A new lower bound for the multicolor Ramsey number $r_k(K_{2,t+1})$

Vladislav Taranchuk ¹

November 22, 2024

Abstract

In this short note, we provide a new infinite family of $K_{2,t+1}$ -free graphs for each prime power t. Using these graphs, we show that it is possible to partition the edges of K_n into parts, such that each part is isomorphic to our $K_{2,t+1}$ -free graph. This yields an improved lower bound to the multicolor Ramsey number $r_k(K_{2,t+1})$ when k and t are powers of the same prime. For these values of k and t , our coloring implies that

 $tk^{2} + 1 \leq r_{k}(K_{2,t+1}) \leq tk^{2} + k + 2.$

where the upper bound is due to Chung and Graham.

1 Introduction

Let $k \geq 1$ be an integer. The Ramsey number $r_k(F)$ denotes the smallest number of vertices n such that in any k-coloring of the complete graph K_n , there exists a monochromatic copy of F (i.e. F is a subgraph of one of the color classes). Ramsey theory has received much attention over the last century with a number of ground breaking results appearing the last few years [\[1,](#page-6-0) [11,](#page-7-0) [3,](#page-6-1) [13,](#page-7-1) [15\]](#page-7-2). We contribute to this area by improving the lower bound for $r_k(K_{2,t+1})$ for infinitely many k and t.

Chung and Graham [\[6\]](#page-6-2) proved that

$$
r_k(K_{2,t+1}) \le \begin{cases} k^2 + k + 1 & \text{if } t = 1\\ tk^2 + k + 2 & \text{if } t > 1 \end{cases}
$$

They conjectured that when $t >> S$, $r_k(K_{s,t}) = (t-1)k^s + o(k^s)$. Chung [\[5\]](#page-6-3) in her dissertation had demonstrated that when $s = 2$,

$$
\lim_{t \to \infty} \frac{r_k(K_{2,t})}{t} = k^2
$$

implying the correct asymptotics up the constant term of t in the conjecture. However, it was not until Axenovich, Füredi, and Mubayi [\[1\]](#page-6-0) that the conjecture was verified for $s = 2$. Their coloring relied on the construction of Füredi of a dense $K_{2,t}$ -free graphs [\[7\]](#page-7-3). In particular, the result from [\[1\]](#page-6-0) implies that given any integer t , and there are infinitely many k for which a graph of order tk^2 can be colored with $k + O(\sqrt{tk} \log(tk))$ colors such that each color class is $K_{2,t+1}$ -free. For large k, this roughly implies the lower bound

$$
tk^2 - c_t k^{3/2} \log(k) \le r_k(K_{2,t+1})
$$
\n(1)

for some constant c_t dependent on t . The authors leverage a prime density argument to demonstrate that the leading term asymptotics are correct. In this paper, we give an explicit coloring which removes the lower order term in (1) entirely when k and t are any powers of the same prime.

For $s = 2$ and $t = 1$, incremental progress has been made by Chung [\[4\]](#page-6-4), Irving [\[9\]](#page-7-4), and most recently by Lazebnik and Woldar [\[11\]](#page-7-0). In [\[11\]](#page-7-0), the authors gave an explicit coloring which showed that $r_k(K_{2,2}) \geq k^2 + 2$ when k is an odd prime power. Thus, when k is an odd prime power we have the bounds

$$
k^2 + 2 \le r_k(K_{2,2}) \le k^2 + k + 1. \tag{2}
$$

We will demonstrate that lower bound extends to the case when k is an even prime power as well.

Let $ex(n, F)$ denote the maximum number of edges in an F-free graph on n vertices. This function is called the Turán number of F. The Ramsey number $r_k(F)$ and Turán number are related in the following way: If $r_k(F) = n + 1$, then

$$
ex(n, F) \ge \frac{1}{k} \binom{n}{2}.
$$

Füredi's construction of $K_{2,t+1}$ -free graphs gives the best-known lower bound for $ex(n, K_{2,t+1})$ [\[7\]](#page-7-3). Together with the best-known upper bound due to Hyltén-Cavallius $[8]$ (which is a small improvement over the famous Kövári, Sós, and Turán theorem $[10]$, we have that

$$
\frac{\sqrt{t}}{2}n^{3/2} - \frac{n}{2} < ex(n, K_{2,t+1}) < \frac{1}{2}n\sqrt{tn - t + 1/4} + \frac{n}{4}
$$

for infinitely many n . The lower order term in the lower bound can be improved for specific n by performing a case by case analysis of Füredi's construction. A prime density argument implies that the leading term asymptotics in this construction are correct for all n . Until now, Füredi's construction is the only know construction capable of producing infinite families of $K_{2,t+1}$ -free graphs with the right edge count and for infinitely many t.

In this paper, we generalize the approach of Lazebnik and Woldar [\[11\]](#page-7-0) to give two main results. The first is a new construction of $K_{2,t+1}$ -free graphs which is yields an equal or slightly improved lower bound for $ex(n, K_{2,t+1})$ over Füredi's construction when t is a prime power.

Theorem 1.1. Let q and t be powers of the same prime with $t < q$. If $n = q^2/t$, then

$$
\frac{\sqrt{t}}{2}n^{3/2} - \frac{\sqrt{tn}}{2} \le ex(n, K_{2,t+1}).
$$

Second, we use this construction to give a coloring that gives a result similar in spirit to [\(2\)](#page-1-1). Just like in [\[11\]](#page-7-0), a nice property of our coloring is all the color classes are all isomorphic to our construction which yields Theorem [1.1.](#page-2-0) Such decompositions of K_n are exceedingly rare, and algebraically defined graphs seem to be the only known class of graphs which seem to be able to consistently produce such decompositions [\[12\]](#page-7-7).

Theorem 1.2. Let t and k be powers of the same prime, then

$$
tk^2 + 1 \le r_k(K_{2,t+1}).
$$

An observation will also lead us to extending the result in [\[11\]](#page-7-0) to even prime powers.

Theorem 1.3. Let $k = 2^e$. Then

$$
k^2 + 2 \le r_k(C_4).
$$

2 A $K_{2,t+1}$ -free graph

Let p be a prime and $q = p^e$, and \mathbb{F}_q be a finite field of order q. Given a positive integer $d < e$, let $f(x)$ be an \mathbb{F}_p -linear polynomial (i.e. $f(x + y) = f(x) + f(y)$) in $\mathbb{F}_q[x]$ with p^d roots. We note that such a polynomial always exists as it can be thought of as a linear transformation of rank $e - d$ on the vector space \mathbb{F}_p^e . Denote the range of $f(x)$ by the set $R_f = \{f(x) : x \in \mathbb{F}_q\}$. Since $f(x)$ is \mathbb{F}_p -linear, we know that R_f is closed under addition and that $|R_f| = p^{e-d}$.

Define the graph Γ_f with vertex set $V = \mathbb{F}_q \times R_f$. Two distinct vertices $(v_1, v_2), (w_1, w_2) \in$ V are adjacent if and only if

$$
v_2 + w_2 = f(v_1 w_1). \tag{3}
$$

Let $t = p^d$ and note that $|V| = q|R_f| = q^2/t$.

Claim: Γ_f is $K_{2,t+1}$ -free.

Proof. Observe that given any vertex $v = (v_1, v_2)$, and any $\alpha \in \mathbb{F}_q$, $\alpha \neq v_1$, the vertex (v_1, v_2) has a unique neighbor with first coordinate α . In particular, using [\(3\)](#page-2-1), we have that v is adjacent to $(\alpha, f(\alpha v_1) - v_2)$.

Let $v = (v_1, v_2)$ and $w = (w_1, w_2)$ be two vertices in Γ, we will show that they cannot have more than t common neighbors. If $v_1 = w_1$, then v and w share no common neighbors because if they did, it would imply that this common neighbor is adjacent to two distinct vertices with same first coordinate, a contradiction. So we suppose that $v_1 \neq w_1$.

Let $x = (x_1, x_2) \in V$ be a common neighbor of both v and w. Then the equations

$$
x_2 + v_2 = f(x_1 v_1) \tag{4}
$$

$$
x_2 + w_2 = f(x_1 w_1) \tag{5}
$$

must be satisfied by (x_1, x_2) . Subtracting equation (5) from equation (4), we obtain that

$$
v_2 - w_2 = f(x_1(v_1 - w_1)).
$$
\n(6)

Thus if x is adjacent to v and w, it's first coordinate must be a solution to [\(6\)](#page-3-0). Since $v_1 \neq w_1$, then we know that the polynomial on the right hand side is not 0. Let $a = v_1 - w_1$ and $b = v_2 - w_2$, then x_1 satisfies

$$
f(ax_1) = b
$$

Since $b \in R_f$, then we know that there exists at least one solution. On the other hand, $f(x)$ is \mathbb{F}_p -linear over \mathbb{F}_q and has $t = p^d$ roots and so must in-fact be a t-to-1 mapping. Therefore, there are exactly t different values of x_1 which satisfy [\(6\)](#page-3-0), and so v and w have at most t common neighbors. Thus Γ_f is $K_{2,t+1}$ -free. \Box

To determine the exact number of edges in Γ_f we need to count the number of vertices of degree q and degree $q-1$. Note that the beginning of the proof of the claim above implies that each vertex has degree at least $q - 1$. To account for the remaining edges, note that adjacency relation [\(3\)](#page-2-1) implies that some vertices (v_1, v_2) are adjacent to distinct vertices with same first coordinate, (v_1, v_3) . In particular, we have (v_1, v_2) is adjacent to (v_1, v_3) if and only if

$$
v_2 + v_3 = f(v_1^2).
$$

Such vertices have degree q. A vertex has degree $(q - 1)$ if the equation above only holds when $v_2 = v_3$. So we count the number of solutions in V to the equation.

$$
2v_2 = f(v_1^2)
$$

- If q is even, then (v_1, v_2) is a solution of $0 = f(v_1^2)$ if and only if v_1^2 is a root of $f(x)$. Since x^2 is a permutation of \mathbb{F}_q then we know that there are t such values of v_1 . The second coordinate v_2 belongs to R_f , so there are $t|R_f| = q$ solutions.
- If q is odd, then we have $2v_2 = f(v_1^2)$. For each $v_1 \in \mathbb{F}_q$, there exists a unique v_2 which solves the equation. Thus there are q solutions to this equation as well.

Consequently, Γ has q vertices of degree $(q-1)$ and $(q^2/t) - q$ vertices of degree q. Let $n = |V| = q^2/t$, then the number of edges in Γ_f is

$$
\frac{1}{2}\left(q\left(\frac{q^2}{t}-q\right)+(q-1)q\right)=\frac{q^3}{2t}-\frac{q}{2}=\frac{\sqrt{t}}{2}n^{3/2}-\frac{\sqrt{tn}}{2}
$$

This finishes the proof of Theorem [1.1.](#page-2-0)

3 A lower bound for $r_k(K_{2,t+1})$

Let p be a prime, $q = p^e$, and $f(x) \in \mathbb{F}_q[x]$ be an \mathbb{F}_p -linear polynomial with $t = p^d$ roots (for some $d < e$). We now demonstrate how the graphs Γ_f can be used to partition the edges of K_n , when $n = q^2/t$, into $k = |R_f|$ color classes, such that each class is $K_{2,t+1}$ -free.

Denote the k colors by the elements of R_f and label the vertices of K_n by the set $V = \mathbb{F}_q \times R_f$. Assign the color $\alpha \in R_f$ to the edge between (v_1, v_2) and (w_1, w_2) if

$$
v_2 + w_2 + \alpha = f(v_1 w_1).
$$

Clearly, no edge can be assigned two different colors in this way. Furthermore, if (v_1, v_2) and (w_1, w_2) are distinct vertices, then setting

$$
\alpha = f(v_1w_1) - v_2 - w_2,
$$

demonstrates that this edge belongs to the color class α and so each edge receives a color. Denote by $\Gamma_{f,\alpha}$ the subgraph of K_n defined by the color class α . Observe that $\Gamma_{f,0} = \Gamma_f$.

Lemma 3.1. $\Gamma_{f,\alpha} \cong \Gamma_f$.

Proof. Here we will provide an isomorphism depending on if q is odd or q is even. It is straight forward to verify the isomorphism.

• If q is odd, define $\Phi_{\alpha}: V \to V$ by

$$
\Phi_{\alpha}((v_1, v_2)) = (v_1, v_2 - 2^{-1}\alpha)
$$

Then Φ_{α} is an isomorphism from Γ_f to $\Gamma_{f,\alpha}$. In particular, we observe that $\Phi_{\alpha}((v_1, v_2))$ is adjacent to $\Phi_{\alpha}((w_1, w_2))$ in $\Gamma_{f,\alpha}$ if and only if

$$
(v_2 - 2^{-1}\alpha) + (w_2 - 2^{-1}\alpha) + \alpha = f(v_1w_1) \iff v_2 + w_2 = f(v_1w_1).
$$

The last equality holds true if and only if (v_1, v_2) is adjacent to (w_1, w_2) in Γ_f .

• If q is even, then x^2 is a permutation of \mathbb{F}_q . Thus, for each $\alpha \in R_f$, there exists a solution to $f(x^2) = \alpha$. Let β be such a solution and define $\Phi_{\beta}: V \to V$ by

$$
\Phi_{\beta}((v_1, v_2)) = (v_1 + \beta, v_2 + f(\beta v_1)).
$$

Then Φ_{β} is an isomorphism from Γ_f to $\Gamma_{f,\alpha}$. A similar calculation as in the odd case verifies the isomorphism.

Consequently, each of the k color classes is $K_{2,t+1}$ -free. Note that the only constraint on the relationship between k and t is that $q = kt$. Thus, given any two powers of the same prime k and t, and setting $q = kt$, the above implies Theorem [1.2.](#page-2-2)

 \Box

4 A lower bound for $r_k(C_4)$ when $k = 2^e$

The coloring we provide which yields Theorem [1.2](#page-2-2) is very similar to the one given in [\[11\]](#page-7-0) to lower bound $r_k(C_4)$. Note that one key difference is that our coloring works when $k = 2^e$, while Lazenik and Woldar's coloring is only given for k and odd prime power.

We wish to quickly demonstrate that the coloring in [\[11\]](#page-7-0) does extend naturally to the even prime power case. Just as in Lemma [3.1,](#page-4-0) we had to provide different isomorphisms depending on whether q was even or odd, so too needs to happen with the coloring in [\[11\]](#page-7-0).

Let q be a power of two and let $V = \mathbb{F}_q^2$ and label the vertex set of K_{q^2} by the elements of V. Denote the colors classes by the elements of \mathbb{F}_q , and we color an edge with color $\alpha \in \mathbb{F}_q$ if and only if

$$
v_2 + w_2 + \alpha = v_1 w_1. \tag{7}
$$

Observe that no edge can be assigned to distinct colors. Finally, each edge is assigned a color. In particular, the edge between vertices (v_1, v_2) and (w_1, w_2) is assigned the color

$$
\alpha = v_2 + w_2 + v_1 w_1.
$$

When $\alpha = 0$, it is a well-known fact that the graph produced with the equation [\(7\)](#page-5-0) is C₄-free. The missing piece is the isomorphism, between color classes. Let $\Gamma_{q,\alpha}$ be the subgraph of K_n defined by the color class α . Let β be such that $\beta^2 = \alpha$. Note then that the function

$$
\Phi_{\beta}((v_1, v_2)) = (v_1 + \beta, v_2 + v_1 \beta)
$$

is an isomorphism from $\Gamma_{q,0}$ to $\Gamma_{q,\alpha}$ by following the same type of calculations as were performed in the proof of Lemma [3.1.](#page-4-0) The same argument as in [\[11\]](#page-7-0) implies one can add one more vertex and color the edges so that each color class remains $K_{2,q+1}$ -free. In particular, we add one vertex x and may assign the color α to all edges between x and those of the form (α, x) . Before the addition of the vertex x, no color class had a vertex which is adjacent to two vertices of the form (α, x) because the neighbors of any vertex in $\Gamma_{q,\alpha}$ must all have distinct first coordinates. Therefore, each color class remains $K_{2,q+1}$ -free when x is added and its incident edges are colored in the right way. Thus, when $k = q = 2^e$, we obtain the same bound as in [\[11\]](#page-7-0) for these values of k as well,

$$
k^2 + 2 \le r_k(C_4).
$$

5 Concluding Remarks

All the arguments in this paper can be repeated to obtain a bipartite version of all given results. It is not hard to see that our construction for Theorem [1.1](#page-2-0) is maximal. In fact, it is not hard to see that any two vertices at distance two are contained in a $K_{2,t}$. The addition of any other single edge will create a $K_{2,t+1}$. The trick used to add an extra vertex as was done in [\[11\]](#page-7-0) is not possible for our construction. We conjecture that the lower bound given in Theorem [1.1](#page-2-0) is the true upper bound for $r_k(K_{2,t+1})$.

Conjecture 5.1. Let k and t be any integers, then

$$
r_k(K_{2,t+1}) \leq \begin{cases} k^2 + 2 & \text{if } t = 1 \\ tk^2 + 1 & \text{if } t > 1 \end{cases}.
$$

It is known that this conjecture holds when $t = 1$ and $k = 2, 3, 4$ [\[14\]](#page-7-8). In fact, for these values of k, we have that $r_k(K_{2,2}) = k^2 + 2$, which now implies that the coloring of Lazebnik and Woldar produces extremal examples for the corresponding Ramsey number. The first open case is when $k = 5$, where the bounds are $27 \le r_5(C_4) \le 29$.

The method used here for constructing $K_{2,t+1}$ -free graphs can likely be extended to $K_{3,t}$ free graphs if only we had an algebraically defined $K_{3,3}$ -free graph to work with as a base. To date, we have only one infinite family of $K_{3,3}$ -free graphs with asymptotically the right number of edges which was constructed by Brown [\[2\]](#page-6-5). It is natural to ask if a new $K_{3,3}$ -free family can be constructed from algebraically defined graphs.

Problem: Find an infinite family algebraically defined $K_{3,3}$ -free graphs of order n with approximately $n^{1+2/3}$ edges.

References

- [1] M. Axenovich, Z. Füredi, and D. Mubayi, "On Generalized Ramsey Theory: The Bipartite Case", Journal of Combinatorial Theory, Series B, 79 (1) (2000), 66–86.
- [2] W. G. Brown, "On graphs that do not contain a Thomsen graph", Canadian Mathematics Bulletin, 9 (1966), 281–285.
- [3] M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe, "An exponential improvement for diagonal Ramsey numbers", https://arxiv.org/abs/2303.09521, (2023):
- [4] F. R. K. Chung, "On triangular and cyclic Ramsey numbers with k colors", in Graphs and Combinatorics (R. Bari and F. Harari, Eds.), Lecture Notes in Mathematics, 406 (1974), 236–242.
- [5] F. R. K. Chung, "Ramsey Numbers in Multi-Colors", Dissertation, University of Pennsylvania, (1974).
- [6] F. R. K. Chung and R. L. Graham, "On multicolor Ramsey numbers for complete bipartite graphs", Journal of Combinatorial Theory, Series B, 18 (1975), 164–169.
- [7] Z. Füredi, "New Asymptotics for Bipartite Turán Numbers", *Journal of Combinatorial* Theory, Series A, 75 (1996), 141–144.
- [8] C. Hylt´en-Cavallius, "On a combinatorial problem", Colloquim in Mathematics, 6 (1958), 59–65.
- [9] R. W. Irving, "Generalized Ramsey numbers for small graphs", Discrete Mathematics, 9, 251–264 (1974).
- [10] T. Kövári, V. T. Sós, and P. Turán, "On a problem of K. Zarankiewicz", *Colloqium in* Mathematics, 3 (1954), 50–57.
- [11] F. Lazebnik and A. Woldar, "New Lower Bounds on the Multicolor Ramsey Numbers $r_k(C_4)$ ", Journal of Combinatorial Theory, Series B, 79 (2000), 172–176.
- [12] F. Lazebnik and A. Woldar, "General properties of some families of graphs defined by systems of equations", *Journal of Graph Theory*, 38 (2001), 65-86.
- [13] S. Mattheus and J. Verstraete, "The asymptotics of $r(4, t)$ ", Annals of Mathematics, 199 (2), (2024): 919-941.
- [14] S. P. Radziszowski, "Small Ramsey Numbers", Electronic Journal of Combinatorics,
- [15] Y. Widgerson, "Upper bounds on diagonal Ramsey numbers [after Campos, Griffiths, Morris, and Sahasrabudhe]", https://arxiv.org/abs/2411.09321, (2024).