic generation

model [12–14]. Such methods have been applied recently
to find the energy spectra for a wide range of such non-
linear boson models [15, 16].

In the ever growing field of research on exactly solvable
models, the focus is usually on finding the spectrum of
the Hamiltonian and the associated eigenstates. On the
other hand, in quantum optics applications it is more
important to solve the initial value problem, whereas the
eigenstates of the full Hamiltonian do not correspond to
the optical energy (given by the free propagation part of
the Hamiltonian, see below). The most important exam-
ple is the work-horse of all quantum optics – the two-
photon parametric down conversion process in a nonlin-
ear medium with the second-order nonlinearity [17, 18]
(see also the reviews [19–21]). The recent experimental
realization of the long sought three-photon spontaneous
parametric down-conversion [22] adds another integrable
model to applications in quantum optics.

The analytical approaches developed previously for de-
riving the analytical results for the exactly solvable mod-
els, such as the deformed Lie algebras and the Quantum
Inverse Scattering Method, are quite involved in their
technical part, which may explain the fact that the same
models in the physical literature, such as the k-photon
down-conversion [23, 24], have been studied analytically
by other methods, such as the semiclassical or the WKB-
like approximations [25–28], or resorting to numerical
simulations [29–33] helped by the reductions based on the
conservation laws. The theoretical approaches in physi-
cal literature continue to be based on various approxima-
tions, for instance, in order to go beyond the explicitly
solvable quasi-classical, a.k.a., parametric approximation
[34, 35].

The purpose of the present work is propose a simple al-
gebraic method of derivation of exact solution to the state
evolution problem for a wide class of integrable models
of interacting bosons. The method is used to derive the
exact solution to the problem of generation of optical sig-
nal modes by a pump mode propagating in a nonlinear
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medium for a wide class of quantum optical models, such
as the k-photon down-conversion and the related models.
In section II the class of quantum models of interacting

bosons is described which can be studied by the unified
approach of section III. Section III is the main section,
where the unified algebraic approach is developed for
derivation of the solution to the state evolution problem,
where Theorem 1 and Corollary 1 give the solution the
problem of state evolution relevant to the quantum optics
applications. The derived solution is then verified by sub-
stitution to the Schrödinger equation in the Fock space,
subsection III A, whereas in subsections III B, III C, and
IIID the important mathematical features of the solu-
tion are exposed and discussed. Section IV discusses the
application to generation of optical signal modes by a
pump mode propagating in a nonlinear medium, the scal-
ing transformation of the propagation time for a strong
coherent pump mode is discussed, subsection IVA, and
comparison of the exact solution with the parametric ap-
proximation for the squeezed states generation is given,
subsection IVB. Section V contains brief description of
the results and open problems.

II. MODELS OF INTERACTING BOSONS IN

QUANTUM OPTICS

In quantum optics the models of interacting bosons ap-
pear due to propagation of optical light modes in a non-
linear media, when the phase matching conditions are
satisfied in the medium. One is usually interested in the
generation of signal modes from the vacuum state by the
strong pump mode(s). In a lossless medium, by the en-
ergy conservation (i.e., the Manley–Rowe relations, see
for more details Ref. [36]) the total electromagnetic field
energy is conserved during the propagation. The result-
ing model Hamiltonian can be partitioned, accordingly,
into two terms, the free propagation term, Ĥ0, which
corresponds to the total electromagnetic energy and is
quadratic in the boson creation and annihilation opera-
tors of the optical modes, and the interaction term, Ĥ1, of
higher-order in the boson operators, which describes the
photon conversion between the optical modes propagat-
ing in the nonlinear medium. When the phase matching
conditions are satisfied, the interaction part of the Hamil-
tonian preserves the total optical energy: [Ĥ0, Ĥ1] = 0.
The above class of the interaction models includes the

k-photon down conversion processes [24], such as the gen-
eration of the squeezed states of light by the parametric
down conversion process in the second-order nonlinear
medium (e.g., Refs. [20, 21]) and the recently experimen-
tally achieved three-photon state generation [22]. In the
simplest case, the k-photon down conversion process in-
volves propagation of a single pump mode and of a single
signal mode. It is described by the following two-mode
Hamiltonian (see e.g., Ref. [24]) Ĥ = Ĥ0 + Ĥ1

Ĥ0 = ~ω0â
†â+ ~ωb̂†b̂, Ĥ1 = ~Ω

{
â†b̂k + â(b̂†)k

}
(1)

where â and b̂ are the annihilation boson operators for
the pump mode and the signal, respectively, and ~Ω is
the photon conversion strength specific to the nonlin-
ear medium. The phase matching demands that ω0 =
kω, leading to the above discussed zero commutator
[Ĥ0, Ĥ1] = 0. The Hilbert space of the two interacting
modes can be partitioned into a direct sum of the invari-
ant subspaces corresponding to the eigenvalues (the total

electromagnetic energy) of Ĥ0, E = ~ω0N + ~ωℓ, where
N and ℓ are integers (ℓ ≤ k − 1). The dimension of the
invariant subspace HN,ℓ is dimHN,ℓ = N+1. In the con-
text of the model in Eq. (1), the initial value problem,
which is of interest in quantum optics, is the conversion of
the optical pump mode (â) into the signal mode (respec-

tively, b̂), where initially (in the running time variable)
the signal mode is in the vacuum state (thus ℓ = 0).
For example, in the quadratic nonlinear medium (in

this case k = 2), assuming a strong pump and short
propagation times [27], the usual approach is to consider
the pump mode to be in a coherent state with a large
amplitude α [19]

|α〉 ≡ e−|α|2/2
∞∑

N=0

(â†)N√
N !

|V ac〉, (2)

where we denote the vacuum state for the (multimode)
quantum optical models by |V ac〉, i.e., â|V ac〉 = 0. One
then adopts the parametric approximation by replacing
the boson operator â by a scalar â → α, which converts
the interaction Hamiltonian Ĥ1 in Eq. (1) for k = 2
into the semiclassical equivalent being of the second or-

der in boson operators b̂, b̂† and thus allowing an explicit
solution to the initial value problem in the form of the
so-called squeezed state (see, for more details, the re-
cent reviews [20, 21]). Such semiclassical approximation
has proved to be very useful. However, quite recently,
we have witnessed the revival of the interest in describ-
ing the 2-photon down conversion process beyond the
simple parametric approximation by considering the full
quantum model using numerical simulations and approx-
imations [34, 35]. To that one can add the known fact
that the semiclassical approach fails quite spectacularly
for the higher-order (k ≥ 3) processes described by the
model of Eq. (1) (the norm of the quantum state evolved
by the similar parametric approximation simply diverges
in a finite time) [23], requiring one to account for the
quantum effects on the pump mode itself [31, 32].
It turns out that the optical model Hamiltonians of

Eq. (1) have exact (and quite simple in form) solution to
the evolution problem of conversion of the pump mode
into the signal mode(s). Moreover, the exact solution to
such an evolution problem is given in a unified single form
applicable to a wide class of similar models. Such models
have the same main feature: the ladder operators, which
partition the Hilbert space into the invariant subspaces
of finite dimensions.
Consider, for example, the class of models of Eq. (1).

Introducing the ladder operator for the k-photon down
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conversion process by Â ≡ â†b̂k, one can cast the inter-
action Hamiltonian in Eq. (1) as follows Ĥ1 = Â + Â†.
This is one of the required prerequisites. Another one
is the above discussed partition of the Hilbert space H
into the invariant subspaces labelled by the values of the
full set of commuting conserved quantities, which have
discrete values (e.g. I = (N, ℓ) in the model of Eq.
(1)): H =

∑
I HI , where the dimension of each invariant

subspace HI is finite. Such are all the higher-order bo-
son interaction models, which preserve the equivalent of
the optical energy given by the term Ĥ0 in the quantum
Hamiltonian, e.g., the exactly integrable boson models
whose energy spectra were considered in Refs. [12–16].
The generalizations of the model in Eq. (1), to which
the approach of the next section is applicable, have the
following ladder operator Â:

Â = (â†)m
S∏

s=1

b̂ks

s , (3)

for arbitrary integer parameters m ≥ 1, S ≥ 1 and ks ≥
0, where the mode â is the pump mode, whereas the
other modes are the signal modes, initially in a state
annihilated by Â (the approach below trivially applies
also to the initial population of the signal mode(s) below
the energy conversion condition, e.g., for the model with
S = 1 of Eq. (3) with ℓ photons initially in the signal
mode, when ℓ ≤ k1 − 1).

III. SOLUTION TO THE EVOLUTION

PROBLEM

Similar to the approaches described in the Introduc-
tion, the approach presented below is completely alge-
braic. Similarly to the factorization method [4] it is based
on the usage of the ladder operators, but now appearing
as partition (not as a product) in the quantum Hamilto-
nian for a many-body problem (and not a single-particle
Schrödinger equation). Similarly to the group-theoretic
methods, such as in Refs. [12–16], the conservation laws
are used to partition the Hilbert space, but in contrast,
only an elementary algebra is utilized, no usage of the
advanced machinery of the Lie algebras or the deformed
Lie algebras is necessary. We will work in the interaction
picture (as in section II we consider the Hamiltonians

having two parts, Ĥ = Ĥ0 + Ĥ1, with [Ĥ0, Ĥ1] = 0).
As have been discussed in the previous section, the

method is based on just two key assumptions, described
in the items (i) and (ii) below.
(i). The Hilbert spaceH of a quantum system can be par-
titioned into a direct sum (infinite, in general) of some
finite-dimensional invariant subspaces (with respect to

the interaction Hamiltonian Ĥ1). Without loss of gen-
erality, let us label the invariant subspaces by a discrete
quantity N having integer values N ≥ 0: H =

∑⊕ HN ,
where HN is (N + 1)-dimensional, i.e.,

HN = Span{|Ψ(N)
0 〉, |Ψ(N)

1 〉, . . . , |Ψ(N)
N 〉} (4)

(if some subspaces have the same dimension, one can
introduce additional label to distinguish them). Below,
we mainly work in just one of the invariant subspaces
HN , thus we will suppress the index “N” identifying the
subspace in order to have less cumbersome notations.
(ii). The interaction Hamiltonian Ĥ1 of the quantum
system can be partitioned into two Hermitian-conjugated
parts,

Ĥ1 = Â+ Â†, (5)

acting as the (up and down) ladder operators on the
subspace HN , i.e., for n = 0, . . . , N only the nearest-
neighbor averages are non-zero: 〈Ψn|Â|Ψn+1〉 6= 0 and

〈Ψn+1|Â†|Ψn〉 6= 0. One can always adjust the overall
phases of the basis states in HN such that the latter av-
erages are real and, therefore, must coincide. Now let us
introduce (in each HN ) a real n-dependent number βn
such that

Â|Ψn+1〉 =
√
βn|Ψn〉, Â†|Ψn〉 =

√
βn|Ψn+1〉, (6)

where necessarily βN = 0 since the finite-dimensional
subspace HN has the dimension N + 1. Eq. (6) is satis-
fied by the models of interacting bosons at the resonant
energy conversion (a.k.a. the phase matching conditions
in quantum optics).
Let us note for below, that the only quantity which

characterizes the specific quantum model in the above

described scheme is the parameter β
(N)
n (which may have

different values in different invariant subspacesHN ). The
latter accounts also for any additional features of the ba-
sis in each HN (for instance, when there are more than
one subspace of dimension N +1, as discussed in section
II, we have to introduce an additional index to distin-
guish them, see also section IV below, for more details).
Below two more operators will be used, additionally to

the above introduced ladder operators in Eq. (6). The
state-number operator in HN , n̂, which satisfies n̂|Ψn〉 =
n|Ψn〉, for all n = 0, . . . , N , and the commutator of the

ladder operators B̂ ≡ [Â, Â†]. From Eq. (6) we see that
the latter is a scalar function of n̂:

B̂ ≡ [Â, Â†] = B(n̂), B(n) ≡ βn − βn−1. (7)

The ladder operators Â, Â† have the following commuta-
tion relations with the state-number operator

[n̂, Â†] = Â†, [n̂, Â] = −Â, (8)

reminiscent of the usual boson creation and annihilation
operators, in which case n̂ would be the number of bosons
(the difference is that B̂ is not a scalar, but is a function
of n̂). In this interpretation Eq. (7) introduces an ar-
bitrary (nonlinear in n̂) deformation of the usual boson-
operator algebra. For any scalar function F (x) from Eq.
(8) we get

F (n̂)Â† = Â†F (n̂+ 1). (9)
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Using Eq. (9) and the definition of B(n) in Eq. (7) we
find

Â(Â†)m = (Â†)mÂ+

m−1∑

l=0

(Â†)lB(n̂)(Â†)m−1−l

= (Â†)mÂ+ (Â†)m−1
m−1∑

s=0

B(n̂+ s). (10)

In view of applications to the pump mode conversion
to the signal modes in nonlinear optical media, we will
focus below on the initial value problem for the quantum
evolution with the initial state being annihilated by one
of the two ladder operators, here chosen to be Â [38], i.e.,
the state whose evolution we have to find reads

|ψ(0)〉 =
∞∑

N=0

cN |Ψ(N)
0 〉. (11)

Consider the quantum state at positive times, in the in-

teraction picture, |ψ(τ)〉 = e−iτĤ1 |ψ(0)〉 (we rescale the
propagation time to a dimensionless parameter τ) with
the initial state of Eq. (11). We will work in a single
subspace HN thus our goal is to find the evolution of

the state |Ψ(N)
0 〉. It proves convenient to expand such

an evolved state with the help of the ladder operators
(omitting the index “N” of the subspace HN )

e−iτ(Â+Â†)|Ψ0〉 =
N∑

n=0

γn(τ)(−iÂ†)n|Ψ0〉, (12)

where (−i)n is judiciously introduced in order to have
real coefficients γn. By using Eq. (6) we can relate γn
and the normalized quantum amplitudes ψn(τ) of the
expansion of the state in Eq. (12) over the basis in Eq.
(4) in HN :

ψn ≡ 〈Ψn|ψ(τ)〉 = (−i)nγn

√√√√
n−1∏

ℓ=0

βℓ. (13)

The solution to the state evolution problem in Eq.
(12) amounts to finding the general expression for

|m〉 ≡ (Â+ Â†)m|Ψ0〉 for an arbitrary m ≥ 0, which
appears in the expansion of the evolution operator

e−iτ(Â+Â†). Let us consider first few such states |m〉
starting from |0〉 ≡ |Ψ0〉. By application of Â + Â† to
the state |m−1〉, utilizing Eqs. (7) and (10) and the fact

that Â|Ψ0〉 = 0, we have:

|1〉 = (Â†)1|Ψ0〉,
|2〉 =

{
(Â†)2 + (Â†)0β0

}
|Ψ0〉,

|3〉 =
{
(Â†)3 + (Â†)1

1∑

s=0

βs

}
|Ψ0〉,

|4〉 =
{
(Â†)4 + (Â†)2

2∑

s=0

βs + (Â†)0β0

1∑

s=0

βs

}
|Ψ0〉,

|5〉 =
{
(Â†)5 + (Â†)3

3∑

s=0

βs + (Â†)1
1∑

s1=0

βs1

s1+1∑

s2=0

βs2

}
|Ψ0〉,

|6〉 =
{
(Â†)6 + (Â†)4

4∑

s=0

βs + (Â†)2
2∑

s1=0

βs1

s1+1∑

s2=0

βs2

+(Â†)0β0

s1+1∑

s2=0

βs2

s2+1∑

s3=0

βs3

}
|Ψ0〉.

Observe that in the above sequence the respective pow-
ers of the ladder operator in the expansion of the state
|m〉 are given by (Â†)m−2l with 0 ≤ l ≤ [m2 ] (here the
bracket [. . .] denotes the integer part). The nested sums
come from two sources: (i) from the multiplication of the

lower power term (Â†)(m−1)−2l by Â† and (ii) from com-

mutation of Â with a higher power term (Â†)(m−1)−2(l−1)

in the expression for |m−1〉. Taking these facts together
suggest the following.

Theorem 1 The quantum state |m〉 ≡ (Â + Â†)m|Ψ0〉
reads

|m〉 =





[m
2
]∑

l=0

(Â†)m−2l
l∏

j=1

sj−1+1∑

sj=0

βsj



|Ψ0〉, (14)

where for l = 0 the empty product is equal to 1, while for
l ≥ 1 the sum over s1 has the upper limit s0 + 1 with
s0 ≡ m− 2l− 1.

Proof. The theorem can be proven by induction. For
m = 1 it is trivial. Assuming it to be valid for m, we
proceed by multiplying the expression for |m〉 in Eq. (14)

by Â+ Â†, commuting Â with the respective power of Â†

using Eq. (10) (separating the term with l = 0) with the
result

|m+ 1〉 =
{
(Â†)m+1 + (Â†)m−1βm−1

+

[m
2
]∑

l=1

(Â†)m+1−2l
l∏

j=1

sj−1+1∑

sj=0

βsj

+

[m−1

2
]∑

l=1

(Â†)m−1−2lβm−1−2l

l∏

j=1

sj−1+1∑

sj=0

βsj

}
|Ψ0〉,

(15)
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where the first two terms come from the product (Â +

Â†)(Â†)m, the third from multiplication of the sum with

1 ≤ l ≤ [m2 ] from the left by Â† and the last term from

multiplication on the left by Â with the account that the
remaining power of Â† is non-negative, hence the upper
limit l ≤ [m−1

2 ] in the last sum. Below we consider the
two cases of even and odd m separately.
For m = 2p+ 1 (p ≥ 1, as the case of m = 1 is trivial)

we have in both sums in Eq. (15) the upper limit to be
l ≤ p, whereas for m + 1 = 2(p + 1) the upper limit by
Eq. (14) must be l ≤ p + 1. We perform the following
two operations on the terms in Eq. (15).
(i) We combine the second term on the right hand side

of Eq. (15) and the term with l = 1 in the first sum
to obtain the term with l = 1 required by Eq. (14) for
m+ 1,

(Â†)m−1
m−1∑

s1=0

βs1 , (16)

since we must have s0 = (m + 1) − 2l − 1 = m − 2, for
l = 1, thus indeed s1 ≤ s0 + 1 in Eq. (16), as required.
(ii) To combine the rest of the first sum (i.e., with

2 ≤ l ≤ p) with the last sum in Eq. (15), we introduce a
new index l′ ≡ l− 1, instead of l, into the last sum, with
the new index satisfying 2 ≤ l′ ≤ p+ 1 = [m+1

2 ], i.e., as
required by Eq. (14). The two terms read

p∑

l=2

(Â†)m+1−2l
l∏

j=1

sj−1+1∑

sj=0

βsj

+

p+1∑

l=2

(Â†)m+1−2l′βm+1−2l′

l′∏

j=2

s′j−1+1∑

s′
j
=0

βs′
j
, (17)

where, in accordance with the product over 2 ≤ j ≤ l′,
we have shifted the indices in β’s as follows: sj → s′j+1.
In the second term in Eq. (17) the summation over s′2 has
the upper limit s′1+1 ≡ s0+1, with s0 = m−2l−1 = (m+
1)− 2l′ i.e., exactly the index in the extra (the first from
the left to the right) β-factor. Precisely this value of s1 is
missing in the first term on the right hand side of Eq. (17)
in order to reproduce the sum over s1 ≤ (m+ 1)− 2l for
l ≤ p, as suggested by Eq. (14) applied to m+1, whereas
for l = p + 1 the respective sum contains just βm+1−2l′

coming from the second term in Eq. (17). Hence, the
two terms in Eq. (17) indeed combine to reproduce the
respective sum over 2 ≤ l ≤ [m+1

2 ], to coincide with Eq.
(14) for m+ 1.
Consider now an even m = 2p. In this case we have

1 ≤ l ≤ p in Eq. (14) both for m and for m + 1. We
proceed in a similar way as in the considered above case
of m = 2p+ 1.
(i) The first step is exactly the same as for m = 2p+

1 above with the same result as in Eq. (16). Similar
arguments show that the result coincides with the term
with l = 1 as required by Eq. (14) for m+ 1 = 2p+ 1.

(ii) We perform exactly the same operations, as in the
above considered case of m = 2p+ 1, on the last sum to
combine it with the rest of the first sum (with 2 ≤ l ≤
p) on the right hand side of Eq. (15). Now, however,
[m−1

2 ] = p− 1, thus the upper limits in the two sums (in
the second for the new index l′ = l− 1) coincide:

p∑

l=2

(Â†)m+1−2l
l∏

j=1

sj−1+1∑

sj=0

βsj

+

p∑

l=2

(Â†)m+1−2l′βm+1−2l′

l′∏

j=2

s′j−1+1∑

s′
j
=0

βs′
j
. (18)

Now we have to verify that we have a new
s0 = (m+ 1)− 2l− 1 as the upper limit for the sum over
s1 in the two terms, where in the second term we have
only one addend for this sum, i.e., the first (from the left
to the right) β-factor with the index m + 1 − 2l′. The
latter is the β-addend to the sum over s1 with the high-
est index, as required by Eq. (14), since we have to have
s1 ≤ (m + 1) − 2l. Similar arguments, as in the odd m
case, convince that we have the upper limit for s′2 in the
second term aligned with the index of the first β-factor
as required by Eq. (14). This concludes the proof of the
Theorem. Q.E.D.

The mth term in the power series expansion of the
evolution operator, given in Theorem 1, allows to find
the coefficients γn(t) in Eq. (12) in the form of a power
series in t. Let us introduce a concise notation for the
nested sums of the β-factors, which have appeared on the

right hand side of Eq. (14). We set g
(0)
n ≡ 1 and for l ≥ 1

and 0 ≤ n ≤ N

g(l)n ≡
n∑

s1=0

βs1

s1+1∑

s2=0

βs2 . . .

sl−1+1∑

sl=0

βsl . (19)

Both the factor βn defined in Eq. (6) and, therefore, g
(l)
n

are, in general, different in each invariant subspace HN

(for instance, in the applications below, they depend on

the index “N”). A curious feature of g
(l)
n is that, by the

condition that dim(HN ) = N + 1, as above discussed,

requires βN = 0, thus g
(l)
N = g

(l)
N−1 in each invariant sub-

space HN . Note also the recursive relation:

g(l)n =

n∑

s=0

βsg
(l−1)
s+1 , g(0)n = 1. (20)

With the above notations, we get the following corollary
to Theorem 1.

Corollary 1 The evolution of the initial state of Eq.
(11) projected onto invariant subspace HN reads (omit-
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ting the index “N” for simplicity)

e−iτ(Â+Â†)|Ψ0〉 =
N∑

n=0

γn(τ)(−iÂ†)n|Ψ0〉,

γn(τ) =

∞∑

l=0

(−1)lτn+2l

(n+ 2l)!
g(l)n . (21)

In other words, the amplitude γn(τ) is a power series
expansion in time, where the coefficients are recursively
defined by Eq. (20).

Proof. The proof of Eq. (21) amounts to substitution
of the result of Theorem 1 into the power series expan-
sion of the evolution exponent and exchange of the or-
der of the summations with introduction of a new index
of summation, n ≡ m − 2l (treating the even and odd
values separately, since the even/odd values of index n
correspond to the even/odd values of index m):

e−iτ(Â+Â†)|Ψ0〉 =
∞∑

m=0

(−iτ)m
m!

[m
2
]∑

l=0

g
(l)
m−2l(Â

†)m|Ψ0〉

=

N∑

n=0

( ∞∑

l=0

(−1)lτn+2l

(n+ 2l)!
g(l)n

)
(−iÂ†)n|Ψ0〉,

where the sum in the brackets is precisely the expression
given in Eq. (21). Q.E.D.

A. Direct verification by substitution

One can easily verify the solution by substitution to the
evolution equation for the amplitudes γn(τ). Expanding

the Schrödinger equation for |Ψ(τ)〉 ≡ e−iτ(Â+Â†)|Ψ0〉 in
the basis (−iÂ†)n|Ψ0〉, using the definition of γn(τ) in
Eq. (12) and the identity in Eq. (10) we get

dγn
dτ

= γn−1 − βnγn+1, γ−1 ≡ γN+1 ≡ 0. (22)

To verify that our amplitudes γn(τ) from Eq. (21) sat-
isfy Eq. (22) we will use the following relation of the

coefficients g
(l)
n for all l ≥ 1

g(l)n = g
(l)
n−1 + βng

(l−1)
n+1 , (23)

which evidently follows from Eq. (20). Differentiating
γn of Eq. (21) for n ≥ 1 and using Eq. (23) we obtain
(separating the term with l = 0)

dγn
dτ

=
τn−1

(n− 1)!
+

∞∑

l=1

(−1)lτn−1+2l

(n− 1 + 2l)!
g
(l)
n−1

+βn

∞∑

l=1

(−1)lτn−1+2l

(n− 1 + 2l)!
g
(l−1)
n+1

=

∞∑

l=0

(−1)lτn−1+2l

(n− 1 + 2l)!
g
(l)
n−1 − βn

∞∑

l′=0

(−1)l
′

τn+1+2l′

(n+ 1 + 2l′)!
g
(l′)
n+1

= γn − βnγn+1,

where we have used that g
(0)
n ≡ 1 and changed the

index l′ = l − 1 in the last sum. For n = 0, on the other
hand, we have due to Eq. (23)

dγ0
dτ

= β0

∞∑

l=1

(−1)lτ2l−1

(2l− 1)!
g
(l−1)
1

= −β0
∞∑

l′=0

(−1)l
′

τ2l
′+1

(2l′ + 1)!
g
(l′)
1 = −β0γ1,

by the same procedure.
Finally, one could have solved Eq. (22) by assuming

a series expansion in the powers of τ , where the two-
dimensional linear recursive equation has to be resolved
for the coefficient of the nth amplitude γn at the mth
power of τ .

B. Amplitude γn(τ ) is a holomorphic function of τ

The solution in Eq. (21) applies for all finite propaga-
tion times τ , i.e., the infinite power series, which defines
γn(τ), converges. Indeed, as follows from Eq. (13), the
state normalization condition requires that

|γn(τ)| ≤
(

n−1∏

ℓ=0

βℓ

)− 1
2

, (24)

hence, the power series in τ in Eq. (21) must converge
irrespectively of the values of the β-factors. This can be

shown by using the evident bound g
(l)
n ≤

(∑N−1
s=0 βs

)l
=

(g
(1)
N−1)

l (recall, that βN = 0). The absolute convergence
follows, since the power series giving γn(τ) is bounded by
the uniformly convergent series with the infinite radius
of convergence:

|γn(τ)| ≤
∞∑

l=0

|τ |n+2l

(n+ 2l)!

(
N−1∑

s=0

βs

)l

<∞, ∀|τ | <∞.

(25)
Therefore, γn(z) is a holomorphic function in the complex
plane of z ∈ C and bounded on the real line τ = ℜ(z).
Let us also give the upper limit on how many terms

l̄(ǫ) in the power series expansion one has to keep in order
to obtain an approximation, to a given error ǫ ≪ 1, to

the exact quantum amplitudes γn(τ). Setting
∣∣∣Tl+1

Tl

∣∣∣ = ǫ,

where Tl and Tl+1 are two consecutive terms in the power
series in Eq. (25) we get an estimate on the index of the
first discarded term in the series for γn(t) (the maximum
is for n = 0)

l̄(ǫ) .
τ√
ǫ

√√√√
N−1∑

s=0

βs. (26)
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C. Explicit solution: the beam-splitter example

Holomorphic functions which are bounded on the real
line include most of the known elementary and special
functions. Hence, at least in some special cases, the quan-
tum amplitude γn(τ) must be reducible to the composi-
tions of known, special or even elementary, holomorphic
functions, which are bounded on the real line. However,
finding such a combination, when it occurs, is a non-
trivial problem.
The beam-splitter example illustrates the above point.

Consider the quadratic Hamiltonian describing the uni-
tary linear four-port interferometer (called also the beam-
splitter), which is obtained in Eq. (1) when k = 1. This
case admits an explicit solution by a combination of pow-
ers of trigonometric functions, which can be obtained by
direct integration (in the Heisenberg picture) or by the
group methods. Observing that the interaction Hamilto-
nian of Eq. (1) with k = 1 has the following commutators
(we use below ~ = Ω = 1)

[Ĥ1, â
†] = b̂†, [Ĥ1, b̂

†] = â†, (27)

we get the evolved operator â† (in the Heisenberg picture)
as follows

e−iτĤ1 â†eiτĤ1 = â† cos τ − ib̂† sin τ. (28)

In each subspace HN the basis introduced in sec-
tion II is given in this case by the Fock states

|N − n, n〉 ≡ (â†)N−n(b̂†)n√
(N−n)!n!

|0, 0〉 (where |0, 0〉 = |V ac〉)

and, in the nomenclature of section II, the state |Ψ(N)
0 〉

annihilated by the ladder operator Â ≡ â†b̂ is the Fock
state |N, 0〉. In the interaction picture, Eq. (28) leads to

e−iτĤ1 |N, 0〉 = 1√
N !

[
â† cos τ − ib̂† sin τ

]N
|0, 0〉

= cosN τ

N∑

n=0

(
N

n

) 1
2

[−i tan τ ]n |N − n, n〉. (29)

The coefficients γn appearing in the equivalent expansion
of the state in Eq. (29), given by Eq. (12) of section II,
can be obtained also from Eq. (29) which gives the re-
spective quantum amplitudes, as in Eq. (13). Observing
that the corresponding parameter βℓ = (N − ℓ)(ℓ + 1)

gives
∏n−1

ℓ=0 βℓ =
(
N
n

)
, we get the identities for the

rescaled coefficients n!γn

τn
∞∑

p=0

(−τ2)p
(n+ 1) . . . (n+ 2p)

g(p)n = cosN−n τ sinn τ, (30)

for all n = 0, 1, 2, . . . , N . Eq. (30) can be verified by the
Taylor expansion at t = 0 of the function on the right
hand side.
One would like to find a way to go in the inverse di-

rection in Eq. (30), i.e., determine which combination

of elementary and/or special functions the power series
expansion on the left hand side in Eq. (21) represents,
and if such a combination exists at all. Te latter seems to
be a hard problem in general for the recursively defined

coefficients g
(l)
n in Eq. (19).

D. Matrix form of the power series

In the absence of a procedure to relate the infinite
power series in Eq. (21) to the combinations of the ele-
mentary and special functions, one can perform numer-
ical computation of the expansion coefficients using the
recursive definition in Eq. (20). It turns out that this
computation can be done in parallel for all 0 ≤ n ≤ N
by using a matrix realization of the recursion for the

vector-column of the coefficients: g(l) ≡ (g
(l)
0 , . . . , g

(l)
N )T ,

where “T ” denotes the transposition. Indeed, the recur-
sion in Eq. (20) can be cast also in the matrix form
with a (N + 1)-dimensional matrix B of a very special
class. Introducing the (N+1)-dimensional vector of ones

1 ≡ (1, . . . , 1)T (coinciding with the values of g
(0)
n ) we

have for p ≥ 1:

g(p) = Bp · 1, Bnl ≡
{
βl−1, 0 ≤ l ≤ min(n+ 1, N)
0, n+ 2 ≤ l ≤ N.

(31)
Observe that the (N+1)-dimensional matrix B is almost
lower-triangular, save the first diagonal above the main
being non-zero, thus it belongs to the class of matrices
known as the Hessenberg matrices.
More properties of the matrix B can be most easily

discussed by considering an expilicit example. Setting
N = 4 we get the following lower Hessenberg matrix

B =




0 β0 0 0 0
0 β0 β1 0 0
0 β0 β1 β2 0
0 β0 β1 β2 β3
0 β0 β1 β2 β3


 , (32)

where one can note that the last two rows are identical
(due to the definition of g

(l)
n in Eq. (19) and the fact

that βN = 0). In fact, we have rank(B) = N . Indeed,
the matrix B has a simple LU -decomposition, e.g., for
the above example with N = 4 we get

B = LU ≡




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1







0 β0 0 0 0
0 0 β1 0 0
0 0 0 β2 0
0 0 0 0 β3
0 0 0 0 0


 .

(33)
One can now write the infinite power series defining

γn(τ) of Eq. (21) as the following series in powers of B:

γn(τ) =
τn

n!

∞∑

p=0

(−τ2)p
(n+ 1) . . . (n+ 2p)

(Bp · 1)n . (34)
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Eq. (34) can be used for numerical calculations of the
power series coefficients via rapid algorithms of comput-
ing powers of the Hessenberg matrices [37].

IV. APPLICATIONS IN QUANTUM OPTICS

To apply the theory of section III all one has to do it
to partition the (interaction) Hamiltonian into a sum of

a ladder operator and its Hermitian conjugate, Ĥ1 = Â+
Â† and within the basis states in each invariant subspace
of the Hilbert space identify the state |Ψ0〉 annihilated

by the ladder operator: Â|Ψ0〉 = 0.
Consider now application of the theory of section III

to the models of Eq. (3) of section II. In the simplest

two-mode case (S = 1) with Â = (â†)mb̂k we have the
invariant subspaces labelled by the composite index I ≡
(M, ℓ), whereM ≥ 0 and 0 ≤ ℓ ≤ k−1. In each subspace
HI the basis states are Fock states of the two modes:

|Ψ(I)
n 〉 ≡ |M −mn, kn+ ℓ〉, 0 ≤ n ≤ N ≡

[
M

m

]
,

|M −mn, kn+ ℓ〉 ≡ (â†)M−mn(b̂†)kn+ℓ

√
(M −mn)!(kn+ ℓ)!

|V ac〉,

(35)

where [. . .] is the integer part. The corresponding param-

eter β
(I)
n in each invariant subspace HI identified above

can be found from Eqs. (6) and (35). We have

β(I)
n =

[
m−1∏

i=0

(M −mn− i)

]
k∏

j=1

(kn+ ℓ+ j). (36)

Observe that, by the definition of N in Eq. (35), there
is such a 0 ≤ q ≤ m − 1 that M = Nm + q. Therefore,
as dictated by the finite dimension of HI , in each such

subspace we obtain β
(I)
N = 0 from Eq. (36), since there

is a zero factor in the first product.
In the general multi-mode case of Eq. (3) with Â =

(â†)m
S∏

s=1
b̂ks
s we have the invariant subspaces labelled by

the composite index J ≡ (M, ℓ1, . . . , ℓS), where M ≥ 0
and 0 ≤ ℓs ≤ ks − 1 with the corresponding Fock states
being the basis, similar as in Eq. (35). In a similar way,
we get the following β-parameter

β(J )
n =

[
m−1∏

i=0

(M −mn− i)

]
S∏

s=1

ks∏

j=1

(ksn+ ℓs + j). (37)

A. Rescaling propagation time by subspace size

The series in Eq. (21) solves the evolution problem in
each subspace HN of the Hilbert space, with the initial

state being |Ψ(N)
0 〉 ≡ (â†)N√

N !
|V ac〉. The (dimensionless)

propagation time τ and the size of the respective Hilbert
subspace HN can be combined by a scaling transforma-
tion for the class of models in Eq. (3). Consider the
simplest two-mode case with β-parameter of Eq. (36).
We can scale out the factor Mm ∼ (mN)m, i.e., intro-
duce the rescaled β-coefficient

β̄n ≡
[
m−1∏

i=0

(
1− mn− i

M

)] k∏

j=1

(kn+ ℓ+ j) (38)

and rescale the propagation time in each invariant sub-
space HN as follows τ̄ (N) ≡

√
Mmτ ∼

√
(mN)mτ . The

rescaling leaves invariant the quantum amplitudes ψ
(N)
n

given by Eqs. (13)-(21), namely, the function ψ
(N)
n (τ̄ (N))

is given by the same power series expansion of Eqs. (13)
and (21) in the rescaled time τ̄ (N) with the coefficients
given by the rescaled β-parameter of Eq. (38).
The above scaling transformation can be useful in the

quantum optical applications, when the pump mode is
the output state of a strong laser. A strong semiclas-
sical coherent pump state, such as the coherent state
of Eq. (2) with α ≫ 1, can be expanded over Fock
states within the relatively small interval about the av-
erage |N/〈N〉− 1| = O

(
α−1

)
, where 〈N〉 = α2, since the

Poisson distribution PN (α) = e−α2 α2N

N ! of the relative
weights of the subspaces HN is small outside the above
interval. This makes the scaling of the propagation time
in the invariant subspaces HN with significant part of
the state norm uniform over all such HN to the relative
error O

(
α−1

)
.

Let us illustrate the above point using as an example
the “generalized squeezing” process, introduced in Ref.
[24], which correspond to the class of models in Eq. (3)
with S = m = 1 and an arbitrary k ≥ 2. The cor-
responding rescaled time is τ̄ =

√
Nτ . The maximum

propagation time of the parametric approximation for
such models was found in Ref. [31]: τc ∼ 1

α , when the

pump mode is in a strong coherent state α =
√
〈N〉. This

translates to our rescaled time τ̄c ∼ 1 for the significant
Fock state components of the coherent state.

B. Comparing the exact solution with the

Gaussian squeezed state

Consider now the most important case of the second-
order nonlinearity (k = 2 in terms of Eq. (1) of section
II), which models the spontaneous down conversion pro-
cess [17, 18] (see also the reviews [19–21]).
First of all, let us briefly remind the standard para-

metric approximation for the strong coherent pump, i.e.,
in the pump in the state of Eq. (2) of section II with
α ≫ 1 (here α > 0). In this approximation one assumes
that during the evolution the pump remains in the same
coherent state and replaces the boson operators of the
pump mode by the scalar parameter: â→ α and â† → α,
hence the name of the approximation. The approximate
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Hamiltonian, obtained from that of Eq. (1) by the above
procedure,

Ĥ
(α)
1 ≡ Ĥ1

[
â→ α
â† → α

]
= ~Ωα(b̂2 + b̂†2) (39)

is mapped in this case to the generators of the SU(1, 1)-

group: K− = 1
2 b̂

2, K+ = K†
−, and K3 = 1

2 (n̂ + 1
2 ),

with n̂ ≡ b̂†b̂. The commutators [K−,K+] = 2K3 and
[K3,K+] = K+ allow one to express the unitary evolution
exponent as follows

e−ir(K−+K+) = e−iu(r)K+e−v(r)K3e−iu(r)K− ,

r ≡ 2αΩt, u = tanh r, v = 2 ln(cosh r). (40)

Application of the expression on the right hand side of
Eq. (40) to the vacuum state in the signal mode results
in the standard parametric approximation (the squeezed
state [19])

|Sr〉 ≡ e−ir(K−+K+)|0〉 (41)

=
√
sechr

∞∑

n=0

(
2n

n

) 1
2
(−i tanh r

2

)n

|2n〉,

where we have denoted by |2n〉 the Fock state with 2n
photons.
To compare the above described parametric approxi-

mation with the exact solution, let us map the joint state
of the pump-signal system onto the invariant subspaces
HN ≡ Span{|N − n, 2n〉, 0 ≤ n ≤ N}, with |N − n, 2n〉
denoting the Fock state with N−n photons in the pump
mode and 2n in the signal mode. Expanding the coher-

ent state over the Fock states |M〉 = (â†)M√
M !

|0〉, as in Eq.

(2), and rearranging the two summations by introducing
a new index N ≡ M + n, where n is from Eq. (41), we
get

|α〉|Sr〉 = e−
α2

2

∞∑

M=0

αM

√
M !

|M〉|Sr〉

= e−
α2

2

∞∑

N=0

αN

√
N !

N∑

n=0

ψ̃(N)
n |N − n, 2n〉, (42)

where the quantum amplitude ψ̃
(N)
n , a parametric ap-

proximation to the exact amplitude ψ
(N)
n of Eqs. (12)-

(13) of section III, is given as follows

ψ̃(N)
n =

[
(N)nsechr

(
2n

n

)] 1
2
(−i tanh r

2α

)n

, (43)

where (N)n = N(N − 1) . . . (N − n+ 1).

The parametric approximation to the coefficient γ̃
(N)
n

of the exact solution Eq. (21), for the original quantum

Hamiltonian Ĥ1 = ~Ω(â†b̂2 + âb̂†2), can be derived from
the relation in Eq. (13). Taking into account that in this

case m = 1 and q = 0 (M = N) in Eq. (36), giving

β(N)
n = (N − n)(2n+ 1)(2n+ 2),

n−1∏

l=0

β
(N)
l = (N)n(2n)!,

(44)
we obtain from Eqs. (13) and (43) the respective coeffi-
cients in the parametric approximation (as functions of
the dimensionless time τ = Ωt = r

2α )

γ̃n =
√
sechr

(
tanh r
2α

)n

n!
. (45)

Observe also the independence of the parametric approx-
imation γ̃n from the subspace dimension parameter “N”.
In comparison, the exact coefficient does depend on N .
This feature is due to the fact that the parametric ap-
proximation is applied for α≫ 1, thus only the subspaces
Hn with N satisfying |N −α2| = O (α) contribute signif-
icantly to the result.
Let us now compare the parametric approximation of

Eq. (45), applicable for α ≫ 1, to the exact result in
Eq. (21) of section III. By the standard Taylor series
expansions of the involved elementary functions in Eq.
(45) we obtain, up to an error on the order O(n2r4),

γ̃n =
τn

n!

(
1−

[
n

3
+

1

4

]
r2 +O(n2r4)

)
. (46)

At the same time Eq. (21) gives the following exact series
up to the same order of error

γ(N)
n =

τn

n!

(
1−

[
n

3
+

1

4
− n(n+ 1)

4N

]
Nr2

α2
+O(n2r4)

)
.

(47)
Comparing the expansions in Eqs. (46) and (47) we
conclude that the parametric approximation has the fol-
lowing relative error (in the significant interval about
〈N〉 = α2, see the discussion above)

γ̃n − γ
(N)
n

γ
(N)
n

= O
(
n+ 1

α

)
, (48)

thus it approximates quite well the quantum amplitudes
in Eq. (42) for n≪ α =

√
〈N〉.

If the parametric approximation fails to represent a
significant part of the norm of the quantum state of

the signal (i.e., the higher-order amplitudes ψ
(N)
n for

n ∼
√
〈N〉), then it fails to approximate the exact so-

lution for such propagation times. Indeed, the normal-
ization of the joint state in Eq. (42), as well as the av-
erage number of photons in the signal mode 〈n̂〉, both
depend on the behavior of the quantum amplitudes ψ̃

(N)
n

(and, hence γ̃n) for large n ≥
√
N ∼ α. Therefore, the

parametric approximation may fail for some squeezing
parameters r ≥ rc, due to the approximation error in
Eq. (48). The detailed analysis of the applicability con-
ditions of the parametric approximation to the sponta-
neous down conversion process, in view of its importance
for the quantum technology, will be considered elsewhere.
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V. CONCLUDING REMARKS

In the present work the exact solution was derived to
a wide class of nonlinear models describing interacting
bosons, with the immediate application to the state evo-
lution problem as it is posed in the realm of quantum
optics, where a pump mode propagating in a nonlinear
optical media satisfying the phase matching conditions
generates the signal mode(s) which are initially in the
vacuum state. The solution to the state evolution prob-
lem is given as a series expansion in powers of the prop-
agation time, where a single function, polynomial in the
signal mode(s) populations, represents the specific quan-
tum model. The results have immediate application to
the nonlinear models in quantum optics, such as the k-
photon down conversion process, important for the de-
velopment of quantum technology.
A number of open problems is left for the future work.

How to generalize the method in order to solve the state
evolution problem for an arbitrary initial state of the sys-
tem? Another open problem is related to the semiclassi-
cal approach usually applied in quantum optics: What is
the correct asymptotic limit of the exact solution when
the dimension of the invariant subspace (e.g., the average
number of photons in the pump mode) goes to infinity?
The hope is that the present approach paved the way to
solve such open problems.
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