
ar
X

iv
:2

41
1.

14
21

2v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
1 

N
ov

 2
02

4

Bound electron states in a charged chain within the Dirac

description

Alexander Eremko, Larissa Brizhik, Vadim Loktev

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine

Metrologichna Str., 14-b, Kyiv, 03143, Ukraine.

eremko@bitp.kyiv.ua, brizhik@bitp.kyiv.ua, vloktev@bitp.kyiv.ua

Abstract

For the first time the exact analytical expressions for the three-dimensional bound electron
states in the Coulomb field of the chain consisting of positively charged ions, are obtained
within the Dirac description, using the new spinor invariant found for this problem. It
is demonstrated that within such approach the coupling between electron spin and its
one-dimensional propagation along the chain naturally arise, without any need to include
artificially into the equations the so-called spin-orbit interaction.
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1. Introduction

It is well known that soliton concept is widely used in description of numerous phys-
ical processes, among which there are hydrodynamic (solitary wave), elastic (nonlinear
sound waves, dislocations), optical (solitons in optical waveguides), electroconductivity
(electrosolitons), magnetic (magnetic solitons, domain walls, etc.), plasma systems, and
many other (see, e.g., [1, 2]). The pioneering work of A.S. Davydov and N.I. Kislukha [3]
were the first to introduce the concept of solitons in condensed matter physics. Davydov’s
soliton [4, 5] is to a large extent especial for it exists in one-dimensional (1D) systems.
It represents an electron self-trapped in the deformational potential of the system due
to electron-lattice interaction [5, 8] (see also [6]). To-day the concept of the Davydov’s
soliton is used to explain energy and charge transfer in biological systems [7, 1], charge
transport on macroscopic distances in Donor – Quantum Wire – Acceptor systems [9] and
many other related problems.

Theory of the Davydov’s soliton was based on the assumption that electron states
in 1D structures can be described within the tight binding model using non-relativistic
Shrödinger equation (SE). In the meantime it has been shown in our recent papers [10, 11],
that within the Dirac equation (DE) the number of possible solutions is enlarged with the
possess unexpected properties of the new solutions. This has been done for essentially
linear problem and self-trapping phenomenon has not been considered. Its possibility and
criteria of existence can be studied when electron eigenstates, and, therefore, eigenfunc-
tions of the equation with the potential of the considered structure are known.

In the present paper, dedicated to Alexander Kovalev, one of the best experts in the
field of theory of magnetic solitons in condensed matter, we aim to study self-trapped Dirac
states of an electron in a chain which so far to our knowledge are unknown. In particular,
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here we solve only the first part of the nonlinear problem of soliton formation within
the Dirac description. For this we calculate analytically eigenstates and eigenfunctions
of an electron in a three-dimensional (3D) field of a charged chain, using the set of the
invariants of the DE. Each invariant leads to the corresponding solution. They can be
entangled, according to the general invariant as a linear combination of the three initial
ones.

2. Description of the model

Let us consider an atomic chain with regularly placed N ≫ 1 atoms which is described
by the radius-vector rn = {0, 0, na} (n = 1, 2, . . . , N). Each atom has the charge Q and,
therefore, such a chain creates for electrons the potential

V (r) = −
∑

n

eQ
√

x2 + y2 + (z − na)2
(1)

where the radius-vector can be written in the form

r = (r⊥, z) , r2⊥ = x2 + y2. (2)

This potential has the translational symmetry along the chain V (r+ naez) = V (r) and,
as it is well known, can be represented in the form

V (r) =
∑

gn

agn (r⊥) e
ignz (3)

where gn = 2πn/a with 2π/a is a reciprocal length of 1D lattice with the lattice spacing
a. The coefficients agn (r⊥) are given by the expression

agn (r⊥) =
1

a

∫

(over cell)

V (r) e−ignzdz = −eQ
a

∫ a/2

−a/2

e−ignz

√

r2⊥ + z2
dz. (4)

Here the Wigner-Seitz cell with an atom in its center is chosen as an elementary cell of
1D Bravais lattice.

The most adequate and complete description of the electron states is provided by the
(DE) which in the presence of an external field created by atomic nuclei, is

(

cα̂ · p̂+mc2β̂ + V (r)
)

Ψ = EΨ (5)

where cα̂ · p̂ + mc2β̂ + V (r) = ĤD is Dirac Hamiltonian, Ψ = Ψ (r) is Dirac bispinor,
and V (r) =

∑

gn
Vgn (r⊥, z) is the potential created by the atomic chain, determined in

Eq. (3). Matrices β̂ and components α̂j (j = x, y, z) of the vector-matrix α̂ =
∑

j ejα̂j

together with the unit matrix Î are 4× 4 Hermitian Dirac matrices (for more explanation
see Appendix). The Fourier coefficients agn , in (3), and, therefore, Vgn decrease with
increasing gn.
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3. Free quasi-one-dimensional electrons

As the zero-order approximation we will use the solution of the DE (5) with the
potential V (r) given by zero-order Fourier component V0 = Vg=0, only,

V0 (r⊥) = −eQ
a

∫ a/2

−a/2

dz
√

r2⊥ + z2
=
eQ

a
ln

√

r2⊥ + 1
4
a2 − 1

2
a

√

r2⊥ + 1
4
a2 + 1

2
a
=

2eQ

a
ln

r⊥
√

r2⊥ + 1
4
a2 + 1

2
a
,

which we write down as

V0 (r⊥) = −2eQ

a
ln v (r⊥) , v (r⊥) =

a

2r⊥
+

√

1 +
a2

4r2⊥
. r⊥ = |r⊥| =

√

x2 + y2. (6)

The Dirac Hamiltonian HD is presented through Dirac 4 × 4 matrices and is often
written down in the 2× 2 block form

ĤD =

(

(V0 +mc2) Î2 cσ̂ · p̂
cσ̂ · p̂ (V0 −mc2) Î2

)

. (7)

Here Î2 is a unit 2 × 2 matrix, σ̂ =
∑

j ej σ̂j where σ̂j (j = x, y, z) are Pauli matrices.
Respectively, the bispinor Ψ is represented as

Ψ (r) =

(

ψ(u) (r)
ψ(d) (r)

)

, ψ(u) =

(

ψ(1) (r)
ψ(2) (r)

)

, ψ(d) =

(

ψ(3) (r)
ψ(4) (r)

)

, (8)

where ψ(u/d) are its upper/lower spinors, respectively, with the components ψ(ν) and ψ(ν+1)

(ν = 1 for the upper bispinor, and ν = 3 for the lower one).
Therefore, the DE (5) is the system of two equations for upper and lower spinor

components ψ(u/d) of the bispinor (8)

cσ̂ · p̂ψ(u) − (E − V0(r⊥))ψ
(d) −mc2ψ(d) = 0,

cσ̂ · p̂ψ(d) − (E − V0(r⊥))ψ
(u) +mc2ψ(u) = 0.

(9)

Solutions of the DE system (9) determine stationary states of quasi-1D electrons bound
by an atomic chain. Stationary states are characterized by the set of quantum numbers
which reflect the eigenvalues of the complete set of operators that commute with the
Hamiltonian ĤD (constants of motion or invariants). In the potential V0 (r⊥) with the
translational symmetry along z-axis, such invariants are z-components of the momentum
p̂z, of the total angular momentum Ĵz = L̂z Î + (~/2)Σ̂z, and of the spin polarization
vector Ŝz = Ω̂z + ρ̂1

p̂z
mc

. Here the total angular momentum is Ĵ = L̂ + (~/2)Σ̂ where

L̂ = r × p̂ is the orbital momentum operator, and (~/2) Σ̂ is the operator of the spin
angular momentum, called "spin" for short.

Thus, the eigen bispinors of the DE are the joint eigenstate vectors of the complete
set of the independent commuting operators (including the Hamiltonian) and the set of
quantum numbers is determined by the eigenvalue equations

ĤDΨE,k,M,s = EΨE,k,M,s, p̂zΨE,k,M,s = ~kΨE,k,M,s,

ĴzΨE,k,M,s = ~MΨE,k,M,s, ŜzΨE,k,M,s = sΨE,k,M,s

(10)

where k ≡ kz is the wave number along the chain, M is the eigenvalue of Jz.
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3.1. Eigenvalues and eigen bispinors of the invariants

It follows from Eq. (10) that ΨE,k,M,s = eikzΨE,k,M,s(x, y). Due to the symmetry of V0
it is naturally to use the cylindrical coordinate system

x = r⊥ cosϕ, y = r⊥ sinϕ, z.

The eigenvalue equation for z-component of the total angular momentum Ĵz is

(

ĵz 0

0 ĵz

)(

ψ(u)

ψ(d)

)

= ~M

(

ψ(u)

ψ(d)

)

, ĵz = L̂z Î2 +
~

2
σ̂z =

(

L̂z +
~

2
0

0 L̂z − ~

2

)

where L̂z is z-component of the orbital momentum,or, equivalently, ĵzψ
(u/d) = ~Mψ(u/d)

and, according to the latter equation, the upper and lower spinors are the eigen spinors
of ĵz. In the cylindrical coordinates L̂z = −i~∂/∂ϕ and we have two equations

−i~∂ψ
(ν)

∂ϕ
+

~

2
ψ(ν) = ~Mψ(ν), −i~∂ψ

(ν+1)

∂ϕ
− ~

2
ψ(ν+1) = ~Mψ(ν+1)

for the bispinor components ψ(ν)(r⊥, z, ϕ) with ν = 1 for the upper spinor ψ(u), and ν = 3
for the lower one, ψ(d), in (8). Solutions of these equations are

ψ(ν) ∼ eim1ϕ and ψ(ν+1) ∼ eim2ϕ

where m1 and m2 are the integer numbers that satisfy the condition m2 −m1 = 1. Thus,
the bispinor components are

ψ
(u/d)
k,M = ei(kz+Mϕ)χ(u/d), χ(u) =

(

e−iϕ/2f1(r⊥)
eiϕ/2f2(r⊥)

)

, χ(d) =

(

e−iϕ/2f3(r⊥)
eiϕ/2f4(r⊥)

)

(11)

with quantum numbers k (recall, it is the wave number along the chain), and numbers
M = (1/2)(m2 +m1) which take half-integer values M = ±1/2,±3/2, . . ..

The eigenvalue equation for z-component of the spin polarization vector Ŝz is

(

σ̂z Î2
p̂z
mc

Î2
p̂z
mc

−σ̂z ,

)(

ψ(u)

ψ(d)

)

= s

(

ψ(u)

ψ(d)

)

which, with account of Eq. (11), leads to the equations

(s− σ̂z)ψ
(u)
k,M = ~k

mc
ψ

(d)
k,M ,

(s + σ̂z)ψ
(d)
k,M = ~k

mc
ψ

(u)
k,M .

(12)

Multiplying the first equation by (s+ σ̂z) and the second one by (s− σ̂z), we get the
relation

(

s2 − 1− ~
2k2

m2c2

)

ψ
(u/d)
k,M = 0

from which we obtain two eigenvalues

s± = ±
√

1 +
~2k2

m2c2
= σs (13)
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of the operator Ŝz where notations are introduced

σ = ±1, s =

√

1 +
~2k2

m2c2
=

Ek
mc2

, Ek =
√
m2c4 + c2~2k2. (14)

The last eigenvalue equation gives us the two-valued spin quantum number σ = ±1
and, respectively, two solutions ΨE,k,M,σ with opposite signs of σ. According to Eq. (12),
the upper and lower spinors for each spin state are connected by the relation which can
be written in the two equivalent forms

(

σEk +mc2σ̂z
)

ψ
(d)
k,M,σ = c~kψ

(u)
k,M,σ,

(

σEk −mc2σ̂z
)

ψ
(u)
k,M,σ = c~kψ

(d)
k,M,σ, (15)

because (σEk +mc2σ̂z) (σEk −mc2σ̂z) = E2
k −m2c4 = c2~2k2.

Adding and subtracting these two equalities, we get

mc2σ̂zψ
(−)
k,M,σ = (σEk − c~k)ψ

(+)
k,M,σ, mc2σ̂zψ

(+)
k,M,σ = (σEk + c~k)ψ

(−)
k,M,σ (16)

where ψ
(±)
k,M,σ = ψ

(u)
k,M,σ ± ψ

(d)
k,M,σ .

3.2. Solution of the Dirac equation

To find the solution of the DE, we take into account the existence of the constants of
motion and use the spinors determined in Eq. (11) in the DE system (9). Because p̂z is the
constant of motion, we represent the momentum operator in Eqs. (9) as p̂ = p̂⊥ + p̂zez
where p̂⊥ = p̂xex + p̂yey. By adding and subtracting two spinor equations in (9) we

transform it to the system of equations for spinors ψ
(±)
k,M,σ

cσ̂ · p̂⊥ψ
(+)
k,M,σ + cσ̂zp̂zψ

(+)
k,M,σ − (E − V0(r⊥))ψ

(+) +mc2ψ
(−)
k,M,σ = 0,

cσ̂ · p̂⊥ψ
(−)
k,M,σ + cσ̂zp̂zψ

(−)
k,M,σ + (E − V0(r⊥))ψ

(−)
k,M,σ −mc2ψ

(+)
k,M,σ = 0.

where according to (11), spinors ψ
(±)
k,M,σ are given by the formula

ψ
(±)
k,M,σ = ei(kz+Mϕ)χ(±)

σ (17)

in which the notations are used

χ(±)
σ =

(

e−iϕ/2f
(±)
σ (r⊥)

eiϕ/2g
(±)
σ (r⊥)

)

,
f
(±)
σ (r⊥) = f1(r⊥)± f3(r⊥)

g
(±)
σ (r⊥) = f2(r⊥)± f4(r⊥)

(18)

To write down equations in cylindrical coordinate system, we use the transformation
of the kinetic energy operator σ̂p̂⊥. For this we define r⊥ = xex+yey, r

2
⊥
= x2+y2 = r2⊥

and the unit matrix

σ̂
r⊥

= σ̂ · e
r⊥

=

(

0 e−iϕ

eiϕ 0

)

, e
r⊥

=
r⊥

r⊥
, σ̂2

r⊥
= Î2, (19)

and take into account the identity

σ̂
r⊥

(σ̂ · p̂⊥) =
1

r⊥
(σ̂ · r⊥) (σ̂ · p̂) = 1

r⊥
(r⊥ · p̂+ iσ̂ · r⊥ × p̂) = p̂r⊥ +

i

r⊥
σ̂z ĵz.
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Here p̂r⊥ = (1/2) (e
r⊥

· p⊥ + p⊥ · e
r⊥
) is the Hermitian operator of the momentum pro-

jection on the direction r⊥ which in cylindrical coordinates is

p̂r⊥ = −i~
(

∂

∂r⊥
+

1

2r⊥

)

= −i~ 1√
r⊥

∂

∂r⊥

√
r⊥, (20)

and ĵz is a diagonal block of Ĵz.
So, the operator of the kinetic energy of the electron motion transverse to the chain,

is represented as

cσ̂ · p̂⊥ = cσ̂2
r⊥
σ̂ · p̂⊥ = σ̂

r⊥
c

(

p̂r⊥ +
i

r⊥
σ̂z ĵz

)

.

Taking into account that σ̂2
r⊥

= Î2 and the explicit expressions (17), equations for the

spinors ψ
(±)
σ become

cp̂r⊥χ
(+)
σ + i c~M

r⊥
σ̂zχ

(+)
σ + c~kσ̂

r⊥
σ̂zχ

(+)
σ − (E − V0(r⊥)) σ̂r⊥χ

(+)
σ +mc2σ̂

r⊥
χ
(−)
σ = 0,

cp̂r⊥χ
(−)
σ + i c~M

r⊥
σ̂zχ

(−)
σ + c~kσ̂

r⊥
σ̂zχ

(−)
σ + (E − V0(r⊥)) σ̂r⊥χ

(−)
σ −mc2σ̂

r⊥
χ
(+)
σ = 0.

It follows from relations (16) that

χ(−)
σ =

mc2

σEk + c~k
σ̂zχ

(+)
σ , χ(+)

σ =
mc2

σEk − c~k
σ̂zχ

(−)
σ .

Next, we introduce from the relation σ̂zσ̂r⊥ = iσ̂ϕ the unit matrix

σ̂ϕ =

(

0 −ie−iϕ

ieiϕ 0

)

.

In view of the equality p̂r⊥χ = (−i~/√r⊥)∂
√
r⊥χ)/∂r⊥, it is convenient to consider

spinors Φ
(±)
σ =

√
r⊥χ

(±)
σ using substitution f

(±)
σ (r⊥) = r

−1/2
⊥ F

(±)
σ (r⊥) and g

(±)
σ (r⊥) =

r
−1/2
⊥ G

(±)
σ (r⊥) in spinors (17). This leads to two independent equations for the new spinors

Φ
(±)
σ

−ic~ ∂
∂r⊥

Φ
(+)
σ + i c~M

r⊥
σ̂zΦ

(+)
σ − ic~kσ̂ϕΦ

(+)
σ − (E − V0) σ̂r⊥Φ

(+)
σ − i m2c4

σEk+c~k
σ̂ϕΦ

(+)
σ = 0,

−ic~ ∂
∂r⊥

Φ
(−)
σ + i c~M

r⊥
σ̂zΦ

(−)
σ − ic~kσ̂ϕΦ

(−)
σ + (E − V0) σ̂r⊥Φ

(−)
σ + i m2c4

σEk−c~k
σ̂ϕΦ

(−)
σ = 0.

Action of the Pauli matrices σ̂z, σ̂ϕ, and σ̂
r⊥

on these spinors gives the following
equations:

σ̂zΦ =

(

e−iϕ/2F (r⊥)
−eiϕ/2G(r⊥)

)

, σ̂ϕΦ == i

(

−e−iϕ/2G(r⊥)
eiϕ/2F (r⊥)

)

, σ̂
r⊥
Φ =

(

e−iϕ/2G(r⊥)
eiϕ/2F (r⊥)

)

where for simplicity we have omitted upper and lower indices. Respectively, the spinor
equations can be represented as the systems of two sets of equations

−ic~dF
(+)
σ

dr⊥
+ i c~M

r⊥

F
(+)
σ − (E + σEk)G(+)

σ + V0(r⊥)G
(+)
σ = 0,

−ic~dG
(+)
σ

dr⊥
− i c~M

r⊥

G
(+)
σ − (E − σEk)F (+)

σ + V0(r⊥)F
(+)
σ = 0,

and
−ic~dF

(−)
σ

dr⊥
+ i c~M

r⊥

F
(−)
σ + (E + σEk)G(−)

σ − V0(r⊥)G
(−)
σ = 0,

−ic~dG
(−)
σ

dr⊥
− i c~M

r⊥

G
(−)
σ + (E − σEk)F (−)

σ − V0(r⊥)F
(−)
σ = 0,

6



which shows that the DE equation (9) is the system of four equations which determine
four components of the Dirac bispinor ΨE,k,M,σ. Here we have used again the relation
(σEk + c~k) (σEk − c~k) = E2

k − c2~2k2 = m2c4.

Note that if we put F
(−)
σ = −F (+)

σ and G
(−)
σ = G

(+)
σ in the second system (or vice

versa, F
(−)
σ = F

(+)
σ and G

(−)
σ = −G(+)

σ ), it will coincide with the first one. Thus, we can
consider only one system for functions Fσ and Gσ using the relations

F (+)
σ = Fσ, F (−)

σ = σFσ, G(+)
σ = Gσ, G(−)

σ = −σGσ. (21)

Thus, equations for the spin states σ = +1 and σ = −1 are

for σ = +1
−ic~dF+

dr⊥
+ i c~M

r⊥
F+ − (Ek + E)G+ + V0(r⊥)G+ = 0,

−ic~dG+

dr⊥
− i c~M

r⊥
G+ + (Ek − E)F+ + V0(r⊥)F+ = 0,

(22)

and

for σ = −1
−ic~dF−

dr⊥
+ i c~M

r⊥
F− + (Ek − E)G− + V0(r⊥)G− = 0,

−ic~dG−

dr⊥
− i c~M

r⊥
G− − (Ek + E)F− + V0(r⊥)F− = 0,

(23)

At large distances r⊥ → ∞ the potential V0 (r⊥) → 0 as well as the term 1/r⊥ → 0,
and the asymptotic behavior of functions are determined by the following equations

ic~
dFσ

dr⊥
+ (E + σEk)Gσ = 0, ic~

dGσ

dr⊥
+ (E − σEk)Fσ = 0,

from which it follows that

c2~2d
2Fσ

dr2⊥
=
(

E2
k − E2

)

Fσ

(the same equation takes place for Gσ). For the bound electron states which we will
consider below, at r⊥ → ∞ the function behavior must be exponential, Fσ ∼ exp(−κ⊥r⊥)
which takes place at E2 < E2

k = m2c4 + c2~2k2. Therefore, the in-plane damping

κ⊥ =
1

c~

√

E2
k −E2 (24)

is a real number. It shows that damping outside the chain depends on the energy of the
longitudinal electron motion.

To find solution of Eq. (22) for the spin state σ = +1 one can use the substitution

F+ = ρ−1/2e−ξ/2f+(r⊥), G+ = iρ1/2e−ξ/2g+(r⊥), ρ =

√

Ek − E

Ek + E
=

c~κ⊥

Ek + E
, (25)

in which the dimensionless variable is used

ξ = 2κ⊥r⊥, (26)

which transforms the system to the following equations for functions f and g

df+
dr⊥

− κ⊥f+ − M
r⊥
f+ + κ⊥g+ − Ek

c2~2κ⊥
V0(r⊥)g+ + E

c2~2κ⊥

V0(r⊥)g+ = 0,
dg+
dr⊥

− κ⊥g+ + M
r⊥
g+ + κ⊥f+ + Ek

c2~2κ
V0(r⊥)f+ + E

c2~2κ
V0(r⊥)f+ = 0.

7



The atomic chain potential V0 (r⊥) is given in Eq. (6) where we write down the atom
charge Q as Q = eZv with Zv being the number of the valence electrons in an atom. At
r⊥ > a, the potential can be expanded in the series

V0 (r⊥) = −2e2Zv

a
ln

(

1 +
a

2r⊥
+

a2

8r2⊥
+ . . .

)

≈ −e
2Zv

r⊥

(

1− a2

24r2⊥
+ . . .

)

,

and, to obtain the solution for the electrons bound by the chain, we can use the effective
potential Veff = Ceffe

2Zv/r⊥ with the parameter Ceff .
By adding and subtracting equations for functions f and g, we obtain the system of

equations for functions u
(±)
+ = f+ ± g+

du
(+)
+

dr⊥
− E

c2~2κ⊥

eQ
r⊥

u
(+)
+ − M

r⊥
u
(−)
+ − Ek

c2~2κ⊥

eQ
r⊥
u
(−)
+ = 0,

du
(−)
+

dr⊥
− 2κ⊥u

(−)
+ + E

c2~2κ⊥

eQ
r⊥
u
(−)
+ − M

r⊥
u
(+)
+ + Ek

c2~2κ⊥

eQ
r⊥
u
(+)
+ = 0.

Using the substitution u
(+)
+ = rγ⊥p(r⊥) and u

(−)
+ = rγ⊥q(r⊥), we obtain the system of

equations for functions p(r⊥) and q(r⊥)

r⊥
dp(r⊥)
dr⊥

+
(

γ − ECeff eQ

c2~2κ⊥

)

p(r⊥) =
(

M +
EkCeff eQ

c2~2κ⊥

)

q(r⊥),

r⊥
dq(r⊥)
dr⊥

+
(

γ +
ECeff eQ

c2~2κ⊥

− 2κ⊥r⊥

)

q(r⊥) =
(

M − EkCeff eQ

c2~2κ⊥

)

p(r⊥).
(27)

This system of two first order equations are reduced to equations of the second order
for each functions

r2⊥
d2p(r⊥)

dr2⊥
+ r⊥ (1 + 2γ − 2κ⊥r⊥)

dp(r⊥)

dr⊥
+

+

[

γ2 −M2 + C2
effZ

2
vα

2 + 2κ⊥r⊥

(

ECeffeQ

c2~2κ⊥

− γ

)]

p(r⊥) = 0,

r2⊥
d2q(r⊥)

dr2⊥
+ r⊥ (1 + 2γ − 2κ⊥r⊥)

dq(r⊥)

dr⊥
+

+

[

γ2 −M2 + C2
effZ

2
vα

2 + 2κ⊥r⊥

(

ECeffeQ

c2~2κ⊥

− γ − 1

)]

q(r⊥) = 0.

Here e2/~c = α is the Sommerfeld fine structure constant and we have used the definition
(24).

We see that functions p(r⊥) and q(r⊥) satisfy the hypergeometric differential equation.
The solution is to be finite throughout the space and, therefore, the hypergeometric series
should terminate for some value of n. This condition leads to the equalities

γ2 ≡ γ2M =M2 − C2
effZ

2
vα

2, and
ECeffeQ

c2~2κ⊥

− γM − 1 = n (28)

where n is a positive integer number, n = 0, 1, 2, . . .. Under this condition, the functions
p(r⊥) and q(r⊥) satisfy the following differential equations

ξ d2p(ξ)
dξ2

+ (1 + 2γM − ξ) dp(x)
dξ

+ (n+ 1) p(ξ) = 0,

ξ d2q(ξ)
dξ2

+ (1 + 2γM − ξ) dq(ξ)
dξ

+ nq(ξ) = 0,
(29)

for generalized Laguerre polynomial L2γM
n (ξ) of the variable ξ determined in Eq. (26).
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Therefore, we obtain the solution p(r⊥) = C1L
2γM
n+1 (2κ⊥r⊥) and q(r⊥) = C2L

2γM
n (ξ)

with

γM =
√

M2 − C2
effZ

2
vα

2 (30)

according to the first equality in the system (28). Here the square root has the positive
sign, only, as it follows from the condition of the normalization integral convergence. The
second equality in (28) gives the energy eigenvalue

E = Ek,M,n = Ek∆n,M , (31)

where

∆n,M =
γM + n

√

(γM + n)2 + C2
effZ

2
vα

2
=

√

1−
C2

effZ
2
vα

2

n2 +M2 + 2nγM
, (32)

n = 1, 2, . . . and Ek is determined in Eq. (14). The damping parameter (24) takes the
value

κ⊥ =
1

rB

CeffZv
√

n2 +M2 + 2nγM

√

1 + α2r2Bk
2 (33)

where rB = ~
2/me2 is the Bohr radius, and parameter ρ in Eq. (25) is

ρ =

√

Ek − En,k

Ek + En,k

=

√

1−∆n,M

1 + ∆n,M

=
CeffZvα

(1 + ∆n,M)
√

n2 +M2 + 2nγM
. (34)

The condition that functions p(r⊥) and q(r⊥) are the solution of the system (27),
determines the relation between constants C1 and C2 (cf. Eq. (34)):

(2γM + n + 1)C
(+)
1 = − (δ +M)C

(+)
2 , (n+ 1)C

(+)
2 = − (δ −M)C

(+)
1 (35)

where
δ =

√

M2 + (1 + n)(2γM + 1 + n). (36)

Let us now consider the spin states with σ = −1. They are described by Eqs. (23)
from which by substitution

F− = iρ1/2e−ξ/2rγM⊥
1

2
(p(r⊥) + q(r⊥)) , G− = ρ−1/2e−ξ/2rγM⊥

1

2
(p(r⊥)− q(r⊥)) (37)

we obtain the equations for functions p(r⊥) and q(r⊥):

r⊥
dp−(r⊥)

dr⊥
+
(

γM − ECeffeQ

c2~2κ⊥

)

p−(r⊥) +
(

M − EkCeff eQ

c2~2κ⊥

)

q−(r⊥) = 0,

r⊥
dq−(r⊥)

dr⊥
+
(

γM +
ECeff eQ

c2~2κ⊥

− 2κ⊥r⊥

)

q−(r⊥) +
(

M +
EkCeff eQ

c2~2κ⊥

)

p−(r⊥) = 0.
(38)

from which it follows that under conditions (28) p(r⊥) and q(r⊥) are the solutions of Eqs.
(29) and, therefore, p(r⊥) = C1L

2γM
n+1 (2κ⊥r⊥) and q(r⊥) = C2L

2γM
n (2κ⊥r⊥). In this case

p(r⊥) and q(r⊥) ought to be the solutions of Eqs.(38) which gives us the relation between
constants C1 and C2 (cf. Eq. (35)):

(2γM + n + 1)C
(−)
1 = − (b−M)C

(−)
2 , (n+ 1)C

(−)
2 = − (b+M)C

(−)
1 , (39)
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Here constants C
(±)
j are determined from the normalization condition

∫

Ψ†
n,k,M,σΨn,k,M,σd

3r =

∫ ∞

0

r⊥dr⊥

∫ 2π

0

dϕ

∫ L/2

−L/2

dzΨ†
n,k,M,σΨn,k,M,σ = 1

with account of the relation between constants C1 and C2.
As a result, we have orthonormal eigen bispinors for the spin state σ

Ψn,k,M,+ = An,k,Me
i(kz+Mϕ)e−ξ/2r

γM−1/2
⊥

(

ρ−1/2Pn,+ (ξ)χ↑

iρ1/2Qn,+ (ξ)χ↓

)

(40)

and

Ψn,k,M,− = An,k,Me
i(kz+Mϕ)e−ξ/2r

γM−1/2
⊥

(

ρ−1/2Pn,− (ξ)χ↓

iρ1/2Qn,− (ξ)χ↑

)

(41)

where the spinors χ↑/↓ are given by expressions

χ↑ =

(

e−iϕ/2

0

)

, χ↓ =

(

0
eiϕ/2

)

, (42)

An,k,M is the normalization constant

An,k,M =

√

c~ (2κ⊥)
2γM+2

4πLbEk
, (43)

and Pn,σ and Qn,σ are the following polynomials

Pn,+ (2κ⊥ρ) =
√
b+M L̃

2γ
n+1 (2κ⊥ρ)−

√
b−M L̃

2γ
n (2κ⊥ρ) ,

Qn,+ (2κ⊥ρ) =
√
b+M L̃

2γ
n+1 (2κ⊥ρ) +

√
b−M L̃

2γ
n (2κ⊥ρ) ,

Pn,− (2κ⊥ρ) =
√
b−M L̃

2γ
n+1 (2κ⊥ρ)−

√
b+M L̃

2γ
n (2κ⊥ρ) ,

Qn,− (2κ⊥ρ) =
√
b−M L̃

2γ
n+1 (2κ⊥ρ) +

√
b+M L̃

2γ
n (2κ⊥ρ) .

in which functions L̃
2γM
n are the normalized Laguerre polynomials

L̃
2γM
n (ξ) =

√

n!

Γ (2γM + n+ 1)
L
2γM
n (ξ) . (44)

Note that states with the same quantum numbers n, k,M are degenerate with respect
to spin index σ. This degeneracy is accidental because besides the integral of motion Ŝz

the DE with the field Q/r⊥ admits one more integral of motion, namely,

ÂBEL = Ω̂ · Π̂⊥ +
eQ

cr⊥

(

Γ̂ · r⊥ × ezp̂z + Γ̂zL̂z +
~

2
ρ̂2 −mcΣ̂ · r⊥

)

(45)

in which

Π̂⊥ = Π̂xex + Π̂yey, Π̂x =
1

2

(

p̂yL̂z + L̂zp̂y

)

, Π̂y = −1

2

(

p̂xL̂z + L̂zp̂x

)

(for other notations see Appendix). Existence of this new invariant establishes the "ac-
cidental" degeneracy in the field ∼ 1/r⊥ just as the existence of the Johnson-Lippmann
invariant ÂJL [12] in the relativist Kepler problem (DE with the Coulomb potential) ex-
plains degeneracy of hydrogen-like spectrum with respect to the spinor quantum number
(see also [11]).
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4. Conclusions

Thus, within the Dirac description the exact analytical expressions for the three-
dimensional bound electron states in the Coulomb field of the chain consisting of posi-
tively charged ions, are obtained using the new spinor invariant (45) found for this prob-
lem. These solutions are given by the expressions (40)–(44) which prove existence of the
entanglement of different solutions.

It is worth to add that the problem of finding solutions of the DE is actively discussed
in the literature for many years [13, 14, 15]. For this artificial (non-physical) potentials
are considered. On the contrary, in the present paper the exact analytical solution of the
DE with the realistic Coulomb potential (6), describing interaction of an electron with a
chain of positively charged ions, is obtained.

The next step in this problem is to take into account periodicity of a chain poten-
tial and interaction of an electron also with the deformation of a chain caused by the
displacement of atoms from their equilibrium positions (cf. Davydov’s soliton), using the
obtained here solution and the new invariant (45).

5. Appendix

For convenience of the reader here we summarize Dirac matrices and their notations.
In the standard representation Dirac matrices have the form:

β̂ =

(

Î2 0

0 −Î2

)

, α̂j =

(

0 σ̂j
σ̂j 0

)

, (46)

where Î2 is a unit 2× 2 matrix and σ̂j are Pauli matrices (j = x, y, z).
Using products of two and more matrices from the above four ones, one can construct

sixteen linearly independent matrices including a unit matrix. Any arbitrary 4×4 matrix
can be represented as a linear combination of matrices from this set. Physical observables
correspond to the Hermitian operators, and, respectively, it is convenient to use Hermitian
Dirac matrices

Γ̂j = −iβ̂α̂j, Σ̂j = −iα̂kα̂l, Ω̂j = −iβ̂α̂kα̂l,

ρ̂1 = −iα̂jα̂kα̂l, ρ̂2 = −β̂α̂jα̂kα̂l,
(47)

where indices j, k, l take values x, y, z, three numbers j, k, l are any cyclic permutation of
x, y, z, and coefficient i is introduced in order to have the new matrices, denoted as Γ̂j,

Σ̂j , Ω̂j, ρ̂1 and ρ̂2, Hermitian, too. Using often used notation ρ̂3 ≡ β̂ and adding a unitary

matrix Î4, we get sixteen linearly independent matrices

Î4, ρ̂1, ρ̂2, ρ̂3, Σ̂, α̂, Γ̂, Ω̂. (48)

Here vector-matrices are introduced Σ̂, Γ̂ and Ω̂ which have x, y and z spatial components,
similar to the matrix α̂. The set of linearly independent matrices (48) in the standard
representation has the form

Î4 =

(

Î2 0

0 Î2

)

, ρ̂1 =

(

0 Î2

Î2 0

)

, ρ̂2 =

(

0 −îI2
îI2 0

)

, ρ̂3 =

(

Î2 0

0 −Î2

)

,

Σ̂ =

(

σ̂ 0
0 σ̂

)

, α̂ =

(

0 σ̂

σ̂ 0

)

, Γ̂ =

(

0 −iσ̂
iσ̂ 0

)

, Ω̂ =

(

σ̂ 0
0 −σ̂

)

. (49)
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