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A new lower bound for the multicolor Ramsey number
rk(K2,t+1)
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Abstract

In this short note, we provide a new infinite family of K2,t+1-free graphs for each
prime power t. Using these graphs, we show that it is possible to partition the edges of
Kn into parts, such that each part is isomorphic to our K2,t+1-free graph. This yields
an improved lower bound to the multicolor Ramsey number rk(K2,t+1) when k and t

are powers of the same prime. For these values of k and t, our coloring implies that

tk
2 + 1 ≤ rk(K2,t+1) ≤ tk

2 + k + 2.

where the upper bound is due to Chung and Graham.

1 Introduction

Let k ≥ 1 be an integer. The Ramsey number rk(F ) denotes the smallest number of vertices
n such that in any k-coloring of the complete graph Kn, there exists a monochromatic copy
of F (i.e. F is a subgraph of one of the color classes). Ramsey theory has received much
attention over the last century with a number of ground breaking results appearing the last
few years [1, 11, 3, 13, 15]. We contribute to this area by improving the lower bound for
rk(K2,t+1) for infinitely many k and t.

Chung and Graham [6] proved that

rk(K2,t+1) ≤
{

k2 + k + 1 if t = 1
tk2 + k + 2 if t > 1

They conjectured that when t >> S, rk(Ks,t) = (t−1)ks+o(ks). Chung [5] in her dissertation
had demonstrated that when s = 2,

lim
t→∞

rk(K2,t)

t
= k2
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implying the correct asymptotics up the constant term of t in the conjecture. However, it was
not until Axenovich, Füredi, and Mubayi [1] that the conjecture was verified for s = 2. Their
coloring relied on the construction of Füredi of a dense K2,t-free graphs [7]. In particular,
the result from [1] implies that given any integer t, and there are infinitely many k for which
a graph of order tk2 can be colored with k+O(

√
tk log(tk)) colors such that each color class

is K2,t+1-free. For large k, this roughly implies the lower bound

tk2 − ctk
3/2 log(k) ≤ rk(K2,t+1) (1)

for some constant ct dependent on t. The authors leverage a prime density argument to
demonstrate that the leading term asymptotics are correct. In this paper, we give an explicit
coloring which removes the lower order term in (1) entirely when k and t are any powers of
the same prime.

For s = 2 and t = 1, incremental progress has been made by Chung [4], Irving [9], and
most recently by Lazebnik and Woldar [11]. In [11], the authors gave an explicit coloring
which showed that rk(K2,2) ≥ k2+2 when k is an odd prime power. Thus, when k is an odd
prime power we have the bounds

k2 + 2 ≤ rk(K2,2) ≤ k2 + k + 1. (2)

We will demonstrate that lower bound extends to the case when k is an even prime power
as well.

Let ex(n, F ) denote the maximum number of edges in an F -free graph on n vertices. This
function is called the Turán number of F . The Ramsey number rk(F ) and Turán number
are related in the following way: If rk(F ) = n+ 1, then

ex(n, F ) ≥ 1

k

(

n

2

)

.

Füredi’s construction ofK2,t+1-free graphs gives the best-known lower bound for ex(n,K2,t+1)
[7]. Together with the best-known upper bound due to Hyltén-Cavallius [8] (which is a small
improvement over the famous Kövári, Sós, and Turán theorem [10]), we have that

√
t

2
n3/2 − n

2
< ex(n,K2,t+1) <

1

2
n
√

tn− t + 1/4 +
n
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for infinitely many n. The lower order term in the lower bound can be improved for specific
n by performing a case by case analysis of Füredi’s construction. A prime density argument
implies that the leading term asymptotics in this construction are correct for all n. Until now,
Füredi’s construction is the only know construction capable of producing infinite families of
K2,t+1-free graphs with the right edge count and for infinitely many t.

In this paper, we generalize the approach of Lazebnik and Woldar [11] to give two main
results. The first is a new construction of K2,t+1-free graphs which is yields an equal or
slightly improved lower bound for ex(n,K2,t+1) over Füredi’s construction when t is a prime
power.
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Theorem 1.1. Let q and t be powers of the same prime with t < q. If n = q2/t, then
√
t

2
n3/2 −

√
tn

2
≤ ex(n,K2,t+1).

Second, we use this construction to give a coloring that gives a result similar in spirit to
(2). Just like in [11], a nice property of our coloring is all the color classes are all isomorphic
to our construction which yields Theorem 1.1. Such decompositions of Kn are exceedingly
rare, and algebraically defined graphs seem to be the only known class of graphs which seem
to be able to consistently produce such decompositions [12].

Theorem 1.2. Let t and k be powers of the same prime, then

tk2 + 1 ≤ rk(K2,t+1).

An observation will also lead us to extending the result in [11] to even prime powers.

Theorem 1.3. Let k = 2e. Then

k2 + 2 ≤ rk(C4).

2 A K2,t+1-free graph

Let p be a prime and q = pe, and Fq be a finite field of order q. Given a positive integer
d < e, let f(x) be an Fp-linear polynomial (i.e. f(x + y) = f(x) + f(y)) in Fq[x] with pd

roots. We note that such a polynomial always exists as it can be thought of as a linear
transformation of rank e − d on the vector space F

e
p. Denote the range of f(x) by the set

Rf = {f(x) : x ∈ Fq}. Since f(x) is Fp-linear, we know that Rf is closed under addition and
that |Rf | = pe−d.

Define the graph Γf with vertex set V = Fq×Rf . Two distinct vertices (v1, v2), (w1, w2) ∈
V are adjacent if and only if

v2 + w2 = f(v1w1). (3)

Let t = pd and note that |V | = q|Rf | = q2/t.

Claim: Γf is K2,t+1-free.

Proof. Observe that given any vertex v = (v1, v2), and any α ∈ Fq, α 6= v1, the vertex (v1, v2)
has a unique neighbor with first coordinate α. In particular, using (3), we have that v is
adjacent to (α, f(αv1)− v2).

Let v = (v1, v2) and w = (w1, w2) be two vertices in Γ, we will show that they cannot
have more than t common neighbors. If v1 = w1, then v and w share no common neighbors
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because if they did, it would imply that this common neighbor is adjacent to two distinct
vertices with same first coordinate, a contradiction. So we suppose that v1 6= w1.

Let x = (x1, x2) ∈ V be a common neighbor of both v and w. Then the equations

x2 + v2 = f(x1v1) (4)

x2 + w2 = f(x1w1) (5)

must be satisfied by (x1, x2). Subtracting equation (5) from equation (4), we obtain that

v2 − w2 = f(x1(v1 − w1)). (6)

Thus if x is adjacent to v and w, it’s first coordinate must be a solution to (6). Since v1 6= w1,
then we know that the polynomial on the right hand side is not 0. Let a = v1 − w1 and
b = v2 − w2, then x1 satisfies

f(ax1) = b

Since b ∈ Rf , then we know that there exists at least one solution. On the other hand, f(x)
is Fp-linear over Fq and has t = pd roots and so must in-fact be a t-to-1 mapping. Therefore,
there are exactly t different values of x1 which satisfy (6), and so v and w have at most t
common neighbors. Thus Γf is K2,t+1-free.

To determine the exact number of edges in Γf we need to count the number of vertices
of degree q and degree q−1. Note that the beginning of the proof of the claim above implies
that each vertex has degree at least q − 1. To account for the remaining edges, note that
adjacency relation (3) implies that some vertices (v1, v2) are adjacent to distinct vertices
with same first coordinate, (v1, v3). In particular, we have (v1, v2) is adjacent to (v1, v3) if
and only if

v2 + v3 = f(v21).

Such vertices have degree q. A vertex has degree (q − 1) if the equation above only holds
when v2 = v3. So we count the number of solutions in V to the equation.

2v2 = f(v21)

• If q is even, then (v1, v2) is a solution of 0 = f(v21) if and only if v21 is a root of f(x).
Since x2 is a permutation of Fq then we know that there are t such values of v1. The
second coordinate v2 belongs to Rf , so there are t|Rf | = q solutions.

• If q is odd, then we have 2v2 = f(v21). For each v1 ∈ Fq, there exists a unique v2 which
solves the equation. Thus there are q solutions to this equation as well.

Consequently, Γ has q vertices of degree (q − 1) and (q2/t) − q vertices of degree q. Let
n = |V | = q2/t, then the number of edges in Γf is

1

2

(

q

(

q2

t
− q

)

+ (q − 1)q

)

=
q3

2t
− q

2
=

√
t

2
n3/2 −

√
tn

2

This finishes the proof of Theorem 1.1.
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3 A lower bound for rk(K2,t+1)

Let p be a prime, q = pe, and f(x) ∈ Fq[x] be an Fp-linear polynomial with t = pd roots (for
some d < e). We now demonstrate how the graphs Γf can be used to partition the edges of
Kn, when n = q2/t, into k = |Rf | color classes, such that each class is K2,t+1-free.

Denote the k colors by the elements of Rf and label the vertices of Kn by the set
V = Fq ×Rf . Assign the color α ∈ Rf to the edge between (v1, v2) and (w1, w2) if

v2 + w2 + α = f(v1w1).

Clearly, no edge can be assigned two different colors in this way. Furthermore, if (v1, v2) and
(w1, w2) are distinct vertices, then setting

α = f(v1w1)− v2 − w2,

demonstrates that this edge belongs to the color class α and so each edge receives a color.
Denote by Γf,α the subgraph of Kn defined by the color class α. Observe that Γf,0 = Γf .

Lemma 3.1. Γf,α
∼= Γf .

Proof. Here we will provide an isomorphism depending on if q is odd or q is even. It is
straight forward to verify the isomorphism.

• If q is odd, define Φα : V → V by

Φα((v1, v2)) = (v1, v2 − 2−1α)

Then Φα is an isomorphism from Γf to Γf,α. In particular, we observe that Φα((v1, v2))
is adjacent to Φα((w1, w2)) in Γf,α if and only if

(v2 − 2−1α) + (w2 − 2−1α) + α = f(v1w1) ⇐⇒ v2 + w2 = f(v1w1).

The last equality holds true if and only if (v1, v2) is adjacent to (w1, w2) in Γf .

• If q is even, then x2 is a permutation of Fq. Thus, for each α ∈ Rf , there exists a
solution to f(x2) = α. Let β be such a solution and define Φβ : V → V by

Φβ((v1, v2)) = (v1 + β, v2 + f(βv1)).

Then Φβ is an isomorphism from Γf to Γf,α. A similar calculation as in the odd case
verifies the isomorphism.

Consequently, each of the k color classes is K2,t+1-free. Note that the only constraint on
the relationship between k and t is that q = kt. Thus, given any two powers of the same
prime k and t, and setting q = kt, the above implies Theorem 1.2.
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4 A lower bound for rk(C4) when k = 2e

The coloring we provide which yields Theorem 1.2 is very similar to the one given in [11] to
lower bound rk(C4). Note that one key difference is that our coloring works when k = 2e,
while Lazenik and Woldar’s coloring is only given for k and odd prime power.

We wish to quickly demonstrate that the coloring in [11] does extend naturally to the
even prime power case. Just as in Lemma 3.1, we had to provide different isomorphisms
depending on whether q was even or odd, so too needs to happen with the coloring in [11].

Let q be a power of two and let V = F
2
q and label the vertex set of Kq2 by the elements of

V . Denote the colors classes by the elements of Fq, and we color an edge with color α ∈ Fq

if and only if

v2 + w2 + α = v1w1. (7)

Observe that no edge can be assigned to distinct colors. Finally, each edge is assigned a
color. In particular, the edge between vertices (v1, v2) and (w1, w2) is assigned the color

α = v2 + w2 + v1w1.

When α = 0, it is a well-known fact that the graph produced with the equation (7)
is C4-free. The missing piece is the isomorphism, between color classes. Let Γq,α be the
subgraph of Kn defined by the color class α. Let β be such that β2 = α. Note then that the
function

Φβ((v1, v2)) = (v1 + β, v2 + v1β)

is an isomorphism from Γq,0 to Γq,α by following the same type of calculations as were
performed in the proof of Lemma 3.1. The same argument as in [11] implies one can add one
more vertex and color the edges so that each color class remains K2,q+1-free. In particular,
we add one vertex x and may assign the color α to all edges between x and those of the form
(α, x). Before the addition of the vertex x, no color class had a vertex which is adjacent
to two vertices of the form (α, x) because the neighbors of any vertex in Γq,α must all have
distinct first coordinates. Therefore, each color class remains K2,q+1-free when x is added
and its incident edges are colored in the right way. Thus, when k = q = 2e, we obtain the
same bound as in [11] for these values of k as well,

k2 + 2 ≤ rk(C4).

5 Concluding Remarks

All the arguments in this paper can be repeated to obtain a bipartite version of all given
results. It is not hard to see that our construction for Theorem 1.1 is maximal. In fact, it is
not hard to see that any two vertices at distance two are contained in a K2,t. The addition
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of any other single edge will create a K2,t+1. The trick used to add an extra vertex as was
done in [11] is not possible for our construction. We conjecture that the lower bound given
in Theorem 1.1 is the true upper bound for rk(K2,t+1).

Conjecture 5.1. Let k and t be any integers, then

rk(K2,t+1) ≤
{

k2 + 2 if t = 1
tk2 + 1 if t > 1

.

It is known that this conjecture holds when t = 1 and k = 2, 3, 4 [14]. In fact, for these
values of k, we have that rk(K2,2) = k2+2, which now implies that the coloring of Lazebnik
and Woldar produces extremal examples for the corresponding Ramsey number. The first
open case is when k = 5, where the bounds are 27 ≤ r5(C4) ≤ 29.

The method used here for constructing K2,t+1-free graphs can likely be extended to K3,t-
free graphs if only we had an algebraically defined K3,3-free graph to work with as a base.
To date, we have only one infinite family of K3,3-free graphs with asymptotically the right
number of edges which was constructed by Brown [2]. It is natural to ask if a new K3,3-free
family can be constructed from algebraically defined graphs.

Problem: Find an infinite family algebraically defined K3,3-free graphs of order n with
approximately n1+2/3 edges.
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