
ar
X

iv
:2

41
1.

14
34

4v
1

 [
cs

.D
S]

 2
1

N
ov

 2
02

4

Overcomplete Tensor Decomposition via Koszul–Young Flattenings

Pravesh K. Kothari∗1, Ankur Moitra†2,3, and Alexander S. Wein‡4

1Computer Science Department, Princeton
2Department of Mathematics, MIT

3Computer Science and Artificial Intelligence Lab, MIT
4Department of Mathematics, UC Davis

Abstract

Motivated by connections between algebraic complexity lower bounds and tensor decompo-
sitions, we investigate Koszul–Young flattenings, which are the main ingredient in recent lower
bounds for matrix multiplication. Based on this tool we give a new algorithm for decompos-
ing an n1 × n2 × n3 tensor as the sum of a minimal number of rank-1 terms, and certifying
uniqueness of this decomposition. For n1 ≤ n2 ≤ n3 with n1 → ∞ and n3/n2 = O(1), our
algorithm is guaranteed to succeed when the tensor rank is bounded by r ≤ (1− ǫ)(n2 +n3) for
an arbitrary ǫ > 0, provided the tensor components are generically chosen. For any fixed ǫ, the
runtime is polynomial in n3. When n2 = n3 = n, our condition on the rank gives a factor-of-2
improvement over the classical simultaneous diagonalization algorithm, which requires r ≤ n,
and also improves on the recent algorithm of Koiran (2024) which requires r ≤ 4n/3. It also
improves on the PhD thesis of Persu (2018) which solves rank detection for r ≤ 3n/2.

We complement our upper bounds by showing limitations, in particular that no flattening
of the style we consider can surpass rank n2 + n3. Furthermore, for n × n × n tensors, we
show that an even more general class of degree-d polynomial flattenings cannot surpass rank
Cn for a constant C = C(d). This suggests that for tensor decompositions, the case of generic
components may be fundamentally harder than that of random components, where efficient
decomposition is possible even in highly overcomplete settings.

∗Email: kothari@cs.princeton.edu. Partially supported by NSF CAREER Award #2047933, Alfred P. Sloan

Fellowship and a Google Research Scholar Award.
†Email: moitra@mit.edu. Partially supported by a Microsoft Trustworthy AI Grant, an ONR grant and a David

and Lucile Packard Fellowship.
‡Email: aswein@ucdavis.edu. Partially supported by an Alfred P. Sloan Research Fellowship and NSF CAREER

Award CCF-2338091.

1

http://arxiv.org/abs/2411.14344v1

Contents

1 Introduction 3

2 Main Results 7

2.1 Preliminaries . 7
2.1.1 Tensor Decomposition and Rank . 7
2.1.2 Genericity and Symbolic Rank . 7

2.2 Upper Bounds . 8
2.2.1 Trivial Flattenings . 8
2.2.2 Koszul–Young Flattenings . 9
2.2.3 Rank Detection . 10
2.2.4 Decomposition Algorithm . 11
2.2.5 Uniqueness Theorem and Algorithmic Guarantees 13

2.3 Lower Bounds . 15
2.3.1 Flattenings of Koszul–Young Type . 15
2.3.2 Linear Flattenings . 16
2.3.3 Low-Degree Flattenings . 16

2.4 Open Problems . 18

3 Proofs for Upper Bounds 19

3.1 Proof of Proposition 2.3 . 19
3.2 Proof of Theorem 2.4 . 19
3.3 Proof of Theorem 2.7 . 21
3.4 Proof of Lemma 3.2 . 24
3.5 Proof of Lemma 3.3 . 24
3.6 Proof of Theorem 2.8 . 26
3.7 Proof of Lemma 3.6 . 28

4 Proofs for Lower Bounds 30

4.1 Matrix Decomposition Lemma . 30
4.2 Proof of Theorem 2.9 . 31
4.3 Proof of Theorem 2.10 . 31
4.4 Proof of Theorem 2.12 . 32

A Trivial Flattenings 34

B Commuting Extensions 35

Acknowledgments 38

References 38

2

1 Introduction

A tensor is a multi-way array T ∈ R
n1×n2×···×nk with entries denoted Ti1,i2,...,ik for ij ∈ [nj] :=

{1, . . . , nj}, where k is called the order of the tensor. For vectors a(1) ∈ R
n1 , a(2) ∈ R

n2 , . . . , a(k) ∈
R
nk , the associated rank-1 tensor is denoted T = a(1)⊗a(2)⊗· · ·⊗a(k) and has entries Ti1,i2,...,ik =

a
(1)
i1

a
(2)
i2

· · · a
(k)
ik

. Also, a⊗k is shorthand for a⊗a⊗· · ·⊗a (k times). While various notions of tensor
rank exist, we consider the CP (canonical polyadic) decomposition, that is, we define the rank of
a tensor T to be the minimum r such that T can be expressed as the sum of r rank-1 tensors. In
the matrix case k = 2, this coincides with the usual notion of matrix rank.

Tensor decomposition is the algorithmic task of breaking down a given rank-r tensor into its
r constituent rank-1 summands. For matrices, this is ill-posed due to the “rotation problem”
(see [Moi18]). In contrast, minimum-rank tensor decompositions for k ≥ 3 tend to be unique,
provided the rank is small enough. This uniqueness is key to the usefulness of tensor methods
in various applications throughout statistics, data science, and machine learning. For instance,
minimum rank decompositions of the third/fourth moment tensor can be used to learn the param-
eters of expressive statistical models, particularly ones with latent variables. We refer the reader
to [KB09, Moi18, RSG17, Vij20] for more background and applications of tensor decompositions.

In this work, we study tensor decompositions for an n1 × · · · ×nk tensor T of rank r. Any such
tensor can be written as

T =

r
∑

ℓ=1

a(1,ℓ) ⊗ · · · ⊗ a(k,ℓ). (1)

The vectors a(i,ℓ) ∈ R
ni are called the components of the tensor T . In this work, we focus on the

well-studied setting of “large” dimensional tensors of a fixed order; that is, we imagine a sequence
of problem sizes where k remains fixed but some or all of the dimensions n1, . . . , nk tend to infinity.

Three natural and interrelated questions of interest arise when studying decompositions for T .

• Uniqueness Theorem: A uniqueness theorem specifies an explicit list of conditions (ide-
ally, efficiently checkable) on the collection of components {a(i,ℓ) : i ∈ [k], ℓ ∈ [r]} that
guarantees the uniqueness of the decomposition (1) up to natural ambiguities in specifying
the components (see Definition 2.2). E.g., note that we cannot hope to resolve the norm of
each component a(i,ℓ), since a⊗ b⊗ c = (2a) ⊗ (b/2) ⊗ c.

• Rank Detection: Given a tensor T of the form (1) generated according to some model,
the goal is to output r. Our lower bounds (i.e., impossibility results) will apply to this goal,
which is, in general, easier than computing a minimum rank decomposition for T .

• Decomposition: Given a tensor T of the form (1) generated according to some model, the
goal is to recover the individual rank-1 terms a(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) up to re-ordering (i.e., the r
terms can be listed in any order) and rescalings (again, see Definition 2.2).

Tensors pose a number of computational challenges because basic operations such as comput-
ing the rank or finding the best rank-1 approximation are NP-hard for tensors of order 3 and
up [H̊as90, HL13, Swe18]. As a result, we do not hope for an efficient (i.e., polynomial-time) tensor
decomposition algorithm that works on all possible inputs, and it will be important to impose some
non-degeneracy assumptions on the input tensor. It is typical to assume the components of T
satisfy:

• Generic components: Here, the components are assumed to be chosen “generically” in
the sense of algebraic geometry (see Section 2.1.2). This amounts to asking the algorithm to
succeed for “almost all” choices of components (all but a measure-zero set).

3

• Smoothed analysis model: Here, the components are obtained by starting with an arbi-
trary collection of components and then perturbing them by a small amount of random noise.
Additional noise may also be added to the observed tensor. While results in the generic set-
ting tend to assume exact access to the input tensor and exact computation of linear-algebraic
primitives, results in the smoothed setting tend to provide a more detailed analysis of the
algorithm’s numerical stability and robustness to noise.

• Random components: Here, the components are assumed to be drawn independently from
a particular prior, such as i.i.d. Gaussian or uniform on the unit sphere. As compared to
generic components, this induces rather strong assumptions on the components (e.g., near-
orthogonality).

Additionally, some prior work assumes the rank-1 terms in the decomposition are symmetric tensors
(a(ℓ))⊗k, in place of the non-symmetric setup we have presented above. We will be interested in
the overcomplete setting, which in the “square” case n1 = n2 = · · · = nk = n means r > n. While
much is known about overcomplete third-order tensor decomposition in the random model, there
are wide gaps in our understanding in the smoothed and generic settings. This will be our main
focus in this paper.

Prior work. First we give an overview of prior works on tensor decomposition, focusing mainly
on tensors of order k = 3, 4 and, for ease of exposition, restricting our attention to square tensors,
i.e., those of format n×n×· · ·×n with n large. A first question is that of identifiability: when are
minimum-rank tensor decompositions unique? A simple argument shows that an order-k tensor of
format n×· · ·×n cannot have rank larger than nk−1 (for instance, an n×n×n tensor is comprised
of n matrix “slices” and each is n×n with rank ≤ n). This means if T is generated according to (1)
with r > nk−1, the planted decomposition will not be the minimum-rank one, so we do not hope
to find it. On the other hand, if r ≤ cnk−1 for a constant c = c(k) > 0 and the components are
generically chosen, then the planted decomposition will be the unique rank-r decomposition (for
k ≥ 3) [BCO14]; so in this regime we might hope to solve decomposition (and related problems) in
principle, but this does not guarantee an efficient algorithm.

Known polynomial-time algorithms require r to be significantly below the identifiability thresh-
old. For order-3 tensors, a classical method called simultaneous diagonalization or Jennrich’s al-
gorithm can decompose generic tensors of rank r ≤ n (the “undercomplete” case) [Har70, LRA93]
(see [Moi18]). Furthermore, the analysis comes with a uniqueness theorem: if T =

∑r
ℓ=1 a

(ℓ) ⊗
b(ℓ) ⊗ c(ℓ) where {a(ℓ)} and {b(ℓ)} are each linearly independent are {c(ℓ)} are pairwise linearly
independent, then the decomposition is unique and the algorithm will find it. Another well-known
uniqueness theorem due to Kruskal [Kru77] has the advantage of tolerating higher rank r ≤ 3n/2
but the disadvantage that the conditions on the components are not efficiently checkable and no
algorithm is provided to find the decomposition; see also [LP23] and references within for various
extensions of Kruskal’s theorem.

For order-4 tensors, the FOOBI algorithm and variants [Car91, DL06, DLCC07, MSS16, HSS19,
JLV23] can decompose generic tensors of rank r ≤ cn2 for a constant c > 0. See [JLV23] for a recent
account, which generalizes the setting and corrects an error in the original analysis of [DL06]; this
result also certifies uniqueness of the decomposition, providing an efficiently-checkable uniqueness
theorem. Noise-robustness and numerical precision of (variants of) the above algorithms have been
studied (for instance, in the smoothed analysis model) for order-3 [BCMV14b, GVX14, KS23] and
order-4 [MSS16, HSS19] tensors.

If the components are taken to be random rather than generic, striking improvements over
the above are possible for order-3 tensors, with poly-time algorithms known to reach r ≈ n3/2

4

(up to logarithmic factors in n) [GM15, MSS16, HSSS16, KP20, DdL+22]. It appears likely that
this threshold — and more generally, nk/2 for order-k tensors — is the fundamental limit for
efficient algorithms in the random model, as evidenced by lower bounds against low-degree polyno-
mials [Wei23]. Note that for order-4 tensors, the algorithms for the generic model match the lower
bounds for the (easier) random model, meaning we (likely) cannot expect further improvements in
the generic setting, and the generic setting is no harder than the random setting. In contrast, known
algorithms for order-3 tensors display a gap between the generic (r ≈ n) and random (r ≈ n3/2)
settings.

Generic overcomplete order-3 tensors. The above discussion suggests the possibility of find-
ing improved algorithms for generic n × n × n tensors. For some time, the question of finding
algorithms (or an efficient uniqueness theorem) in the “overcomplete” regime r > n remained a no-
table open problem (highlighted at COLT 2014 [BCMV14a] and also mentioned in [MSS16, Moi18]),
and recently some progress has been made. The work of [CR22] gave an algorithm for decomposing
slightly overcomplete tensors, namely r = n + ℓ where the runtime is polynomial in n but expo-
nential in ℓ. More recently, Koiran [Koi24a] gave both a decomposition algorithm and an efficient
uniqueness theorem for r ≤ 4n/3; this algorithm only uses 4 “slices” of the tensor, and works more
generally for tensors of format n× n× p for p ≥ 4.

The current work aims to push these approaches to the limit, improving the condition on r
as much as possible and also investigating whether there are fundamental limitations for efficient
algorithms. Even a modest improvement on the value of r has potential consequences for down-
stream applications in learning. For example, consider the heterogeneous multi-reference align-
ment [PWB+19] problem. Here the goal is to learn a collection of K “signals” (n-dimensional
vectors), given a mixture of noisy copies of these signals that have been circularly shifted by un-
known offsets. When applying the tensor decomposition approach of [PWB+19] using the third
moment tensor, the rank of the n× n× n tensor that needs to be decomposed is Kn. This would
be interesting even for K = 2. Since no such decomposition algorithms are known (except for
K = 1), [PWB+19] instead uses the order-5 moment tensor, which is more expensive in terms of
runtime and sample complexity.

Even more tantalizing is the prospect of potentially finding significantly better algorithms for
generic tensors, say, matching the threshold r ≈ n3/2 that appears for random tensors. On one hand,
this appears plausible because order-4 tensors have no gap between the generic and random settings,
and it would perhaps be unexpected to have such a qualitative difference between odd-order and
even-order tensors. For instance, order-k tensor decomposition may appear superficially similar to
refutation of k-XOR equations — which can be viewed as a tensor-valued problem — where we
know the odd- and even-order cases both have the threshold nk/2 for both random and smoothed
settings, even though the odd-k case is much more technically challenging (see [GKM22]). The same
thresholds also arise for the problem of completing low-rank tensors, with similar complexities in the
odd-k case [BM16, KP20, LM20]. On the other hand, tensor decomposition appears related to the
problem of proving lower bounds on the rank of explicit tensors, which is connected to arithmetic
complexity theory (where “explicit” has a precise meaning) [AFT11, Raz13, LO15, Lan15]. Known
barriers suggest that it may be hard to go beyond r ≈ n for order-3 tensors [EGOW18, GMOW19].

Our contributions: upper and lower bounds. Our starting point is the work of Garg, Kayal
and Saha [GKS20] who showed a surprising connection between algebraic complexity theory and
learning. In particular they showed how a powerful lower bound method, called the method of
shifted partial derivatives [CKW11], could be leveraged to give algorithms for decomposing power

5

sums of polynomials, which is a close relative of tensor decomposition. Specifically we will be
interested in Koszul–Young flattenings [LO13] (see also [Lan11]) which are the main ingredient
in recent lower bounds on the border rank of the matrix multiplication tensor [LO15]. Their
algorithmic applications were studied in the PhD thesis of Persu [Per18] which gave an efficient
algorithm for rank detection (but not decomposition) when r ≤ 3n/2.

Our algorithmic results (“upper bounds”) apply to order-3 tensors of format n1×n2×n3, where
(without loss of generality) n1 ≤ n2 ≤ n3. To simplify the discussion, suppose further that we are
in an asymptotic regime where n1 → ∞ and n3/n2 = O(1). In the setting of generic components,
we give algorithms for both the rank detection and decomposition tasks, as well as an efficient
uniqueness theorem. These results tolerate rank as large as r ≤ (1 − ǫ)(n2 + n3) for an arbitrary
ǫ > 0. For any fixed ǫ, the runtime is polynomial in n3. For comparison, the previous state-of-the-
art results for rank detection [Per18] and decomposition [Koi24a] assume n2 = n3 = n and require
r ≤ 3n/2 and r ≤ 4n/3 respectively. Also, our efficient uniqueness theorem is the first uniqueness
theorem (efficient or not) to surpass Kruskal’s classical bound r ≤ 3n/2 [Kru77].

In addition to the Koszul–Young flattenings, a key ingredient in our approach will be the
algorithm of [JLV23] (see also the precursors [Car91, DL06, DLCC07, BVD+18]) for finding rank-1
matrices in a linear subspace. In contrast, the decomposition algorithm of [Koi24a] takes a different
approach, based on connections with the problem of computing a commuting extension. We can
exploit this connection in the other direction: Appendix B shows how our decomposition algorithm
implies an algorithm for commuting extensions that is (in some sense) nearly optimal.

The blueprint for our algorithm is to solve rank detection by “flattening” the tensor to a
particular matrix whose rank can be related to the original tensor rank. We also investigate
limitations of this approach (“lower bounds”), building on [EGOW18]. We give a various results
for successively broader classes of flattenings. First we identify a subclass of linear flattenings that
provably cannot surpass rank n2 +n3, making our method essentially optimal within this class. We
also define a much more general class of degree-d polynomial flattenings and prove that for n×n×n
tensors, these cannot surpass rank Cn for a constant C = C(d). This extends [EGOW18], which
handles the case d = 1. We note that this style of lower bound is distinct from the low-degree
polynomial framework used by [Wei23] for the case of random components, as that approach only
applies to fully-Bayesian random models.

Our lower bounds formalize the sense in which reaching r ≫ n would require a rather different
approach, and might be fundamentally out of reach for efficient algorithms. Of course, there are
other approaches that are not ruled out by our lower bounds. For instance, there is the commuting
extension approach of [Koi24a], but curiously this appears to have a natural breaking point at
r = 2n (see Section 2 of [Koi24b]), matching our algorithm. We note that there is an explicit
tensor with a rank lower bound of roughly 3n [AFT11], but this does not appear to suggest a
decomposition algorithm.

Model of computation. Our algorithm only uses standard linear algebra primitives such as
solving linear equations, computing eigenvalues, and intersecting linear subspaces (all applied to
polynomial-sized inputs). The eigenvalue computation is used within simultaneous diagonalization,
which is a subroutine of [JLV23]. Following [Koi24a, Section 1.4] (and numerous prior works in
the tensor decomposition literature), we treat these as atomic operations and assume they can be
implemented exactly. Our algorithm can be implemented to give guarantees in the computational
model that allows rational arithmetic with polynomial bits of precision.

We leave for future work the question of obtaining a detailed analysis of the stability and
robustness of our algorithm, e.g., in the style of [BCMV14b, GVX14]. Certainly our description

6

and analysis of the algorithm in exact terms is a necessary step toward this goal. Another seemingly
necessary step would be to obtain a robust analysis of the [JLV23] algorithm (which we use as a
subroutine), but currently this only exists for the “non-planted” variant of the problem [BESV24].

2 Main Results

2.1 Preliminaries

2.1.1 Tensor Decomposition and Rank

Definition 2.1 (Tensor Rank). For vectors a(1) ∈ R
n1 , a(2) ∈ R

n2 , . . . , a(k) ∈ R
nk, the rank-1

tensor a(1)⊗a(2)⊗· · ·⊗a(k) has order k and format n1×· · ·×nk, with entries (a(1)⊗· · ·⊗a(k))i1,...,ik =

a
(1)
i1

a
(2)
i2

· · · a
(k)
ik

. In general, the rank of an n1 × · · · × nk tensor T is the minimum r for which T

can be expressed as the sum of r rank-1 tensors: T =
∑r

ℓ=1 a
(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) where a(i,ℓ) ∈ R

ni.

Definition 2.2 (Unique Decomposition). For an n1 × · · · × nk tensor T and a positive integer
r, we say that a decomposition T =

∑r
ℓ=1 a

(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) into r rank-1 terms is unique if for
any decomposition T =

∑r
ℓ=1 ã

(1,ℓ) ⊗ · · · ⊗ ã(k,ℓ) there exists a permutation π : [r] → [r] such that
ã(1,ℓ) ⊗ · · · ⊗ ã(k,ℓ) = a(1,π(ℓ)) ⊗ · · · ⊗ a(k,π(ℓ)) for all ℓ ∈ [r]. When we speak of recovering such a
decomposition, we mean the task of finding the r rank-1 tensors (which can be listed in any order),
given T as input.

Note that if T has a unique decomposition into r rank-1 terms then none of these terms can be
zero, and the rank of T must be exactly r.

2.1.2 Genericity and Symbolic Rank

Throughout, we use the standard meaning of the term “generic” from algebraic geometry. Namely,
for symbolic variables x = (x1, . . . , xp), we say that a property holds true “generically” (or holds for
“generically chosen x”) if there exists a nonidentically-zero polynomial P (x1, . . . , xp) ∈ R[x] such
that the property holds true for all x ∈ R

n such that P (x) 6= 0. If a property holds true generically,
it holds for “almost all” x in the sense that the set of x for which the property fails is measure zero.
If a finite collection of properties each holds true generically, then it is also generically true that
all the properties hold simultaneously; this can be seen by multiplying together all the associated
polynomials P (x).

For us, a common use case for genericity will be in reference to a tensor decomposition T =
∑r

ℓ=1 a
(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) where a(i,ℓ) ∈ R

ni . When we say a property holds true for “generically
chosen components,” we mean the notion of generic from above, where the variables x are all the
entries of all the vectors a(i,ℓ) (so r

∑k
i=1 ni variables in total).

Suppose M = M(x) is a matrix whose entries are polynomials in the variables x = (x1, . . . , xp),
that is, M ∈ R[x]m×n. Every minor of M (determinant of a square submatrix) is a polynomial in
the variables x. The symbolic rank of M is the largest integer r for which M has an r × r minor
that is not identically zero. Equivalently, this is the rank of M over the fraction field R(x). Note
that if M has symbolic rank r then M(x) has rank r for generically chosen x; this follows from the
characterization of rank as the size of the largest nonzero minor. This allows us to speak of the
“generic rank” of a matrix (which equals the symbolic rank). For specific values of x, the rank of
M(x) may be lower than the generic rank of M , but never higher (since all minors larger than the
generic rank are identically zero).

7

2.2 Upper Bounds

2.2.1 Trivial Flattenings

As a benchmark, we first discuss the “trivial” flattenings of tensors to matrices. Suppose T is a
tensor of format n1×· · ·×nk. Choose a subset S ⊆ [k] and let S̄ := [k]\S denote its complement. We
can flatten T to a matrix M triv = M triv(T ;S) of format (

∏

i∈S ni)× (
∏

i∈S̄ ni) in a straightforward
way:

M triv
(ij : j∈S), (ij : j∈S̄)

:= Ti1,...,ik where ij ∈ [nj]. (2)

A rank-1 tensor a(1) ⊗ · · · ⊗ a(k) flattens to a rank-1 matrix

M triv(a(1) ⊗ · · · ⊗ a(k);S) =

(

⊗

i∈S

a(i)

)

⊗

i∈S̄

a(i)

⊤

.

A rank-r tensor T =
∑r

ℓ=1 a
(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) flattens to the matrix

r
∑

ℓ=1

M triv(a(1,ℓ) ⊗ · · · ⊗ a(k,ℓ);S),

which has rank at most r. For rank detection, it would be useful if the rank were exactly r, i.e.,
if the rank of the flattening were additive across the rank-1 terms of the tensor, so that we could
read off the rank of T from the rank of M triv. The rank of M triv(T ;S) certainly cannot exceed the
minimum of its two dimensions, namely

RS := min

∏

i∈S

ni,
∏

i∈S̄

ni

.

Conceivably, additivity could hold as long as r ≤ RS . Indeed, this is the case as long as the
components a(i,ℓ) are generically chosen in the sense of Section 2.1.2; we include the proof in
Appendix A for completeness. This gives a solution to the rank detection problem for tensors of
rank up to RS (with generic components). Taking the best choice of S, the trivial flattening can
solve rank detection up to rank

n∗ := max
S⊆[k]

min

∏

i∈S

ni,
∏

i∈S̄

ni

.

For order-k tensors of format n× · · · × n, this gives rank detection up to rank n⌊k/2⌋.
Section 6 of [JLV23] uses the trivial flattening to give an algorithm for recovering the minimum-

rank decomposition (and certifying its uniqueness), under slightly stronger assumptions. The idea
is to search the column span of the flattening for vectors that have rank-1 structure. For instance,
Corollary 27 of [JLV23] can decompose an n1 × n2 × n3 tensor with n1 ≤ n2 ≤ n3 and generically
chosen components, of rank r up to

r ≤ min

{

1

4
(n1 − 1)(n2 − 1), n3

}

. (3)

For comparison, n∗ takes the value min{n1n2, n3} in this setting.

8

2.2.2 Koszul–Young Flattenings

Our new algorithm is inspired by an idea first introduced by [LO13] as “Young flattenings” [LO13,
Lan11, Lan15] and later referred to as “Koszul flattenings” [OO13, LM17, HOOS19] or “Koszul–
Young flattenings” [Far16, Gua17]. Essentially, Koszul–Young flattenings provide a non-trivial
linear map from tensors to matrices. These ideas have already appeared in tensor decomposition
algorithms [OO13], but for n×n×n tensors, these results only handle the undercomplete case r ≤ n.
More recently, [Per18] used Koszul–Young flattenings to solve rank detection for overcomplete
tensors with generic components, namely n×n×n tensors of rank up to 3n/2. Furthermore, [Per18]
proposed a hierarchy of poly-time approaches for rank detection that conjecturally approaches rank
2n, as well as an approach for decomposition that conjecturally tolerates rank (1 + ǫ)n for a small
constant ǫ > 0. We will resolve and extend these conjectures: for sufficiently large n×n×n tensors
with generic components, we solve both rank detection and decomposition in polynomial time, up
to rank (2 − ǫ)n for an arbitrary constant ǫ > 0. We will also handle non-square tensors.

While the Koszul–Young flattenings are typically described in abstract algebraic terms, we will
give instead a very explicit combinatorial description of a matrix based on these ideas. Suppose T
is n1 × n2 × n3 and fix integers p, q with 0 ≤ p ≤ p + 1 ≤ q ≤ n1. Define a matrix M = M(T ; p, q)
with rows indexed by

{(S, j) : S ⊆ [q], |S| = p, j ∈ [n2]},

columns indexed by
{(U, k) : U ⊆ [q], |U | = p + 1, k ∈ [n3]},

and entries

MSj,Uk :=

q
∑

i=1

1U=S⊔{i} · σ(U, i) · Tijk. (4)

Here, 1A denotes the {0, 1}-valued indicator for an event A, and σ(U, i) ∈ {±1} is the parity of i’s
position in U , that is,

σ(U, i) := (−1)|{j∈U : j<i}|. (5)

While we have written (4) as a sum over i ∈ [q], at most one term in this sum can be nonzero.
Note that only q slices of T (along the first mode) are used.

The dimensions of M are
(q
p

)

n2 ×
(q
p+1

)

n3. We will leave p, q as free variables for now, but
eventually it will be advantageous to take q to be a (large) constant so that M has polynomial size,
and p ≈ q n3

n2+n3
which makes M as square as possible. One special case of interest is n2 = n3, in

which case we can take q odd with q = 2p + 1 so that M is exactly square, since
(2p+1

p

)

=
(2p+1
p+1

)

;
the prior work [Per18] considers only this square case and mainly focuses on p = 1. We remark that
the extreme cases p = 0 and p = q − 1 essentially reduce to “trivial” flattenings from the previous
section (but with additional signs in the case p = q − 1).

The flattening (4) bears resemblance to a signed variant of the Kikuchi matrices that were
introduced by [WEM19] (with a variation independently discovered by [Has20]) and have subse-
quently appeared in results on constraint satisfaction [GKM22], error-correcting codes [AGKM23,
KM24a, KM24b], and extremal combinatorics [GKM22, HKM23]. In particular, the related matrix
A defined in (6) below resembles a Kikuchi matrix in the sense that its rows and columns are
indexed by subsets and it only contains a nonzero entry when the two subsets have their symmetric
difference of a particular size (in this case, 1).

9

2.2.3 Rank Detection

If T is a rank-1 tensor T = a⊗ b⊗ c then the flattening M = M(T ; p, q) from (4) is the Kronecker
product M = A⊗ (bc⊤) where A = A(a; p, q) is the

(

q
p

)

×
(

q
p+1

)

matrix

ASU =

q
∑

i=1

1U=S⊔{i} · σ(U, i) · ai. (6)

Therefore, as long as neither b nor c is the zero vector, M has the same rank as A. We will see
that the matrix A is rank-deficient, with generic rank

(q−1
p

)

. If, for instance, q = 2p + 1 then A is

square since
(2p+1

p

)

=
(2p+1
p+1

)

, but crucially, its generic rank
(2p
p

)

is roughly half its dimension (for
large p). The following is proved in Section 3.1.

Proposition 2.3. For a rank-1 tensor T = a ⊗ b ⊗ c with a, b, c generically chosen, the matrix
M(T ; p, q) defined in (4) has rank exactly

(q−1
p

)

.

The transformation T 7→ M(T ; p, q) is linear, so a rank-r tensor T =
∑r

ℓ=1 a
(ℓ) ⊗ b(ℓ) ⊗ c(ℓ) flattens

to the matrix

M(T ; p, q) =

r
∑

ℓ=1

M(a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ); p, q).

If the rank were additive across these r terms then M(T ; p, q) would need to have rank r
(

q−1
p

)

, in

light of Proposition 2.3. Conceivably, additivity could hold as long as r
(q−1

p

)

does not exceed the

minimum dimension of M(T ; p, q), which is min{
(q
p

)

n2,
(q
p+1

)

n3}. Dividing through by
(q−1

p

)

, this

condition becomes r ≤ min{ q
q−pn2,

q
p+1n3}. Choosing q large and p ≈ q n3

n2+n3
to balance the two

terms in min{· · · }, this heuristic suggests that rank detection might be possible for r as large as,
roughly, n2 + n3. We show that indeed this pans out.

Theorem 2.4 (Rank detection). Let 1 ≤ q ≤ n1 and

p =

⌊

q ·
n3

n2 + n3

⌋

.

If T =
∑r

ℓ=1 a
(ℓ) ⊗ b(ℓ) ⊗ c(ℓ) is n1 × n2 × n3 with generically chosen components, and

r ≤ (n2 + n3)

(

1 −
1 + α

q

)

− q where α := max

{

n2

n3
,
n3

n2

}

,

then the matrix M(T ; p, q) defined in (4) has rank exactly r
(q−1

p

)

.

The proof can be found in Section 3.2. Of course, one has the option to permute the 3 modes
of the tensor before applying Theorem 2.4, and it is advantageous to make n1 the smallest mode.
Suppose n1 ≤ n2 ≤ n3 and consider the regime n1 → ∞ with α of constant order. For any constant
ǫ > 0 we can handle r as large as (1 − ǫ)(n2 + n3) by taking q to be a sufficiently large constant
(depending on α, ǫ). For comparison, the trivial flattening of Section 2.2.1 works up to rank n3 in
this regime. Our advantage over the trivial flattening diminishes as the ratio α = n3/n2 increases.
As long as q is a constant, the size of M and the complexity of computing its entries are polynomial
in the largest dimension n3.

Remark 2.5 (Certifying lower bounds on tensor rank). For an arbitrary tensor T , we always
have rank(M(T ; p, q)) ≤

(q−1
p

)

· rank(T). This follows from the fact that the rank of A from (6)

never exceeds its generic rank
(q−1

p

)

; see Lemma 3.1. As a result, M provides a certificate that

rank(T) ≥ rank(M(T ; p, q))/
(

q−1
p

)

for any given tensor T .

10

2.2.4 Decomposition Algorithm

We now outline our strategy for how to use the flattening (4) to extract the components of the
tensor. The aim of this section is to describe the algorithm and the intuition behind it, while
Section 2.2.5 below will contain the main theorems that guarantee this algorithm’s success when
the tensor components are generically chosen.

Consider an n1 × n2 × n3 tensor T =
∑r

ℓ=1 a
(ℓ) ⊗ b(ℓ) ⊗ c(ℓ). Build the matrix M = M(T ; p, q)

defined in (4) and compute its column span. Recall that each rank-1 term a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ) flattens
to A(a(ℓ); p, q) ⊗ (b(ℓ)c(ℓ)⊤), where A(a; p, q) is defined in (6). Generically, we have the additivity
property of Theorem 2.4, implying that the column span of M is equal to the span of all columns
of these individual flattenings, that is,

colspan(M) = span{z(U)(a(ℓ); p, q) ⊗ b(ℓ) : U ⊆ [q], |U | = p + 1, ℓ ∈ [r]} (7)

where z(U)(a; p, q) ∈ R
(qp) denotes column U of A(a; p, q).

Fix one particular column of A, namely V := [p+ 1]. The column z(V) has a particular sparsity

pattern, with nonzeros only allowed in the p + 1 rows S where S ⊆ V . Let Zp,q ⊆ R
(qp) denote the

(p + 1)-dimensional subspace comprised of all vectors with this sparsity pattern, that is,

Zp,q := span{e(S) : S ⊆ [q], |S| = p, S ⊆ [p + 1]} ⊆ R
(qp),

where e(S) denotes the standard unit basis vector. We will compute the intersection of the two
subspaces colspan(M) and Zp,q⊗R

n2. By design, the r vectors z(V)(a(ℓ); p, q)⊗ b(ℓ) for ℓ ∈ [r] lie in
the intersection, and we will show that, generically, the intersection does not contain any additional
“spurious” elements, that is,

colspan(M) ∩ (Zp,q ⊗ R
n2) = span{z(V)(a(ℓ); p, q) ⊗ b(ℓ) : ℓ ∈ [r]}. (8)

It will be convenient to change basis so as to remove the zero entries of z(V). To this end, we
will define a specific isomorphism ϕp,q : Zp,q → R

p+1, namely the linear map defined on unit basis
vectors as follows:

ϕp,q(e
([p+1]\{i})) = (−1)i−1e(i) for i ∈ [p + 1]. (9)

This is designed so that ϕp,q(z
(V)(a; p, q)) = (a1, . . . , ap+1)

⊤, since entry V \ {i} of z(V)(a; p, q) is
equal to σ(V, i)ai = (−1)i−1ai. Defining d(ℓ) as the first p + 1 entries of a(ℓ),

d(ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
p+1)⊤,

this allows us to write (8) as

(ϕp,q ⊗ I)(colspan(M) ∩ (Zp,q ⊗ R
n2)) = span{d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}, (10)

where I is the identity map R
n2 → R

n2 .
To recap, we can compute the left-hand side of (10) from the flattening M , which gives us access

to the right-hand side. This means we know the span of r different rank-1 tensors d(ℓ)⊗ b(ℓ) (which
can also be viewed as rank-1 matrices of dimension (p + 1) × n2) and our next objective will be to
extract the individual rank-1 elements d(ℓ) ⊗ b(ℓ). Since our rank-1 tensors are generic, the work
of [JLV23] provides an algorithm for precisely this task, under the condition r ≤ p(n2 − 1)/4; see
Corollary 3 of [JLV23], which considers a generalization of this task (in their notation, we only need
the case s = R). This allows us to recover vectors d̂(ℓ) and b̂(ℓ) for ℓ ∈ [r], such that d̂(ℓ) = αℓ ·d

(π(ℓ))

and b̂(ℓ) = βℓ · b
(π(ℓ)) where αℓ, βℓ ∈ R are nonzero scalars and π is a permutation [r] → [r].

11

At this point, we repeat the entire algorithm so far with the “b” and “c” modes switched. We
use the same value for q, but use q−p−1 in place of p so that the new flattening remains as square
as possible. This allows us to obtain vectors ĉ(ℓ) and f̂ (ℓ) which serve as estimates for c(ℓ) and

f (ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
q−p)⊤,

respectively (again, up to re-ordering and scalar multiple). By comparing the d̂(ℓ) and f̂ (ℓ) vectors
we can identify the correct pairing between b̂(ℓ) and ĉ(ℓ), and re-index the ĉ(ℓ) so that b̂(1) is paired
with ĉ(1), etc. Now we know the decomposition takes the form

T =

r
∑

ℓ=1

w(ℓ) ⊗ b̂(ℓ) ⊗ ĉ(ℓ)

for unknown vectors w(ℓ), which can be recovered by solving a linear system of equations; we will
show that, generically, this linear system has a unique solution, namely the desired decomposition.

The full algorithm is presented as Algorithm 1 below. The second phase of the algorithm
involves a flattening M ′ = M ′(T ; p, q) that is identical to M but with the “b” and “c” modes
switched, and with q − p− 1 in place of p. Formally, M ′(T ; p, q) is indexed by

{(S, k) : S ⊆ [q], |S| = q − p− 1, k ∈ [n3]} × {(U, j) : U ⊆ [q], |U | = q − p, j ∈ [n2]}

with entries

M ′
Sk,Uj :=

q
∑

i=1

1U=S⊔{i} · σ(U, i) · Tijk. (11)

Algorithm 1 (Overcomplete third-order tensor decomposition).

• Input: A tensor T ∈ R
n1×n2×n3.

• Input: Parameters p, q ∈ Z with q ≤ n1 and p̄ := min{p + 1, q − p} ≥ 2.

• Input: A parameter r (or learn r from rank(M) using Theorem 2.4).

1. Build the matrix M = M(T ; p, q) as in (4).

2. Construct the subspace B := (ϕp,q ⊗ I)(colspan(M) ∩ (Zp,q ⊗ R
n2)) ⊆ R

p+1 ⊗ R
n2.

3. Run the algorithm of [JLV23, Corollary 3] to find rank-1 tensors in B, call them d̂(1) ⊗
b̂(1), . . . , d̂(r) ⊗ b̂(r). If the number of rank-1 tensors found is not r, output “fail.”

4. Build the matrix M ′ = M ′(T ; p, q) as in (11).

5. Construct the subspace C := (ϕq−p−1,q ⊗ I)(colspan(M ′) ∩ (Zq−p−1,q ⊗ R
n3)) ⊆ R

q−p ⊗ R
n3.

6. Run the algorithm of [JLV23, Corollary 3] to find rank-1 tensors in C, call them f̂ (1) ⊗
ĉ(1), . . . , f̂ (r) ⊗ ĉ(r). If the number of rank-1 tensors found is not r, output “fail.”

7. Define a permutation τ : [r] → [r] so that the first p̄ entries of f̂ (τ(ℓ)) form a scalar multiple
of the first p̄ entries of d̂(ℓ) for each ℓ ∈ [r]. If this is not possible, output “fail.”

12

8. Solve the following linear system of equations in variables w(ℓ) ∈ R
n1 for ℓ ∈ [r]:

r
∑

ℓ=1

w(ℓ) ⊗ b̂(ℓ) ⊗ ĉ(τ(ℓ)) = T, (12)

and output the resulting rank-r decomposition of T . If there is no solution, output “fail.”

We have assumed p̄ ≥ 2, since otherwise Step 7 will not have a unique solution. If p̄ = 1, this
means either p = 0 or p = q − 1, which are the extreme cases where M(T ; p, q) essentially reduces
to a trivial flattening. In these cases, one should use a simpler decomposition algorithm of [JLV23]
based on the trivial flattening, as we mentioned in Section 2.2.1; this algorithm works under the
condition (3).

2.2.5 Uniqueness Theorem and Algorithmic Guarantees

We will see that the discussion above gives not only a decomposition algorithm that works for generic
rank-r tensors but also an explicit list of efficiently-checkable conditions on the components that
guarantees uniqueness of the decomposition. We first present these conditions (Theorem 2.7) and
then show that generic components satisfy these conditions when r is small enough (Theorem 2.8).

Some of the conditions below may appear rather opaque, so we first briefly motivate what
role they play. It is natural for the matrix M to appear (condition (vi)), given its use as a rank
detection device (Theorem 2.4) and its role in the decomposition algorithm, but we will also define
two additional matrices N and P . The condition (viii) on N is used to ensure that (8) holds (no
spurious elements in the subspace intersection), while the condition (x) on P is used to ensure that
the [JLV23] algorithm succeeds. The matrices M ′, N ′, P ′ are identical to M,N,P but with the “b”
and “c” modes of the tensor switched and with p replaced by q − p− 1.

Definition 2.6. Consider an n1 × n2 × n3 tensor T with decomposition

T =

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ) (13)

and parameters p, q ∈ Z with q ≤ n1 and p̄ := min{p + 1, q − p} ≥ 2.

• The matrix N has rows indexed by

{(S, j) : S ⊆ [q], |S| = p, S 6⊆ [p + 1], j ∈ [n2]}

and columns indexed by

{(U, ℓ) : U ⊆ [q], |U | = p + 1, 1 ∈ U, U 6= [p + 1], ℓ ∈ [r]},

with entries

NSj,Uℓ = b
(ℓ)
j ·

q
∑

i=1

1U=S⊔{i} · σ(U, i) · a
(ℓ)
i , (14)

where σ is defined in (5).

• The matrix N ′ has rows indexed by

{(S, k) : S ⊆ [q], |S| = q − p− 1, S 6⊆ [q − p], k ∈ [n3]}

13

and columns indexed by

{(U, ℓ) : U ⊆ [q], |U | = q − p, 1 ∈ U, U 6= [q − p], ℓ ∈ [r]},

with entries

N ′
Sk,Uℓ = c

(ℓ)
k ·

q
∑

i=1

1U=S⊔{i} · σ(U, i) · a
(ℓ)
i .

• The matrix P is indexed by

{(i1, i2, j1, j2) : 1 ≤ i1 < i2 ≤ p + 1, 1 ≤ j1 < j2 ≤ n2} × {(ℓ1, ℓ2) : 1 ≤ ℓ1 < ℓ2 ≤ r}

with entries

Pi1i2j1j2,ℓ1ℓ2 = a
(ℓ1)
i1

b
(ℓ1)
j1

a
(ℓ2)
i2

b
(ℓ2)
j2

+ a
(ℓ2)
i1

b
(ℓ2)
j1

a
(ℓ1)
i2

b
(ℓ1)
j2

− a
(ℓ1)
i1

b
(ℓ1)
j2

a
(ℓ2)
i2

b
(ℓ2)
j1

− a
(ℓ2)
i1

b
(ℓ2)
j2

a
(ℓ1)
i2

b
(ℓ1)
j1

.
(15)

• The matrix P ′ is indexed by

{(i1, i2, j1, j2) : 1 ≤ i1 < i2 ≤ q − p, 1 ≤ j1 < j2 ≤ n3} × {(ℓ1, ℓ2) : 1 ≤ ℓ1 < ℓ2 ≤ r}

with entries

P ′
i1i2j1j2,ℓ1ℓ2 = a

(ℓ1)
i1

c
(ℓ1)
j1

a
(ℓ2)
i2

c
(ℓ2)
j2

+ a
(ℓ2)
i1

c
(ℓ2)
j1

a
(ℓ1)
i2

c
(ℓ1)
j2

− a
(ℓ1)
i1

c
(ℓ1)
j2

a
(ℓ2)
i2

c
(ℓ2)
j1

− a
(ℓ2)
i1

c
(ℓ2)
j2

a
(ℓ1)
i2

c
(ℓ1)
j1

.

Theorem 2.7 (Uniqueness theorem). Consider an n1 × n2 × n3 tensor T with decomposition

T =

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ) (16)

and parameters p, q ∈ Z with q ≤ n1 and p̄ := min{p + 1, q − p} ≥ 2. Suppose the components
satisfy the following conditions:

(i) a
(ℓ)
1 6= 0 for all ℓ ∈ [r].

(ii) The r vectors (a
(ℓ)
1 , . . . , a

(ℓ)
p̄)⊤ for ℓ ∈ [r] are pairwise linearly independent, i.e., no one of

these vectors is a scalar multiple of another.

(iii) The r vectors {d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]} are linearly independent, where d(ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
p+1)⊤.

(iv) The r vectors {f (ℓ) ⊗ c(ℓ) : ℓ ∈ [r]} are linearly independent, where f (ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
q−p)

⊤.

(v) The r vectors {b(ℓ) ⊗ c(ℓ) : ℓ ∈ [r]} are linearly independent.

(vi) The matrix M = M(T ; p, q) from (4) has rank exactly r
(

q−1
p

)

.

(vii) The matrix M ′ = M ′(T ; p, q) from (11) has rank exactly r
(q−1

p

)

.

(viii) The matrix N from Definition 2.6 has full column rank.

(ix) The matrix N ′ from Definition 2.6 has full column rank.

(x) The matrix P from Definition 2.6 has full column rank.

14

(xi) The matrix P ′ from Definition 2.6 has full column rank.

Then (16) is the unique rank-r decomposition of T (in the sense of Definition 2.2), and this de-
composition is recovered by Algorithm 1 (with input T, p, q, r).

The proof of Theorem 2.7 can be found in Section 3.3. It may be possible to simplify the above
conditions or to find conditions that are “minimal” in some sense, but we have not attempted this
here. If the above conditions fail to hold for a particular decomposition, one can potentially remedy
this by permuting the modes of the tensor or by applying an invertible change of basis on one or
more of the modes. Next we show that the above conditions hold for “almost all” tensors of low
enough rank.

Theorem 2.8 (Success for generic tensors). Consider the setting of Theorem 2.7 with parameters
q ≤ n1 and

p =

⌊

q ·
n3

n2 + n3

⌋

.

Suppose

q ≥ (4 + 5α)

(

1 +
1

α

)

where α := max

{

n2

n3
,
n3

n2

}

.

If the components a(ℓ), b(ℓ), c(ℓ) are generically chosen with

r ≤ (n2 + n3)

(

1 −
3 + α

q

)

−
q3

4
(17)

then p̄ ≥ 2 and conditions (i)–(xi) are satisfied.

The proof can be found in Section 3.6. This is qualitatively the same behavior as our rank detection
result. Suppose n1 ≤ n2 ≤ n3 and consider the regime n1 → ∞ with α of constant order. For any
constant ǫ > 0 we can handle r as large as (1 − ǫ)(n2 + n3) by taking q to be a sufficiently large
constant (depending on α, ǫ). As long as q is a constant, the runtime of Algorithm 1 is polynomial
in the largest dimension n3.

2.3 Lower Bounds

We have given an algorithm for tensor decomposition based on flattening the tensor to a matrix
in a non-trivial manner: M = M(T). We now explore the inherent limitations of this style of
approach. A seemingly necessary prerequisite to finding a better decomposition algorithm is to find
a better algorithm for the easier task of rank detection. We therefore focus on rank detection, and
specifically we will show that certain types of flattenings cannot have “additivity of rank” when
the tensor rank is too large. This additivity property was key to our rank detection algorithm
(Theorem 2.4) and was also crucial for our decomposition algorithm because it ensures that the
column span of M(

∑

ℓ a
(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)) retains all vectors from the individual column spans of the

terms M(a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)). We will give three different lower bounds that apply to increasingly
general families of flattenings.

2.3.1 Flattenings of Koszul–Young Type

The flattenings used in our algorithm have the property that two modes are flattened in the trivial
manner while the third is flattened according to a non-trivial linear map. Formally, we have a linear

15

map M : Rn1×n2×n3 → R
N1×N2 (or in other words, the entries of M are degree-1 homogeneous

polynomials in the variables Tijk) with the property

M(a⊗ b⊗ c) = A(a) ⊗ (bc⊤) (18)

for a matrix A(a) whose entries are degree-1 homogeneous polynomials in the entries of a. On the
right-hand side above, the symbol ⊗ denotes the Kronecker product of matrices. We will first see
that any flattening of this form cannot surpass rank n2 +n3, making our algorithm optimal up to a
factor 1 − ǫ among such flattenings (in the regime n1 ≤ n2 ≤ n3 with n1 → ∞ and n3/n2 = O(1)).

Theorem 2.9. Suppose M : Rn1×n2×n3 → R
N1×N2 is a linear map with the property (18). Sup-

pose further that for generically chosen components a(ℓ), b(ℓ), c(ℓ) and some r ≥ 1, we have rank-r
additivity, that is,

rank

(

M

(

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)

))

= r · rank
(

M
(

a(1) ⊗ b(1) ⊗ c(1)
))

. (19)

Then
r ≤ n2 + n3.

The proof can be found in Section 4.2. Recall from Section 2.1.2 that symbolic matrices have a well-
defined notion of generic rank, so the expressions on the left- and right-hand sides of (19) must each
take one specific value when the components are chosen generically. (We cannot have a situation
where some positive-measure set of components leads to rank r1 while some other positive-measure
set of components leads to a different rank r2.) The right-hand side of (19) could equivalently be
written as

r
∑

ℓ=1

rank
(

M
(

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)
))

,

since for generic components, the r terms in this sum are all equal.

2.3.2 Linear Flattenings

We now consider a more general class of flattenings, namely all linear flattenings (without the
requirement (18)). Our bound on the rank will be weaker than above.

Theorem 2.10. Suppose M : R
n1×n2×n3 → R

N1×N2 is a linear map. Suppose further that for
generically chosen components and some r ≥ 1, we have rank-r additivity as defined in (19). Then

r ≤ 2(n1 + n2 + n3 + 1).

The proof can be found in Section 4.3. This result is similar to Theorem 4.4 of [EGOW18], where
the bound r ≤ 8n is proven for “square” tensors, i.e., tensors of format n×n×n. For square tensors,
our result gives an improvement from 8n to 6n + 2. Our argument is similar to that of [EGOW18]
and we describe the difference in Remark 4.2.

2.3.3 Low-Degree Flattenings

In the introduction, we argued why it might seem plausible to expect decomposition algorithms
that reach rank r ≈ n3/2 for n × n × n tensors with generic components. In the previous section
we saw that linear flattenings cannot surpass rank O(n) (and this was known already by the work

16

of [EGOW18]). One can imagine a much broader class of flattenings where the entries of M(T) are
higher-degree polynomials in the variables Tijk, and this is stated as an open problem in Section 6
of [EGOW18]. We will define such a class of strategies and show that even these will not surpass
rank O(n), where O(·) hides a constant depending on the polynomial degree.

For motivation, a common strategy for handling a third-order n × n × n tensor is to apply
a particular degree-2 polynomial map to produce a fourth-order n × n × n × n tensor, and then
flatten this to an n2 × n2 matrix. This trick is used, for instance, in work on refuting random
constraint satisfaction problems [CGL07, AOW15], and within the sum-of-squares proof system it
can be viewed as an application of the Cauchy–Schwarz inequality.

Inspired by this, here is a seemingly plausible approach for rank detection of third-order tensors.
First, build some matrix M(T) whose entries are degree-2 homogeneous polynomials in the variables
Tijk. Now we would like to ask for some version of “rank additivity” to hold, but since T 7→ M(T)
is no longer linear, M(

∑

ℓ a
(ℓ)⊗b(ℓ)⊗c(ℓ)) no longer breaks down as the sum of the individual terms

M(a(ℓ)⊗b(ℓ)⊗c(ℓ)). Instead, write T =
∑r

ℓ=1 T
(ℓ) where T (ℓ) = a(ℓ)⊗b(ℓ)⊗c(ℓ), and view the entries

of M(T) as (homogeneous degree-2) polynomials in the variables T
(ℓ)
ijk. Decompose M = M(T) as

M =
∑

1≤ℓ≤r

M̂(T (ℓ)) +
∑

1≤ℓ1<ℓ2≤r

M̃(T (ℓ1), T (ℓ2)) =: Mrepeat + Mdistinct,

where M̂ has entries that are homogeneous of degree 2 in its input tensor while M̃ has entries that
are homogeneous with degree 1 in each of its two input tensors (so degree 2 in total). We have now
written M as the sum of r “repeat” terms and

(r
2

)

“distinct” terms, and we might hope for the
rank to be additive across these Θ(r2) terms. It is tantalizing to imagine a scenario where M has
dimensions N × N with N = Θ(n3), and each of the individual terms M̂(T (ℓ)) or M̃(T (ℓ1), T (ℓ2))
has generic rank Θ(1), as this would potentially allow additive rank (and therefore successful rank
detection) up to r = Θ(n3/2). Unfortunately we will see that this cannot pan out, and to prove
a lower bound we will focus on only the “distinct” terms (which make up most of the terms) and
show that even these alone cannot have additive rank.

We now define our setting more formally, and we will consider a generalization of the above
discussion to any degree d ≥ 1 and any tensor format n1 × · · · × nk. We think of d as a constant,
so that the entries of M can be computed in polynomial time.

Definition 2.11 (Decomposition of M). For T ∈ R
n1×···×nk , suppose M = M(T) is an N1 × N2

matrix whose entries are homogeneous degree-d polynomials in the variables Ti1,...,ik . Set T =
∑r

ℓ=1 T
(ℓ) and, viewing the entries of M(T) as (homogeneous degree-d) polynomials in the variables

T
(ℓ)
i1,...,ik

, consider the unique decomposition of M = M(T) as

M = Mrepeat +
∑

1≤ℓ1<···<ℓd≤r

M̃(T (ℓ1), . . . , T (ℓd)),

where M̃ has entries that are homogeneous with degree 1 in each of its d input tensors (so degree
d in total), and Mrepeat consists of those monomials in M that involve fewer than d of the tensors
T (1), . . . , T (r).

Theorem 2.12. Suppose M is a matrix whose entries are homogeneous degree-d polynomials in the
entries of an n1×· · ·×nk tensor T . Set T =

∑r
ℓ=1 T

(ℓ), and decompose M(T) as in Definition 2.11.
Suppose that for T (ℓ) = a(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) with generically chosen components {a(i,ℓ) : i ∈ [k], ℓ ∈

17

[r]}, we have rank-r additivity in the sense that

rank

∑

1≤ℓ1<···<ℓd≤r

M̃(T (ℓ1), . . . , T (ℓd))

 =

(

r

d

)

· rank
(

M̃(T (1), . . . , T (d))
)

.

Then
r ≤ 4kd2 n∗

where

n∗ := max
S⊆[k]

min

∏

i∈S

ni,
∏

i∈S̄

ni

.

The proof can be found in Section 4.4. Recall from Section 2.2.1 that the trivial flattening achieves
rank detection up to rank n∗, so Theorem 2.12 shows that for any fixed k, d, a general class of
higher-degree approaches cannot beat the trivial flattening by more than a constant factor 4kd2.

Remark 2.13. We discuss a few sanity checks on the definition of rank-r additivity used in Theo-
rem 2.12. First note that for d = 1, this definition reduces to the one from (19), since Mrepeat = 0.
Next, let us give an example of a flattening that satisfies rank-r additivity for arbitrary d. Start with
any linear (homogeneous degree-1) flattening T 7→ L(T) and consider the flattening M(T) = L(T)⊗d

(the d-fold Kronecker product), which is homogeneous of degree d. Suppose that (for generic com-
ponents), L has rank-r additivity in the sense of (19). We claim that M has rank-r additivity in
the sense of Theorem 2.12 (again, for generic components). We sketch the proof in the special case
k = 3, d = 2, but the proof can be extended to all k and d. First, a basic property of the Kronecker
product is rank(A⊗B) = rank(A) · rank(B). When T =

∑r
ℓ=1 T

(ℓ) =
∑r

ℓ=1 a
(ℓ)⊗ b(ℓ)⊗ c(ℓ), we can

decompose M(T) =
∑

ℓ1,ℓ2∈[r]
L(T (ℓ1)) ⊗ L(T (ℓ2)). Using the additivity for L, the r2 terms in this

sum must have additive rank. This implies additivity for the
(

r
2

)

“distinct” terms, which in this

case are M̃(T (ℓ1), T (ℓ2)) = L(T (ℓ1)) ⊗ L(T (ℓ2)) + L(T (ℓ2)) ⊗ L(T (ℓ1)) for 1 ≤ ℓ1 < ℓ2 ≤ r.

2.4 Open Problems

We suggest the following questions as interesting directions for future work.

• For an n × n × n tensor with generic components, what is the maximum rank for which a
linear flattening can have additivity? We have shown the answer is asymptotically cn for a
constant c ∈ [2, 6]. This improved the previous range of [3/2, 8] by [Per18] and [EGOW18],
but the exact value of c remains unknown.

• Can rank detection improve with the degree of flattening? Our lower bounds do not rule out
this possibility, but it is possible the Koszul–Young flattening is already optimal.

• For order-4 tensors of format n× n× n× n (with generic components), the trivial flattening
gives rank detection up to rank n2, but existing decomposition results stop at cn2 for a
constant c < 1 [DLCC07, MSS16, HSS19, JLV23]. Can we improve the decomposition results
to rank (1 − ǫ)n2? This might require improving the constant 1/4 in [JLV23], which may be
sub-optimal (but curiously was not a bottleneck in the order-3 case). We remark that the
constant has been improved from 1/4 to 1−ǫ for a non-planted variant of the problem [DJL24].

• Can our algorithmic guarantees be extended to symmetric tensors of format n× n× n?

18

3 Proofs for Upper Bounds

3.1 Proof of Proposition 2.3

The genericity assumptions we will need on the components are that neither b nor c is the zero
vector and that a1, a2, . . . , aq are not all zero. Recall M = A⊗ (bc⊤), so rank(M) = rank(A). Now
Proposition 2.3 follows immediately from Lemma 3.1 below, which shows that A generically has
rank

(

q−1
p

)

. (Lemma 3.1 also includes additional facts about the structure of A that will be needed
later.)

Lemma 3.1. Consider the matrix A = A(a; p, q) defined in (6). If a1, . . . , aq are all zero then
A = 0 and so rank(A) = 0. Otherwise, rank(A) =

(q−1
p

)

. Furthermore, if ai 6= 0 for some i ∈ [q]
then the columns of A indexed by {U : i ∈ U} form a basis for the column span of A, and similarly
the rows {S : i /∈ S} form a basis for the row span.

Proof. Fix i ∈ [q] such that ai 6= 0. We first show rank(A) ≥
(q−1

p

)

by demonstrating a
(q−1

p

)

×
(q−1

p

)

submatrix with full rank. Specifically, consider the submatrix indexed by {S : i /∈ S}×{U : i ∈ U}.
Note that this submatrix has exactly one nonzero entry per row and exactly one nonzero entry per
column, and all the nonzero entries are equal to ±ai. This shows rank(A) ≥

(q−1
p

)

.
The full-rank submatrix demonstrated above implies that the columns {U : i ∈ U} are linearly

independent, and same for the columns {S : i /∈ S}. It remains to show rank(A) ≤
(q−1

p

)

. To

do this, we will show that every column of A lies in the span of the
(

q−1
p

)

columns {U : i ∈ U}.
Fix a column W with i /∈ W , and let Y = W ⊔ {i}. We claim that the columns indexed by
{Y \ {j} : j ∈ Y } are linearly dependent, where the coefficients are σ(Y, j) aj . To see this,
consider entry S of this linear combination. If S 6⊆ Y then entry S is equal to zero, and otherwise
S = Y \ {j, k} for some j, k ∈ Y so entry S is equal to

σ(Y, j) aj AS,Y \{j} + σ(Y, k) ak AS,Y \{k} = σ(Y, j) aj σ(Y \ {j}, k) ak + σ(Y, k) ak σ(Y \ {k}, j) aj ,

which is zero because σ(Y, j)σ(Y \ {j}, k) and σ(Y, k)σ(Y \ {k}, j) have opposite signs. Now take
the linear dependence from above and solve for column W (which has nonzero coefficient σ(Y, i) ai);
this allows column W to be expressed as a linear combination of the columns {U : i ∈ U}.

3.2 Proof of Theorem 2.4

Provided ai 6= 0 for all i ∈ [q] (which is true for generic a), the matrix A = A(a; p, q) defined in (6)
can be factored as A = diag(v) · Ã · diag(w) where ÃSU =

∑

i∈[q] 1U=S⊔{i} · σ(U, i), vS =
∏

i∈S a−1
i ,

and wU =
∏

i∈U ai. Note that Ã = A(1) where 1 := (1, . . . , 1)⊤, so by Lemma 3.1 we have

rank(Ã) =
(q−1

p

)

. We can therefore factor Ã = Q̃R̃⊤ where Q̃, R̃ are
(q
p

)

×
(q−1

p

)

and
(q
p+1

)

×
(q−1

p

)

,

respectively. Now write A = QR⊤ where Q = diag(v) · Q̃ and R = diag(w) · R̃. We use the
superscript (ℓ) to mark that a matrix is built from the tensor component a(ℓ), so for instance,
A(ℓ) := A(a(ℓ); p, q). Factor M as

M =

r
∑

ℓ=1

A(ℓ) ⊗ (b(ℓ)c(ℓ)⊤) =

Q(1) Q(r)

⊗ · · · ⊗

b(1) b(r)

R(1) R(r)

⊗ · · · ⊗

c(1) c(r)

⊤

(20)

where, e.g., P (1) ⊗ b(1) denotes the
(q
p

)

n2 ×
(q−1

p

)

Kronecker product. This gives a factorization of

M as the product of two matrices with inner dimension r
(q−1

p

)

, so it suffices to show that the two

19

factors on the right-hand side of (20) have full column rank and full row rank, respectively. We
will show this for the first factor and then explain the (minor) changes needed to adapt the proof
for the second factor.

Let m be the smallest integer for which r ≤ mq. It suffices to verify the extreme case r = mq,
i.e., we will show that even when r is increased to add additional columns, all the columns are
linearly independent. Focusing on the first factor in (20), the first r

(

q−1
p

)

rows — call this square

submatrix Q′ — constitute an m×m grid of square blocks, where each square block has dimension
(q − p)

(q
p

)

= q
(q−1

p

)

consisting of (scaled) copies of Q arranged in a (q − p) × q grid. We require

n2 ≥ m(q − p) so that there are enough rows available to form the submatrix Q′.
Our goal is to show that det(Q′) is generically nonzero, and it suffices to show this after plugging

in values for some of the b variables. Namely, by setting the appropriate b variables to zero, we can
keep only the m square blocks on the diagonal of Q′, and thus it suffices to show invertibility for a
single square block of the form

Q′′ =

b11Q
(1) b12Q

(2) · · · b1,qQ
(q)

b21Q
(1) b22Q

(2) ...
...

. . .

bq−p,1Q
(1) · · · bq−p,qQ

(q)

,

where bjℓ := b
(ℓ)
j , and we will similarly write aiℓ := a

(ℓ)
i . Partition Q′′ into “cells” of size 1 ×

(

q−1
p

)

:
a cell is indexed by (S, j, ℓ) where S ⊆ [q], |S| = p, j ∈ [q − p], and ℓ ∈ [q], and the content of the
(S, j, ℓ) cell is (bjℓ

∏

i∈S a−1
iℓ)Q̃S where Q̃S denotes row S of Q̃.

We aim to show det(Q′′) is nonzero as a polynomial in the variables bjℓ, a
−1
iℓ . In the usual

expansion of det(P ′′) as a sum over permutations, each term chooses exactly 1 entry per row and
column of Q′′. This choice can be broken down as first choosing a set of cells (S, j, ℓ) with exactly
1 cell per row (S, j) and exactly

(q−1
p

)

cells per “pillar” ℓ (where “pillar” describes a vertical stack
of cells that are all indexed by the same ℓ value), and then choosing one entry per cell in a way
that each column appears once. Let H denote a subset of tuples (S, j, ℓ) representing the choice at
the first stage. For a given H, define matrices FH

1 , . . . , FH
q , each of size

(

q−1
p

)

×
(

q−1
p

)

, where FH
ℓ

is formed by collecting the rows Q̃S for each (S, j, ℓ) ∈ H (i.e., the cells selected in pillar ℓ). Now

det(Q′′) =
∑

H

τH · (a, b)H ·

q
∏

ℓ=1

det(FH
ℓ), (21)

where (a, b)H denotes the monomial
∏

(S,j,ℓ)∈H bjℓ
∏

i∈S a−1
iℓ , and τH ∈ {±1} are signs whose values

will not matter to us. If FH
ℓ has a repeated row Q̃S then its determinant is 0, so we need only

consider H for which the cells in each pillar have distinct S values.
To complete the proof, we will identify a particular monomial that has nonzero coefficient in

det(Q′′). To this end, define a “good” set of cells G as follows, which (like H) will have 1 cell per
row and

(

q−1
p

)

cells per pillar. Within each pillar ℓ ∈ [q], for each S with ℓ /∈ S, include the cell

(S, j, ℓ) where j is the first available index (i.e., the minimum j ∈ [q− p] such that (S, j, ℓ′) has not
already been declared a good cell for some ℓ′ < ℓ). Each S is used q − p times in total (across all
pillars), so the j values will not “run out.” We claim that the only term in (21) that produces the
monomial (a, b)G (with nonzero coefficient) is H = G: within each pillar ℓ = 1, 2, . . ., the powers of
a (particularly the absence of a−1

ℓℓ) determine the collection of S values that H must use (namely
one copy of each S for which ℓ /∈ S), and the powers of b determine the multiset of j values to use.
The choice of “first available j” used in G constrains a unique pairing between S and j values.

20

We conclude that the coefficient of (a, b)G in det(Q′′) is ±
∏q

ℓ=1 det(FG
ℓ) and it remains to show

that each det(FG
ℓ) is nonzero. This follows because FG

ℓ has rows Q̃S for all S with ℓ /∈ S, and the
corresponding rows of Ã = A(1) = Q̃R̃⊤ are linearly independent by Lemma 3.1.

To handle the second factor in (20), we also need to show invertibility of the analogous square
block

R′′ =

c11R
(1) c12R

(2) · · · c1,qR
(q)

c21R
(1) c22R

(2) ...
...

. . .

cp+1,1R
(1) · · · cp+1,qR

(q)

,

whose entries are polynomials in the variables aiℓ := a
(ℓ)
i and cjℓ := c

(ℓ)
j . We again partition R′′ into

cells of size 1 ×
(

q−1
p

)

indexed by (U, j, ℓ) where U ⊆ [q], |U | = p + 1, j ∈ [p + 1], and ℓ ∈ [q], and

the content of the (U, j, ℓ) cell is (cjℓ
∏

i∈U aiℓ)R̃U where R̃U denotes row U of R̃. The remainder
of the argument is essentially identical to above, with one minor change: in the construction of G,
each pillar ℓ includes the U values for which ℓ ∈ U (in place of the previous condition ℓ /∈ S).

Finally, the above constructions required an integer m such that r ≤ mq, n2 ≥ m(q − p), and
n3 ≥ m(p + 1), or equivalently,

r

q
≤ m ≤ min

{

n2

q − p
,

n3

p + 1

}

.

For this, it suffices to have

r ≤ q

(

min

{

n2

q − p
,

n3

p + 1

}

− 1

)

. (22)

Now using the choice of p = ⌊q · n3/(n2 + n3)⌋, we can bound

qn2

q − p
≥

qn2

q −
(

q · n3

n2+n3
− 1
) =

n2 + n3

1 + 1
q

(

1 + n3

n2

) ≥ (n2 + n3)

[

1 −
1

q

(

1 +
n3

n2

)]

(23)

and
qn3

p + 1
≥

qn3

q · n3

n2+n3
+ 1

=
n2 + n3

1 + 1
q

(

1 + n2

n3

) ≥ (n2 + n3)

[

1 −
1

q

(

1 +
n2

n3

)]

. (24)

Therefore it suffices to have

r ≤ (n2 + n3)

[

1 −
1

q

(

1 + max

{

n2

n3
,
n3

n2

})]

− q.

3.3 Proof of Theorem 2.7

Suppose T has an alternative decomposition T =
∑r

ℓ=1 ã
(ℓ) ⊗ b̃(ℓ) ⊗ c̃(ℓ). Recalling the setup in

Section 2.2.3,

M(T ; p, q) =
r
∑

ℓ=1

A(a(ℓ); p, q) ⊗ (b(ℓ)c(ℓ)⊤) =
r
∑

ℓ=1

A(ã(ℓ); p, q) ⊗ (b̃(ℓ)c̃(ℓ)⊤).

By assumption (vi), this matrix has rank exactly r
(q−1

p

)

. By Lemma 3.1, the matrix A(a; p, q)

always has rank at most
(

q−1
p

)

, which means each term A(a(ℓ); p, q) ⊗ (b(ℓ)c(ℓ)⊤) must have rank

21

exactly
(q−1

p

)

, and in particular, b(ℓ) 6= 0 and c(ℓ) 6= 0 (i.e., for each ℓ, neither b(ℓ) nor c(ℓ) is the

zero vector). Furthermore, every column of A(a(ℓ); p, q) ⊗ (b(ℓ)c(ℓ)⊤) must lie in the column span of
M , and so

colspan(M) = span{z(U)(a(ℓ); p, q) ⊗ b(ℓ) : U ⊆ [q], |U | = p + 1, ℓ ∈ [r]}, (25)

where, recall, z(U)(a; p, q) denotes column U of A(a; p, q). Similarly, we have the same conclusion
for the alternative decomposition: b̃(ℓ) 6= 0 and c̃(ℓ) 6= 0 for each ℓ ∈ [r], and

colspan(M) = span{z(U)(ã(ℓ); p, q) ⊗ b̃(ℓ) : U ⊆ [q], |U | = p + 1, ℓ ∈ [r]}. (26)

Now recall that we define V := [p+ 1] and denote by Zp,q ⊆ R
(qp) the subspace consisting of vectors

with the same sparsity pattern as z(V), that is, nonzeros are only allowed in the p + 1 entries S
where S ⊆ V .

Lemma 3.2. Under the assumptions of Theorem 2.7,

colspan(M) ∩ (Zp,q ⊗ R
n2) = span{z(V)(a(ℓ); p, q) ⊗ b(ℓ) : ℓ ∈ [r]}.

The proof of Lemma 3.2 is deferred to Section 3.4. The proof relies on assumption (viii).
Recall that ϕp,q, defined in (9), is an isomorphism Zp,q → R

p+1 designed so that ϕp,q(z
(V)(a; p, q)) =

(a1, . . . , ap+1)⊤. From Lemma 3.2 we now conclude

(ϕp,q ⊗ I)(colspan(M) ∩ (Zp,q ⊗ R
n2)) = span{d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}, (27)

where, recall, d(ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
p+1)

⊤.

Lemma 3.3. Under the assumptions of Theorem 2.7, the vectors {d(ℓ)⊗ b(ℓ) : ℓ ∈ [r]} are the only
rank-1 tensors, up to scalar multiple, in their span, span{d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}. Furthermore, the
algorithm of [JLV23, Corollary 3] recovers (scalar multiples of) these r rank-1 tensors given their
span.

The proof of Lemma 3.3 is based on [JLV23] and can be found in Section 3.5. The proof relies on
assumptions (iii) and (x).

Define d̃(ℓ) := (ã
(ℓ)
1 , . . . , ã

(ℓ)
p+1)

⊤. From (26) we have z(V)(ã(ℓ); p, q) ⊗ b̃(ℓ) ∈ colspan(M) ∩ (Zp,q ⊗

R
n2) for all ℓ ∈ [r], and so d̃(ℓ) ⊗ b̃(ℓ) ∈ (ϕp,q ⊗ I)(colspan(M) ∩ (Zp,q ⊗ R

n2)). But by (27) and
Lemma 3.3, the only rank-1 tensors in this subspace are scalar multiples of d(ℓ)⊗ b(ℓ). We therefore
conclude that for every ℓ ∈ [r] there exists ℓ′ ∈ [r] such that d̃(ℓ) ⊗ b̃(ℓ) is a scalar multiple of
d(ℓ

′) ⊗ b(ℓ
′).

Next we need to repeat the argument with the “b” and “c” modes switched and with p replaced
by q − p− 1, which will use the assumptions (iv), (vii), (ix), (xi). Due to symmetry, the argument
is identical to before, and we only state the main claims. First, the flattening M ′ takes the form

M ′(T ; p, q) =
r
∑

ℓ=1

A(a(ℓ); q − p− 1, q) ⊗ (c(ℓ)b(ℓ)⊤) =
r
∑

ℓ=1

A(ã(ℓ); q − p− 1, q) ⊗ (c̃(ℓ)b̃(ℓ)⊤),

and by Lemma 3.1, the maximum possible rank of A(a; q− p− 1, q) is
(q−1
q−p−1

)

=
(q−1

p

)

. Analogous
to (25) and (26), we have

colspan(M ′) = span{z(U)(a(ℓ); q − p− 1, q) ⊗ c(ℓ) : U ⊆ [q], |U | = q − p, ℓ ∈ [r]}

22

and
colspan(M ′) = span{z(U)(ã(ℓ); q − p− 1, q) ⊗ c̃(ℓ) : U ⊆ [q], |U | = q − p, ℓ ∈ [r]}.

Analogous to Lemma 3.2 and (27), we have, with V ′ := [q − p],

colspan(M ′) ∩ (Zq−p−1,q ⊗ R
n3) = span{z(V

′)(a(ℓ); q − p− 1, q) ⊗ c(ℓ) : ℓ ∈ [r]}.

and
(ϕq−p−1,q ⊗ I)(colspan(M ′) ∩ (Zq−p−1,q ⊗ R

n3)) = span{f (ℓ) ⊗ c(ℓ) : ℓ ∈ [r]},

where, recall, f (ℓ) := (a
(ℓ)
1 , . . . , a

(ℓ)
q−p)⊤. Analogous to Lemma 3.3, the vectors {f (ℓ) ⊗ c(ℓ) : ℓ ∈ [r]}

are the only rank-1 tensors in their span, up to scalar multiple, and the algorithm of [JLV23]

recovers them from their span. Finally, defining f̃ (ℓ) := (ã
(ℓ)
1 , . . . , ã

(ℓ)
q−p)⊤, we have f̃ (ℓ) ⊗ c̃(ℓ) ∈

(ϕq−p−1,q ⊗ I)(colspan(M ′) ∩ (Zq−p−1,q ⊗R
n3)) and so every f̃ (ℓ) ⊗ c̃(ℓ) is a scalar multiple of some

f (ℓ′′) ⊗ c(ℓ
′′).

Let R ⊆ [r] be the set of ℓ for which ã
(ℓ)
1 6= 0. For each ℓ ∈ [r] we have d̃(ℓ) 6= 0 and

f̃ (ℓ) 6= 0. Recall that b(ℓ), b̃(ℓ), c(ℓ), c̃(ℓ), d(ℓ), f (ℓ) are all nonzero (where d(ℓ) 6= 0 since a
(ℓ)
1 6= 0 by

assumption (i), and similarly for f (ℓ)). For each ℓ ∈ R we have established that d̃(ℓ) ⊗ b̃(ℓ) is a
nonzero scalar multiple of some d(ℓ

′) ⊗ b(ℓ
′), and f̃ (ℓ) ⊗ c̃(ℓ) is a nonzero scalar multiple of some

f (ℓ′′) ⊗ c(ℓ
′′). In particular, d̃(ℓ) is a nonzero scalar multiple of d(ℓ

′), and f̃ (ℓ) is a nonzero scalar
multiple of f (ℓ′′). Since d̃(ℓ) and f̃ (ℓ) agree on the first p̄ coordinates (and similarly for d(ℓ), f (ℓ)),
Assumption (ii) implies that ℓ′ = ℓ′′. This means we can define a function π : R → [r] such that
b̃(ℓ) ⊗ c̃(ℓ) = ηℓ · b

(π(ℓ)) ⊗ c(π(ℓ)) for a scalar ηℓ 6= 0, for each ℓ ∈ R.
Let T1 := (T1jk : j ∈ [n2], k ∈ [n3]) denote the first n2 × n3 matrix slice of T , namely

T1 =

r
∑

ℓ=1

a
(ℓ)
1 · b(ℓ) ⊗ c(ℓ).

Similarly for the alternative decomposition,

T1 =
r
∑

ℓ=1

ã
(ℓ)
1 · b̃(ℓ) ⊗ c̃(ℓ) =

∑

ℓ∈R

ã
(ℓ)
1 · ηℓ · b

(π(ℓ)) ⊗ c(π(ℓ)),

since ã
(ℓ)
1 = 0 for ℓ /∈ R. By assumptions (i) and (v), a

(ℓ)
1 6= 0 for all ℓ ∈ [r], and the vectors

{b(ℓ) ⊗ c(ℓ) : ℓ ∈ [r]} are linearly independent. Comparing the previous expressions for T1, this

means R = [r], π is a permutation of [r], and ã
(ℓ)
1 = η−1

ℓ · a
(π(ℓ))
1 . Now for each slice Ti := (Tijk :

j ∈ [n2], k ∈ [n3]} with i ∈ [n1], we can write

Ti =

r
∑

ℓ=1

a
(ℓ)
i · b(ℓ) ⊗ c(ℓ) =

r
∑

ℓ=1

ã
(ℓ)
i · ηℓ · b

(π(ℓ)) ⊗ c(π(ℓ)),

and again using the linear independence of {b(ℓ) ⊗ c(ℓ) : ℓ ∈ [r]} we must have ã
(ℓ)
i = η−1

ℓ · a
(π(ℓ))
i .

This means ã(ℓ) = η−1
ℓ · a(π(ℓ)) and so the alternative decomposition has the same rank-1 terms as

the original: ã(ℓ)⊗ b̃(ℓ)⊗ c̃(ℓ) = a(π(ℓ)) ⊗ b(π(ℓ))⊗ c(π(ℓ)), with π a permutation of [r]. This completes
the proof of uniqueness.

The above argument also implies success of Algorithm 1. From (27) we know the subspace B
constructed by the algorithm is equal to span{d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}, and similarly, C = span{f (ℓ) ⊗
c(ℓ) : ℓ ∈ [r]}. By Lemma 3.3, the rank-1 tensors d̂(ℓ) ⊗ b̂(ℓ) recovered by the [JLV23] algorithm

23

satisfy d̂(ℓ) = αℓ · d
(π1(ℓ)) and b̂(ℓ) = βℓ · b

(π1(ℓ)) for scalars αℓ 6= 0, βℓ 6= 0 and a permutation π1 of
[r]. Similarly, f̂ (ℓ) = γℓ · f

(π2(ℓ)) and ĉ(ℓ) = δℓ · c
(π2(ℓ)) for scalars γℓ 6= 0, δℓ 6= 0 and a permutation

π2 of [r]. Using Assumption (ii), the (unique) permutation τ found by Algorithm 1 is τ = π−1
2 ◦π1.

The final step is to solve the linear system of equations (12) for w(ℓ), which reduces to

r
∑

ℓ=1

w
(ℓ)
i · (βℓ · b

(π1(ℓ))) ⊗ (δτ(ℓ) · c
(π1(ℓ))) = Ti for i ∈ [n1].

One solution is w(ℓ) = β−1
ℓ · δ−1

τ(ℓ) · a
(π1(ℓ)), which recovers the desired decomposition. This solution

is unique because {b(ℓ) ⊗ c(ℓ) : ℓ ∈ [r]} are linearly independent by assumption (v).

3.4 Proof of Lemma 3.2

Using (25), the vectors z(V)(a(ℓ); p, q) ⊗ b(ℓ) for ℓ ∈ [r] lie in colspan(M) ∩ (Zp,q ⊗ R
n2), so the

inclusion “⊇” in Lemma 3.2 holds. For the reverse inclusion, assume on the contrary that “⊆”

fails. By assumption (i) we have a
(ℓ)
1 6= 0 for all ℓ ∈ [r], so using (25) and Lemma 3.1, the vectors

{z(U)(a(ℓ); p, q) ⊗ b(ℓ) : U ⊆ [q], |U | = p + 1, 1 ∈ U, ℓ ∈ [r]} span colspan(M); in fact, since
the number of these vectors matches rank(M), they must form a basis for colspan(M). Define
U1 := {U ⊆ [q] : |U | = p + 1, 1 ∈ U, U 6= V }. Now, failure of “⊆” is equivalent to the existence of
coefficients {γU,ℓ ∈ R : U ∈ U1, ℓ ∈ [r]}, not all zero, such that

∑

U∈U1, ℓ∈[r]

γU,ℓ · (z(U)(a(ℓ); p, q) ⊗ b(ℓ)) ∈ Zp,q ⊗R
n2 . (28)

Membership in Zp,q⊗R
n2 amounts to having a particular sparsity pattern, namely the entries (S, j)

with S 6⊆ V = [p+ 1] must be zero. This means we can write (28) in matrix form as Nγ = 0 where
N is defined in (14). But N has full column rank by assumption (viii), a contradiction.

3.5 Proof of Lemma 3.3

The following arguments are based on [JLV23]. We will unpack some details of [JLV23] in order to
extract an explicit condition under which their algorithm succeeds.

Define the set of rank-1 tensors,

X := {d⊗ b : d ∈ R
p+1, b ∈ R

n2},

and the subspace
Y := span{d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}.

For any z ∈ X ∩ Y, the vector w := z ⊗ z must belong to the subspace span{y ⊗ y : y ∈ Y}. Since
a basis for Y is given by y(1), . . . , y(r) with y(ℓ) := d(ℓ) ⊗ b(ℓ) (which are linearly independent by
assumption (iii)), a basis for the subspace span{y⊗y : y ∈ Y} is given by {y(ℓ1)⊗y(ℓ2)+y(ℓ2)⊗y(ℓ1) :
1 ≤ ℓ1 ≤ ℓ2 ≤ r}, so we can write

w =
∑

1≤ℓ1≤ℓ2≤r

δℓ1,ℓ2(d(ℓ1) ⊗ b(ℓ1) ⊗ d(ℓ2) ⊗ b(ℓ2) + d(ℓ2) ⊗ b(ℓ2) ⊗ d(ℓ1) ⊗ b(ℓ1)), (29)

for some coefficients δℓ1,ℓ2 ∈ R. Also, viewing z as a (p + 1) × n2 matrix, since z has rank 1 we
know every 2-by-2 minor must vanish:

zi1,j1zi2,j2 − zi1,j2zi2,j1 = 0 for 1 ≤ i1 < i2 ≤ p + 1 and 1 ≤ j1 < j2 ≤ n2.

24

Equivalently,

〈w,Ei1,i2;j1,j2〉 = 0 for 1 ≤ i1 < i2 ≤ p + 1 and 1 ≤ j1 < j2 ≤ n2, (30)

where
Ei1,i2;j1,j2 = ei1 ⊗ ej1 ⊗ ei2 ⊗ ej2 − ei1 ⊗ ej2 ⊗ ei2 ⊗ ej1 .

Now w belongs to the intersection of two subspaces A∩B where A is the set of vectors expressible
in the form (29) and B is the set of solutions to (30). A key step in the algorithm of [JLV23] is to
compute this intersection of subspaces (which in their notation is S2(Y)∩ I⊥2). The hope is to have
no “spurious” vectors in this subspace, that is,

A ∩ B = span{d(ℓ) ⊗ b(ℓ) ⊗ d(ℓ) ⊗ b(ℓ) : ℓ ∈ [r]}. (31)

The containment “⊇” in (31) always holds, so failure of (31) is equivalent to the existence of
coefficients δℓ1,ℓ2 , not all zero, but with δℓ,ℓ = 0, such that the vector (29) satisfies (30):

∑

1≤ℓ1<ℓ2≤r

δℓ1,ℓ2〈d
(ℓ1) ⊗ b(ℓ1) ⊗ d(ℓ2) ⊗ b(ℓ2) + d(ℓ2) ⊗ b(ℓ2) ⊗ d(ℓ1) ⊗ b(ℓ1), Ei1,i2;j1,j2〉 = 0

for 1 ≤ i1 < i2 ≤ p + 1 and 1 ≤ j1 < j2 ≤ n2. This reduces to

∑

1≤ℓ1<ℓ2≤r

δℓ1,ℓ2

(

d
(ℓ1)
i1

b
(ℓ1)
j1

d
(ℓ2)
i2

b
(ℓ2)
j2

+ d
(ℓ2)
i1

b
(ℓ2)
j1

d
(ℓ1)
i2

b
(ℓ1)
j2

− d
(ℓ1)
i1

b
(ℓ1)
j2

d
(ℓ2)
i2

b
(ℓ2)
j1

− d
(ℓ2)
i1

b
(ℓ2)
j2

d
(ℓ1)
i2

b
(ℓ1)
j1

)

= 0,

which can be written in matrix form as Pδ = 0 with P defined in (15). Since P has full column
rank by assumption (x), there is no nonzero solution to Pδ = 0, so (31) holds.

We have now shown that for any z ∈ X∩Y, the corresponding w := z⊗z lies in the subspace (31).
Our goal is to show that z is a scalar multiple of some d(ℓ) ⊗ b(ℓ). Since the vectors d(ℓ) ⊗ b(ℓ) are
linearly independent by assumption (iii), Lemma 3.4 below implies that the vectors d(ℓ) ⊗ b(ℓ) ⊗
d(ℓ) ⊗ b(ℓ) are the only vectors of the form y⊗ y in their span, up to scalar multiple. This means w
is a scalar multiple of some d(ℓ)⊗ b(ℓ)⊗ d(ℓ)⊗ b(ℓ), and thus z is a scalar multiple of some d(ℓ)⊗ b(ℓ),
as desired.

Lemma 3.4. If z(1), . . . , z(r) ∈ R
N are linearly independent vectors then z(1) ⊗ z(1), . . . , z(r) ⊗ r(r)

are the only rank-1 tensors in their span, span{z(ℓ) ⊗ z(ℓ) : ℓ ∈ [r]}, up to scalar multiple, and
furthermore there is an algorithm based on simultaneous diagonalization to recover (scalar multiples
of) the vectors z(ℓ) ⊗ z(ℓ) given their span.

Proof. First we give a simple self-contained proof of the uniqueness claim. View each z(ℓ) ⊗ z(ℓ)

as a rank-1 matrix, and apply a change of basis (to both rows and columns) so that z(1), . . . , z(r)

become standard basis vectors e(1), . . . , e(r). Now each z(ℓ)⊗ z(ℓ) becomes a diagonal matrix with a
single nonzero entry at position (ℓ, ℓ). Any linear combination

∑r
ℓ=1 αℓ · z

(ℓ) ⊗ z(ℓ) is diagonal and
has rank equal to the number of nonzero coefficients αℓ (and in particular, the vectors z(ℓ) ⊗ z(ℓ)

are linearly independent). Therefore the only rank-1 matrices in this span are scalar multiples of a
single z(ℓ) ⊗ z(ℓ).

There is also an algorithmic proof using simultaneous diagonalization, which appears in [JLV23].
Given an arbitrary basis p(1), . . . , p(r) for span{z(ℓ)⊗z(ℓ) : ℓ ∈ [r]}, construct the third-order tensor
R :=

∑r
ℓ=1 e

(ℓ) ⊗ p(ℓ) ∈ R
r ⊗R

N ⊗R
N where e(ℓ) denotes the ℓth standard basis vector. There are

25

coefficients βℓm such that p(ℓ) =
∑r

m=1 βℓm ·z(m)⊗z(m) for each ℓ ∈ [r], where β = (βℓm : ℓ,m ∈ [r])
is an invertible matrix. This means R admits the decomposition

R =

r
∑

ℓ=1

e(ℓ) ⊗

(

r
∑

m=1

βℓm · z(m) ⊗ z(m)

)

=

r
∑

m=1

(

r
∑

ℓ=1

βℓm · e(ℓ)

)

⊗ z(m) ⊗ z(m). (32)

The vectors {z(m) : m ∈ [r]} are linearly independent by assumption, and the vectors {
∑r

ℓ=1 βℓm ·
e(ℓ) : m ∈ [r]} are linearly independent because they are the columns of the invertible matrix
β. This verifies the conditions for simultaneous diagonalization (see [Moi18, Theorem 3.1.3]) so
the decomposition on the right-hand side of (32) is unique and can be recovered by an efficient
algorithm. This allows recovery of the vectors z(ℓ)⊗z(ℓ) (up to re-ordering and scalar multiple).

Finally, the algorithmic claim of Lemma 3.3 also follows from the above, since the [JLV23]
algorithm first computes the intersection of subspaces A ∩ B, which is equal to (31), and then
applies simultaneous diagonalization as in Lemma 3.4 to recover the vectors d(ℓ) ⊗ b(ℓ) from this
subspace.

3.6 Proof of Theorem 2.8

First we verify the claim p̄ ≥ 2. To show p ≥ 1, it suffices by the choice of p to have qn3/(n2+n3) ≥ 1.
This follows by combining two facts: q > 1 + α, which is a consequence of the assumption on q,
and n3/(n2 + n3) ≥ 1/(1 + α), which is a consequence of the definition of α. Similarly, to show
q− p ≥ 2, it suffices by the choice of p to have qn3/(n2 +n3) < q− 1, i.e., qn2/(n2 +n3) > 1, which
again follows from q > 1 + α and n2/(n2 + n3) ≥ 1/(1 + α).

Now conditions (i) and (ii) are clearly met for generic components, since p̄ ≥ 2. The following
lemma establishes (iii)–(v), provided r ≤ min{(p + 1)n2, (q − p)n3, n2n3}.

Lemma 3.5. Suppose x(1)⊗y(1), . . . , x(r)⊗y(r) ∈ R
m⊗R

n with the components x(ℓ), y(ℓ) generically
chosen. If r ≤ mn then {x(ℓ) ⊗ y(ℓ) : ℓ ∈ [r]} are linearly independent.

Proof. Form the mn × r matrix whose columns are x(ℓ) ⊗ y(ℓ). It suffices to identify a square
submatrix using all the columns whose determinant is a nonzero polynomial in the entries of
x(ℓ), y(ℓ). For this, it suffices to demonstrate a choice of the vectors x(ℓ), y(ℓ) for which {x(ℓ) ⊗ y(ℓ) :
ℓ ∈ [r]} are linearly independent. Fix an injection [r] → [m] × [n]. For each ℓ ∈ [r], if ℓ 7→ (i, j)
then set x(ℓ) = e(i) and y(ℓ) = e(j) where e(i) is the ith standard unit basis vector.

Condition (vi) on M follows from the proof of Theorem 2.4, namely (22), provided

r ≤ q

(

min

{

n2

q − p
,

n3

p + 1

}

− 1

)

.

This condition is unchanged under the operation that swaps n2 with n3 and replaces p with q−p−1.
Therefore, condition (vii) on M ′ also holds under the same condition.

The following lemma establishes condition (viii) on N .

Lemma 3.6. In the setting of Theorem 2.7 with parameters q ≤ n1 and p̄ := min{p+1, q−p} ≥ 2,
if the components a(ℓ), b(ℓ), c(ℓ) are generically chosen and

r ≤
qn2

q − p

(

1 −
2

q

)

−
q3

4
,

then N has full column rank.

26

The proof is deferred to Section 3.7. By symmetry, condition (ix) on N ′ also holds under the
analogous condition

r ≤
qn3

p + 1

(

1 −
2

q

)

−
q3

4
.

For condition (x) on P we appeal to the results of [JLV23]. As explained in Section 3.5,
condition (x) is equivalent to (31), which is established by [JLV23, Corollary 3] for generic com-
ponents under the condition r ≤ p(n2 − 1)/4. Similarly, condition (xi) on P ′ holds provided
r ≤ (q − p− 1)(n3 − 1)/4.

To summarize, we have the conditions

(a) r ≤ min{(p + 1)n2, (q − p)n3},

(b) r ≤ n2n3,

(c) r ≤ min
{

qn2

q−p ,
qn3

p+1

}

− q,

(d) r ≤ min
{

qn2

q−p ,
qn3

p+1

}(

1 − 2
q

)

− q3

4 ,

(e) r ≤ 1
4 min{p(n2 − 1), (q − p− 1)(n3 − 1)}.

Condition (a) is subsumed by (e) because, e.g., p(n2 − 1)/4 ≤ pn2 ≤ (p + 1)n2. The assumption
p̄ ≥ 2 implies p ≥ 1 and q ≥ p + 2 ≥ 3, so q3/4 > q. This means condition (c) is subsumed by (d).
Also, (e) implies n2, n3 ≥ 2 (or else r ≤ 0), so (d) implies

r ≤ min

{

qn2

q − p
,
qn3

p

}

≤ max
x∈(0,1)

min

{

n2

1 − x
,
n3

x

}

= n2 + n3 ≤ 2 max{n2, n3} ≤ n2n3,

so (b) is also subsumed. This leaves only (d) and (e).
Now using the choice of p = ⌊q · n3/(n2 + n3)⌋ and the bounds (23),(24) we have

min

{

qn2

q − p
,

qn3

p + 1

}(

1 −
2

q

)

≥ (n2 + n3)

(

1 −
1 + α

q

)(

1 −
2

q

)

≥ (n2 + n3)

(

1 −
3 + α

q

)

,

so condition (d) can be replaced with the sufficient condition

r ≤ (n2 + n3)

(

1 −
3 + α

q

)

−
q3

4
. (33)

Finally, we will show that the previous condition subsumes (e), given the assumption on q.
Using the choice of p,

1

4
p(n2 − 1) ≥

1

4

(

q ·
n3

n2 + n3
− 1

)

(n2 − 1) =
(q − 1)n3 − n2

4(n2 + n3)
(n2 − 1) ≥

(q − 1 − α)n3

4(n2 + n3)
(n2 − 1)

and similarly,

1

4
(q − p− 1)(n3 − 1) ≥

1

4

(

q − q ·
n3

n2 + n3
− 1

)

(n3 − 1) ≥
(q − 1 − α)n2

4(n2 + n3)
(n3 − 1).

Therefore, the right-hand side of condition (e) can be replaced by

q − 1 − α

4(n2 + n3)
(n2 − 1)(n3 − 1) ≥

q − 1 − α

4

(

n2n3

n2 + n3
− 1

)

=
q − 1 − α

4

[

α

(1 + α)2
(n2 + n3) − 1

]

27

where the last step follows by checking the cases n3 = αn2 and n2 = αn3

≥
(q − 1 − α)α

4(1 + α)2
(n2 + n3) −

q

4
≥ n2 + n3 −

q

4

using the assumption q ≥ (4 + 5α)(1 + 1/α), so condition (e) is subsumed by (33).

3.7 Proof of Lemma 3.6

It will be convenient to work not with N but with an equivalent matrix, L. Recall the derivation
of N from Section 3.4. There, we used the columns {U : 1 ∈ U} as a basis for the column span of

A(a(ℓ)). By Lemma 3.1, and assuming a
(ℓ)
i 6= 0 due to generic components, we can just as easily use

the basis of columns {U : i ∈ U} for any i ∈ V := [p+1]. To define L, we will use a different choice
of i ∈ [p+1] for each ℓ. The purpose of this is to create symmetry among the elements i ∈ [p+1], so
that element 1 no longer plays a distinguished role. (However, there remains a distinction between
i ∈ [p + 1] versus i ∈ [q] \ [p + 1], since we have fixed V = [p + 1].)

Formally, choose the smallest integer r̄ for which r ≤ r̄q(p + 1)(q − p − 1). It suffices to verify
the extreme case r = r̄q(p + 1)(q − p − 1) (i.e., we will show that even when r is increased to add
additional columns, all the columns are linearly independent). We will index [r] by tuples (i, j, ℓ)
with i ∈ [p + 1], j ∈ [q] \ [p + 1], and ℓ ∈ [r̄q]; this way, each element of [r] has an assigned (i, j)
pair, where i plays a role in choosing the basis described above, and the role of j will appear later.
Define the matrix L with rows indexed by

{(m,S) : m ∈ [n2], S ⊆ [q], |S| = p, S 6⊆ [p + 1]}

and columns indexed by

{(i, j, ℓ, U) : i ∈ [p + 1], j ∈ [q] \ [p + 1], ℓ ∈ [r̄q], U ⊆ [q], |U | = p + 1, i ∈ U, U 6= [p + 1]}, (34)

with entries

LmS,ijℓU = b(i,j,ℓ)m ·

q
∑

k=1

1U=S⊔{k} · σ(U, k) · a
(i,j,ℓ)
k ,

where we have indexed [r] by tuples (i, j, ℓ) as described above. Our goal is to show that L has full
column rank, which implies the same for N , since both these conditions are equivalent to (8) via
the argument in Section 3.4 (along with the discussion above).

It suffices to identify a nonzero minor of L that uses all the columns. To this end, we will
describe a pairing that assigns every column (i, j, ℓ, U) to some row (m,S) in such a way that each
row is used 0 or 1 times. Imagine the columns grouped into r̄q “epochs,” one for each ℓ value,
and each epoch is further subdivided into (p + 1)(q − p− 1) “pillars,” one for each (i, j) pair. The
ordering of the epochs is unimportant, but let’s fix one arbitrary ordering, and similarly for the
ordering of pillars within an epoch and the ordering of columns within a pillar. Call the first r̄(p+1)
epochs “type 1” and the remaining r̄(q − p− 1) epochs “type 2.” We first describe which S value
gets assigned to a given column (i, j, ℓ, U):

• For a type 1 epoch (i.e., 1 ≤ ℓ ≤ r̄(p + 1)), remove i from U to produce S: let S = U \ {i}.
Note that i ∈ U is guaranteed by (34).

• For a type 2 epoch (i.e., r̄(p + 1) < ℓ ≤ r̄q), remove j if possible, and otherwise remove i.
That is, if j ∈ U and |U ∩ [p + 1]| < p then let S = U \ {j}, and otherwise let S = U \ {i}.
(Recall that S ⊆ [p + 1] is forbidden, so j cannot be removed if |U ∩ [p + 1]| = p.)

28

Now that the S values are assigned, the m values are assigned based on the “first available” rule.
That is, column (i, j, ℓ, U) gets assigned to row (m,S) where S is specified above and m is the
minimum m′ for which (m′, S) has not already been assigned to some previous column. Consider
the submatrix L′ of L formed by all columns of L and only those rows that were assigned to some
column by the above procedure. Our goal is to show that det(L′) is a nonzero polynomial in the

variables b
(i,j,ℓ)
m and a

(i,j,ℓ)
k .

Expand the determinant det(L′) as a sum over permutations. Each term in the sum gives a
single monomial (multiplied by a coefficient ±1 or 0). Consider the term in the sum corresponding
to the pairing of rows and columns described above. We claim that this term produces a nonzero
monomial that is unique in the sense that no other term produces a (nonzero) scalar multiple
of this monomial. Once we establish this claim, we are done. To prove the claim we need to
argue that, given our monomial of interest, it is possible to deduce the unique pairing of rows and

columns that produced it. Within a fixed pillar (i, j, ℓ), the powers of a
(i,j,ℓ)
k in the monomial reveal

which multiset of k values are removed from the U ’s in this pillar to form the associated S’s. By
design, there are only 1 or 2 distinct k values, namely {i} or {i, j} (for a type 1 or type 2 epoch,
respectively). In either case, the specific pairing between U ’s and S’s can be deduced (using the
fact that a type 2 epoch removes j whenever possible). The S’s appearing within a pillar are all
distinct (when j is removed, the resulting S contains i, but when i is removed, it does not). Now

the powers of b
(i,j,ℓ)
m in the monomial reveal which multiset of m values are used in each pillar.

Recalling the “first available” rule, this allows the m value for each column to be deduced. This
completes the proof that det(L′) is a nonzero polynomial.

Finally we need to determine what value of n2 is required for the above construction. The
minimum allowable value for n2 is the largest m value used in the construction. For each S, we
need to count how many columns (i, j, ℓ, U) get assigned to S.

We first consider the special case where |S ∩ [p + 1]| takes its maximum possible value, p − 1.
This case needs separate consideration due to the special rule for type 2 epochs: if |U ∩ [p+ 1]| = p
then j cannot be removed. Fix S with |S ∩ [p + 1]| = p − 1. In a type 1 epoch ℓ, the number of
tuples (i, j, U) assigned to S is 2(q − p − 1) because there are 2 choices for i /∈ S, then q − p − 1
choices for j, and then U = S ⊔ {i}. In a type 2 epoch, we have two different contributions to
count. First consider U with |U ∩ [p + 1]| = p, and recall that these are never allowed to remove
j. This gives 2(q − p − 1) tuples (i, j, U), since there are again 2 choices for i /∈ S, then q − p − 1
choices for j, and U = S ⊔ {i}. We also need to consider U with |U ∩ [p + 1]| = p − 1 (i.e., cases
where j is removed). This gives (p− 1)(q − p− 2) tuples (i, j, U), since there are p− 1 choices for
i ∈ S, then q − p− 2 choices for j /∈ S, and U = S ⊔ {j} (we need i ∈ S so that i ∈ U , as required
by (34)). In total, the number of times that S is used is

r̄(p + 1) · 2(q − p− 1) + r̄(q − p− 1) · [2(q − p− 1) + (p− 1)(q − p− 2)]

= r̄(q − p− 1)[2q + (p − 1)(q − p− 2)]

= r̄(p + 1)(q − p− 1)

(

q − p +
2

p + 1

)

.

Now consider the remaining case: fix S with h := |S ∩ [p + 1]| < p − 1. In a type 1 epoch ℓ,
the number of tuples (i, j, U) assigned to S is (p + 1 − h)(q − p − 1) because there are p + 1 − h
choices for i /∈ S, then q − p − 1 choices for j, and U = S ⊔ {i}. In a type 2 epoch, we again have
two contributions to count. First consider U with |U ∩ [p + 1]| = h + 1 (i.e., i is removed). This
gives (p + 1 − h)(q − 2p + h − 1) tuples (i, j, U), since there are p + 1 − h choices for i /∈ S, then
q − 2p + h − 1 choices for j /∈ S, and U = S ⊔ {i}. Now consider U with |U ∩ [p + 1]| = h (i.e., j

29

is removed). This gives h(q − 2p + h − 1) tuples (i, j, U), since there are h choices for i ∈ S, then
q − 2p + h− 1 choices for j /∈ S, and U = S ⊔ {j}. In total, the number of times that S is used is

r̄(p + 1) · (p + 1 − h)(q − p− 1) + r̄(q − p− 1) · [(p + 1 − h)(q − 2p + h− 1) + h(q − 2p + h− 1)]

= r̄(q − p− 1)[(p + 1)(p + 1 − h) + (p + 1)(q − 2p + h− 1)]

= r̄(p + 1)(q − p− 1)(q − p),

which is dominated by the first case.
To recap, we need an integer r̄ such that r ≤ r̄q(p + 1)(q − p − 1) and n2 ≥ r̄(p + 1)(q − p −

1)(q − p + 2/(p + 1)), or equivalently,

r

q(p + 1)(q − p− 1)
≤ r̄ ≤

n2

(p + 1)(q − p− 1)(q − p + 2/(p + 1))
.

It suffices to have

r

q(p + 1)(q − p− 1)
≤

n2

(p + 1)(q − p− 1)(q − p + 2/(p + 1))
− 1,

that is,

r ≤
qn2

q − p + 2/(p + 1)
− q(p + 1)(q − p− 1).

We have the bounds (p + 1)(q − p− 1) ≤ maxx∈R x(q − x) = q2/4, and

qn2

q − p + 2/(p + 1)
≥

qn2

q − p

(

1 −
2

(p + 1)(q − p)

)

≥
qn2

q − p

(

1 −
2

q

)

.

Thus it suffices to have

r ≤
qn2

q − p

(

1 −
2

q

)

−
q3

4

as claimed.

4 Proofs for Lower Bounds

4.1 Matrix Decomposition Lemma

The following result of [EGOW18] is a core component of our lower bounds. (In [EGOW18], only
square matrices are considered, but the same proof applies for rectangular matrices.) Recall the
notion of symbolic rank from Section 2.1.2.

Lemma 4.1 ([EGOW18], Lemma 3.2). Let M(x) ∈ R[x]m1×m2 be an m1×m2 matrix whose entries
are homogeneous degree-d polynomials in the variables x1, . . . , xp. If M(x) has symbolic rank r then
there are vectors f1(x), . . . , fr(x) ∈ R[x]m1 and g1(x), . . . , gr(x) ∈ R[x]m2 such that

M(x) =

r
∑

t=1

Hd[ft(x)gt(x)⊤],

where Hd(·) denotes the degree-d homogeneous part (applied entry-wise).

30

4.2 Proof of Theorem 2.9

Let s be the symbolic rank of A(a), which is also the generic rank of M(a(1) ⊗ b(1) ⊗ c(1)). The
entries of A(a) are degree-1 homogeneous polynomials in a, so by Lemma 4.1 there are vectors of
polynomials f1(a), . . . , fs and g1(a), . . . , gs(a) such that

A(a) =
s
∑

t=1

H1[ft(a)gt(a)⊤].

Note that
H1[ft(a)gt(a)⊤] = H0[ft]H1[gt(a)]⊤ + H1[ft(a)]H0[gt]

⊤,

where we write, e.g., H0[ft] instead of H0[ft(a)] to emphasize that this is a constant (degree-0)
vector. Now we can write

M(a⊗ b⊗ c) = A(a) ⊗ (bc⊤) =

s
∑

t=1

{(H0[ft] ⊗ b)(H1[gt(a)] ⊗ c)⊤ + (H1[ft(a)] ⊗ b)(H0[gt] ⊗ c)⊤}

and so, since T 7→ M(T) is linear,

M

(

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)

)

= M0 + M1

where

M0 :=
s
∑

t=1

r
∑

ℓ=1

(H0[ft] ⊗ b(ℓ))(H1[gt(a
(ℓ))] ⊗ c(ℓ))⊤

and

M1 :=

s
∑

t=1

r
∑

ℓ=1

(H1[ft(a
(ℓ))] ⊗ b(ℓ))(H0[gt] ⊗ c(ℓ))⊤.

Note that
colspan(M0) ⊆ span{H0[ft] ⊗ R

n2 : t ∈ [s]}

and
rowspan(M1) ⊆ span{H0[gt] ⊗ R

n3 : t ∈ [s]},

so for any setting of the variables a(ℓ), b(ℓ), c(ℓ) we have

rank

(

M

(

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)

))

≤ rank(M0) + rank(M1) ≤ sn2 + sn3.

Additivity would imply that this rank must also equal rs, from which we conclude r ≤ n2 + n3.

4.3 Proof of Theorem 2.10

Let s be the generic rank of M(a(1)⊗b(1)⊗c(1)), which is also the symbolic rank of the matrix M(a⊗
b⊗ c), viewed as a matrix of polynomials in the variables x = (a1, . . . , an1

, b1, . . . , bn2
, c1, . . . , cn3

).
The entries of M(a ⊗ b ⊗ c) are degree-3 homogeneous polynomials, so by Lemma 4.1 there are
vectors of polynomials f1(x), . . . , fs(x) and g1(x), . . . , gs(x) such that

M(a⊗ b⊗ c) =

s
∑

t=1

H3[ft(x)gt(x)⊤].

31

The variables x are naturally partitioned into X1 := {ai : i ∈ [n1]}, X2 := {bi : i ∈ [n2]}, and
X3 := {ci : i ∈ [n3]}. For S ⊆ [3], let HS(·) denote the terms that are degree 1 in Xi for each
i ∈ S and degree 0 in Xi for each i /∈ S. Note that all terms in M(a⊗ b⊗ c) are degree 1 in each
of X1,X2,X3, so we can rewrite the above as

M(a⊗ b⊗ c) =

s
∑

t=1

H{1,2,3}[ft(x)gt(x)⊤].

We can write
H{1,2,3}[ft(x)gt(x)⊤] =

∑

S⊆[3]

HS[ft(x)]H[3]\S [gt(x)]⊤,

and so

M

(

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)

)

=
∑

S⊆[3]

MS

where

MS :=
s
∑

t=1

r
∑

ℓ=1

HS [ft(x
(ℓ))]H[3]\S [gt(x

(ℓ))]⊤.

Now, for any setting of the variables x(ℓ), we bound the rank of each MS . First, rank(M∅) ≤ s
because colspan(M∅) ⊆ span{H∅[ft] : t ∈ [s]}, noting that H∅[ft(x)] is a constant (degree-0)
vector, which we denote H∅[ft]. Next, note that H{1}[ft(x)] has only “a” variables (not “b” or

“c”), which we denote by H{1}[ft(x
(ℓ))] = H{1}[ft(a = a(ℓ))]. Each H{1}[ft(a = a(ℓ))] lies in

span{H{1}[ft(a = e(j))] : j ∈ [n1]} where e(j) are unit basis vectors. This means rank(M{1}) ≤ sn1

because colspan(M{1}) ⊆ span{H{1}[ft(a = e(j))] : t ∈ [s], j ∈ [n1]}. Similarly, rank(M{2}) ≤ sn2

and rank(M{3}) ≤ sn3. Applying the same argument to the row span, we also have rank(M{1,2,3}) ≤
s, rank(M{2,3}) ≤ sn1, rank(M{1,3}) ≤ sn2, and rank(M{1,2}) ≤ sn3. Putting it together,

rank

(

M

(

r
∑

ℓ=1

a(ℓ) ⊗ b(ℓ) ⊗ c(ℓ)

))

≤
∑

S⊆[3]

rank(MS) ≤ 2s(n1 + n2 + n3 + 1).

Additivity would imply that this rank is rs, from which we conclude r ≤ 2(n1 + n2 + n3 + 1).

Remark 4.2. The proof above is similar to that of Theorem 4.4 of [EGOW18], where they give a
bound of r ≤ 8n for n × n × n tensors. We now explain the source of our improvement from 8n
to 6n + 2. When decomposing M into 8 terms MS for S ⊆ [3], the original proof of [EGOW18]
bounds the rank of each term by sn. We instead keep track of the specific structure of each term
and see that two of them, namely M∅ and M{1,2,3}, admit a better bound of s.

4.4 Proof of Theorem 2.12

Let s be the symbolic rank of

M̃(b(1,1) ⊗ · · · ⊗ b(k,1), . . . , b(1,d) ⊗ · · · ⊗ b(k,d)) (35)

in the variables b = {b(i,j) : i ∈ [k], j ∈ [d]}; this is also the generic rank of M̃(T (1), . . . , T (d)). The
entries of (35) are degree-kd homogeneous polynomials in the b variables, so by Lemma 4.1, (35)
admits the decomposition

s
∑

t=1

Hkd[ft(b)gt(b)
⊤].

32

The variables b are naturally partitioned into
⊔

i∈[k],j∈[d]Bij where Bij := {b
(i,j)
m : m ∈ [ni]}. For

S ⊆ [k] × [d], let HS(·) denote the terms that are degree 1 in Bij for each (i, j) ∈ S and degree 0
in Bij for each (i, j) /∈ S. Note that all terms in (35) are degree 1 in every Bij, so we can rewrite
the above decomposition as

s
∑

t=1

H[k]×[d][ft(b)gt(b)
⊤].

With S̄ := ([k] × [d]) \ S, we can write

H[k]×[d][ft(b)gt(b)
⊤] =

∑

S⊆[k]×[d]

HS[ft(b)]HS̄ [gt(b)]
⊤,

and so
∑

1≤ℓ1<···<ℓd≤r

M̃(T (ℓ1), . . . , T (ℓd)) =
∑

S⊆[k]×[d]

MS

where

MS :=

s
∑

t=1

∑

1≤ℓ1<···<ℓd≤r

HS[ft(b
(i,j) = a(i,ℓj))]HS̄ [gt(b

(i,j) = a(i,ℓj))]⊤.

Here, HS [ft(b
(i,j) = a(i,ℓj))] is obtained from HS[ft(b)] by making the substitution b(i,j) = a(i,ℓj) for

each (i, j) ∈ S; note that the variables b(i,j) with (i, j) /∈ S do not appear. Similarly, HS̄[gt(b
(i,j) =

a(i,ℓj))] is obtained from HS̄[gt(b)] by making the substitution b(i,j) = a(i,ℓj) for each (i, j) /∈ S.
Note that HS [ft(b)] is a multilinear function of the d tensors {

⊗

i : (i,j)∈S b(i,j) : j ∈ [d]}. After

making the substitution b(i,j) = a(i,ℓj), we have
⊗

i : (i,j)∈S

b(i,j) ⊆
⊗

i : (i,j)∈S

R
ni ,

where the right-hand side is a subspace of dimension
∏

i : (i,j)∈S ni. We also have

⊗

i : (i,j)∈S

b(i,j) ⊆ span

⊗

i : (i,j)∈S

a(i,ℓ) : ℓ ∈ [r]

,

where the right-hand side is a subspace of dimension ≤ r. For each S, j we will choose the better
of these two bounds. We conclude, for any setting of the variables a(i,ℓ),

dim colspan(MS) ≤ s
∏

j∈[d]

min

∏

i : (i,j)∈S

ni , r

.

By the same argument applied to the row span,

dim rowspan(MS) ≤ s
∏

j∈[d]

min

∏

i : (i,j)∈S̄

ni , r

.

For each S we are free to choose the better of these two bounds to bound rank(MS). For each S,
call an index j ∈ [d] “good” if

∏

i : (i,j)∈S

ni ≤ n∗ := max
U⊆[k]

min

∏

i∈U

ni,
∏

i∈[k]\U

ni

.

33

Each j ∈ [d] must be good for either S or S̄. Therefore, either S or S̄ has the property that at
least d/2 indices j are good. If it’s S then use the colspan bound for rank(MS), and otherwise use
the rowspan bound. For “bad” indices, use the bound of r in the second term in min{· · · }. We
conclude

rank(MS) ≤ s(n∗)
d/2rd/2

and so

rank

∑

1≤ℓ1<···<ℓd≤r

M̃(T (ℓ1), . . . , T (ℓd))

 ≤
∑

S⊆[k]×[d]

rank(MS) ≤ 2kd · s(n∗)
d/2rd/2.

Additivity would imply that this rank must equal
(r
d

)

s, so we have

2kd(n∗)
d/2rd/2 ≥

(

r

d

)

≥
(r

d

)d
,

which gives r ≤ 4kd2 n∗ as claimed.

A Trivial Flattenings

The following result shows that trivial flattenings achieve rank detection up to a particular rank,
as claimed in Section 2.2.1.

Theorem A.1. If T =
∑r

ℓ=1 a
(1,ℓ) ⊗ · · · ⊗ a(k,ℓ) is n1 × · · · × nk with the components generically

chosen, and

r ≤ n∗ := max
S⊆[k]

min

∏

i∈S

ni,
∏

i∈[k]\S

ni

, (36)

then the matrix M triv(T ;S) defined in (2), with S taken to be any maximizer of (36), has rank
exactly r.

Proof. The trivial flattening takes the form

M triv(T ;S) =

r
∑

ℓ=1

b(ℓ)c(ℓ)⊤

where
b(ℓ) :=

⊗

i∈S

a(i,ℓ) and c(ℓ) :=
⊗

i∈[k]\S

a(i,ℓ).

To show rank(M triv) = r, it suffices to show the following: {b(ℓ) : ℓ ∈ [r]} are linearly independent
and {c(ℓ) : ℓ ∈ [r]} are linearly independent. To see this: linear independence implies that the
matrix B with columns b(ℓ) has an r× r nonsingular submatrix, and similarly for C with rows c(ℓ),
and the product of these two submatrices appears as an r× r nonsingular submatrix of M triv. We
focus on the b(ℓ) vectors, as the proof for the c(ℓ) vectors is identical.

Since rank (of the B matrix) cannot exceed generic rank (see Section 2.1.2), it suffices to
exhibit a single choice of the variables a(i,ℓ) such that the b(ℓ) vectors are linearly independent.
Provided r ≤

∏

i∈S ni, we can choose the variables a(i,ℓ) so that the b(ℓ) are distinct standard unit
basis vectors. Formally, fix an injection [r] →

∏

i∈S [ni] and write ℓ 7→ (φi(ℓ) : i ∈ S) where

φi(ℓ) ∈ [ni]. Then for i ∈ S, set a(i,ℓ) equal to the standard unit basis vector e(φi(ℓ)) ∈ R
ni , so that

b(ℓ) =
⊗

i∈S e(φi(ℓ)). Applying the same argument to the c(ℓ) vectors, we also incur the requirement
r ≤

∏

i∈[k]\S ni.

34

B Commuting Extensions

For r ≥ n, a tuple of matrices (Z1, . . . , Zm) in R
r×r is called a commuting extension of a tuple of

matrices (A1, . . . , Am) in R
n×n if the Zi pairwise commute and the upper-left n × n submatrix of

each Zi is equal to Ai. The algorithmic task of finding a commuting extension is studied in [Koi24b],
where the following planted model is proposed in Section 5: For i ∈ [m], let Zi = R−1DiR where
R is a generically chosen r × r matrix, and each Di is a generically chosen r × r diagonal matrix.
For some n ≤ r, let Ai be the upper-left n × n submatrix of Zi. Given (A1, . . . , Am) and r, the
goal is to construct a commuting extension (Z̃1, . . . , Z̃m) of dimension r × r. The Zi make up one
“planted” solution, but it is not unique: see Eq. (2) of [Koi24b].

The algorithm of [Koi24b] solves the above task provided m ≥ 3 and r ≤ 4n/3. Building on
the connection between commuting extensions and tensor decomposition described in [Koi24a], we
will give an algorithm for finding commuting extensions using our tensor decomposition algorithm.
The algorithm will succeed for r ≤ (2 − ǫ)n for an arbitrary ǫ > 0, provided m is a large enough
constant (depending on ǫ) and n is large. The threshold r = 2n is fundamental: as pointed out
in [Koi20], any tuple (A1, . . . , Am) of n× n matrices admits the commuting extension

Zi =

(

Ai −Ai

Ai −Ai

)

of dimension r = 2n.
The following lemma from [Koi24a] will be a subroutine in the algorithm.

Lemma B.1 ([Koi24a], Lemma 13). Let U ∈ R
n×r and V ∈ R

r×n with UV = In. Then r ≥ n, and
it is possible to “extend” U, V to two r×r matrices that are inverses. More precisely, Ũ = (U⊤ | A)⊤

and Ṽ = (V | B) where A,B ∈ R
r×(r−n) and Ũ Ṽ = Ir. Specifically, B can be any matrix for which

Im(B) = ker(U), and A is the unique matrix such that A⊤B = Ir−n and A⊤V = 0.

Algorithm 2 (Finding a commuting extension).

• Input: A tuple of n× n matrices (A1, . . . , Am).

• Input: A parameter r ≥ n.

• Input: A generic n× n matrix M (say, chosen at random).

1. Let Ti = MAi for i ∈ [m], and let T be the m× n× n tensor with slices Ti.

2. Let q be the largest odd integer with q ≤ m, and let p = (q − 1)/2.

3. Run the tensor decomposition algorithm (Algorithm 1) on T with parameters p, q, r to produce
a decomposition T =

∑r
ℓ=1 a

(ℓ) ⊗ b(ℓ) ⊗ c(ℓ).

4. Let B be n × r with columns b(ℓ), let C be r × n with rows c(ℓ)⊤, and for i ∈ [m] let D̃i =

diag(a
(ℓ)
i : ℓ = 1, . . . , r).

5. Solve for an r × r diagonal matrix D̂ satisfying the linear equations M−1BD̂C = In.

6. Invoke Lemma B.1 to extend M−1BD̂ and C to r × r matrices Ũ and Ṽ respectively.

7. Output (Z̃1, . . . , Z̃m) where Z̃i = ŨD̂−1D̃iṼ .

The matrix M might be unnecessary, but it will help with the genericity analysis below.

35

Theorem B.2. Let r ≥ n ≥ 3 and m ≥ 19. The following holds for a generic choice of an r × r
matrix R, an n×n matrix M , and m diagonal r× r matrices D1, . . . ,Dm (that is, the r2 +n2 +mr
variables Rij,Mij , (Di)jj are chosen generically from R

r2+n2+mr). For i ∈ [m], let Zi = R−1DiR
and let Ai be the upper-left n× n submatrix of Zi. If

r ≤ 2n

(

1 −
4

m− 1

)

−
m3

4

then Algorithm 2 with input (A1, . . . , Am), r, M outputs a valid commuting extension (Z̃1, . . . , Z̃m),
that is, the Z̃i pairwise commute and for i ∈ [m], the upper-left n× n submatrix of Z̃i is Ai.

Proof. By construction, we know Ai = UDiV where U is n × r consisting of the first n rows of
R−1, and V is r× n consisting of the first n columns of R. This means Ti = MUDiV , which gives
a tensor decomposition T =

∑r
ℓ=1 w

(ℓ) ⊗ u(ℓ) ⊗ v(ℓ) where u(ℓ) are the columns of MU , v(ℓ)⊤ are

the rows of V , and Di = diag(w
(1)
i , . . . , w

(r)
i). We will verify that this decomposition of T satisfies

the conditions of our uniqueness theorem (Theorem 2.7), applied with the parameters p, q specified
in Algorithm 2. The components w(ℓ), u(ℓ), v(ℓ) are not generic in the usual sense, so we cannot
apply Theorem 2.8 directly. Instead, since R−1 = adj(R)/det(R), the entries of the components
w(ℓ), u(ℓ), v(ℓ) can be expressed as rational functions in the underlying variables

x = {Rij : i, j ∈ [r]} ⊔ {(Di)jj : i ∈ [m], j ∈ [r]} ⊔ {Mij : i, j ∈ [n]}.

For generic x, our goal is to verify conditions (i)-(xi) from Theorem 2.7 for the components
w(ℓ), u(ℓ), v(ℓ). Inspecting each of these conditions and recalling that the components are rational
functions, it suffices to exhibit a single choice of the underlying variables x (with R,M invertible)
for which conditions (i)-(xi) hold; it then follows that they hold for generic x. From Theorem 2.8
we know that a generic choice of components will satisfy the conditions (we will verify the require-
ment of the theorem later); fix such a generic choice w̃(ℓ), ũ(ℓ), ṽ(ℓ). We will exhibit values for the
variables x = (R,Di,M) such that w(ℓ)(x) = w̃(ℓ), u(ℓ)(x) = ũ(ℓ), and v(ℓ)(x) = ṽ(ℓ), implying that
w(ℓ), u(ℓ), v(ℓ) satisfy the conditions as desired.

First, set Di = diag(w̃
(1)
i , . . . , w̃

(r)
i), which ensures w(ℓ)(x) = w̃(ℓ). To ensure u(ℓ)(x) = ũ(ℓ),

we need to arrange MU = Ũ where Ũ has columns ũ(1), . . . , ũ(r) and where U consists of the
first n rows of R−1. Equivalently, U = M−1Ũ . Similarly, to ensure v(ℓ)(x) = ṽ(ℓ), we need to
arrange V = Ṽ where Ṽ has rows ṽ(1)⊤, . . . , ṽ(r)⊤ and where V consists of the first n columns of
R. Set M = Ũ Ṽ , which is invertible due to the generic choice of ũ(ℓ), ṽ(ℓ). For our desired values
of U = M−1Ũ and V = Ṽ , we have UV = M−1Ũ Ṽ = In. Therefore by Lemma B.1 there exists
an r × r matrix R such that the first n rows of R−1 are U = M−1Ũ and the first n columns of R
are V = Ṽ . This completes the construction of x = (R,Di,M) and therefore completes the proof
that the components w(ℓ), u(ℓ), v(ℓ) satisfy the conditions of Theorem 2.7 when R,Di,M are chosen
generically.

Now by Theorem 2.7 we know T has a unique (in the sense of Definition 2.2) rank-r decomposi-
tion, and that the components a(ℓ), b(ℓ), c(ℓ) recovered by our algorithm are related to w(ℓ), u(ℓ), v(ℓ)

as follows: there exists a permutation π : [r] → [r] such that a(ℓ)⊗b(ℓ)⊗c(ℓ) = w(π(ℓ))⊗u(π(ℓ))⊗v(π(ℓ))

for all ℓ ∈ [r]. This means b(ℓ) = βℓ · u
(π(ℓ)) for a scalar βℓ 6= 0, which we can write in matrix form

as B = MUΠ · diag(β) where Π is the permutation matrix associated with π and B is defined in
Algorithm 2. Similarly, c(ℓ) = γℓ ·v

(π(ℓ)) for a scalar γℓ 6= 0, and C = diag(γ) ·Π⊤V . The algorithm’s
next step is to solve for a diagonal matrix D̂ such that M−1BD̂C = In. One solution to this linear
system is D̂ = diag(β−1

ℓ γ−1
ℓ : ℓ = 1, . . . , r); to see this, note that UV = In (since U, V are defined

as particular submatrices of R−1, R) and Π ·diag(β) · D̂ ·diag(γ) ·Π⊤ = diag(βπ−1(ℓ)D̂π−1(ℓ)γπ−1(ℓ) :

36

ℓ = 1, . . . , r). Later, we will show that generically, this is the only solution. Therefore the algorithm
recovers D̂ = diag(β−1

ℓ γ−1
ℓ : ℓ = 1, . . . , r). The algorithm’s next step is to extend M−1BD̂ and C

to r× r matrices Ũ , Ṽ with Ũ Ṽ = Ir, where M−1BD̂ makes up the first n rows of Ũ and C makes
up the first n columns of Ṽ ; this uses Lemma B.1 along with the previous claim M−1BD̂C = In.

Recall that the algorithm has access to

D̃i = diag(a
(ℓ)
i : ℓ = 1, . . . , r) = diag(β−1

ℓ γ−1
ℓ w

(π(ℓ))
i : ℓ = 1, . . . , r)

and outputs Z̃i = ŨD̂−1D̃iṼ for i ∈ [m]. We need to show this is a valid commuting extension. Since
Ũ , Ṽ are inverses and D̂−1D̃i is diagonal, the Zi pairwise commute. To verify that Zi “extends”
Ai: the upper-left n× n block of Zi is

M−1BD̂ · D̂−1D̃i · C = M−1(MUΠ · diag(β))D̃i(diag(γ) · Π⊤V)

= UΠ · diag(β) · D̃i · diag(γ) · Π⊤V

= UΠ · diag(w
(π(ℓ))
i : ℓ = 1, . . . , r) · Π⊤V

= U · diag(w
(ℓ)
i : ℓ = 1, . . . , r) · V

= UDiV

= Ai

as desired.
Next we will prove the claim, made above, that the linear system of equations for D̂ has a

unique solution. The equations are M−1BD̂C = In where D̂ is diagonal, so it suffices to show that
the matrices M−1b(ℓ)c(ℓ)⊤ for ℓ ∈ [r] are linearly independent. Since M−1 is invertible, it suffices to
show that the matrices b(ℓ)c(ℓ)⊤ for ℓ ∈ [r] are linearly independent. Since b(ℓ) and c(ℓ) are nonzero
scalar multiples of u(π(ℓ)) and v(π(ℓ)) respectively, it suffices to show that u(ℓ)v(ℓ)⊤ for ℓ ∈ [r] are
linearly independent. Recalling that u(ℓ) are the columns of MU and M is invertible, it suffices to
show that û(ℓ)v(ℓ)⊤ for ℓ ∈ [r] are linearly independent, where û(ℓ) are the columns of U . Recalling
that the entries of R−1 are rational functions in the entries of R, it suffices to exhibit a single
(invertible) value of R for which û(ℓ)v(ℓ)⊤ are linearly independent, where û(ℓ) and v(ℓ) are viewed
as functions of R: namely, the first n rows of R−1 have columns û(ℓ) and the first n columns of R
have rows v(ℓ)⊤. Constructing such a value for R amounts to finding linearly independent matrices
û(ℓ)v(ℓ)⊤ for ℓ ∈ [r] that sum to In, since the rest of R−1, R can be filled in by Lemma B.1. This in
turn is guaranteed by Lemma B.3 below, noting that our assumption n ≥ 3 implies n2−n+1 ≥ 2n.

Finally, we need to check that our parameters p, q, r verify the requirements for Theorem 2.8.
Note we are in the case α = 1 so we need q ≥ 18 and r ≤ 2n(1 − 4/q) − q3/4. These follow from
our assumptions, and our choice m− 1 ≤ q ≤ m.

Lemma B.3. For n ≥ 1 and n ≤ r ≤ n2 − n + 1, there exist r linearly independent rank-1 n × n
matrices that sum to In.

Proof. The rank-1 matrices used in our construction will each be supported on a rectangle, either
with all nonzero values equal to 1 or all nonzero values equal to −1. One possible construction
is to take the rectangle [n] × [n] and subtract off a collection of rectangles that partition ([n] ×
[n]) \ {(1, 1), (2, 2), . . . , (n, n)}. The number of rectangles in the partition can range from 2(n − 1)
to n2 − n, so this covers all the r values ranging from 2(n − 1) + 1 to n2 − n + 1. An alternative
construction is to, for some k ∈ [n], take the rectangle [k]×[k] and subtract off a collection of 2(k−1)
rectangles that partition ([k] × [k]) \ {(1, 1), (2, 2), . . . , (k, k)}, and then add n− k additional 1 × 1
rectangles on the diagonal. This uses 1 + 2(k − 1) + (n− k) = n + k − 1 rectangles in total, so by
varying k this covers all the r values ranging from n to 2n− 1.

37

Acknowledgments

We thank Aravindan Vijayaraghavan for helpful discussions.

References

[AFT11] Boris Alexeev, Michael A Forbes, and Jacob Tsimerman. Tensor rank: Some lower
and upper bounds. In 26th Annual Conference on Computational Complexity, pages
283–291. IEEE, 2011.

[AGKM23] Omar Alrabiah, Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar. A
near-cubic lower bound for 3-query locally decodable codes from semirandom CSP
refutation. In Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, pages 1438–1448, 2023.

[AOW15] Sarah R Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In
56th Annual Symposium on Foundations of Computer Science, pages 689–708. IEEE,
2015.

[BCMV14a] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Open problem: Tensor decompositions: Algorithms up to the uniqueness threshold?
In Conference on Learning Theory, pages 1280–1282. PMLR, 2014.

[BCMV14b] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 594–603, 2014.

[BCO14] Cristiano Bocci, Luca Chiantini, and Giorgio Ottaviani. Refined methods for the
identifiability of tensors. Annali di Matematica Pura ed Applicata (1923-), 193:1691–
1702, 2014.

[BESV24] Aditya Bhaskara, Eric Evert, Vaidehi Srinivas, and Aravindan Vijayaraghavan. New
tools for smoothed analysis: Least singular value bounds for random matrices with
dependent entries. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 375–386, 2024.

[BM16] Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares hier-
archy. In Conference on Learning Theory, pages 417–445. PMLR, 2016.

[BVD+18] Martijn Boussé, Nico Vervliet, Ignat Domanov, Otto Debals, and Lieven De Lath-
auwer. Linear systems with a canonical polyadic decomposition constrained solu-
tion: Algorithms and applications. Numerical Linear Algebra with Applications,
25(6):e2190, 2018.

[Car91] Jean-François Cardoso. Super-symmetric decomposition of the fourth-order cumulant
tensor. Blind identification of more sources than sensors. In ICASSP, volume 91, pages
3109–3112, 1991.

[CGL07] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics
for random k-SAT. Combinatorics, Probability and Computing, 16(1):5–28, 2007.

38

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic com-
plexity and beyond. Foundations and Trends® in Theoretical Computer Science,
6(1–2):1–138, 2011.

[CR22] Haolin Chen and Luis Rademacher. Overcomplete order-3 tensor decomposition, blind
deconvolution, and gaussian mixture models. SIAM Journal on Mathematics of Data
Science, 4(1):336–361, 2022.

[DdL+22] Jingqiu Ding, Tommaso d’Orsi, Chih-Hung Liu, David Steurer, and Stefan Tiegel. Fast
algorithm for overcomplete order-3 tensor decomposition. In Conference on Learning
Theory, pages 3741–3799. PMLR, 2022.

[DJL24] Harm Derksen, Nathaniel Johnston, and Benjamin Lovitz. X -arability of mixed quan-
tum states. arXiv preprint arXiv:2409.18948, 2024.

[DL06] Lieven De Lathauwer. A link between the canonical decomposition in multilinear
algebra and simultaneous matrix diagonalization. SIAM journal on Matrix Analysis
and Applications, 28(3):642–666, 2006.

[DLCC07] Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso. Fourth-order
cumulant-based blind identification of underdetermined mixtures. IEEE Transactions
on Signal Processing, 55(6):2965–2973, 2007.

[EGOW18] Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson. Barriers for rank
methods in arithmetic complexity. In 9th Innovations in Theoretical Computer Science
Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[Far16] Cameron Farnsworth. Koszul–Young flattenings and symmetric border rank of the
determinant. Journal of Algebra, 447:664–676, 2016.

[GKM22] Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar. Algorithms and
certificates for Boolean CSP refutation: smoothed is no harder than random. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 678–689, 2022.

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889–899. IEEE, 2020.

[GM15] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-
of-squares algorithms. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2015.

[GMOW19] Ankit Garg, Visu Makam, Rafael Oliveira, and Avi Wigderson. More barriers for
rank methods, via a “numeric to symbolic” transfer. In 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 824–844. IEEE, 2019.

[Gua17] Yonghui Guan. Flattenings and Koszul Young flattenings arising in complexity theory.
Communications in Algebra, 45(9):4002–4017, 2017.

39

[GVX14] Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier PCA and robust tensor
decomposition. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 584–593, 2014.

[Har70] Richard A Harshman. Foundations of the PARAFAC procedure: Models and con-
ditions for an “explanatory” multi-modal factor analysis. UCLA working papers in
phonetics, 16(1):84, 1970.

[H̊as90] Johan H̊astad. Tensor rank is NP-complete. Journal of algorithms, 11(4):644–654,
1990.

[Has20] Matthew B Hastings. Classical and quantum algorithms for tensor principal compo-
nent analysis. Quantum, 4:237, 2020.

[HKM23] Jun-Ting Hsieh, Pravesh K Kothari, and Sidhanth Mohanty. A simple and sharper
proof of the hypergraph Moore bound. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2324–2344. SIAM, 2023.

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal
of the ACM (JACM), 60(6):1–39, 2013.

[HOOS19] Jonathan D Hauenstein, Luke Oeding, Giorgio Ottaviani, and Andrew J Sommese.
Homotopy techniques for tensor decomposition and perfect identifiability. Journal für
die reine und angewandte Mathematik (Crelles Journal), 2019(753):1–22, 2019.

[HSS19] Samuel B Hopkins, Tselil Schramm, and Jonathan Shi. A robust spectral algorithm
for overcomplete tensor decomposition. In Conference on Learning Theory, pages
1683–1722. PMLR, 2019.

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spec-
tral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse
vectors. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 178–191, 2016.

[JLV23] Nathaniel Johnston, Benjamin Lovitz, and Aravindan Vijayaraghavan. Computing
linear sections of varieties: quantum entanglement, tensor decompositions and beyond.
In 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1316–
1336. IEEE, 2023.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[KM24a] Pravesh K Kothari and Peter Manohar. An exponential lower bound for linear 3-
query locally correctable codes. In Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, pages 776–787, 2024.

[KM24b] Pravesh K Kothari and Peter Manohar. Superpolynomial lower bounds for smooth
3-LCCs and sharp bounds for designs. arXiv preprint arXiv:2404.06513, 2024.

[Koi20] Pascal Koiran. On tensor rank and commuting matrices. arXiv preprint
arXiv:2006.02374, 2020.

40

[Koi24a] Pascal Koiran. An efficient uniqueness theorem for overcomplete tensor decomposition.
arXiv preprint arXiv:2404.07801, 2024.

[Koi24b] Pascal Koiran. On the uniqueness and computation of commuting extensions. arXiv
preprint arXiv:2401.01302, 2024.

[KP20] Bohdan Kivva and Aaron Potechin. Exact nuclear norm, completion and de-
composition for random overcomplete tensors via degree-4 SOS. arXiv preprint
arXiv:2011.09416, 2020.

[Kru77] Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics. Linear algebra and its
applications, 18(2):95–138, 1977.

[KS23] Pascal Koiran and Subhayan Saha. Complete decomposition of symmetric tensors in
linear time and polylogarithmic precision. In International Conference on Algorithms
and Complexity, pages 308–322. Springer, 2023.

[Lan11] Joseph M Landsberg. Tensors: geometry and applications, volume 128. American
Mathematical Soc., 2011.

[Lan15] JM Landsberg. Nontriviality of equations and explicit tensors in C
m ⊗ C

m ⊗ C
m of

border rank at least 2m− 2. Journal of Pure and Applied Algebra, 219(8):3677–3684,
2015.

[LM17] Joseph M Landsberg and Mateusz Micha lek. A 2n2 − log2 n − 1 lower bound for the
border rank of matrix multiplication. International Mathematics Research Notices,
2018(15), 2017.

[LM20] Allen Liu and Ankur Moitra. Tensor completion made practical. Advances in Neural
Information Processing Systems, 33:18905–18916, 2020.

[LO13] Joseph M Landsberg and Giorgio Ottaviani. Equations for secant varieties of veronese
and other varieties. Annali di Matematica Pura ed Applicata, 192(4):569–606, 2013.

[LO15] Joseph M Landsberg and Giorgio Ottaviani. New lower bounds for the border rank
of matrix multiplication. Theory of Computing, 11(1):285–298, 2015.

[LP23] Benjamin Lovitz and Fedor Petrov. A generalization of Kruskal’s theorem on tensor
decomposition. In Forum of Mathematics, Sigma, volume 11, page e27. Cambridge
University Press, 2023.

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993.

[Moi18] Ankur Moitra. Algorithmic aspects of machine learning. Cambridge University Press,
2018.

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decompositions
with sum-of-squares. In 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 438–446. IEEE, 2016.

[OO13] Luke Oeding and Giorgio Ottaviani. Eigenvectors of tensors and algorithms for Waring
decomposition. Journal of Symbolic Computation, 54:9–35, 2013.

41

[Per18] Elena-Mădălina Persu. Tensors, sparse problems and conditional hardness. PhD thesis,
Massachusetts Institute of Technology, 2018.

[PWB+19] Amelia Perry, Jonathan Weed, Afonso S Bandeira, Philippe Rigollet, and Amit Singer.
The sample complexity of multireference alignment. SIAM Journal on Mathematics
of Data Science, 1(3):497–517, 2019.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the ACM
(JACM), 60(6):1–15, 2013.

[RSG17] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. Introduction to
tensor decompositions and their applications in machine learning. arXiv preprint
arXiv:1711.10781, 2017.

[Swe18] Joseph Swernofsky. Tensor rank is hard to approximate. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[Vij20] Aravindan Vijayaraghavan. Efficient tensor decomposition. arXiv preprint
arXiv:2007.15589, 2020.

[Wei23] Alexander S Wein. Average-case complexity of tensor decomposition for low-degree
polynomials. In Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, pages 1685–1698, 2023.

[WEM19] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi hierarchy
and tensor PCA. In 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1446–1468. IEEE, 2019.

42

	Introduction
	Main Results
	Preliminaries
	Tensor Decomposition and Rank
	Genericity and Symbolic Rank

	Upper Bounds
	Trivial Flattenings
	Koszul–Young Flattenings
	Rank Detection
	Decomposition Algorithm
	Uniqueness Theorem and Algorithmic Guarantees

	Lower Bounds
	Flattenings of Koszul–Young Type
	Linear Flattenings
	Low-Degree Flattenings

	Open Problems

	Proofs for Upper Bounds
	Proof of Proposition 2.3
	Proof of Theorem 2.4
	Proof of Theorem 2.7
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 2.8
	Proof of Lemma 3.6

	Proofs for Lower Bounds
	Matrix Decomposition Lemma
	Proof of Theorem 2.9
	Proof of Theorem 2.10
	Proof of Theorem 2.12

	Trivial Flattenings
	Commuting Extensions
	Acknowledgments
	References

