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In this work we investigate discrete-time transport in a generic U(1)-symmetric disordered model
tuned across an array of different dynamical regimes. We develop an aggregate quantity, a circu-
lar statistical moment, which is a simple function of the magnetization profile and which elegantly
captures transport properties of the system. From this quantity we extract transport exponents,
revealing behaviors across the phase diagram consistent with localized, diffusive, and - most inter-
estingly for a disordered system - superdiffusive regimes. Investigation of this superdiffusive regime
reveals the existence of a prethermal “swappy” regime unique to discrete-time systems in which
excitations propagate coherently; even in the presence of strong disorder.

I. INTRODUCTION

The advent of large-scale, high-fidelity, tunable, and
accessible digital quantum devices is revolutionizing
modern quantum physics. Notable advances include the
implementation of large-scale quantum algorithms, the
simulation (via e.g. the Suzuki-Trotter expansion [1, 2])
of continuous-time models on actual hardware [3–8], di-
agonalization algorithms [9, 10], and the analysis of
transport properties [11–14].

However, these advances have also resulted in an
emerging reconceptualization of large circuits as realiz-
ing digital phases of matter in their own right. Notable
examples include: discrete time crystals [15, 16], mea-
surement induced phase transitions [17–19], many body
scars [20, 21], Hilbert space fragmentation [22–24], and
cellular automata [25]. Essentially, despite their funda-
mental differences, a sufficiently large discrete system ex-
hibits emergent phenomena in a manner consistent with
continuous phases of matter. This deterritorialization of
phase, now encompassing digital systems, yields ques-
tions of immediate interest and relevance: how can one
probe phase transitions and information-spreading in dig-
ital matter? As digital systems do not conserve energy,
but can sustain other conserved quantities, what are the
transport features of such systems? Are there additional
regimes and features unique to digital phases of matter,
absent in their continuous-time counterparts?

In this work, we seek to address some of these ques-
tions by constructing a generic gate-based, disordered,
U(1)-symmetric model; inspired by the more recent
development of a discrete-time version of the XXZ spin
chain [26–28]. The continuous-time XXZ model, and
its isotropic counterpart the Heisenberg model, were
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FIG. 1. Schematics showing (a) different regimes of our
generic U(1)-symmetric model. Along the three solid borders
the model is integrable; whilst the dashed border at Jz = π
spans four distinct regimes, and is the region we predomi-
nantly address in this article. (b) shows the initial (dotted)
and late-time (solid) spin magnetization profiles for different
phases along the Jz = π line. (c) shows discrete time evolu-
tion as determined by a (periodic) U(1)-symmetric Floquet

unitary Û comprised of nearest-neighbour gates.

conceived as purely theoretical constructs [29], but
have become standard tools for investigating transport
properties [30–32] and many-body localization (MBL)
[33–43]. Meanwhile, the transport properties of its
discrete-time counterpart remain only partially mapped
out. Our model can be tuned across a two-dimensional
phase space to exhibit a both integrable and non-
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integrable regimes, and a range of emergent phenomena.
This includes a crossover between ergodic and localized
regimes [44], and a line along which all gates in our
model are dual-unitary (DU) [45, 46]. These DU gates
are endowed with an additional U(1) symmetry, and
thus become generalized SWAP gates (see Sec. III). We
leverage our model into an investigation of the static
properties of our model, revealing no unexpected behav-
ior. However, we subsequently interrogate transport in
our model and identify a prethermal regime which is a
priori unique to discrete systems, in the vicinity of the
DU line. In this regime, which we call the “swappy”
regime due to its vicinity to the generalized SWAPs on
the DU line, excitations propagate faster than in the
ergodic phase, resulting in rapid coherent information
transport over short timescales. Finally, by deploy-
ing circular moments related to wrapped probability
distributions, we develop an aggregate quantity, R,
which captures the features of many-body transport in
a concise way. As this quantity is singularly composed
of local Z-basis expectation values, it is highly amenable
to experimental implementation; paving the way for the
near-future experimental analysis of transport in digital
matter.

In Sec. II, we present our model and compare it with
similar ones. Sec. III outlines the primary features an-
ticipated to appear in our phase diagram, as suggested
by the existing literature. Sec. IV reports the results:
Sec. IVA for static properties obtained via exact diag-
onalization and Sec. IVB for dynamical properties that
define the finite time and size transport analysis of our
model.

II. MODEL

We consider a system of N qubits undergoing discrete-
time evolution under the repeated application of a
Floquet unitary Û. The Floquet unitary is decom-
posed as product of N nearest-neighbour gates Û =∏

{P (n)} Ûn,n+1, ordered according to a random permu-

tation P of the set of all site indices n (illustrated in
Fig. 1(c)). We assume periodic boundary conditions.
The two-qubit gates have the form:

Ûn,n+1 = e−iĤn,n+1e−ihnŜ
z
ne−ih′

nŜ
z
n+1 , (1)

which is composed of the single-qubit rotations

e−ihnŜ
z
ne−ih′

nŜ
z
n+1 and a nearest-neighbour XXZ-like in-

teraction generated by the Hamiltonian:

Ĥn,n+1 =
J

2

Ä
Ŝ+
n Ŝ

−
n+1e

iϕn + Ŝ−
n Ŝ

+
n+1e

−iϕn

ä
+JzŜ

z
nŜ

z
n+1,

(2)

with the Peierls phase ϕn [47]. Here, the operators Ŝα
n

for α ∈ {x, y, z} are the standard spin-1/2 operators act-
ing locally on the n’th site, and the raising and lowering

operators are defined as Ŝ±
n = Ŝx

n ± iŜy
n respectively.

The two-qubit gate in Eq. (1), with five parameters
{hn, h′n, ϕn, J, Jz}, can, in fact, describe any two-qubit

gate that conserves the total magnetization M̂ =
∑

n Ŝ
z
n

in the z-direction . Since each individual gate conserves
the magnetization, the global Floquet unitary also con-
serves the total magnetization [Û, M̂ ] = 0, which is an
essential prerequisite to define the transport of spin ex-
citations.
For each two-qubit gate Ûn,n+1 we sample the three

phase parameters {hn, h′n, ϕn} randomly from the uni-
form distribution on the interval [−π, π]. This intro-
duces disorder to our circuit model. The two remain-
ing parameters J and Jz, however, are fixed across all
gates in a given Floquet unitary. Tuning J and Jz al-
lows us to explore various regimes of transport in our
model. Observing that the two-qubit gate Ûn,n+1 is 2π-
periodic in both J and Jz we can restrict our parameter
space through patterning (reflection and tessellation) to
the region J, Jz ∈ [0, π], shown in Fig. 1(a).
Similar discrete-time models have appeared in recent

literature [44, 48–56]. Notably, Refs. [44, 54–56] use U(1)
symmetric models but with a brickwork geometry. Our
random gate ordering is more similar to the approach in
Ref. [50]. This approach also allows systems with odd
and even site numbers, N , to be treated equivalently
and avoids issues related to the slower thermalization
of brickwork circuits, as discussed in Ref. [56]. A more
in-depth analysis of gate permutations is presented in
App. A. Finally, we note that our model is well-suited to
for realization on currently available quantum hardware.
A different gate decomposition of Ûn,n+1 which may be
more suitable for implementation on quantum simulators
is discussed in App. C.

III. OVERVIEW OF REGIMES OF
TRANSPORT DYNAMICS

Before presenting our numerical results, in this section
we give an overview of the expected different regimes of
dynamics in our model. First, we identify three solv-
able regimes of our model, corresponding to three solid
borders of the J, Jz ∈ [0, π] square in Fig. 1(a):

1. If Jz = 0 the Floquet unitary is integrable, since it
can be mapped to a quadratic fermion model by a
Jordan-Wigner transformation.

2. If J = 0 the Floquet unitary reduces to an Ising
model in a disordered longitudinal magnetic field,
since it is completely diagonal in the Ŝz

n basis of
each spin.

3. If J = π each gate of our model is DU. In what
follows we show that imposing U(1) symmetry to
DU gates leads to generalized SWAP gates making
the system effectively non-interacting and therefore
integrable.
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In the first of these regimes, along the free-fermion
line Jz = 0, we expect transport to by suppressed by
Anderson localization, as a result of the disorder fields
{hn, h′n, ϕn}. Similarly, in the second of the exactly solv-
able regimes, along the Ising line, there is no transport
of spin-z excitations since, at J = 0, not only is the total
magnetization M̂ conserved, but also the local magneti-
zation Ŝz

n for every spin n is conserved.
We now turn our attention to the third of our exactly

solvable regimes, at J = π, where the two-qubit gate can
be decomposed as:

Ûn,n+1 =e−iκ+ |↑↑⟩⟨↑↑|+ e−iξ+ |↓↑⟩⟨↑↓|
+ e−iξ− |↑↓⟩⟨↓↑|+ e−iκ− |↓↓⟩⟨↓↓|,

(3)

for κ± = ∓(h + h′)/2 + Jz/4 and ξ± =
π ± (h − h′)/2 − Jz/4 ∓ ϕ. We see that, along
this line in parameter space, our two-qubit gate becomes
a SWAP gate that also imprints a phase on the swapped
particles. We will refer to this gate as a generalized
SWAP and to the J = J = π point as the “SWAP
point”. This use of the term is justified within the
context of the Weyl chamber, where gates connected
by local rotations are defined as equivalent [51, 57].
Hence, we do not expect the system to thermalize along
the DU line, as any spin excitation propagates through
the circuit unimpeded via a series of these generalized
SWAP gates. The intrinsic behavior of this type of gate
ensures that any DU circuit preserving U(1) symmetry
is integrable, regardless of connectivity.

The non-thermalizing behavior along these three bor-
ders raises several interesting questions about the dynam-
ics if we vary slightly away from them. Traditionally this
has been studied in the proximity of the Ising line. Even
if we perturb away from it, by increasing J to small but
non-zero values, spin transport is still suppressed, since
the kinetic energy J-term in Eq. (2) is dominated by the
disorder fields {hn, h′n, ϕn}. This is roughly analogous
to MBL in continuous-time models [35, 58] but, as MBL
is not the main focus of this article, we do not interro-
gate the stability of this regime in the thermodynamic
limit. However one can wonder if something similar can
arise around the DU line. Will the system thermalize
near it? Is there an extended regime of anomalous trans-
port dynamics near the DU line? These are some of the
key motivating questions of our work. We will show be-
low that indeed there is a distinctive regime of anoma-
lous transport proximate to the DU line, which we will
call the “swappy” regime. Moving further away from the
three solvable sides of our J, Jz ∈ [0, π] square, we enter
the ergodic regime. Here, we expect transport of spin
excitations to lead to rapid thermalization of the system.

To explore the behavior of our model between the Ising
and the DU line, we focus on the Jz = π line, since it
is maximally distant (in (J, Jz) parameter space) from
the integrable free-fermion line, and exhibits a wide ar-
ray of interesting behaviors as a function of the single

parameter J . In particular, throughout this work we fo-
cus on four points representative of the different regimes
along this line: localized at J = 0.395 (represented by
the symbol ●), ergodic at J = 1.374 (represented by
), swappy at J = 2.551 (represented by ■), and near-
SWAP at J = 3.138 (represented by ⋆). These regimes
are shown schematically in Fig. 1(b). These regimes ex-
hibit different kinds of emergent transport and, as we
flexibly refer to regimes and types of transport through-
out this work, it is instructive to preemptively summarize
our findings here. We find either complete localization
or sub-diffusive behavior in the localized regime, diffu-
sive behavior in the ergodic regime, and super-diffusive
behavior in the swappy and near-SWAP regime. This
super-diffusive behavior is augmented by ballistic propa-
gation of individual excitations in the swappy and near-
SWAP regimes. These results are shown in Fig. 5 and
Fig. 6, and discussed in Sec. IVB3 and Sec. IVB4 re-
spectively.
We emphasize that a full scaling analysis of the lo-

calized regime falls outside the scope of this work, and
due to analogous literature surrounding the stability of
continuous-time MBL, we expect this question to be in-
tractable given current numerical and experimental ca-
pabilities [58, 59]. We can thus only claim to find phe-
nomenological signatures of localization in this work:
i.e. a total breakdown of transport, or the sub-diffusive
(and/or logarithmic) spreading of information. These
phenomenological signatures may be prethermal effects,
or finite-size size effects, or both; we defer a more detailed
investigation of the stability of localization in discrete-
time systems to future study. In this work we focus on
phenomenological signatures of transport throughout the
phase diagram, at intermediate system sizes N ≤ 22, and
exponential timescales; with an additional focus on inter-
rogating the nature and stability of the swappy regime.

IV. RESULTS AND ANALYSIS

Our goal in this paper is to understand the vari-
ous equilibrium and dynamical regimes in our U(1)-
symmetric circuit model, outlined in the previous section.
To characterize our model, we take two complementary
approaches: we compute (Sec. IVA) static spectral prop-
erties and (Sec. IVB) dynamical properties. These two
approaches are complementary, since they reveal differ-
ent aspects of the model, as described below.

A. Spectral properties

One way to characterize our model is by means of its
spectral properties, i.e, properties relating to the eigen-
phases and eigenvectors of the Floquet unitary, Û|φi⟩ =
e−iφi |φi⟩. Specifically, we study the mean eigenstate
entanglement entropy and the mean eigenvalue gap ra-
tio—both indicators of quantum chaos [58].
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FIG. 2. Static properties of the model are shown. In (a) (top)
shows results for the averaged von Neumann entanglement
entropy normalized by the Page value, along the Jz = π line
and for various system sizes. Values were averaged over 20−
35 trajectories. (b) (bottom) displays the phase diagram for
the gap ratio obtained for N = 15 with values averaged over
10− 20 trajectories.

First, consider a bipartition of the system into subsys-
tems A and B. The entanglement entropy of a Floquet
eigenstate |φi⟩ is given by:

si = −Tr[ρ̂Ai ln(ρ̂Ai )], (4)

where ρ̂Ai = TrB [|φi⟩⟨φi|] is the reduced density matrix
for subsystem A. Averaging si over eigenstates in a fixed
magnetization sectorM (see App. B) and across different
Floquet unitaries yields the mean entanglement entropy
⟨s⟩. For an ergodic system we expect the eigenstates to
have an average entanglement entropy similar to a typi-
cal random state in the magnetization sector, i.e., close
to the Page entropy sPage = ln dA − d2A/2d, where d is
the total Hilbert space dimension and dA is the dimen-
sion of subsystem A [60], as discussed in App. B. For this
reason, it is sometimes convenient to normalize the aver-
age entropy by the Page entropy, ⟨s⟩/sPage. In Fig. 2(a)
we see that, for our model, the mean entanglement en-
tropy varies from a small value in the localized regime
(J ≪ π) to the Page entropy in the ergodic regime. This
is consistent with the conclusion that – at least for our
finite-N – the system fails to thermalize in the long-time
limit in the localized regime, but thermalizes in the er-
godic regime. Fig. 2(a) also appears to show deviations

from the Page entropy as we approach the SWAP point
J → π. However, we observe that as the system size N
increases, the range of J values around π associated with
lower entanglement entropy contracts.

Our next quantifier is the mean gap ratio. For each
Floquet eigenphase φi, the ratio of consecutive gaps is
defined as:

ri =
min{δφi−1, δφi}
max{δφi−1, δφi}

, (5)

where δφi = φi+1 − φi is the gap between consecutive
eigenphases within the same magnetization sector [61].
We compute the mean gap ratio ⟨r⟩ by averaging ri over
all eigenphases in a sector and over many Floquet uni-
taries. In the absence of time-reversal symmetry, the
model is expected to yield ⟨r⟩ ≈ rCUE = 0.6027 if the
system is ergodic, or ⟨r⟩ ≈ rPoi = 0.3863 if the system
is integrable [62]. Fig. 2(b) shows the transition between
the localized regime for small J and the ergodic regime
for sufficiently large J . It also shows a deviation from the
ergodic value when Jz = 0, corresponding to our model
being integrable (mappable to free fermions), as well as
on the dual-unitary line J = π.

Both the mean entanglement entropy and the mean
gap ratio probe equilibrium properties of the model in
the infinite time limit. So, even if the system ultimately
thermalizes, interesting intermediate-time behaviors may
arise which will not be detected by these spectral quan-
tities. Next we turn to quantification of the transport
properties of the model, which can reveal distinct dy-
namical regimes at intermediate times.

B. Transport properties

In Sec. IVB1 we first present the raw numerical data
for the evolution of the local magnetization profile, start-
ing from a non-equilibrium initial state consisting of a
localized spin excitation in a homogeneous spin back-
ground. Suitably quantifying the spread of the the ini-
tially localized excitation should encapsulate the trans-
port properties of the system. However, we find that the
local magnetization profile is inconvenient for extracting
transport coefficients. In section Sec. IVB2 we map the
local local magnetization profile to a quasi-probability
distribution. Using the wrapped normal distribution as a
helpful reference model, we use the quasi-probability dis-
tribution to extract transport coefficients. These trans-
port coefficients are discussed in section Sec. IVB3. Fi-
nally, in Sec. IVB4, we conduct a scaling analysis of the
transport properties. This study reveals an intermediate-
time prethermal “swappy” regime, unique to digital sys-
tems, where information propagates coherently and bal-
listically, even in a strongly disordered setting. We dis-
cuss heuristic mechanisms underlying this regime, and its
stability, in Sec. IVB5.
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1. Local magnetization profile

The central object used to explore dynamics in our
model is the local spin magnetization profile

Mn(t) = Tr[Ûtρ̂(0)(Û†)tŜz
n]. (6)

We exploit initial states of the form

ρ̂(0) = P̂M

[
| ↑⟩⟨↑ |N/2 ⊗

Ç
Î2
2

å⊗(N−1)]
P̂M , (7)

where P̂M is a projector onto the subspace of to-
tal magnetization M =

∑
nMn. In numerical prac-

tice, to avoid working with the density matrix ρ̂(0)
in Eq. (6), we choose the initial pure state ρ̂(0) ∼
P̂ ↑
N/2|ψrand⟩⟨ψrand|P̂ ↑

N/2 where |ψrand⟩ is a random state

in the subspace of fixed total magnetizationM , and P̂ ↑
N/2

is the projector onto the excited state of the middle spin.
This is numerically more efficient, since we only need to
operate on the pure state instead of on the density ma-
trix. In App. F 1 we show in detail that this is equivalent
to choosing an initial maximally-mixed state in Eq. (6),
up to some negligible random fluctuations. Notably, one
can directly connect the quantity of eq. (6) computed in
a given magnetization subsector with high-temperature
correlation functions, as is shown in detail in app. F.

For this choice of initial state, the central spin is
fully polarized such that MN/2(0) = 1/2. The excess
magnetization M − 1/2, where M =

∑
nMn(t), is dis-

tributed evenly over all other spins Mn ̸=N/2(0) ≈ MB =
(M−1/2)/(N−1). In other words, the initial local mag-
netization is in the non-equilibrium configuration:

Mn(0) =
1

2
δn,N/2 + (1− δn,N/2)MB. (8)

As total magnetization M is conserved in our model,
and as thermalization would result in the initially lo-
calized spin excitation spreading through the system,
full thermalization corresponds to the total magneti-
zation M being uniformly distributed across all spins
Mn(t → ∞) ≈ M/N . As is standard, we focus on the
largest subsector: taking M = 0 from this point onward.
We present our numerical results for the magnetiza-

tion profile Mn(t) for a system of N = 20 particles in
Fig. 3 at the four key points along the Jz = π line (as
shown in Fig. 1(a)). The top panels (a-d) illustrate the

dynamics for a typical individual realization of Û, while
the bottom panels (e-h) show the dynamics of the local
magnetization averaged over many different realizations
of the Floquet unitary.

As outlined in Sec. II, and depicted in Fig. 1(c), time
evolution is carried out by repeated application of the
Floquet unitary Û. We evaluate each of the first t = 100
time steps, but to reach later times we apply clusters
of Floquet unitaries together Ûk, which effectively real-
izes a stroboscopic dynamics with a longer period after

t > 100. This stroboscopic approach leads to an appar-
ent preservation of excitation on some particular sites,
however even at this later times we expect the excita-
tion to move continuously along the chain. Throughout
Fig. 3, horizontal lines mark (solid) t = 1, the applica-

tion of the first whole Û, (dashed) t = N/2 = 10, the
time for ballistic excitations to reach the system bound-
ary, and (dotted) t = (N/2)2 = 100, the time taken for
a particle on site N/2 to diffuse to the boundary of the
system. These three benchmarks help compare different
types of transport, where the t = 100 line serves as a
reference for identifying diffusive or anomalous behavior.
White regions denote homogenized Mn(t) = 0, indicat-
ing regions in which the state realizes a local identity and
has self-thermalized.

In the localized regime (●), shown in (a) and (e), the
initial spin excitation remains localized for a long-term,
preserving its general shape and position in the spin
chain. The system exhibits self-averaging at late times
(i.e., after the early-time relaxation dynamics), consistent
with many-body localization studies [35, 63–65]. Self-
averaging means a system’s properties become stable and
predictable in large samples without many different re-
alizations. This feature breaks down in phase transi-
tions where disorder causes persistent fluctuations across
regions, preventing uniform behavior. The initial exci-
tation spread slowly, likely logarithmically, in line with
what usually marked as localized behavior [58, 59, 64, 66].

In the ergodic regime ( ), shown in (b) and (f), dif-
fusive transport is qualitatively evidenced by the excita-
tion reaching the boundary, and the subsequent onset of
thermalization, at time t = 100 (the dotted black line).
Also at this point self-averaging occurs, with individual
realizations (b) resembling the averaged behavior (f).

The swappy regime (■) is displayed in panels (c) and
(g). The individual realization in panel (c) demonstrates
a clear leftward propagation of the initial excitation, with
the direction determined randomly by the permutation
P of the local gates making up the Floquet unitary. Ini-
tially, before the small deviations from the SWAP gate
become evident, the excitation propagates coherently and
ballistically through the system, moving a fixed number
of sites per Floquet cycle. We will later quantify this
behavior using the instantaneous speed parameter ⟨ν⟩ in
Sec. IVB4. These ballistic excitations eventually deco-
here, leading to thermalization after roughly 10 Floquet
applications. This fast thermalization is more apparent
in the averaged dynamics of panel (g), where excitations
propagate in both directions, splitting into “twin peaks.”
These excitations self-interact and thermalize rapidly af-
ter t ∼ 10. This finding is significant: thermalization oc-
curs on a timescale consistent with ballistic transport in
a disordered quantum system. Such anomalous transport
has been observed in disorder-less models (see Refs. [26–
28]), but here we find counter-intuitive evidence of such
behavior in strongly disordered systems.

Near the SWAP point (⋆), panel (d) clearly shows the
leftward propagation of the initial excitation. However in
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FIG. 3. Results of numerical propagation of the initial spin inhomogeneity in the M = 0 sector under U(1)-symmetric Floquet
dynamics at N = 20. Panels (a)-(d) show typical results for single realizations of the initial state and Floquet unitary within
the localized regime, ergodic regime, and two points in the swappy regime respectively. Panels (e)-(h) show results in the
respective regimes after averaging over 100 realizations. Horizontal lines indicate the time taken to complete a single Floquet
cycle (solid), N/2 (dashed), and the time after which we calculate results stroboscopically (dotted).

this case the system continues to exhibit a near-perfect
exchange of spin excitations with neighboring sites, even
at late times. Panel (h) appears to show thermaliza-
tion at late times. However, this is actually the result
of averaging out the peak, caused by small variations
in the underlying propagation speeds. Essentially, while
the center of Mn(t) shifts, its initial delta-peaked func-
tional form remains unchanged. Averaging many such
randomly centered delta-peaked distributions creates the
appearance of thermalization at late times. Once again,
we observe an early-time “twin peaks” structure, where
the excitation propagates coherently and ballistically in
both directions. Unlike in most of the swappy regime,
the twin peaks here are well-resolved. The absence of
full thermalization at the near-SWAP point is likely due
to the timescales accessed; with a complete failure to
thermalize at all times associated only with the SWAP
point J = π.

2. Mapping local magnetization to a quasi-probability

To gain a deeper understanding of the transport dy-
namics of the initially localized excitation: we first con-
struct a statistical moment derived from the magnetiza-
tion profile. From this moment we can extract transport
properties (namely transport exponents and drift) which
can in turn be related (via an appropriate choice of ini-
tial state) to high-temperature correlation functions (see
App. F).

To this end, we first construct a quasi-probability dis-
tribution pn(t) by transforming the magnetization profile

CASE:

CASE: CASE:

CASE:

FIG. 4. Representations of R(t) on the complex plane, within
the unitary circle, are shown for the following values of J : (●)
J = 0.395 (localized), ( ) J = 1.374 (ergodic), (■) J = 2.551
(swappy), and (⋆) J = 3.138 (near-SWAP regime). A typical
trajectory from the total Ω = 100 trajectories is highlighted
with a gradient from blue to red, corresponding to t from 0
to 100, and N = 20. The remaining trajectories are displayed
in grey.
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Mn(t) as follows:

pn(t) = 2
Mn(t)−MB

1− 2MB
. (9)

This transformation approximately maps the initial back-
ground magnetization values to zero, pn̸=N/2(0) ≈ 0,
with the excitation at pN/2(t) = 1, and satisfies Kol-
mogorov’s second probability axiom,

∑
n pn(t) = 1, due

to the U(1) symmetry (i.e., conservation of M). Small
fluctuations during the random initial state prepara-
tion may cause Mn(t) < MB, leading pn ̸=N/2(0) to
dip below zero. As a result, pn(t) technically becomes
a quasi-probability distribution, violating Kolmogorov’s
first axiom. However, this effect is minimal and van-
ishes as N → ∞. We observe no pathological behav-
ior due to these small negative values, so we treat pn(t)
as a valid probability distribution. Full thermalization,
Mn(t → ∞) = M/N , results in a uniform distribution,
pn(t→ ∞) ≈ 1/N .
Since we assume periodic boundary conditions for our

model, it is also convenient to introduce the circular
mean; defined by the complex number:

R(t) =
∑
n

pn(t)e
iθn = eiµ(t)−σ(t)2/2, (10)

where θn = π(n−N/2)/N ∈ [−π, π] maps the magnetiza-
tion profile, via the quasi-probability distribution pn(t),
of N spins to a single complex value within the unit circle
|R(t)| ≤ 1. Here, the parameters:

µ(t) = Arg[R(t)], σ(t) =
»
−2log[|R(t)|] ≥ 1, (11)

quantify the position and the spread of the spin excita-
tion, respectively. To see this intuitively, consider the
example of a quasi-probability profile pn = δn,m for a
spin excitation localized at site n = m. It corresponds to
the point R = eiθm on the unit circle, with the argument
µ = θm reflecting the position m of the excitation and
spread parameter σ = 0 indicating that the excitation is
perfectly localized. At the opposite extreme, for the ex-
ample of a completely delocalized spin excitation we have
the quasi-probability profile pn = 1/N . It corresponds to
the point R = 0 at the origin of the unit circle, with the
spread parameter σ = ∞ indicating that the excitation
is completely delocalized (the argument µ is undefined
in this case, since the excitation spread uniformly across
the chain has no well-defined position). We can thus
interpret R(t) as a vector on the complex plane, where
drift of the localized excitation corresponds to rotation
of R(t) about the origin, and delocalization corresponds
to a shrinking of the magnitude of R(t). Taken together,
these allow us to conveniently visualize different kinds of
transport dynamics on the unit circle: diffusion and ther-
malization cause R(t) to move towards the origin, and
coherent transport of an excitation through the system
is realized as rapid rotation of R(t) around the origin.
Our decision to characterize transport via the cir-

cular mean R(t), and via µ(t) and σ(t) as defined in

Eq. (11) (rather than linear first and second moments
of pn [48, 67, 68]) is based on exploiting wrapped nor-
mal distributions as possible descriptions of systems with
periodic boundary conditions. Our reasoning is as fol-
lows: the spreading of excitations in many-body systems
is commonly modeled by a Gaussian distribution [69, 70].
This finds good correspondence with the classical diffu-
sion equation, which in the one dimensional system is

∂f

∂t
= D

∂2f

∂x2
. (12)

Here, an initial delta-function f = δ(x−x0) (analogous to
our initial state of Eq. (7)) experiences a decay of its peak
∼ t−1/2 and growth of the standard deviation as ∼ t1/2.
Our model has periodic boundary conditions such that
when the excitation, and thus the tails of the associated
quasi-probability distribution, reach the boundary they
‘wrap around’ the edge and self-interact. The dynamics
of the quasi-probability distribution can thus heuristi-
cally be captured by a wrapped normal distribution of
the form:

NW(n;µ, σ) ∝
∞∑

k=−∞

exp

ï−(θn − µ+ 2πk)2

2σ2

ò
, (13)

where the summation over k wraps the underlying normal
distribution around the boundary, capturing the interac-
tions of particles that diffuse across boundaries. For such
a distribution, the bare parameters µ and σ in Eq. (13)
are extracted precisely from the circular mean of Eq. (10)
via Eq. (11). A potential limitation of this approach is
that connection between σ(t) and an underlying spread
parameter of Eq. (13) only holds for systems which realize
an approximately wrapped Gaussian form for their mag-
netization profiles. From Fig. 3 we see that this connec-
tion holds everywhere except in (c) and (g): the swappy
regime, which exhibits the staggered patterning at early
times which (see Sec. IVB5). In this case, we instead
exploit the mean position µ(t), from which we extract
a drift speed in Sec. IVB3, to characterize the swappy
regime.

In Fig. 4 we show the dynamics of R(t) for our the
four regimes of our model for the first t = 100 time
steps. We see that for the localized regime (●), there
is no transport of any kind, R(t) remains close to its ini-
tial value for all times and trajectories. In the ergodic
regime ( ), the trajectory exhibits rapid thermaliza-
tion, |R(t)| → 0, but no coherent information transport
occurs. In the swappy regime (■), coherent information
transport is observed, as Arg[R(t)] varies at a relatively
constant rate, in tandem with eventual thermalization,
as |R(t)| → 0. Finally, in the near-SWAP regime (⋆),
coherent information transport persists at a constant rate
even at late times, with no noticeable equilibration, and
|R(t)| remains equal to 1 throughout.
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3. Extracting transport properties

We are now prepared to quantitatively characterize the
transport properties across our four distinct dynamical
regimes. To assess the drift of the initial excitation,
which is notably pronounced in the swappy and near-
SWAP regimes, we define an instantaneous drift speed:

ν(t) =

∣∣∣∣dµ(t)dt

∣∣∣∣ (14)

which, in practice, we modify slightly to account for
discontinuities when excitations cross the boundary (see
[71]). To further quantify the spread of the excitation,
most prominently observed in the ergodic regime, we fit
the parameter σ(t) to the form:

σ(t) ∼ tασ , (15)

and determine the power-law exponent ασ.
To quantify the decay of the initial excitation due to

its spread through the system, we track the maximum
value pmax(t) = maxn pn(t). This is fit to the form

pmax(t) ∼ t−αp , (16)

where αp indicates the decay rate. As discussed in
Sec. IVB1, conventional diffusion corresponds to ασ (or
αp) = 1/2, while ballistic transport aligns with ασ (or
αp) = 1. Anomalous diffusion occurs with ασ (or αp)
< 1/2 for subdiffusion and > 1/2 for superdiffusion.
From each trajectory R(t), we derive the spread σ(t)

and drift speed ν(t) as per Eq. (11) and Eq. (14). Aver-
aging over these realizations, denoted by ⟨A⟩, yields the
sample-averaged spread ⟨σ(t)⟩ and speed ⟨ν(t)⟩. Fig. 5
shows these averaged dynamics: (a) ⟨σ(t)⟩ and (b) ⟨ν(t)⟩,
for a range of values J ∈ (0, π). The four points of inter-
est are highlighted as bold black lines, labeled by their
respective markers.

In Fig. 5(a), we compute the spread parameter ⟨σ(t)⟩
behavior. In the localized regime (●), information
spreads slowly and logarithmically even at late times,
analogously to MBL in continuous-time systems. In the
ergodic regime ( ), ⟨σ(t)⟩ grows as ∼ t1/2, indicating
diffusion until equilibration at t ≈ 102, after which it
saturates. The saturation of ⟨σ(t)⟩ to a constant con-
trasts with the expected divergence ⟨σ(t)⟩ → ∞ at equi-
librium. However, App. E shows that this saturation
is a finite-size effect vanishing as N → ∞. The swappy
regime (■) exhibits rapid thermalization: initially super-
diffusive transport, ⟨σ(t)⟩ ∼ t, transitions to diffusion,
⟨σ(t)⟩ ∼ t1/2, further explored in Fig. 5(c). In the near-
SWAP regime (⋆), spread remains minimal, with only a
slight late-time increase in ⟨σ(t)⟩.
In Fig. 5(b), the instantaneous transport speed ⟨ν(t)⟩

highlights distinct behaviors across regimes. In the lo-
calized regime (●), no movement occurs, with ⟨ν(t)⟩ ≈ 0
throughout. The ergodic regime ( ) shows non-zero
speeds ⟨ν(t)⟩ > 0 at early times t < 10, but stabilizes

to ⟨ν(t)⟩ ≈ 0 at later times. The swappy (■) and
near-SWAP (⋆) regimes both display non-zero speeds
for long times, with high values of ⟨ν(t)⟩ persisting to
extremely long times as J → π approaches the SWAP
point. The peak of ⟨ν(t)⟩ ≈ 2 aligns with the lightcone
speed in brickwork circuits, reflecting the typicality
of the permutation P and the Floquet unitary Û, as
discussed in App. A. Calculations are limited to t < 100
to avoid unreliable speed estimates at stroboscopically
sampled times.

In Fig. 5(c), we analyze the maximum value ⟨pmax(t)⟩.
Its behavior resembles that of ⟨σ(t)⟩ in Fig. 5(a) but in-
verted: high ⟨pmax(t)⟩ values align with minimal spread-
ing, while low values indicate a lack of spreading of the
excitation. We see that, in the localized and near-SWAP
regimes, ⟨pmax(t)⟩ remains constant, or decays extremely
slowly, since the spread of the excitation is suppressed.
In the ergodic and swappy regimes, however, the decay of
⟨pmax(t)⟩ is more rapid, consistent with the rapid spread
of the excitation.

We note that, taken together, our three quantities
⟨σ(t)⟩, ⟨ν(t)⟩ and ⟨pmax(t)⟩ allow us to distinguish the dy-
namical behaviors in our various regimes. For instance,
the spread ⟨σ(t)⟩ shows very similar behavior for both
the swappy (■) and ergodic ( ) regimes, but these two
regimes are clearly distinguished by the speed ⟨ν(t)⟩. On
the other hand, the speed ⟨ν(t)⟩ does not easily distin-
guish the dynamical behaviors in the localised (●) and
ergodic ( ) regimes, but these are easily distinguished
with the quantity ⟨pmax(t)⟩.
.

4. Extracting exponents

Here we process the realization-averaged spread,
⟨σ(t)⟩, the drift speed, ⟨ν(t)⟩, and the peak decay,
⟨σ(t)⟩, to obtain quantities suitable for scaling anal-
ysis of transport properties across system sizes N ∈
{14, 16, 18, 20, 22}.
To determine the transport exponent ασ from the tran-

sient behavior, ⟨σ(t)⟩ ∼ tασ , we focus on intermediate-
time regions exhibiting stable log-log behavior (shaded
in grey in Fig. 5(a)) [72].
The results of the exponent extraction process are dis-

played in Fig. 6(a). Two distinct flat regions emerge: one
at ασ = 0 for very small J , and another at ασ ≈ 1/2 as
J increases through the ergodic regime. As discussed,
the value ασ = 1/2 indicates diffusive transport, though
from Fig. 6(a), it is unclear if ασ stabilizes at this value
as N grows. Larger systems sizes would also be re-
quired to determine if the smooth transitions between
these flat regions sharpens with increasing system size N ,
which would indicate a clearly defined localized-ergodic
crossover. However, our finite-N results are consistent
with the static results in Fig. 2.
In terms of transport properties, this behavior corre-
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FIG. 5. The time evolution of the realization-averaged parameters for various values of J ∈ (0, π), with N = 20 over 100
trajectories, is illustrated for: (a) the spread ⟨σ(t)⟩, (b) drift ⟨ν(t)⟩, and (c) decay of ⟨pmax(t)⟩. Four distinct regimes are
marked with bold lines and symbols: (●) localized, ( ) ergodic, (■) swappy, and (⋆) near-SWAP. The grey-shaded areas
in (a) and (c) highlight the time intervals used to fit the transport exponents ασ and αp, respectively. Due to stroboscopic
sampling limitations, panel (b) is displayed only up to t = 100, effectively capturing all relevant behavior. Error bars are
depicted as shaded semi-transparent regions where visible.
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FIG. 6. In top panel (a) we see the diffusion coefficients ασ

extracted from Fig. 5(a). In the bottom, panel (b), reports
the integrated speed for the on the time interval t ∈ [0, T ],
where T = N/2.

sponds to a crossover from no transport at very small
values of J , through an extended sub-diffusive regime,
into diffusive transport. As J enters the swappy regime
(highlighted as a shaded grey region), ασ drops sharply
and becomes less stable, as indicated by the wider error
bars. This instability is attributed again to the wrapped
Normal distribution being an inadequate model for pn(t)

in this regime (see Fig. 5(c)). We later observe a simi-
lar instability in ⟨pmax(t)⟩ in Fig. 7, wherein the trans-
port exponent fluctuates drastically around unity. Close
to the SWAP point J → π, the results stabilize as ασ

rapidly approaches zero, indicating no spreading of the
excitation.

The results in Fig. 5(b) indicates that the total dis-
tance traveled by the excitation increases as J → π. It
is thus instructive to define a time-averaged drift speed
⟨ν⟩ as:

⟨ν⟩ = 1

T

∫ T

0

⟨ν(t)⟩ dt (17)

which spans from ⟨ν⟩ = 0 in the localized phase to ap-

proximately ⟨ν⟩ ≈ 2 as J → π, approaching the SWAP
point. In this work, we take T to be the time needed
for a SWAP circuit to return an excitation to its original
position, T = N/νtyp, as discussed in App. A.

The results in Fig. 6(b) show smooth, stable behavior

throughout the Jz = π line. We observe that ⟨ν⟩ grows
linearly across the localized and ergodic regimes, falling
exactly to ⟨ν⟩ = 0 in the fully-localized regime (J → 0).

Additionally ⟨ν⟩ increases dramatically up to a maximum

value of ⟨ν⟩ = 2 beyond the point J ≈ 2.1 at which the
transport exponent ασ breaks down in Fig. 6(a). This
behavior remains consistent across all system sizesN , but
no clear crossover is visible and a more comprehensive
finite-size scaling analysis is needed to extract specific
critical values and exponents.

In Fig. 5(b), early-time drift is noticeable in both er-
godic and swappy regimes but quickly stabilizes. A sharp
rise in ⟨ν⟩ in the destabilized ασ region (shaded gray in
Fig. 6) suggests coherent late-time information transport.

As N increases, we observe a small plateau at ⟨ν⟩ = 2,
consistent with App. A, implying that the swappy and
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FIG. 7. Phase diagram of the exponent extracted from the
decay of the ⟨pmax(t)⟩, at N = 20 averaged over 30 trajecto-
ries. We can see a stable area where αp ≈ 1/2 and a clear red
area above it where the value of αp also surpasses 1. Although
this last area does not allow to probe transport coefficients it
allows to identify where the swappy regime takes place.

near-SWAP regimes remain stable for large N , except at
ultra-late times.

We analyze the exponent αp derived from the peak
value ⟨pmax(t)⟩ ∼ t−αp , using the same method applied
for ⟨σ(t)⟩. As shown in Fig. 7(a), we find more robust
and scale-sensitive results than those in Fig. 6(a). The
plateaus at αp ≈ 0 (full localization) and αp ≈ 1/2
(diffusive transport) have stabilized, emerging clearly as
scaling limits as N increases. Although results remain
somewhat unstable as J approaches the swappy regime, a
clearer structure is evident compared to Fig. 6(a). Larger
system sizes N generally increase αp in this region, indi-
cating the onset of very rapid thermalization consistent
with super-diffusive (αp > 1/2) transport exponents. At
J → π, αp nearly vanishes, as expected, since no excita-
tion spreading occurs in this limit.

Finally, we extract the transport exponent αp from
⟨pmax(t)⟩ ∼ tαp across the entire phase diagram to as-
sess the stability of all regimes away from the Jz = π
line (and thus the validity of our schematic intuition in
Fig. 1). These results are shown for N = 20 in Fig. 7(b)
wherein we identify the four regimes unambiguously: (●)
αp ≈ 0 in the localized regime, ( ) αp ≈ 1/2 in the er-

godic regime, (■) αp > 1/2 in the swappy regime, and
(⋆) αp ≈ 0 in the near-SWAP regime as we approach
the DU line. Fig. 7(b) also shows clear crossovers be-
tween these regimes. with the localized-ergodic crossover
consistent with gap ratio results shown in Fig. 2(b). Sur-
prisingly, away from Jz = π we find exponents consistent
with ballistic αp ≈ 1 transport or super-ballistic αp > 1
transport; though the connection between the relaxation
of local observables to true transport properties is ten-
uous, and the nature of transport via e.g. conductance
measurements is a topic worth interrogating in future
research. We remark further on these high exponents
further in our heuristic discussion of the swappy regime
in Sec. IVB5.

5. Prethermalization and the swappy regime

These results collectively establish the existence of a
swappy regime as a distinct feature unique to discrete
many-body systems, and located between the ergodic
regime and DU line. Here we interrogate the stability
and nature of this regime.
Based on our previous results we expect that in the

swappy and near-SWAP regimes the system will eventu-
ally fully thermalize at very late times. However, in this
section we argue that these regimes are characterized by
prethermal behavior, i.e., that the time needed for ther-
malization diverges as we approach the integrable SWAP
point. To verify this interpretation of the swappy regime,
we present (i) a numerical investigation of the time taken
for the system to thermalize; and (ii) a potential mecha-
nism driving the swappy regime.
First, (i) we numerically investigate thermalization

timescales in the swappy regime by computing the time
tp needed for the quantity ⟨pmax(t)⟩ to decay to a spec-
ified threshold value. This time tσ will serve as an es-
timate of the thermalization timescale. Similarly, we
compute the time tp needed for the decay of the excita-
tion ⟨pmax(t)⟩ to reach a specified threshold value, which
we expect to give similar results. We examine the be-
havior of the thermalization timescale as a function of
the parameter J ′ = π − J , which represents the devi-
ation of J from the integrable SWAP point at J = π,
and at which we expect the thermalization time to di-
verge. Our numerical results are plotted in Fig. 8(a) and
(b). We see that, as J ′ decreases to zero (i.e., as we
approach the SWAP point) the thermalization times di-
verge as tp ∝ (J ′)−2.6 and tσ ∝ (J ′)−2.4. Both exhibit a
power-law scaling with an exponent ≈ 2 that is expected
generically for prethermalization due to proximity to an
integrable point [50]. This implies the existence of an
extended prethermal swappy regime. We note that the
precise numerical values of the power-law exponents for
the thermalization times are contingent on our ad-hoc
choice of the threshold values for ⟨pmax(t)⟩ and ⟨σ(t)⟩
that determine our thermalization condition. However,
we have checked that the exponents are ≈ 2 for a broad
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range of threshold values.
Finally, (ii) we suggest a potential mechanism for the

prethermal behaviour in the swappy regime. We suggest
that a potential mechanism for swappy behavior is the
“fragmentation” of the initial excitation into local pop-
ulations reminiscent of the on-site populations of par-
ticles undergoing (potentially directionally-biased) one-
dimensional random walks; i.e. that the swappy regime is
an essentially single-particle phenomenon. Our proposed
mechanism is as follows: near the SWAP point, the ef-
fect of local unitaries Ûn,n+1 on the local magnetization
szn on site n is realized in two ways, (i) the exchange of
most (pn) of szn to the n + 1th site, and (ii) a remnant
(1 − pn) of szn that is left behind on the original site n.
Essentially, we can approximate the dynamics close to
the SWAP point as a classical Markov chain realizing
the evolution of populations according to a classical up-
date rule such as: szn+1 = (1 − pn+1)s

z
n+1 + pns

z
n. For

imperfect SWAP gates, pn < 1, excitations recursively
“split” as consecutive imperfect SWAP gates are applied.
We can explicitly see this splitting behavior realized as a
‘checkerboard’ pattern in Fig. 3(c) and (to a lesser extent
due to averaging) (g). As J → π this splitting behavior
vanishes, as is seen in the near-SWAP regime of Fig. 3(d)
and (h), and we retrieve perfect swap dynamics, even at
late times. This proposed mechanism is exact for small
perturbations J ′ away from the SWAP point along the
diagonal J = Jz = π − J ′, wherein (neglecting the local
disorder terms, and global phases) the local unitary can
be decomposed as:

Ûn,n+1 = e−i(π−J′)Ŝn·Ŝn+1 (18)

= ’SWAPn,n+1

î
I+ iJ ′Ŝn · Ŝn+1

ó
+O(J ′2) (19)

=

Å
1− iJ ′

4

ã’SWAPn,n+1 + i
J ′

2
I+O(J ′2) (20)

such that, after application to some test state,

Ûn,n+1|ψ⟩ ≈
1√
N

ïÅ
1− iJ ′

4

ã
|‹ψ⟩+ i

J ′

2
|ψ⟩
ò

(21)

where ’SWAP|ψ⟩ = |‹ψ⟩, and N is some appropriate nor-
malization constant. This brings the Markov chain de-
scription of short-time dynamics close to the SWAP point
J ′ = 0 discussed above into sharp clarity; with the proba-
bilities pn determined by the value of J ′. As J ′ increases,
the O(J ′) term in Eq. (20) yields noticeable effects on
the dynamics at earlier times. We interrogate these ef-
fects here by extracting prethermal timescales, where we
find numerical evidence supporting our above discussion.
However, a detailed semi-classical analysis of the swappy
regime according to this intuition, and its connection to
the sudden thermalization seen in Fig. 3(c) and (g), is
beyond the scope of this paper, and is deferred to future
study.

101

102

103

N
14 16 18 20 22

1

101

102
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FIG. 8. Prethermal scaling near the SWAP point. Values are
extracted from σ(t), as tσ = inf{t | σ(t) > N/30 + 1.25}
(panel (a)), and from pmax(t), as tp = inf{t | pmax(t) <
2.6/N} (panel (b)). The dotted lines are t ∝ (J ′)−2.4 and
t ∝ (J ′)−2.6, respectively.

V. CONCLUSIONS

Our results address transport across various phases
of a highly generic U(1)-symmetric disordered Floquet
model, revealing a wide array of phenomenological be-
haviors. This includes more conventional localized and
ergodic regimes, exhibiting sub-diffusive and diffusive
transport respectively; and the existence of a “swappy”
regime unique to discrete-time quantum systems, in
which excitations propagate ballistically. To enable this
investigation, we study the model from both static and
dynamic perspectives, by focusing in the zero magneti-
zation subsector. The former is pursued by means of
POLFED, adapted to work in a given magnetization sub-
sector by applying the unitary gate-by-gate. We have
developed and deployed the first circular moment (see
Fig. 4 and discussion thereof): a quantity defined for
periodic systems which directly encodes their transport
properties, and which maps their aggregated dynamics
onto simple yet striking two-dimensional diagrams. This
quantity provides a visual and intuitive way to under-
stand transport across different regimes in periodic sys-
tems; and, as it is singularly composed of local Z-basis
expectation values, is highly amenable to experimental
implementation; paving the way for the near-future ex-
perimental analysis of transport in digital matter. Of this
quantity we analyze the decay, connected to the spread of
the initial excitation, and speed of its phase, from which
we define a notion of drift. Our drift might be linked
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to the concept of entanglement speed [73, 74], particu-
larly in the near-SWAP regime where it aligns with the
characteristics of entanglement speed in DU circuits.

Our results, taken in concert, demonstrate the exis-
tence of a swappy regime which is (i) distinct: exhibiting
a clear ergodic-swappy crossover in the vicinity of J ∼ 2.1
for all investigated dynamical quantities of Sec. IVB,
(ii) dynamical: as it is absent in the static analyses of
Sec. IVA, (iii) prethermal: exhibiting a failure to ther-
malize until late timescales which grow as a power law in
t ∼ (π − J)−2 (see Sec. IVB5), (iv) stable to perturba-
tions in J and Jz (see Fig. 7(b) and discussion thereof),
(v) stable as a function of system size (see e.g. Fig. 6 and
Fig. 8), and (vi) unique to discrete-time Floquet systems,
appearing in the vicinity of the DU line at J = π, which
has no counterpart in continuous models. We also pro-
vide a rough outline of a potential semi-classical mecha-

nism underlying this regime; though we defer a detailed
analysis of this mechanism to future study.
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FIG. 9. Difference of typical drift and BW drift for different
values of N . For N ≤ 10 the value is exact, by studying all
the N ! permutations. We sample 107 trajectories for N ≤ 20,
then 107/3 for N < 50, 106 for N < 250, 106/3 for N < 500,
otherwise 105.

Appendix A: Typical drift

The random permutation of gates enables the restora-
tion of translational invariance by averaging over differ-
ent permutations. This averaged circuit will have some
averaged properties such as an average drift. To analyze
this, we can consider a circuit composed exclusively of
generalized SWAP gates (i.e., J = π, as from Eq. (3))
and investigate the resultant circuit after averaging over
these permutations. Let us focus on the scenario with
same initial state as Eq. (7), namely with an excitation
located at the middle site of the chain. We can define
the drift as an effective speed, calculated as the number
of sites traversed to return to the initial one (N sites)
divided by a time. This time corresponds to the number
of gates applied, normalized over N (i.e., the number of
gates per Floquet cycle).
By studying this, we observe that most efficient cir-
cuits for returning the excitation to its starting site
are the two staircase circuits that begin with the gate
ÛN/2,N/2+1 (or ÛN/2−1,N/2), employing the permutation
P : i 7→ N/2− 1 + i (or P : i 7→ N/2− i). These config-
urations yield a drift value of ν = N . Conversely, when
the staircase geometry is reversed, using permutations
like P : i 7→ N/2− 2 + i or P : i 7→ N/2 + 1− i, the drift
value drops to N2/(N2−2N +2), which tends to 1 as N
grows.
Calculating the drift precisely involves evaluating all N !
possible permutations, and we could not express this in
a closed form. However, by sampling a large number
of permutations, we can accurately estimate the average
drift very accurately.
Our findings reveal that for N ≥ 8, the average drift
decreases monotonically towards 2, corresponding to the
value associated with brickwork circuits. Since brickwork
circuits are the most commonly obtained configuration
under random P , we define this average drift as the typi-
cal drift, denoted by νtyp. For instance, at N = 20, after
sampling 107 trajectories, the average drift was found to
be νtyp ≈ 2.027(6). This power-law-like trend approach-

ing 2 is presented in Fig. 9.

Appendix B: Numerical methods

The entanglement entropy values we compute are de-
rived from the mean of min(d/10, 750) eigenvectors. To
acquire these eigenvectors, we employ polynomial filtered
diagonalization (POLFED) [75], a spectral transforma-
tion akin to the shift-invert method, tailored for unitary
matrices. The Floquet operator Û is redefined as the
operator

K̂ =

K∑
k=0

e−ikϕtgtÛk (B1)

This new operator is non-unitary yet retains the eigen-
vectors of the original Floquet operator. Moreover,
the eigenphases of Û within the interval delimited by
(ϕtgt ± 2π/K) are now transformed such that their
absolute values exceed 1, while the others are less
than 1. This enhances the convergence properties of
the Arnoldi method, which we employ to derive the
eigenphases and eigenvectors of Û. In this study, we
consistently selected ϕtgt = 0. For the parameter K, we
adopted the recommendation from Ref. [75], setting K
to 0.4 d/min(d/10, 750).

The numerical method we developed circumvents the
need to construct the entire Û matrix. Instead, we ap-
ply each gate directly to the state vector, leveraging the
fact that both static and dynamic analyzes necessitate
the application of the Floquet operator to a state. This
allows the memory cost of diagonalising Û to be O(d) and
the number of operations to be O(Ld), similar to what
pointed out in Ref. [50].
Our approach involves recording the action of a gate on
the first two spins of a state |ψ⟩. If a gate acts on spins a
and a+1, we shift the system by −a sites, apply the gate
to the first two spins, and then shift the system back to
its original configuration.
To implement this, we require two key components.
First, we must determine the value of the first two spins
for each element of |ψ⟩. The state is represented as a
d-vector:

|ψ⟩ =
∑
i

ci|i⟩ (B2)

where the i-th element corresponds to the |i⟩ state.
Hence, we need to identify which segments of the
d-vector have the first and second spins up, namely
which of the ci are associated with a |i⟩ with first and
second spin up.
The second ingredient involves the transformation f(1),
which maps a state from sites 0, . . . , N − 1 to the
corresponding state on sites N − 1, 0, . . . , N − 2. By
recursively applying f(1), we can achieve the required
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shift, i.e., f(a) = fa(1). This strategy offers a significant

memory advantage, as it only necessitates storing vectors
of size d Although this comes with a cost in the number
of operations —each gate of Û or K̂ must be applied se-
quentially— the memory efficiency of this method allows
for better parallel computation of multiple trajectories,
which is crucial for disorder averaging.

To compute the entropy, we can reduce the computa-
tion to different magnetization sub-sectors. Specifically,
the entanglement entropy, given by Eq. (4), can be calcu-
lated by reshaping the state |ψ⟩ into a dA×dB matrix and
extracting its Schmidt coefficients si via Singular Value
Decomposition (SVD). The von Neumann entropy of |ψ⟩
is then

S(|ψ⟩) = −
∑
i

s2i ln s
2
i . (B3)

Among these steps, the SVD is the most computationally
intensive. However, we can exploit the structure of the
system further. The space dA can be decomposed as

H(M)
A =

N/2⊕
MA=−N/2

H(M)
A,(MA). (B4)

Given that |ψ⟩ resides in H(M) with M = 0, if the A
part has magnetization MA, the B part will have mag-
netization MB = M −MA. Consequently, for each MA

value we can isolate the component of |ψ⟩ in H(M)
A,(MA),

reshape it into a d
(M)
A,(MA)×d

(M)
B,(MB) matrix, and compute

the SVD on this smaller matrix. In other terms, we split
the zero-magnetization sub-sector as

H(M) =

N/2⊕
MA=−N/2

H(M)
A,(MA) ⊗H(M)

B,(M−MA). (B5)

The total entanglement entropy of the state is then given
by

S(|ψ⟩) = −
∑
MA

∑
i∈MA

s2i ln s
2
i . (B6)

By sidestepping the full d-state vector’s SVD, the
process of extracting entanglement entropy becomes
more efficient, and significantly more manageable.

Appendix C: Reduction of four phases to two plus
the Peierls phase in U(1)-symmetric gates

Although the gate Ûn,n+1, defined in Eq. (1), remains
the most general U(1)-symmetric gate, we preferred, for
the purposes of our numerical method, to precompute
Ĥn,n+1 without phases and then add them individually
gate by gate.

The initial gate we employ is

V̂n,n+1 =e−iθ
(n)
1 /2σ̂z

ne−iθ
(n)
2 /2σ̂z

n+1

e−iJ/4 σ̂x
nσ̂

x
n+1e−iJ/4 σ̂y

nσ̂
y
n+1e−iJz/4 σ̂z

nσ̂
z
n+1

e−iθ
(n)
3 /2σ̂z

ne−iθ
(n)
4 /2σ̂z

n+1

(C1)

where the Pauli operators are swapped out for spin op-
erators:

σ̂z = Ŝz/2 σ̂± = Ŝ±. (C2)

(C3)

This substitution yields the expression:

V̂n,n+1 =e−iJz Ŝz
nŜ

z
n+1e−iθ

(n)
1 Ŝz

ne−iθ
(n)
2 Ŝz

n+1

e−iJ/2 (Ŝ+
n Ŝ−

n+1+Ŝ−
n Ŝ+

n+1)

e−iθ
(n)
3 Ŝz

ne−iθ
(n)
4 Ŝz

n+1 .

(C4)

Due to the commutativity of the two-body terms, this
simplifies to:

V̂n,n+1 =e−iJz Ŝz
nŜ

z
n+1e−iθ

(n)
1 Ŝz

n−iθ
(n)
2 Ŝz

n+1

e−iJ/2 (Ŝ+
n Ŝ−

n+1+Ŝ−
n Ŝ+

n+1)

eiθ
(n)
1 Ŝz

n+iθ
(n)
2 Ŝz

n+1

e−i(θ
(n)
1 +θ

(n)
3 )Ŝz

n−i(θ
(n)
2 +θ

(n)
4 )Ŝz

n+1

(C5)

where the Ŝ± operators, flanked by opposite phases, gen-
erate the Peierls phase, condensing the notation into:

V̂n,n+1 =e−iJz Ŝz
nŜ

z
n+1

e
−iJ/2

Å
Ŝ+
n Ŝ−

n+1e
i(θ

(n)
1 −θ

(n)
2 )+Ŝ−

n Ŝ+
n+1e

−i(θ
(n)
1 −θ

(n)
2 )

ã
e−i(θ

(n)
1 +θ

(n)
3 )Ŝz

n−i(θ
(n)
2 +θ

(n)
4 )Ŝz

n+1

=Ûn,n+1

(C6)

where Ûn,n+1’s parameters are:

ϕn = θ
(n)
1 −θ(n)2 , αn = θ

(n)
1 +θ

(n)
3 , and βn = θ

(n)
2 +θ

(n)
4 .

(C7)
Owing to the 2π periodicity of ϕn, αn, and βn, the sum or

difference of the uniformly distributed θ
(n)
k within [−π, π]

ensures that the resulting parameters are uniformly dis-
tributed in [−π, π] as well.
This eventually proves that the black gates of Fig. 1(a)

can be decomposed either as Eq. (1) or Eq. (C1):

(C8)

Appendix D: Discretized Wrapped Normal
distribution

As discussed in Sec. IVB2, to quantify the rate of
spreading, we compare the distribution of pn(t) with a
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FIG. 10. Difference between the circular variance of discrete
Wrapped Normal distributions compared to the continuous
one. ∆Var[σ] is defined as difference between continuous and
discrete wrapped normal distribution.

0

1

2

3

0 21 3
TRANSVERSE COUPLING (  )

N

14

16

18

20

22

FIG. 11. Maximal value for the σ function for different system
sizes and different J , along the Jz = π line. We can notice
how the curves seems to be estensive and so grow linearly
with N .

wrapped Normal distribution. Since the wrapped Normal
distribution has a continuous support, a more rigorous
approach might be to discretize it. This discrete version
of the wrapped Normal distribution would be defined as:

q̃n(σ) =

∞∑
k=−∞

e−(θn+2πk)2/2σ2

, (D1)

with the normalized form given by

qn(σ) =
q̃n(σ)∑
n q̃n(σ)

, (D2)

which introduces a more complex procedure for extract-
ing σ, as there is no closed-form relationship between σ
and V ar[σ]. However, for already small values of N , the
differences between the continuous and discrete distribu-
tions are minimal, and the added complexity does not sig-
nificantly improve accuracy. In Fig. 10, we compare the
variances of the continuous and discrete wrapped Nor-
mal distributions for different values of N . Our results
indicate that, given the number of qubits in our simu-
lations, the two distributions closely align, showing that
the continuous approximation is sufficiently accurate.

Appendix E: Finite size scaling of saturation values
of the spread parameter

In Sec. IVB4 of the main text, we observed a dis-
tinct plateau in the late-time behavior of ⟨σ(t)⟩ as sys-
tems reach thermalization. This observation might seem
counterintuitive, given that in a fully thermalized state,
we would expect a uniform distribution with |R(t)| → 0,
implying σ(t) → ∞ according to Eq. (13).
Here, we provide straightforward numerical evidence

indicating that this plateau is a finite-size effect. Possi-
ble explanations for this effect include: (a) the wrapped
Normal distribution only accurately represents pn(t) in
the continuum limit N → ∞, or (b) finite-dimensional
systems lack the ability to fully self-thermalize. In
Fig. 11, we display the maximum value of σ over the first
T = 1000 time steps for various values of N . For values
of J where the system thermalizes within this timeframe,
⟨σmax⟩ reaches a plateau that grows steadily with N .

Appendix F: Expanded Transport

Transport coefficients and exponents in many-body
physics are typically derived from linear response the-
ory [68]. In this Appendix we briefly review how the
magnetization profile Mn(t) for our particular choice of

the initial random state P̂ ↑
N/2|ψrand⟩, an in particular the

resulting semiprobability pn(t), corresponds to the two-

point correlation function of the spin z-operator Ŝz
n.

We divide our discussion into three steps. First, we il-
lustrate how the spin profile of our initial state aligns
with the correlation function of Ŝz

n within the complete
Hilbert space. Second, we demonstrate how this can be
tailored to the M -sub-sector. Finally, we connect this
framework to typical random states, thereby fully linking
our discussion to the definition of Mn(t) of Sec. IVB1.

1. Dynamical correlation function in the full
Hilbert space

These coefficients are extracted from spatiotemporal
correlations, which, in systems that conserve the total
spin component Ŝz

tot, are defined as follows:

Cn,n′(t) = Tr[Ŝz
n(t)Ŝ

z
n′ ]. (F1)

First we observe that the unpropagated spin operator can
be decomposed as:

Ŝz
n′ = Î⊗N−1

2 ⊗
Ä
|↑ ⟩⟨ ↑ | − Î2/2

ä
n′

(F2)

= P̂ ↑
n′ − Î⊗N

2 /2 (F3)

where Î2 is the local two-dimensional identity, the sub-
script n′ denotes which local Hilbert space the relevant
local spin-z operator must be inserted into, and where the
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projector P̂ ↑
n′ = Î⊗N−1

2 ⊗ |↑ ⟩⟨ ↑ |n′ projects the n′-th site
onto the spin-up state. Direct substitution of Eq. (F3)
into the correlation function yields

Cn,n′(t) = Tr
î
Ŝz
n(t)P̂

↑
n′

ó
− Tr[Ŝz

n(t)]/2. (F4)

wherein the second term reduces to zero by simple ob-
servance that spin operators are traceless Tr[Ŝz

n(t)] = 0.
The first term intuitively corresponds to the simple ex-
pectation value of the spin-z operator on the n-th site at
time t, conditioned on the initial state being a maximally
mixed state with the n′-th site projected into the spin-up
state.

This intuition becomes even more developed when one
considers the stochastic trace estimation approach to ac-
tual numerical computation of Eq. (F4). In practice,
explicit calculation of the trace is computationally ex-
pensive, with a number of operations that näıvely scales
as D2 (where D is the dimensionality of the total sys-
tem). It is therefore commonly computed stochastically
[76, 77]:

Cn,n′(t) ≃ 1

R

R∑
r=1

⟨ψr|Ŝz
n(t)P̂

↑
n′ |ψr⟩. (F5)

where |ψr⟩ are random states, generated following the
method of [77]. The accuracy of this approximation fol-

lows central limiting behavior, scaling as O(1/
√
RD);

thus we can set R = 1 and retrieve sufficiently accu-
rate results by taking large system sizes D = 2N [9].
This approach replaces the stochastic average with the
expectation value evaluating using single ‘typical’ state
|ψtyp⟩ (i.e., a single realization of |ψr⟩). By absorption of
the identities into the state vector |ψr⟩, exploitation of

the projector property (P̂ ↑
n′)2 = P̂ ↑

n′ , the cyclicity of the
trace, and by moving out of the Heisenberg picture, we
arrive at the following form for the correlation function:

Cn,n′(t) ≃ ⟨ψtyp|P̂ ↑
n′Û†tŜz

nÛtP̂ ↑
n′ |ψtyp⟩. (F6)

We can interpret Eq. (F6) as corresponding to an average

of Ŝz
n expectation values computed over (un-normalized)

trajectories |ψn′(t)⟩ = ÛtP̂ ↑
n′ |ψtyp⟩ of random initial

states, which subsequently have their n′-th site projected
onto the spin-up state, and are then propagated in time
by the repeated application of t Floquet unitary lay-
ers. This approach has two main advantages: it gives
us a clear prescription for computing correlation func-
tions given limited resources, and it provides an intuitive
connection between the significance that correlation func-
tions have with respect to transport due to the revelation
that they are composed of initial excitations which then
spread.

In this article, we restrict our analysis to systems with
periodic boundary conditions, and - whilst individual cir-
cuits are not translationally invariant - we thus expect the
transport properties to be translationally invariant given

sufficient realizations. Thus without loss of generality we
set n′ = N/2, and consider the magnetization profile:

Mn(t) =
1

Λ
⟨ψN/2(t)|Ŝz

n|ψN/2(t)⟩ ≈
1

Λ
Cn,N/2(t) (F7)

where Λ = |⟨ψN/2(0)|ψN/2(0)⟩|2 ≈ 1/2 accounts for nor-
malization of the initial state. Importantly, Eq. (F7) con-
nects the magnetization profile to the correlation func-
tions, which in turn encode information about transport.
This approach offers a straightforward method for an-
alyzing transport in large systems: generate a random
state, project a single site onto the local spin-up state,
dynamically evolve the state, and then probe the magne-
tization profile.
Due to our decision to interrogate systems with a U(1)

symmetry, we further insist that the initial typical state
|ψtyp⟩ is drawn exclusively from a subsector of fixed mag-

netization ⟨Ŝz
tot⟩ = M =

∑
nMn(t). As discussed in the

main text, we considered the zero-magnetization M = 0
subsector throughout. This is the largest possible sub-
sector in the total space, with dimension

(
N

N/2

)
, and thus

yields the most accurate typical-state trace estimation
(as per our discussion of Eq. (F5)).
It is instructive to now determine the initial magneti-

zation profile Mn(0). The initial state 1√
Λ
P̂ ↑
N/2|ψtyp⟩ is

prepared as per the discussion of Eq. (F6) and Eq. (F7)
and as discussed, for large systems it becomes a good
approximation of Eq. (7).
Finally, we emphasize that a single realization of our

model consists of (a) drawing a random state |ψtyp⟩
from which the initial state is generated, (b) generat-
ing spatial disorder embodied by drawing random phases
{(αn, βn, ϕn)}, and (c) generating a random permutation
P (n) to define the circuit architecture. As per the typ-
icality discussion above, the randomization over initial
states is of negligible importance; we simply include it
for completeness. The transport of the spin inhomogene-
ity at n = N/2, as captured by the magnetization profile
Mn(t), and the extraction of transport exponents are the
foci of this study.

2. Dynamical correlation function in the
M -subspace

The discussion can be adapted to our situation, where
instead of working on the full Hilbert space, we limit it to
H(M). Let us define the dynamical correlation function
restricted to the M -subspace as:

C
(M)
n,N/2(t) = Tr[P̂M Ŝ

z
N/2(t)Ŝ

z
n] (F8)

where P̂M =
∑d−1

i=0 |iM ⟩⟨iM | is the projector onto the

magnetization subspace (with the basis {|iM ⟩}d−1
i=0 ). We

can check how C
(M)
n,N/2(t) is related to Cn,N/2(t). Since
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Tr[•] ≡
∑N/2

M=−N/2 Tr[P̂M•] we have:

Cn,N/2(t) =

N/2∑
M=−N/2

C
(M)
n,N/2(t). (F9)

We will see how to interpret C
(M)
n,N/2(t) as the evolution

of a perturbed initial state ρ̂(0), followed by a measure-
ment, similarly as done for Cn,N/2(t). We have defined
the initial state as:

ρ̂(0) = P̂M

[
| ↑⟩⟨↑ |N/2 ⊗

Ç
Î2
2

å⊗(N−1)]
P̂M . (7)

We can notice that:

Tr[P̂M Ŝ
z
n(t)]

(1)
=Tr[P̂M Ŝ

z
n]

(2)
=

1

N

N−1∑
n=0

Tr[P̂M Ŝ
z
n]

=
1

N
Tr[P̂M Ŝ

z
tot] =

MdMN
N

(F10)

where (1): [P̂M , Û] = 0 and (2): since P̂M is invariant

under permutation of spins, and dMN =
(

N
N
2 +M

)
. There-

fore

C
(M)
n,N/2(t) = Tr[P̂M Ŝ

z
n(t)P̂

↑
N/2]− Tr[P̂M Ŝ

z
n(t)]/2 (F11)

becomes

C
(M)
n,N/2(t) = Tr[P̂M Ŝ

z
n(t)P̂

↑
N/2]−

MdMN
2N

. (F12)

This eventually leads to:

C
(M)
n,N/2(t) = Tr[Ŝz

n(t)ρ̂(0)]−
MdMN
2N

=Mn(t)−
MdMN
2N

.

(F13)

3. Dynamical correlation function in the
M -subspace through typicality

The last step remaining to connect Mn(t) with the
correlation functions involves typical states in the H(M)

space. In Ref. [8], it was shown how to calculate the
(full space) dynamical correlation function Cn,N/2(t) =

1
2N−2Tr[Ŝ

z
n(t)Ŝ

z
N/2(t)] by measuring an expectation value

of a time-evolved typical random state. The basic idea is
to use the fact that for a typical random state |ψtyp⟩, in
a d-dimensional Hilbert space, we have:

⟨ψtyp|Â|ψtyp⟩ ≃
1

d
Tr[Â] +O

Å
1

d

ã
(F14)

for any observable A (see also Ref. [77]), i.e., the trace
of an operator is well approximated by taking its expec-
tation value with respect to |ψtyp⟩. This is useful for

computing dynamical correlation functions because the

expressions for Cn,N/2(t) and C
(M)
n,N/2(t) are expectation

values Tr[Ŝz
n(t)ρ̂N/2(0)], where ρ̂N/2(0) =

1
d̃
Îd̃ ⊗ P̂ ↑

n′ and

d̃ = 2N−1 for Cn,N/2(t), or d̃ = d′ =
( N−1

N−1
2 +M− 1

2

)
for

C
(M)
n,N/2(t). Such a trace can be computed via typical

random states by:

Tr[Ŝz
n(t)ρ̂N/2(0)] =

1

d̃
Tr
î
Ŝz
n(t)
Ä
Îd̃ ⊗ P̂ ↑

n′

äó
=

1

d̃
Tr
î
Ŝz
n(t)P̂

↑
n′

ó
≃ d

d̃
⟨ψtyp|Ŝz

n(t)|ψtyp⟩,

(F15)

where d is the dimension of the space over which the
trace is operating, i.e., d = 2N if its the full space

⇒ d
d̃
= 2N

2N−1 = 2, or, d = dNM =
(

N
N
2 +M

)
if its a magne-

tization sub-sector ⇒ d
d̃
=

dN
M

dN−1

M− 1
2

= N
N
2 +M

. So, defining

|ψtyp,N/2⟩ = P̂ ↑
n′ |ψtyp⟩/

»∣∣⟨ ↑ |N/2|ψtyp⟩
∣∣2 we have:

Tr[Ŝz
n(t)ρ̂N/2(0)] ≃


2
∣∣⟨ ↑ |N/2|ψtyp⟩

∣∣2 ⟨ψtyp,N/2|Ŝz
n(t)|ψtyp,N/2⟩,

if |ψtyp⟩ in full space
N

N
2 +M

∣∣⟨ ↑ |N/2|ψtyp⟩
∣∣2 ⟨ψtyp,N/2|Ŝz

n(t)|ψtyp,N/2⟩,
if |ψtyp⟩ in M -subspace

(F16)
Finally, calculate:

∣∣⟨ ↑ |N/2|ψtyp⟩
∣∣2 =

1

2

Ä
⟨ψtyp|Ŝz

N/2|ψtyp⟩+ 1
ä

=

®
1
2 if |ψtyp⟩ in full space
1
2 (

2M
N + 1) if |ψtyp⟩ in M-subspace

(F17)

so that:

Tr[Ŝz
n(t)ρ̂N/2(0)] ≃ ⟨ψtyp,N/2|Ŝz

n(t)|ψtyp,N/2⟩ (F18)

in either scenario. Substituting into our equations for

Cn,N/2(t) and C
(M)
n,N/2(t) gives:

Cn,N/2(t) = Tr[Ŝz
n(t)ρ̂N/2(0)] = ⟨ψtyp,N/2|Ŝz

n(t)|ψtyp,N/2⟩
(F19)

with |ψtyp,N/2⟩ in full space and

C
(M)
n,N/2(t) =γTr[Ŝ

z
n(t)ρ̂N/2(0)]− η

=γ⟨ψtyp,N/2|Ŝz
n(t)|ψtyp,N/2⟩ − η

(F20)

with |ψtyp,N/2⟩ in M -subspace.
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