
DINO-X: A Unified Vision Model for
Open-World Object Detection and Understanding

IDEA Research Team

International Digital Economy Academy (IDEA), IDEA Research
https://deepdataspace.com/home

Open-World Detection and Segmentation

Phrase Grounding

Visual Prompting Object Counting Pose Estimation

Dense Region Caption

Prompt-Free Object Detection and Recognition

Fork. Orange juice. Orange. Cake. Table. Plate. Wheel. Eye. Helmet. Mouse. Mouth. Vehicle. Steering wheel.

A man holding an acoustic 
guitar. He is wearing glasses. 
Behind him, there are 
bookshelves filled with books. 
To his right, there is a desk with 
a computer monitor, and a 
keyboard is placed on the desk.

A batter is preparing to 
swing at a pitch, while a 
catcher is crouched behind 
home plate. An umpire is 
standing behind the catcher, 
ready to make calls.

Person. Hand.

Output:
Keyboard. Monitor. Picture. 
Telephone. Lamp. Vase. 
Chair. Mouse. Speaker. 
Router. Bird. Phone. Flower. 
Measure. Cabinet. Pen. Desk.

Count: 72

Output:
Pen. Phone. Bottle. 
Eraser. Cabinet. Donut. 
Book. Desk. Wallet. 
Drawer. Laptop. Text. 
Plate.

Figure 1: DINO-X is a unified object-centric vision model which supports various open-world percep-
tion and object-level understanding tasks, including Open-World Object Detection and Segmentation,
Phrase Grounding, Visual Prompt Counting, Pose Estimation, Prompt-Free Object Detection and
Recognition, Dense Region Caption, etc.

Technical report.
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Abstract

In this paper, we introduce DINO-X, which is a unified object-centric vision model
developed by IDEA Research with the best open-world object detection perfor-
mance to date. DINO-X employs the same Transformer-based encoder-decoder
architecture as Grounding DINO 1.5 [47] to pursue an object-level representation
for open-world object understanding. To make long-tailed object detection easy,
DINO-X extends its input options to support text prompt, visual prompt, and
customized prompt. With such flexible prompt options, we develop a universal
object prompt to support prompt-free open-world detection, making it possible
to detect anything in an image without requiring users to provide any prompt.
To enhance the model’s core grounding capability, we have constructed a large-
scale dataset with over 100 million high-quality grounding samples, referred to
as Grounding-100M, for advancing the model’s open-vocabulary detection perfor-
mance. Pre-training on such a large-scale grounding dataset leads to a foundational
object-level representation, which enables DINO-X to integrate multiple perception
heads to simultaneously support multiple object perception and understanding
tasks, including detection, segmentation, pose estimation, object captioning, object-
based QA, etc. DINO-X encompasses two models: the Pro model, which provides
enhanced perception capabilities for various scenarios, and the Edge model, which
is optimized for faster inference speed and better suited for deployment on edge
devices. Experimental results demonstrate the superior performance of DINO-X.
Specifically, the DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the
COCO, LVIS-minival, and LVIS-val zero-shot object detection benchmarks, respec-
tively. Notably, it scores 63.3 AP and 56.5 AP on the rare classes of LVIS-minival
and LVIS-val benchmarks, both improving the previous SOTA performance by 5.8
AP. Such a result underscores its significantly improved capacity for recognizing
long-tailed objects. Our demo and API will be released at https://github.com/IDEA-
Research/DINO-X-API.

1 Introduction

In recent years, object detection has gradually evolved from closed-set detection models [74, 28, 4]
to open-set detection models [33, 29, 76], which can identify objects corresponding to user-provided
prompt. Such models have numerous practical applications, such as enhancing the adaptability of
robots in dynamic environments, assisting autonomous vehicles in rapidly locating and reacting to
new objects, improving the perceptual capabilities of multimodal large language models (MLLMs),
reducing their hallucinations, and increasing the reliability of their responses.

In this paper, we introduce DINO-X, which is a unified object-centric vision model developed by
IDEA Research with the best open-world object detection performance to date. Building upon
Grounding DINO 1.5 [47], DINO-X employs the same Transformer encoder-decoder architecture and
adopts open-set detection as its core training task. To make long-tailed object detection easy, DINO-X
incorporates a more comprehensive prompt design at the model’s input stage. Traditional text prompt-
only models [33, 47, 29], while having made great progress, still struggle to cover a sufficient range
of long-tailed detection scenarios due to the difficulty of collecting sufficiently diverse training data to
cover various applications. To overcome this shortage, in DINO-X, we extend the model architecture
to support the following three types of prompts. (1) Text Prompt: This involves identifying desired
objects based on user-provided text input, which can cover most of the detection scenarios. (2) Visual
Prompt: Beyond text prompts, DINO-X also supports visual prompts as in T-Rex2 [18], further
covering detection scenarios that cannot be well described by text alone. (3) Customized Prompt: To
enable more long-tailed detection problems, we particularly introduce customized prompt in DINO-X,
which can be implemented as either pre-defined or user-tuned prompt embeddings for customized
needs. Through prompt-tuning, we can create domain-customized prompts for different domains or
function-specific prompts to address various functional needs. For instance, in DINO-X, we develop
a universal object prompt to support prompt-free open-world object detection, making it possible to
detect any objects in a given image without requiring users to provide any prompt.
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To achieve a strong grounding performance, we collected and curated over 100 million high-quality
grounding samples from diverse sources, termed as Grounding-100M. Pre-training on such a large-
scale grounding dataset leads to a foundational object-level presentation, which enables DINO-X
to integrate multiple perception heads to simultaneously support multiple object perception and
understanding tasks. Beyond the box head for object detection, DINO-X has implemented three
additional heads: (1) Mask Head for predicting segmentation masks for the detected objects, (2)
Keypoint Head for predicting more semantically meaningful keypoint for specific categories, and
(3) Language Head for generating fine-grained descriptive captions for each detected object. By
integrating these heads, DINO-X could provide more detailed object-level understanding of an input
image. In Figure 1, we list various examples to illustrate the object-level vision tasks supported by
DINO-X.

Similar to Grounding DINO 1.5, DINO-X also encompasses two models: the DINO-X Pro model,
which provides enhanced perception capabilities for various scenarios, and the DINO-X Edge model,
which is optimized for faster inference speed and better suited for deployment on edge devices.
Experimental results demonstrate the superior performance of DINO-X. As illustrated in Figure 2,
our DINO-X Pro model achieves 56.0 AP, 59.8 AP, and 52.4 AP on the COCO, LVIS-minival, and
LVIS-val zero-shot transfer benchmarks, respectively. Notably, it scores 63.3 AP and 56.5 AP on
the rare classes of the LVIS-minival and LVIS-val benchmarks, showing improvements of 5.8 AP
and 5.0 AP over Grounding DINO 1.6 Pro, and 7.2 AP and 11.9 AP over Grounding DINO 1.5 Pro,
highlighting its significantly improved ability to recognize long-tailed objects.

2 Approach

54.3
55.4

56.0

Grounding DINO 1.5 Pro

55.7

57.7

59.8

LVIS-minival

56.1

57.5

63.3

LVIS-minival-rare

47.6

51.1
52.4

LVIS-val

44.6

51.5

56.5

LVIS-val-rare

Zero-Shot Transfer Performance on Public Benchmarks

COCO

Grounding DINO 1.6 Pro

DINO-X Pro

Figure 2: DINO-X Pro zero-shot performance on public detection benchmarks. Comparing with
Grounding DINO 1.5 Pro and Grounding DINO 1.6 Pro, DINO-X Pro achieves new state-of-the-art
(SOTA) performance on COCO, LVIS-minival, and LVIS-val zero-shot benchmarks. Furthermore, it
outperforms other models with larger margins in detecting rare classes of objects on LVIS-minival
and LVIS-val, demonstrating its exceptional capability of recognizing long-tailed objects.

2.1 Model Architecture

The overall framework of DINO-X is shown in Fig. 3. Following Grounding DINO 1.5, we also
develop two variants of DINO-X models: a more powerful and comprehensive "Pro" version, DINO-
X Pro, as well as a faster "Edge" version, termed DINO-X Edge, which will be introduced in details
in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 DINO-X Pro

The core architecture of the DINO-X Pro model is similar to Grounding DINO 1.5 [47]. We utilize a
pre-trained ViT [12] model as its primary vision backbone and employ a deep early fusion strategy
during the feature extraction stage. Different from Grounding DINO 1.5, to further extend the model’s
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Text Prompt 
Encoder

Visual Prompt 
Encoder

Customized 
Prompt

DINO-X

Box

Mask

Keypoint

Caption

Universal Object Prompt

Domain-customized Prompt

Long-tail Detection Prompt

Customized Scenarios

Box

Point

“Person. Surfboard. 
Head. Face. Hand. 
Foot. Wave.”

Open-World Detection & Segmentation

Visual Prompt Detection & Region Proposal + Recognition

Keypoint Estimation & Region Caption

“A person is doing a trick on a
skateboard.”

Figure 3: DINO-X is designed to accept text prompt, visual prompt, and customized prompt, and
is capable of simultaneously generating outputs ranging from coarse-level representations, such as
bounding boxes, to fine-grained details, including masks, keypoints, and object captions.

capability of detecting long-tailed objects, we have broadened the prompt support in DINO-X Pro at
the input stage. Besides text prompts, we extend DINO-X Pro to also support visual prompts and
customized prompts to cover various detection needs. Text prompts can cover the majority of object
detection scenarios commonly encountered in daily life, while visual prompts enhance the model’s
detection capability in situations where text prompts fall short due to data scarcity and descriptive
limitations [18]. Customized prompts are defined as a series of specialized prompts that can be
fine-tuned through prompt-tuning [26] techniques to expand the model’s ability to detect objects
in more long-tailed, domain-specific, or function-specific scenarios without compromising other
capabilities. By performing large-scale grounding pre-training, we obtain a foundational object-
level representation from the encoder output of DINO-X. Such a robust representation enables us
to seamlessly support multiple object perception or understanding tasks by introducing different
perception heads. As a result, DINO-X is capable of generating outputs across different semantic
levels, ranging from coarse-level, such as bounding boxes, to more fine-grained level, including
masks, keypoints, and object captions.

We will first introduce the supported prompts in DINO-X in the following paragraphs.

Text Prompt Encoder: Both Grounding DINO [33] and Grounding DINO 1.5 [47] employ
BERT [9] as text encoder. However, the BERT model is trained solely on text data, which limits
its effectiveness for perception tasks requiring multimodal alignment, such as open-world detection.
Therefore, in DINO-X Pro, we utilize a pre-trained CLIP [65] model as our text encoder, which has
pre-trained on extensive multimodal data, thereby further enhancing the model’s training efficiency
and performance across various open-world benchmarks.

Visual Prompt Encoder: We adopt the visual prompt encoder from T-Rex2 [18], integrating it
to enhance object detection by utilizing user-defined visual prompts in both box and point formats.
These prompts are converted into position embeddings using a sine-cosine layer and then projected
into a unified feature space. The model separates box and point prompts using different linear
projections. Then we employ the same multi-scale deformable cross-attention layers as in T-Rex2 to
extract visual prompt features from multi-scale feature maps, conditioned on the user-provided visual
prompts.

Customized Prompt: In practical use cases, it is common to encounter the need for fine-tuning
models for customized scenarios. In DINO-X Pro, we define a series of specialized prompts, termed
customized prompt, which can be fine-tuned through prompt-tuning [26] techniques to cover more
long-tailed, domain-specific, or function-specific scenarios in a resource-efficient and cost-effective
manner without compromising other capabilities. For instance, we developed a universal object
prompt to support prompt-free open-world detection, making it possible to detect any objects within
an image, thereby expanding its potential applications in areas such as screen parsing [35], etc.
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Given an input image and a user-provided prompt, no matter it is textual, visual, or a customized
prompt embedding, DINO-X performs deep feature fusion between the prompt and the visual features
extracted from the input image and then apply different heads for different perception tasks. More
specifically, the implemented heads are introduced in the following paragraphs.

Box Head: Following Grounding DINO [33], we adopt the language-guided query selection module
to select features that are most relevant to the input prompt as decoder object queries. Each query is
then fed into the Transformer decoder and updated layer-by-layer, followed by a simple MLP layer
that predicts the corresponding bounding box coordinates for each object query. Similar to Grounding
DINO, we employ L1 loss and G-IoU [49] loss for bounding box regression, while using contrastive
loss to align each object query with the input prompt for classification.

Mask Head: Following the core design of Mask2Former [4] and Mask DINO [28], we construct the
pixel embedding map by fusing the 1/4 resolution backbone feature and the upsampled 1/8 resolution
feature from the Transformer encoder. Then we perform dot-product between each object query from
the Transformer decoder and the pixel embedding map to get the mask output of the query. In order
to improve the training efficiency, the 1/4 resolution feature map from the backbone was only used in
mask prediction. And we also follow [24, 4] to only compute the mask loss for sampled points in the
final mask loss calculation.

Keypoint Head: The keypoint head takes keypoint-related detection outputs from DINO-X, e.g.
person or hand, as input and utilize a separate decoder to decode object keypoints. Each detection
output is treated as a query and expanded into a number of keypoints, which are then sent to multiple
deformable Transformer decoder layers to predict the desired keypoint positions and their visibilities.
This process can be regarded as a simplified ED-Pose [68] algorithm, which does not need to consider
the object detection task but only focuses on keypoint detection. In DINO-X, we instantiate two
keypoint heads for person and hand, which have 17 and 21 pre-defined keypoints, respectively.

Language Head: The language head is a task-promptable generative small language model to
enhance DINO-X’s ability to comprehend regional context and perform perception tasks beyond
localization, such as object recognition, region captioning, text recognition, and region-based visual
question answering (VQA). The architecture of our model is depicted in Figure 4. For any detected
object from DINO-X, we first extract its region features from the DINO-X backbone features using
the RoIAlign [15] operator, combined with its query embedding to form our object tokens. Then, we
apply a simple linear projection to ensure their dimensions aligned with the text embedding. The
lightweight language decoder integrates these regional representations with task tokens to generate
outputs in an auto-regressive manner. The learnable task tokens empower the language decoder to
handle a variety of tasks.

2.1.2 DINO-X Edge

Following Grounding DINO 1.5 Edge [47], DINO-X Edge also utilizes EfficientViT [1] as backbone
for efficient feature extraction and incorporates a similar Transformer encoder-decoder architecture.
To further enhance DINO-X Edge model’s performance and computational efficiency, we employ
several improvements to the model architecture and training techniques in the following aspects:

Stronger Text Prompt Encoder: To achieve more effective region-level multi-modal alignment,
DINO-X Edge adopts the same CLIP text encoder as our Pro model. In practice, text prompt
embeddings can be pre-computed for most cases and do not affect the inference speed of the visual
encoder and decoder. Using a stronger text prompt encoder generally leads to better results.

Knowledge Distillation: In DINO-X Edge, we distill the knowledge from the Pro model to enhance
the Edge model’s performance. Specifically, we utilize both feature-based distillation and response-
based distillation, which align the feature and prediction logits between the Edge model and the Pro
model, respectively. This knowledge transfer enables DINO-X Edge to achieve a stronger zero-shot
capability compared to Grounding DINO 1.6 Edge.

Improved FP16 Inference: We employ a normalization technique for floating-point multiplication,
enabling model quantization into FP16 without compromising accuracy. This results in an inference
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Light-Weight Language Decoder

Task 
Token

Caption, Recognition, 
OCR, VQA …

<cap> A  white  and  black  cat 

A   white and  black  cat  <eos> 

A white and black cat
cat

No text
Is the cat standing? Yes

…

Frozen DINO-X
<cap>
<roc>
<ocr>
<vqa>

…

Object Tokens

Figure 4: The detailed design of language head in DINO-X. It involves using a frozen DINO-X to
extract object tokens, and a linear projection aligns its dimensions with the text embeddings. The
lightweight language decoder then integrates these object and task tokens to generate response outputs
in an autoregressive manner. The task tokens equip the language decoder with the capability of
tackling different tasks.

speed of 20.1 FPS, a 33% increase from 15.1 FPS compared to Grounding DINO 1.6 Edge, and a
87% improvement from 10.7 FPS compared to Grounding DINO 1.5 Edge.

3 Dataset Construction and Model Training

Data Collection: To ensure the core open-vocabulary object detection capability, we developed
a high-quality and semantic-rich grounding dataset, which consists of over 100 million images
collected from the web, termed Grounding-100M. We used the training data from T-Rex2 with
some additional industrial scenario data for visual prompt-based grounding pre-training. We used
open-source segmentation models, such as SAM [23] and SAM2 [46], to generate pseudo mask
annotations for a portion of the Grounding-100M dataset, which serves as the main training data
for our mask head. we sampled a subset of high-quality data from the Grounding-100M dataset
and utilized their box annotations as our prompt-free detection training data. We also collected over
10 million region understanding data, covering object recognition, region captioning, OCR, and
region-level QA scenarios for language head training.

Model Training: To overcome the challenge of training multiple vision tasks, we adopt a two-stage
strategy. In the first stage, we conducted joint training for text-prompt-based detection, visual-
prompt-based detection, and object segmentation. In this training phase, we did not incorporate
any images or annotations from COCO [32], LVIS [14], and V3Det [57] datasets, so that we can
evaluate the model’s zero-shot detection performance on these benchmarks. Such a large-scale
grounding pre-training ensures an outstanding open-vocabulary grounding performance of DINO-X
and results in a foundational object-level representation. In the second stage, we froze the DINO-X
backbone and added two keypoint heads (for person and hand) and a language head, each being
trained separately. By adding more heads, we greatly expand DINO-X’s ability to perform more
fine-grained perception and understanding tasks, such as pose estimation, region captioning, object-
based QA, etc. Subsequently, we leveraged prompt-tuning techniques and trained a universal object
prompt, allowing for prompt-free any-object detection while preserving the model’s other capabilities.
Such a two-stage training approach has several advantages: (1) it ensures that the model’s core
grounding capability is not affected by introducing new abilities, and (2) it also validates that large-
scale grounding pre-training can serve as a robust foundation for an object-centric model, allowing
for seamless transfer to other open-world understanding tasks.
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4 Evaluation

In this section, we compare the various capabilities of our DINO-X series model with its related
works. The best and the second best results are indicated in bold and with underline

4.1 DINO-X Pro

4.1.1 Open-World Detection and Segmentation

Evaluation on Zero-Shot Object Detection and Segmentation Benchmarks: Following Ground-
ing DINO 1.5 Pro [47], we evaluate the zero-shot object detection and segmentation capability of
DINO-X Pro on the COCO [32] benchmark, which includes 80 common categories, and the LVIS
benchmark, which features a richer and more extensive long-tail distribution of categories. As
shown in Table 1, DINO-X Pro shows a significant performance improvement compared to previous
state-of-the-art methods. Specifically, on the COCO benchmark, DINO-X Pro achieves an increase
of 1.7 box AP and 0.6 box AP compared to Grounding DINO 1.5 Pro and Grounding DINO 1.6 Pro,
respectively. On the LVIS-minival and LVIS-val benchmarks, DINO-X Pro achieves 59.8 box AP and
52.4 box AP, respectively, surpassing the previously best-performing Grounding DINO 1.6 Pro model
by 2.0 AP and 1.1 AP, respectively. Notably, for the detection performance on LVIS rare classes,
DINO-X achieves 63.3 AP on LVIS-minival and 56.5 AP on LVIS-val, significantly surpassing the
previous SOTA Grounding DINO 1.6 Pro model by 5.8 AP and 5.0 AP, respectively, demonstrating
the exceptional capability of DINO-X in long-tailed object detection scenarios. In terms of segmen-
tation metrics, we compared DINO-X with the most commonly used general segmentation model,
Grounded SAM [48] series, on the COCO and LVIS zero-shot instance segmentation benchmarks.
Using Grounding DINO 1.5 Pro for zero-shot detection and SAM-Huge [23] for segmentation,
Grounded SAM achieves the best zero-shot performance on the LVIS instance segmentation bench-
marks. DINO-X achieves mask AP scores of 37.9, 43.8, and 38.5 on the COCO, LVIS-minival, and
LVIS-val zero-shot instance segmentation benchmarks, respectively. Compared to Grounded SAM,
there is still a notable performance gap for DINO-X to catch up, which shows the challenge of training
a unified model for multiple tasks. Nevertheless, DINO-X significantly improves the segmentation
efficiency by generating corresponding masks for each region without requiring multiple complex
inference steps. We will further optimize the performance of the mask head in our future work.

Evaluation on Visual-Prompt Based Detection Benchmarks: To assess the visual prompt object
detection capability of DINO-X, we conduct experiments on the few-shot object counting benchmarks.
In this task, each test image is accompanied by three visual exemplar boxes representing the target
object, and the model is required to output the count of the target object. We evaluate the performance
using the FSC147 [45] and FSCD-LVIS [40] datasets, which both feature scenes densely populated
with small objects. Specifically, FSC147 primarily consists of single-target scenes, where only one
type of object is present per image, whereas FSCD-LVIS focuses on multi-target scenes containing
multiple object categories. For FSC147, we report the Mean Absolute Error (MAE) metric, and for
FSCD-LVIS, we use the Average Precision (AP) metric. Following prior work [17, 18], the visual
exemplar boxes are employed as interactive visual prompts. As shown in Table 2, DINO-X achieves
state-of-the-art performance, demonstrating its strong capability in practical visual prompt object
detection.

4.1.2 Keypoint Detection

Evaluation on Human 2D Keypoint Benchmarks: We present a comparison of DINO-X with
other related works on the COCO [32], CrowdPose [52], and Human-Art [20] benchmarks, as shown
in Table 3. We employ the OKS-based Average Precision (AP) [52] as the main metrics. Note that
the pose head was trained jointly on MSCOCO, CrowdPose, and Human-Art. Hence the evaluation is
not a zero-shot setting. But as we froze the backbone of DINO-X and trained only the pose head,
the evaluation on object detection and segmentation still follows the zero-shot setting. Training on
multiple pose datasets, our model can effectively predicts keypoints across various person styles,
including everyday scenarios, crowded environments, occlusions, and artistic representations. While
our model achieves an AP that is 1.6 lower than ED-Pose (primarily due to the limited number of
trainable parameters in the pose head), it outperforms existing models on CrowdPose and Human-Art
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Table 1: The performance of DINO-X Pro on the COCO, LVIS-minival and LVIS-val benchmarks
compared to previous methods. Gray numbers indicate that the training dataset includes images or
annotations from the COCO or LVIS datasets.

Method Backbone
COCO-val LVIS-minival LVIS-val

Box AP Mask AP Box AP Mask AP

APbox APmask APall APr APc APf APall APr APc APf APall APr APc APf APall APr APc APf

Supervised Model (Pretraining data includes COCO, LVIS, etc.)

GLIPv2 [76] Swin-H 60.6 - 50.1 - - - - - - - - - - - - - - -
Grounding DINO [33] Swin-L 60.7 - 33.9 22.2 30.7 38.8 - - - - - - - - - - - -
APE (B) [51] ViT-L 57.7 48.6 62.5 - - - 55.4 - - - 57.0 - - - 50.5 - - -
APE (D) [51] ViT-L 58.3 49.3 64.7 - - - 57.5 - - - 59.6 - - - 53.0 - - -
GLEE-Pro [63] ViT-L 62.0 54.2 - - - - - - - - 55.7 49.2 - - 49.9 44.3 - -
DINOv [27] Swin-T 47.0 42.7 - - - - - - - - - - - - - - - -
DINOv [27] Swin-L 54.2 50.4 - - - - - - - - - - - - - - - -

Zero-shot Transfer Model

OWL-ViT [39] ViT-L 42.2 - - - - - - - - - 34.6 31.2 - - - - - -
MDETR [21] RestNet101 - - 22.5 7.4 22.7 25.0 - - - - - - - - - - - -
GLIP [29] Swin-L 49.8 - 37.3 28.2 34.3 41.5 - - - - 26.9 17.1 23.3 35.4 - - - -
Grounding DINO [33] Swin-T 48.4 - 27.4 18.1 23.3 32.7 - - - - - - - - - - - -
Grounding DINO [33] Swin-L 52.5 - - - - - - - - - - - - - - - - -
OpenSeeD [75] Swin-L - - 23.0 - - - 21.0 - - - - - - - - - - -
UniDetector [61] ResNet50 - - - - - - - - - - 19.8 18.0 19.2 21.2 - - - -
OmDet-Turbo-B [79] ConvNeXt-B 53.4 - 34.7 - - - - - - - - - - - - - - -
OWL-ST [38] CLIP L/14 - - 40.9 41.5 - - - - - - 35.2 36.2 - - - - - -
MQ-GLIP [66] Swin-L - - 43.4 34.5 41.2 46.9 - - - - 34.7 26.9 32.0 41.3 - - - -
MM-Grounding-DINO [80] Swin-T 50.4 - 41.4 34.2 37.4 46.2 - - - - 31.9 23.6 27.6 40.5 - - - -
MM-Grounding-DINO [80] Swin-L 53.0 - - - - - - - - - - - - - - - - -
DetCLIP [70] Swin-L - - 38.6 36.0 38.3 39.3 - - - - 28.4 25.0 27.0 31.6 - - - -
DetCLIPv2 [69] Swin-L - - 44.7 43.1 46.3 43.7 - - - - 36.6 33.3 36.2 38.5 - - - -
DetCLIPv3 [71] Swin-L - - 48.8 49.9 49.7 47.8 - - - - 41.4 41.4 40.5 42.3 - - - -
YOLO-World [6] YOLOv8-L 45.1 - 35.4 27.6 34.1 38.0 - - - - - - - - - - - -
OV-DINO [56] Swin-T 50.2 - 40.1 34.5 39.5 41.5 - - - - 32.9 29.1 30.4 37.4 - - - -
T-Rex2 (visual) [18] Swin-L 46.5 - 47.6 45.4 46.0 49.5 - - - - 45.3 43.8 42.0 49.5 - - - -
T-Rex2 (text) [18] Swin-L 52.2 - 54.9 49.2 54.8 56.1 - - - - 45.8 42.7 43.2 50.2 - - - -

Assembled General Perception Model

SAM (ViTDet-H prompt) [23] - - 46.5 - - - - - - - - - - - - 44.7 - - -
Grounded SAM (1.5 Pro + Huge) [48, 23] - - 44.3 - - - - 47.7 50.2 51.7 43.8 - - - - 41.8 46.0 42.3 39.5
Grounded SAM 2 (1.5 Pro + Large) [48, 23] - - 44.7 - - - - 46.2 50.1 50.1 42.0 - - - - 40.5 44.6 41.0 38.1

Object-Centric Vision Model

Grounding DINO 1.5 Pro [47] ViT-L 54.3 - 55.7 56.1 57.5 54.1 - - - - 47.6 44.6 47.9 48.7 - - - -
Grounding DINO 1.6 Pro [47] ViT-L 55.4 - 57.7 57.5 60.5 55.3 - - - - 51.1 51.5 52.0 50.1 - - - -
DINO-X Pro ViT-L 56.0 37.9 59.8 63.3 61.7 57.5 43.8 46.7 47.5 40.0 52.4 56.5 51.1 51.9 38.5 44.4 38.4 36.1

Table 2: The performance of DINO-X Pro on few-shot object counting benchmarks.

Type Method
FSC147-test FSCD-LVIS-test

MAE RMSE AP

Density Map Regression
FamNet [45] 22.1 99.5
BMNet+ [53] 14.6 91.8
Counting-DETR [40] 12.0 49.8 22.7

Detection
T-Rex [17] 8.72 - 40.3
T-Rex2 [18] 10.9 36.7 43.4
DINO-X Pro 5.6 27.4 44.8

by 3.4 AP and 1.8 AP, respectively, showing its remarkable generalization ability on more diverse
scenarios.

Evaluation on Human Hand 2D Keypoint Benchmarks: In addition to evaluating human pose,
we also present hand pose results on the HInt benchmark [42] with Percentage of Correctly Localized
Keypoints (PCK) as the measurement. PCK is a metric used to evaluate the accuracy of keypoint
localization. A keypoint is considered correct if the distance between its predicted and ground truth
locations is below a specified threshold. We use a threshold of 0.05 box size, i.e. PCK@0.05. During
training, we combine the HInt, COCO, and OneHand10K [59] training dataset (a subset of the
compared method HaMeR [42]), and evaluate the performance on the HInt test set. As shown in
Table 4, DINO-X achieves the best performance on the PCK@0.05 metrics, indicating its strong
capability on highly accurate hand pose estimation.
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Table 3: Comparisons with state-of-the-art methods on COCO-val, CrowdPose-test, and Human-Art-
val benchmarks. † denotes the flipping test. The OKS-based Average Precision (AP) is employed
as evaluation metric on the datasets. TD, BU, OS, PT mean top-down, bottom-up, one-stage and
pre-trained methods, respectively.

Method Type
COCO-val CrowdPose-test Human-Art-val

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Sim.Base.[64]† TD 70.4 88.6 78.3 60.8 81.4 65.7 - - -
HRNet[54]† 74.4 90.5 81.9 71.3 91.1 77.5 39.9 54.5 42.0

HrHRNet[5]†

BU
67.1 86.2 73.0 65.9 86.4 70.6 34.6 - -

DEKR[13]† 68.0 86.7 74.5 65.7 85.7 70.4 - - -
SWAHR[36]† 68.9 87.8 74.9 71.6 88.5 77.6 - - -

PETR[52]† OS 64.8 85.1 70.2 71.6 90.4 78.3 - - -
ED-Pose[68] 75.8 92.3 82.9 76.6 92.4 83.3 72.3 - -

DINO-X Pro PT 74.4 90.7 81.1 80.0 88.0 84.4 74.1 90.7 81.1

Table 4: Comparisons with state-of-the-art methods on HInt dataset. We use PCK@0.05 as the main
metrics.

Method
All joints Visible joints Occluded joints

New Days VISOR Ego4D New Days VISOR Ego4D New Days VISOR Ego4D

FrankMocap [50] 16.1 16.8 13.1 20.1 20.4 16.3 9.2 11.0 8.4
METRO [30] 14.7 16.8 13.2 19.2 19.7 15.8 7.0 10.2 8.1
Mesh Graphormer [31] 16.8 19.1 14.6 22.3 23.6 18.4 7.9 10.9 8.3
HandOccNet (param) [41] 9.1 8.1 7.7 10.2 8.5 7.3 7.2 7.4 8.0
HandOccNet (no param) [41] 13.7 12.4 10.9 15.7 13.1 11.2 9.8 9.9 9.6
ViTPose-Hands [67] 32.2 40.0 23.3 44.0 55.7 35.0 13.9 21.2 10.3
Hamba [10] 48.7 47.2 – 61.2 61.4 – 28.2 29.9 –
HaMeR [42] 51.6 56.5 46.9 62.9 66.5 59.1 33.2 42.6 33.1

DINO-X Pro 54.3 63.0 66.0 69.3 78.0 81.1 34.4 48.0 49.1

4.1.3 Object-Level Vision-Language Understanding

Evaluation on Object Recognition: We verify the effectiveness of our language head with related
works on object recognition benchmarks, which need to recognize the category of the object in a
specified region of an image. Following Osprey[73], we use Semantic Similarity (SS) and Semantic
IoU (S-IOU)[8], to evaluate the object recognition capability of the language head on the object-level
LVIS-val[14] and the part-level PACO-val[44] datasets. As shown in Table 5, Our model achieves
71.25% in SS and 41.15% in S-IoU, surpassing Osprey by 6.01% in SS and 2.06% in S-IoU on the
LVIS-val dataset. On the PACO dataset, our model is inferior to Osprey. Note that we did not include
LVIS and PACO in our langauge head training and the performance of our model is achieved in a
zero-shot manner. The lower performance on PACO might be due to the discrepancy between our
training data and PACO. And our model only has 1% trainable parameters compared with Osprey.

Table 5: Results on referring object classification benchmarks. We use Semantic Similarity (SS) and
Semantic-IoU (S-IoU) scores to measure the region classification quality.

Method Visual Encoder Language Decoder
LVIS PACO

SS S-IoU SS S-IoU

Kosmos-2 [43] ViT-L LM-1.3B [43] 38.95 8.67 32.09 4.79
Shikra [2] ViT-L Vicuna-7B[7] 49.65 19.82 43.64 11.42
GPT4RoI [77] ViT-L Vicuna-7B[7] 51.32 11.99 48.04 12.08
Ferret [72] ViT-L Vicuna-7B[7] 63.78 36.57 58.68 25.96
Osprey [73] ConvNeXt-L Vicuna-7B[7] 65.24 38.19 73.06 52.72

DINO-X Pro ViT-L OPT-125M[78] 71.25 41.15 66.67 39.39
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Table 6: Results on region captioning benchmarks. We report METEOR and CIDEr scores to measure
the region caption quality.

Method Visual Encoder Langauge Decoder
Visual Genome RefCOCOg

CIDEr METEOR CIDEr METEOR

GRIT [62] ViT-B Small-43M [62] 142.0 17.2 71.6 15.2
GPT4RoI [77] ViT-L Vicuna-7B[7] 145.2 17.4 - -
ASM [58] ViT-G Husky-7B[22] 145.1 18.0 103.0 20.8
AlphaCLIP [55] ViT-L Vicuna-7B[7] 160.3 18.9 109.2 16.7
SCA [16] SAM-H Llama-3B[11] 149.8 17.4 74.0 15.6

DINO-X Pro (zero-shot) ViT-L OPT-125M[78] 143.2 17.5 55.7 12.2
DINO-X Pro (fine-tuned) ViT-L OPT-125M[78] 201.8 20.1 86.3 15.1

Evaluation on Region Captioning: We evaluate our model’s region caption quality on Visual
Genome[25] and RefCOCOg[37]. The evaluation results are presented in Table 6. Remarkably, based
on object-level features extracted by a frozen DINO-X backbone and without utilizing any Visual
Genome training data, our model achieves a 142.1 CIDEr score on the Visual Genome benchmark in
a zero-shot manner. Further, after fine-tuning on Visual Genome dataset, we set a new state-of-the-art
result with 201.8 CIDEr score with only a light-weight language head.

4.2 DINO-X Edge

Table 7: Zero-shot Performance of DINO-X Edge on COCO, LVIS-minival, and LVIS-val object
detection benchmarks compared with related works.

Method Backbone Test Size
COCO-val LVIS-minival LVIS-val FPS (A100) FPS (Orin NX)

APbox APall APr APc APf APall APr APc APf Pytorch/TensorRT FP32 TensorRT FP32/FP16

End-to-End Open-Set Object Detection

GLIP [29] Swin-T [34] 800 × 1333 46.3 26.0 20.8 21.4 31.0 - - - - - -/-
Grounding DINO [33] Swin-T [34] 800 × 1333 48.4 27.4 18.1 23.3 32.7 - - - - 9.4 / 42.6 1.1/-

Real-time End-to-End Open-Set Object Detection Models

YOLO-Worldv2-S† [6] YOLOv8-S [19] 640 × 640 - 22.7 16.3 20.8 25.5 17.3 11.3 14.9 22.7 47.4 / - -/-
YOLO-Worldv2-M† [6] YOLOv8-M [19] 640 × 640 - 30.0 25.0 27.2 33.4 23.5 17.1 20.0 30.1 42.7 / - -/-
YOLO-Worldv2-L† [6] YOLOv8-L [19] 640 × 640 - 33.0 22.6 32.0 35.8 26.0 18.6 23.0 32.6 37.4 / - -/-
YOLO-Worldv2-L† [6] YOLOv8-L [19] 640 × 640 - 32.9 25.3 31.1 35.8 26.1 20.6 22.6 32.3 37.4 / - -/-
OmDet-Turbo-T [79] Swin-T [34] 640 × 640 42.5 30.3 - - - - - - - 21.5 / 140.0 -/-
OVLW-DETR-L [60] LW-DETR-L [3] 640 × 640 - 33.5 26.5 33.9 34.4 - - - - - / - -/-

Efficient Object-Centric Vision Model

Grounding DINO 1.5 Edge [47] EfficientViT-L1 [1] 640 × 640 42.9 33.5 28.0 34.3 33.9 27.3 26.3 25.7 29.6 21.7 / 111.6 10.7/-
Grounding DINO 1.5 Edge [47] EfficientViT-L1 [1] 800 × 1333 45.0 36.2 33.2 36.6 36.3 29.3 28.1 27.6 31.6 18.5 / 75.2 5.5/-
Grounding DINO 1.6 Edge [47] EfficientViT-L1 [1] 800 × 800 44.8 36.9 34.6 39.1 35.4 31.0 31.6 30.5 31.4 20.81/152.7 10.0/15.1
Grounding DINO 1.6 Edge [47] EfficientViT-L1 [1] 1024 × 1024 46.5 40.1 36.8 42.0 39.0 33.3 32.6 32.8 34.3 19.4/108.1 7.6/10.5
DINO-X Edge EfficientViT-L2 [1] 640 × 640 48.7 44.5 41.4 47.3 42.6 38.4 38.9 38.3 38.2 19.8/138.6 10.0/20.1
DINO-X Edge EfficientViT-L2 [1] 800 × 1333 50.9 48.3 47.6 50.2 46.6 42.0 43.1 41.7 41.8 15.1/74.5 4.5/9.1

Evaluation on Zero-Shot Object Detection Benchmarks: To evaluate the zero-shot object de-
tection capability of DINO-X Edge, we conduct tests on the COCO and LVIS benchmarks after
pre-training on Grounding-100M. As shown in Table 7, DINO-X Edge outperforms existing real-time
open-set detectors on COCO benchmark by a large margin. DINO-X Edge also achieves 48.3 AP and
42.0 AP on LVIS-minival and LVIS-val, respectively, demonstrating excellent zero-shot detection
capability in long-tailed detection scenarios.

We evaluate the inference speed DINO-X Edge using both FP32 and FP16 TensorRT models on
NVIDIA Orin NX, measuring the performance in terms of frames per second (FPS). The FPS results
for the PyTorch model and the FP32 TensorRT model on an A100 GPU were also included. †denotes
that the YOLO-World results were reproduced using the latest official codes.

Leveraging the normalization technique in floating-point multiplication, we can quantize the model
to FP16 without sacrificing the performance. With an input size of 640×640, DINO-X Edge achieves
an inference speed of 20.1 FPS, marking a 33% improvement compared to Grounding DINO 1.6
Edge (increasing from 15.1 FPS to 20.1 FPS).
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5 Case Analysis and Qualitative Visualization

In this section, we visualize the different capabilities of DINO-X models across various real-world
scenarios. The images are primarily sourced from COCO [32], LVIS [14], V3Det [57], SA-1B [23],
and other publicly available resources. We are deeply grateful for their contributions, which have
significantly benefited the community.

5.1 Open-World Object Detection

As illustrated in Figure 5, DINO-X demonstrates the capability to detect any objects based on the
given text prompt. It can identify a wide range of objects, from common categories to long-tailed
classes and dense object scenarios, showcasing its robust open-world object detection capabilities.

Pole . Elephant . Suitcase . Cart . Poster . Laptop computer . Knob . Desk . 
Curtain . Mouse .

Bird . Orange . Banana . Bird . Cat .

Knife . Chopping board . Bottle . Waffle . 
Handle . Bowl . Bottle cap . Heart .

Mousepad . Choker . Tag . Mouse .

Polar bear . Carrot . Pea . Broccoli . Carrot . Bean curd . Frisbee . Wheel . Shoe . Wristlet . 
Sock . Shirt .

Hat . Shoe . Jersey . Frisbee . Armband .

Figure 5: Open-world object detection with DINO-X
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5.2 Long Caption Phrase Grounding

As illustrated in Figure 6, DINO-X exhibits an impressive ability to locate corresponding regions
in an image based on noun phrases from a long caption. The capability of mapping each noun
phrase in a detailed caption to specific objects in an image marks a significant advancement in deep
image understanding. This feature has substantial practical value, such as enabling multimodal large
language models (MLLMs) to generate more accurate and reliable responses.

The photo depicts two people standing in a wooded area 
that appears to be experiencing early spring or late fall, as 
the trees are bare. There is a body of water, most likely a 
small pond or stream, in the background, and the ground 
looks muddy with some patches of standing water. To the 
right of the image, there's a young child dressed in bright 
colors, with a purple patterned coat, pink pants, and a 
fun animal-themed hat. The child is holding a yellow 
object, which might be a toy. To the child's left, there's an 
adult wearing a black coat, blue jeans with a ripped 
pattern, and darker boots. Due to privacy reasons, the 
faces of both individuals are blurred, making it 
impossible to discern their facial expressions or features. 
The adult seems to be leaning slightly against a tree 
trunk. The setting suggests that they might be enjoying a 
day out in nature, possibly during a hike or a walk in the 
woods.

This image shows an outdoor setting with a focus on a 
white stone lion sculpture, which is often associated 
with traditional Chinese architecture and is known as a 
guardian lion or "shi." The sculpture is detailed, with a 
ferocious expression, teeth bared, and intricate mane and 
facial features. It appears to be perched on a pedestal at 
the edge of a set of steps. In the background, you can see a 
flight of stone stairs leading upwards, bordered by white 
balustrades that match the pedestal of the lion sculpture. 
At the top of the stairs, there seems to be an area with 
vegetation and a red-painted structure, possibly part of a 
larger temple or garden complex. On the left side of the 
image, there is a partial view of a green sign with Chinese 
characters, suggesting that this location could be within a 
Chinese-speaking region or influenced by Chinese culture. 
The background is notably less focused, emphasizing the 
lion sculpture in the foreground, and it's a sunny day with 
bright lighting enhancing the warm tones of the scene.

This image shows a stately building with classic 
architectural features, possibly a government or historical 
building. It features a series of columns in the front and 
sculptures atop its roof line. Its design suggests a 
neoclassical architectural style with decorative elements, 
symmetrical windows, and a grand entrance. The 
building is adorned with the Spanish flag, indicating that 
this may be in Spain. It's a sunny day with a few clouds 
scattered across the blue sky. In front of the building, 
there is a street bustling with activity. Vehicles including 
taxis, a van, and a city bus are visible, as are traffic lights, 
street lamps, and road markings. There are also 
pedestrians walking on the sidewalk, and a traffic sign is 
visible indicating no entry in one direction (with the red 
and white circular sign). Several palm trees line the streets 
adding a scenic, somewhat tropical feel to the setting, 
indicating a warm climate or coastal area. Overall, the 
image captures a vibrant city scene, juxtaposing historical 
architecture with modern urban life.

Figure 6: Long caption phrase grounding with DINO-X
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5.3 Open-World Object Segmentation and Visual Prompt Counting

As shown in Figure 7, beyond Grounding DINO 1.5 [47], DINO-X not only enables open-world
object detection based on text prompts but also generates the corresponding segmentation mask for
each object, providing richer semantic outputs. Furthermore, DINO-X also supports detection based
on user-defined visual prompts by drawing bounding boxes or points on target objects. This capability
demonstrates exceptional usability in object counting scenarios.

Dog . Frisbee . Hose .

Heart . Teddy bear . Tag .

Bowl . Banana . Orange .

Lamp . Pillow . Couch . Picture. Table . Book . Bowl. 
Power outlet . Bottle . Tree . Person . Cabinet .

Figure 7: Open-world object segmentation and visual prompt object counting with DINO-X
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5.4 Prompt-Free Object Detection and Recognition

In DINO-X, we developed a highly practical feature named prompt-free object detection, which
allows users to detect any objects in an input image without providing any prompts. As shown in
Figure 8 When combined with DINO-X’s language head, this feature enables seamless detection and
identification of all objects in the image without requiring any user input.

Output: Desk . Chair . Bottle . Plant . Flower . Vase . 
Book . Printer . Plate .

Output: Dog . Carrot . Towel . Cabinet . Eye .

Output: Picture . Radiator . Pillow . Flower . Window . Clock . Curtain . Vase . 
Carpet . Desk . Nightstand . Box . Bed . Stool . Lamp . Heels . Book . Plant . Bottle . 
Countertop . Cup .

Output: Wolf . Dog . Tiger . Bison . Chimpanzee . 
Jaguar . Giraffe . Skunk . Hippo . Cat . Rabbit .

Output: Person . Helmet . Sneaker . Bat . Glove . Baseball . Belt . 
Clothing . Uniform . Bracelet . Trouser .

Output: Man . Woman . Umbrella . Shoes . Hat . Tie . Flower . 
Phone . Suit . Trouser . Necklace . Moon.

Output: Person . Horse . Truck . Hat . Clothing . Boot . Tree . Blanket . 
Tiger . Shoes . Megaphone . Window .

Output: Person . Shorts . Glasses . Dress . Shirt . Handbag. 
Flag . Umbrella . Hair . Camera . Bracelet . Face . Head . Leg . 
Building .

Figure 8: Prompt-free object detection and recognition with DINO-X
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5.5 Dense Region Caption

As illustrated in Figure 9, DINO-X can generate more fine-grained captions for any specified region.
Furthermore, with DINO-X’s language head, we can also perform tasks such as region-based QA and
other region understanding tasks. Currently, this feature is still in the development stage and will be
released in our next version.

Figure 9: Dense Region Caption with DINO-X
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5.6 Human Body and Hand Pose Estimation

As shown in Figure 10, DINO-X can predict keypoints for specific categories through the keypoint
heads based on the text prompts. Trained on a combination of COCO, CrowdHuman, and Human-Art
datasets, DINO-X is capable of predicting human body and hand keypoints across various scenarios.

Person.

Hand.

Figure 10: Pose estimation on human body and human hand with DINO-X
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5.7 Side-by-side comparison with Grounding DINO 1.5 Pro

We conducted a side-by-side comparison of DINO-X with previous state-of-the-art models, Grounding
DINO 1.5 Pro and Grounding DINO 1.6 Pro. As shown in Figure 11, built upon the foundation
of Grounding DINO 1.5, DINO-X further enhances its language comprehension capabilities while
delivering a remarkable performance in dense object detection scenarios.

Container .

Balloon .

Fish .

Freezer .  Post-it note .  Meat pie .  Cutting board .  Artifact . 

Fig . Kiwi . Orange . Pear . Cranberry . Carrot . Anise .

Flowerpot . Sandbag .

Input Image Grounding DINO 1.5 Pro Grounding DINO 1.6 Pro DINO-X Pro

Figure 11: Comparison of Grounding DINO 1.5 Pro, Grounding DINO 1.6 Pro and DINO-X
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6 Conclusion

This paper has presented DINO-X, a strong object-centric vision model to advance the field of open-
set object detection and understanding. The flagship model, DINO-X Pro, has established new records
on the COCO and LVIS zero-shot benchmarks, showing a remarkable improvement in detection
accuracy and reliability. To make long-tailed object detection easy, DINO-X not only supports
open-world detection based on text prompts but also enables object detection with visual prompts
and customized prompts for customized scenarios. Moreover, DINO-X extends its capabilities
from detection to a broader range of perception tasks, including segmentation, pose estimation, and
object-level understanding tasks. To enable real-time object detection for more applications on edge
devices, we also developed the DINO-X Edge model, which further expands the practical utility of
the DINO-X series models.
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