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The statistics of fluctuations on large regions of space encodes universal properties of many-body systems. At
equilibrium, it is described by thermodynamics. However, away from equilibrium such as after quantum quenches,
the fundamental principles are more nebulous. In particular, although exact results have been conjectured in
integrable models, a correct understanding of the physics is largely missing. In this letter, we explain these
principles, taking the example of the number of particles lying on a large interval in one-dimensional interacting
systems. These are based on simple hydrodynamic arguments from the theory of ballistically transported
fluctuations, and in particular the Euler-scale transport of long-range correlations. Using these principles, we
obtain the full counting statistics (FCS) in terms of thermodynamic and hydrodynamic quantities, whose validity
depends on the structure of hydrodynamic modes. In fermionic-statistics interacting integrable models with a
continuum of hydrodynamic modes, such as the Lieb-Liniger model for cold atomic gases, the formula reproduces
previous conjectures, but is in fact not exact: it gives the correct cumulants up to, including, order 5, while
long-range correlations modify higher cumulants. In integrable and non-integrable models with two or less
hydrodynamic modes, the formula is expected to give all cumulants.

Introduction.— The problem of understanding fluctuations
in many-body systems has received a large amount of attention
recently. At equilibrium, fluctuations on large regions are
fully determined by thermodynamic functions. For instance,
in an infinitely large system of particles at finite density, the
cumulants Cn = ⟨Qn⟩c of an extensive charge Q (say the
number of particles) supported on a region of space of finite but
large volume V are generated by the difference of Landau free
energies f(µ̄) as F (λ) =

∑∞
n=1 λ

nCn/n! = V (f(µ̄)−f(µ̄+
λ)) (here only the dependence on µ̄, which is the chemical
potential divided by the temperature, associated to the charge
Q is shown). This is often referred to as the full counting
statistics (FCS); its Legendre-Frenchel transform gives the
probability distribution, peaked around the average ⟨Q⟩ = Q̄

and given by the relative entropy (Kullback–Leibler divergence
DKL): P (Q = Q) ≍ e−V DKL(ρQ ||ρQ̄)), where ρQ is the grand-
canonical distribution biased to the average ⟨Q⟩ρQ

= Q. This
applies both to classical and quantum systems, and holds in
any non-equilibrium steady states (NESS) with short-range
correlations.

Dynamical quantities, such as the total amount of charge go-
ing through an interface in a finite but large time T , go beyond
thermodynamics. But in some cases, it is known that the large-
deviation form, as above, of their fluctuations only requires the
knowledge of the hydrodynamic theory associated to the many-
body systems. If the charge admits ballistic transport, one uses
Euler hydrodynamics via ballistic fluctuation theory (BFT)
[1–5], or the more general ballistic macroscopic fluctuation
theory (BMFT) [6]; while if transport is diffusive, macroscopic
fluctuation theory (MFT) [7, 8] relates fluctuations to the diffu-
sivity parameters. In non-stationary but slowly-varying states,
where local entropy maximisation has occured, hydrodynamic
principles still hold, and BMFT or MFT apply [9]. It is worth
noting that in certain situations, fluctuations are anomalous and
the large-deviation principle is broken [10–12].

Truly far from equilibrium, however, much less is known.
A common protocol is that of quenches: sudden changes of

coupling constants or other parameters determining the dynam-
ics. It is known that entropy maximisation constrained by the
extensive charges – (generalised) thermalisation – occurs at
long times [13–20]. But what about fluctuations? For instance,
how do conserved charges on a volume V fluctuate after a
time T ? This is non-trivial: for any T that is not infinitely
large compared to the diameter of the region, the long-time
steady state does not describe large-scale fluctuations, because
it misses long-range correlations that are known to emerge
[21]. Further, the fluctuations are dynamical, but common
hydrodynamic fluctuation arguments such as linear response
are not applicable, because quenches are far from equilibrium.

In this letter, we propose a simple non-linear hydrodynamic
argument for large-scale fluctuations after quenches, in mod-
els with ballistic transport (such as gases, with a conserved
momentum). This is based on the physical principle of hydro-
dynamic transport via BFT. The main idea is that one must
account for the transport of long-range correlations produced
by the quench. We concentrate on the fluctuation of the total
number of particles in quantum gases on a large interval, but the
argument is relatively general. We express the FCS in a physi-
cally transparent way, solely in terms of thermodynamic and
hydrodynamic quantities constructed from long-time steady
states associated to the quench, and to a biased version of it.
The formula is valid up to a certain order n of the generated cu-
mulants Cn, which may be infinite, and which depends on the
structure of the hydrodynamic modes. It can be applied to any
interacting many-body system, as long as the corresponding
thermodynamics, Euler hydrodynamics, and required steady
states, are known. They are in integrable systems. In integrable
quenches of fermionic-statistics integrable systems with a con-
tinuum of hydrodynamic modes, such as the much-studied
BEC quench of the paradigmatic Lieb-Liniger (LL) model
describing cold atomic quantum gases [22–27], the formula
reproduces the cumulants up to, including, order 5; higher
cumulants are affected by long-range correlations in a way that
cannot yet be evaluated. In models, integrable or not, with only
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two or less hydrodynamic modes, the formula is expected to
give all cumulants.

In integrable models, using generalised hydrodynamics
(GHD) [28, 29], and the Quench Action method [30, 31] to
evaluate exactly the required long-time steady states, we show
that our general formula specialises to a formula recently con-
jectured using space-time swap principles [32, 33]. This was
verified in the quantum rule-54 cellular automaton [32, 33]
(which admits two hydrodynamic velocities), and numerical
data in the XXZ [33] model (with a continuum of velocities)
are in accordance with our result that the formula receives
corrections at higher orders in λ.

Setup and main result.— Consider a many-particle quantum
system in the thermodynamic limit on the line, with Hamilto-
nian H , and a generic non-stationary state |Ψ⟩. In quantum
quenches, typically |Ψ⟩ is the ground state for a Hamiltonian
H ′ obtained from H by changing an interaction strength. Let
Q be the total number of particles, and Q|X0 =

∫X

0
dx q(x)

that on the interval [0, X]. We are interested in the FCS

F (λ) = log
(
⟨Ψ|eλQ|X0 (T )|Ψ⟩

)
(1)

where Q|X0 (T ) = eiHTQ|X0 e−iHT . Its Taylor expansion in λ
gives the cumulants Cn =

〈
Ψ
∣∣(Q|X0 (T )

)n∣∣Ψ〉c of Q|X0 (T ) in
the state |Ψ⟩ (here and below c denotes the connected part).
We are looking for the ballistic scaling regime X,T ∝ ℓ→ ∞
with X/T = α = const, and the scaled cumulants cn = Cn/ℓ
(which have a finite limit). Taking α→ 0 is simple: this is the
limit T → ∞, followed by the asymptotic X → ∞. As eλQ|X0

is supported on a finite interval (that is, “local”), we may use
the long-time steady state of the quench e−WΨ :

⟨Ψ|O(t)|Ψ⟩ → Tr[O e−WΨ ]/Tr[e−WΨ ] (t→ ∞, O local).
(2)

Therefore the result is obtained by biasing the Landau free
energy as described above, fWΨ

(µ̄) = − log Tr(e−WΨ+µ̄Q):

F (λ)|α=0 ∼ X(fWΨ
(0)− fWΨ

(λ)) (X → ∞). (3)

The more interesting region is that of “small macroscopic
time” α → ∞, where the dynamics is non-trivial. This is
difficult, because of the presence of hydrodynamic long-range
correlations emanating from the quench [34, 35]. Such corre-
lations are often interpreted in a quasi-particle picture, where
pairs of opposite-momentum, correlated excitations are emitted
[36, 37]. In integrable quenches, only such pairs are emitted
[38], simplifying the structure of long-range correlations. We
will restrict ourselves to these for ease of the discussion, but we
note that in general, the concept of quasi-particle is replaced
by that of hydrodynamic mode; with this understanding, we
will also comment on what happens away from integrability.

In order to illustrate the effects of hydrodynamic long-range
correlations, consider the second cumulant C2 = ℓc2:

ℓc2 =

∫ X

0

dx

∫ X

0

dx′ ⟨Ψ|q(x, T )q(x′, T )|Ψ⟩c

= ℓ2
∫ X̄

0

dx̄

∫ X̄

0

dx̄′ ⟨Ψ|q(ℓx̄, ℓT̄ )q(ℓx̄′, ℓT̄ )|Ψ⟩c (4)

where X = ℓX̄, T = ℓT̄ . Hydrodynamic long-range correla-
tions arise as a nonzero “E-terms” [21] in

ℓ⟨Ψ|q(ℓx̄, ℓT̄ )q(ℓx̄′, ℓT̄ )|Ψ⟩c ∼ c2|WΨ
δ(x̄−x̄′)+EΨ(x̄, x̄

′, T̄ )
(5)

where c2|WΨ is the scaled second cumulant in the GGE e−WΨ

(not to be confused with c2). Clearly, then, the long-range
correlations influence the result of c2 in (4), making it different
from c2|WΨ

and time-dependent. See the illustration in Fig. 1
to understand where, naı̈vely, particle-pair long-range correla-
tions are located: with increasing T the number of correlated
pairs within the interval [0, X] decreases linearly with T .

We now argue, using the continuity equation for the particle
density ∂tq + ∂xj = 0, that the following formula for F (λ)
gives the scaled cumulants cn in the limit α → ∞, up to a
certain order n (which may be infinite) depending on hydro-
dynamic properties. At α = ∞ we first take the asymptotic
X → ∞, followed by the asymptotic T → ∞, and as we shall
shortly demonstrate, the FCS can be written as

F (λ) ∼X[fWΨ
(0)− fWΨ

(2λ) + o(X0)] + 2Tfdyn(λ) (6)
(X → ∞, then T → ∞).

The corrections o(X0) (vanishing asX → ∞) are independent
of T for all X . The dynamical free energy fdyn in general
depends on α, and its limit fdyn(λ) = limα→∞ fdyn(λ, α) is
given by the FCS for total current fluctuations

fdyn(λ) = (7)

lim
T→∞

1

T
log
(
Tr e−Wλ

NESS+λ
∫ T
0

dt j(0,t)/Tr e−Wλ
NESS

)
in the state e−Wλ

NESS . This is the unique NESS for a λ-
dependent partitioning protocol, where the initial state is e−WΨ

on the left and e−Wλ
Ψ , with Wλ

Ψ =WΨ − 2λQ, on the right:

Tr[O(t) e−WΨ|0−∞−Wλ
Ψ|∞0 ] → Tr[O e−WNESS(λ)] (t→ ∞).

(8)

Two remarks are in order. First, the non-dynamical part,
proportional to X , is similar to the case α = 0, but with
2λ instead of λ. This “doubling” phenomenon is specific to
integrable quenches, and encodes the effects of correlated pairs
[27, 33, 39]. We will need the more general result

⟨Ψ|eλ
2 QO(t)e

λ
2 Q|Ψ⟩

⟨Ψ|eλQ|Ψ⟩
→ Tr[O e−WΨ+2λQ]

Tr[e−WΨ+2λQ]
(t→ ∞).

(9)
which we show in the Supplementary Material (SM). Sec-
ond, the dynamical part involves the FCS for the total time-
integrated current, in the NESS obtained by biasing one side
of space with the charge, again with the normalised chemi-
cal potential 2λ. The NESS may be evaluated by standard
hydrodynamic arguments as done in [28, 29] for integrable sys-
tems, and the FCS fdyn(λ) also follows from hydrodynamics
using the framework of BFT [1–3]. For non-integrable sys-
tems, Wλ

Ψ =WΨ−2λQ is replaced by some Wλ
Ψ representing
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X

T

e λ
2 Q |Ψ⟩

e−WΨ+2λQ

|Ψ⟩
e−WΨ

NESS

X

T

|ψ⟩

e−WΨ+ long range correlations

FIG. 1. Illustration of the universal hydrodynamic principles for full
counting statistics of the total charge Q|X0 (T ) on length X at time T
after a quench. The red contour represents this charge as an integrated
density

∫X

0
dx q(x, T ) in the generator F = log⟨Ψ|eλQ|X0 (T )|Ψ⟩.

The contour is deformed using the continuity equation in order to
avoid long-range correlations emanating from the initial state and
“connecting” any parts of it (the darker blue arrows). Green bars
represent steady states: from the biased quench on the right (locally
e

λ
2
Q|Ψ⟩) and the original quench on the left (locally |Ψ⟩), and the

non-equilibrium steady state (NESS) from the partitioning protocol
they induce. The specific steady state e−WΨ+2λQ is our general
result for integrable quenches. The partitioning protocols at 0 and X
are independent for X large enough. As every part of the deformed
contour is uncorrelated, they give rise to independent contributions:
the current FCS at x = 0, X (twice the same contribution, under
parity symmetry) giving the linear growth of F (λ) with T , and the
charge FCS at t = 0 giving the non-dynamical contribution.

the long-time steady state for a quench from the biased state
e

λ
2 Q|Ψ⟩ (as in Eq. (9)), and fWΨ(2λ) is replaced by fWλ

Ψ
in

(6); and the BFT can still be applied. Hence, knowing the
long-time quench steady states for |Ψ⟩ and e

λ
2 Q|Ψ⟩ (known

in integrable systems), every object in (6) is determined by
hydrodynamics and thermodynamics, thus readily calculable.
Eqs. (6)-(8), with this understanding, is our main result.

Derivation.— The derivation uses basic properties of many-
body systems, and is illustrated in Fig. 1. From the conti-
nuity equation, Q|X0 (T ) =

∫X

0
dx q(x, T ) =

∫ T

0
dt j(0, t) +∫X

0
dx q(x, 0)−

∫ T

0
dt j(X, t), and thus in a first step:

⟨Ψ|eλQ|X0 (T )|Ψ⟩ =
(
⟨Ψ|eλQ|X/2

0 |Ψ⟩
)2

× (10)

⟨Ψ|eλ
2 Q|X/2

0 eλJ0|T0 e
λ
2 Q|X/2

0 e
λ
2 Q|XX/2e−λJX |T0 e

λ
2 Q|XX/2 |Ψ⟩(

⟨Ψ|eλQ|X/2
0 |Ψ⟩

)2
where Jx|T0 =

∫ T

0
dt j(x, t). In the second line, we have

separated exponentials as eA+B ≈ eAeB by using the Baker-
Campbell-Hausdorff (BCH) formula, neglecting all commuta-
tors of the operators A1 = Q|X/2

0 , A2 = Q|XX/2, A3 = J0|T0
and A4 = JX |T0 . Neglecting these commutators means that
the leading effects in the ballistic limit are purely classical.

It is justified as follows. By locality [A1, A2] = O(X0) in-
dependently of time. By the Lieb-Robinson bound, or more
generally, the sufficient decay of high-velocity contributions
to operator evolutions, A3, A4 are (with exponential accuracy)
supported on regions of lengths vT (for some v), thus in the
limit X → ∞ we have [A1, A4], [A2, A3], [A3, A4] → 0.
Concerning [A1, A3] and [A2, A4], we currently do not know
of general results leading to sharp bounds. However, using the
fact that Q is “ultra local”, we propose (see the SM) general
ideas based on thinness arguments [40] which support the fact
that they can also be neglected, confirmed by explicit free-
fermion calculations [41]. The BCH formula in fact involves
multiple-commutators, which can be analyzed in similar ways.

In a second step, we use results obtained by correlation
matrix [33] or quench action methods [27, 30, 31], giving for
the first factor on the right-hand side of (10)

⟨Ψ|eλQ|X0 |Ψ⟩ ∼ X(fWΨ
(0)− fWΨ

(2λ)). (11)

This shows the term proportional to X in (6). This doubling
can be understood in terms of the particle-pair picture: as the
free energy does not account for long-range correlations, it only
encodes the distribution of single members of each pair. But in
the state e

λ
2 Q|X0 |Ψ⟩, the modified quantum amplitude gives rise

to a modified probability eλQ|pair for each pair, hence, at later
time when members are separated, for each single member of
a pair, where a doubling occur: Q|pair = 2Q|single particle.

In a third step, the second factor on the right-hand side of
(10) is factorised as(

⟨Ψ|eλ
2 Q|∞0 eλJ0|T0 e

λ
2 Q|∞0 |Ψ⟩

⟨Ψ|eλQ|∞0 |Ψ⟩

)2

(X → ∞). (12)

We have factorised the expectation value for operators lying
far apart from each other; the extensive free-energy part in the
large region [vT,X − vT ], centered at X/2, cancels in the
numerator and denominator. This holds assuming appropriate
clustering of the state, |x − y|⟨Ψ|O1(x)O2(y)|Ψ⟩c → 0 as
|x − y| → ∞. We have then used translation invariance and
parity symmetry, under which j is odd and q is even, to write

⟨Ψ|e
λ
2 Q|XX/2e−λJX |T0 e

λ
2 Q|XX/2 |Ψ⟩ (13)

= ⟨Ψ|e
λ
2 Q|0−X/2e−λJ0|T0 e

λ
2 Q|0−X/2 |Ψ⟩

= ⟨Ψ|eλ
2 Q|X/2

0 eλJ0|T0 e
λ
2 Q|X/2

0 |Ψ⟩.

The same three steps can be performed in GGEs instead of
|Ψ⟩. There, one can then show that the result is compatible
with the expected non-equilibrium fluctuation relations [42, 43]
(see the SM), supporting the validity of these steps.

Finally, in a fourth step, as pairs do not correlate the region
x = 0, t ∈ [0, T ] (see Fig.1), one may use the quench steady
states locally on each region x < 0, x > 0 at t = 0, using (2),
(9), resp., giving the partitioning protocol (as T → ∞)

⟨Ψ|eλ
2 Q|∞0 eλJ0|T0 e

λ
2 Q|∞0 |Ψ⟩

⟨Ψ|eλQ|∞0 |Ψ⟩
≍

Tr
[
eλJ0|T0 e−WΨ|0−∞−Wλ

Ψ|∞0
]

Tr
[
e−WΨ|0−∞−Wλ

Ψ|∞0
]
(14)
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which shows (7) with (8). Formally, this holds
assuming strong enough decay of connected correla-
tions for the current operators at different times, |t −
t′|⟨Ψ|eλ

2 Q|∞0 j(0, t)j(0, t′)e
λ
2 Q|∞0 |Ψ⟩c → 0 as |t− t′| → ∞.

Curved trajectories.— The fourth step above assumes decay
of correlations in time, hence no long-range correlations. There
are (at least) two sources of potential long-range correlations:
those arising from the inhomogeneous fluid state as shown
by the BMFT [21], and those emerging from the quench as
discussed above. The former do not affect the current FCS in
the partitioning protocol [6, 21]. The latter, according to Fig. 1,
also appear not to time-correlate the origin x = 0.

However, the picture Fig. 1 omits the curvature of hydro-
dynamic trajectories in inhomogeneous fluid states. Emitted
at t = 0 are correlated pairs of fluid modes, which follow
fluid characteristics in time. In interacting models, the fluid
flow induced by the partitioning protocol gives rise to a “hy-
drodynamic waft” which curves characteristics and may make
initially right-moving modes into left-moving modes (and vice
versa), see Fig. 2. The impact of such curved trajectories on
the evolution of entanglement in certain inhomogeneous cases
have been discussed in [44]. For λ small, the bias in the parti-
tioning protocol is small, hence the effect is small. Then, only
modes with small hydrodynamic velocities ∝ λ have the po-
tential to change direction and produce long-range correlations
on x = 0, t ∈ [0, T ]. In typical integrable models, there is a
continuum of hydrodynamic modes [28, 29], parametrised by
quasi-momentum κ ∈ R. Modes with small hydrodynamic ve-
locities have small quasi-momentum |κ| < Λ ∝ λ (cf. Fig. S1c
in the SM) and produce small currents j ∝ κ. Long range cor-
relations will only affect cumulants cλn, n ≥ 2 in the current
FCS fdyn =

∑
n c

λ
nλ

n/n!, and our power-counting argument
gives cλn ∝ jn ∝ λn. As cλn occurs at order λn in the current
FCS, the lowest order where corrections may occur in F (λ) is
λn × λn for n = 2, thus cm for m ≥ 4. Further, the density
of pairs produced is symmetric under κ→ −κ as particles are
emitted with equal and opposite momenta and by analyticity in
κ, and if quasiparticles have fermionic statistics, Dirac exclu-
sion implies vanishing at κ = 0, hence a density ∼ κ2. This
gives an additional factor ∝ λ2, thus, in many-body integrable
models with fermionic statistics, only cumulants cn for n ≥ 6
may be affected. We provide supporting calculations for this
analysis in the SM.

In integrable models, formula (6) specializes to a conjecture
proposed in [32, 33], which is therefore here argued not to
be generically exact for cumulants beyond order 5. In order
to confirm this, using standard integrability techniques, we
analyse trajectories in the above partitioning protocol corre-
sponding to the BEC quench of the LL model, as shown in
Fig. 2. At unit mass, the LL model is defined by

HLL=
1

2

∫
dx b†(x)

[
−∂2x

]
b(x) + 2c b†(x)b(x)b†(x)b(x)

(15)
where b†(x), b(x) are canonical spinless bosonic fields

FIG. 2. Illustration of curved trajectories of Euler-scale hydrodynami-
cal modes with opposite rapidities the bi-partitioning protocol with
initial density matrix e−WΨ|0−∞−(WΨ−2λQ)|∞0 in the LL model. The
inset magnifies and better visualizes the region compassed by black
dashed lines. The trajectories were constructed via the method of
characteristic using the space-time dependent (effective) velocity field
veff(k, ξ = x/t, λ). The parameters are c = 1, d = 2, λ = 0.75 and
the rapidities are κ = ±0.4 for the right and left pairs of trajectories,
respectively.

[b(x), b†(y)] = δ(x− y) and the BEC state takes the form

|Ψ⟩BEC = lim
N,L→∞

(b†0,L)
N

√
N !

|0⟩ , (16)

where b†0,L creates a zero momentum boson in finite volume L
and the density d = N/L is kept fixed over the limit. For finite
λ, curved trajectories exist, producing long-range correlations.
See the SM for details, including the clustering properties of
the BEC state.

Formula (6) is expected to give all scaled cumulants cn in
(at least) three situations. First, if the model, integrable or not,
admits at most one positive, and one negative hydrodynamic
velocity. Then the quench can only emit correlated pairs of
fluid modes travelling in opposite directions, and for every λ
small enough, trajectories cannot be curved to produce long-
range correlations on t ∈ [0, T ] at x = 0. This includes
the rule-54 model, whose FCS was shown to be given by
the specialisation of (6) to this model [32, 33]. With two
velocities of the same sign, one may deform the contours by
slanting the “vertical branch” (c.f. Fig. 1) at a slope lying
within the two velocities, again avoiding correlations: thus
the formula may be generalised to this case. Second, in free
particle models (or whenever the Euler hydrodynamic equation
is linear): then trajectories do not curve. Finally, if the initial
state is an eigenstate of Q: then e

λ
2 Q|Ψ⟩ ∝ |Ψ⟩ and there is no

partitioning, so the fluid state is uniform hence trajectories are
straight.

Conclusion.— We have derived, from general principles of
many-body physics, a formula for the fluctuation of the number
of particles in a gas on a large interval of size X , a large time
T after a quantum quench, in the ballistic scaling limit, with
X ≫ T . When specialised to many-body integrable systems,
this formula reproduces a recent conjecture [32, 33]. We have
shown how it is the physics of hydrodynamic long-range cor-
relations that largely determine the fluctuations: the scaling
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with X accounts for a modified thermodynamic function (eval-
uated exactly in integrable systems) due to such correlations
produced by the quench, and its non-trivial dynamics with
T is solely a consequence of long-range correlations on the
interval at time T . Crucially, our derivation shows how this
dynamical effect is recast into current fluctuations at a point
x = 0 on a time interval [0, T ] in a special NESS. The dy-
namics may be modified by further long-range “waft effects”
where correlated modes are transported to x = 0 by the flow
of the NESS, neglected up to now in the literature. We have
argued that in integrable systems with fundamental excitations
of fermionic statistics, waft effects may only, and are expected
to, affect cumulants of order 6 or higher, in a way that can-
not be currently evaluated. We expect that waft effects do
not alter cumulants in full generality when the model admits
at most two hydrodynamic velocities; and in integrable sys-
tems when hydrodynamic velocities are bounded from below
in magnitude (for instance in hard rods systems). It would
be interesting to extend our arguments to general α = X/T
and other geometries, and to other charges or entanglement
entropies; and to evaluate the proposed long-range effects mod-
ifying the dynamics of higher cumulants using BMFT. It would
be most interesting to perform extensive numerical checks of
the formula, especially in non-integrable models.
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S1

Supplementary Material - Full counting statistics after quantum quenches as
hydrodynamic fluctuations

Analysis of a commutator

Consider, as in the main text (with X → ∞),

Q|∞0 =

∫ ∞

0

dx q(x, 0), J0|T0 =

∫ T

0

dt j(0, t). (S1)

In order to underpin the arguments in the main text, we would like to show that [Q|∞0 , J0|T0 ] is supported around the origin x = 0,
with a norm

|| [Q|∞0 , J0|T0 ] || = o(T ). (S2)

We are not aware of general results allowing us to show this. However, a possible line of arguments is as follows.
We propose that j(0, t) is composed of linear combinations of “local enough” operators supported on x ∈ [−vt, vt] (for

appropriate v), which become “thinner” as t increases, in the sense that they become closer to the identity operator (see [45]). In
order to make this slightly more accurate, consider the projectors Px>0, Px<0 on operators supported on the right and left half of
space (see e.g. [45] for definitions of such projectors). We then propose two loosely-stated principles concerning the operator
(1− Px>0 − Px<0)j(0, t): (i) it is supported around the origin x = 0, and (ii) it becomes closer to the identity as t increases. As
a consequence,

B(t) = [Q|∞0 , (1− Px>0 − Px<0)j(0, t)] (S3)

is supported around the origin, and
∫ T

0
dtB(t) = o(T ) (in an appropriate norm). This is sufficient to obtain the desired result:

[Q|∞0 , j(0, t)] = B(t) + [Q|∞0 ,Px>0j(0, t)] + [Q|∞0 ,Px<0j(0, t)] (S4)
= B(t) + [Q|∞0 ,Px>0j(0, t)] (S5)
= B(t) + [Q,Px>0j(0, t)] (S6)
= B(t) + Px>0[Q, j(0, t)] (S7)
= B(t) (S8)

where we used the fact that Q is ultra-local thus commute with the projection, and that the current j is invariant under the action
of Q (preserves the particle number), [Q, j(0, t)] = 0.

Emergence of the biased GGE via Quench Action

In the following we show that after the biased quench the steady-state value of local operators is described by a biased GGE in
any interacting integrable model, that is

lim
t→∞

⟨Ψ|O(0, t)eλiQi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=
1

Z2λi
Tr
[
O(0, 0)e2λiQiρGGE

]
(S9)

where ρGGE is the GGE that specifies that steady-state, or on other words, where the expectation value of any local operator O
converges,

lim
t→∞

⟨Ψ|O(0, t)|Ψ⟩
⟨Ψ|Ψ⟩

=
1

Z
Tr [O(0, 0)ρGGE] . (S10)

To show Eq. (S9) we shall use the reasonings of the QA method; in fact, the derivation generally applies to arbitrary integrable
models as long as the fluctuations of the integrated conserved density Qi|ℓ/2−ℓ/2 are extensive wrt. ℓ. For simplicity, however, let us
assume only one particle species. Writing the expectation value using the eigenstates of the post-quench Hamiltonian we obtain

⟨Ψ|O(0, t)eλiQi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=
1

⟨Ψ|eλiQi |Ψ⟩
∑
Φ,Φ′

e−ϵ∗Φ−ϵΦ′ ei(ωΨ−ωΨ′ )t⟨Φ|O(0, 0)eλiQi |Φ′⟩ , (S11)
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where ϵΦ = − log ⟨Φ|Ψ⟩ are the logarithmic overlaps. Following the logic of the Quench Action (QA) method [30, 31], we can
replace one summation by a functional integral over root distributions assuming that the size of the entire system L is very large
and is eventually sent to infinity. This way we may write

⟨Ψ|O(0, t)eλiQi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=
∑
Φ

∫
D[ρ]eSY Y [ρ]

[
e−ϵ∗Φ−ϵ[ρ]ei(ωΨ−ω[ρ])t⟨Φ|O(0, 0)eλiQi |ρ⟩+Φ ↔ ρ

]
× 1

⟨Ψ|eλiQi |Ψ⟩
, (S12)

where SY Y is the Yang-Yang entropy of the root distribution whose exponential gives the number of microstates with the same root
distribution. Note that this quantity is proportional to the system size L. The usual reasoning of QA comes from the recognition
that when t is sent to ∞, because of the oscillatory factor and the behaviour of matrix elements in the thermodynamic limit, the
summation over the eigenstates Φ can be terminated and replaced by a single eigenstate that corresponds to the macro-state ρ, i.e.,

⟨Ψ|O(0,∞)eλiQi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=

∫
D[ρ]O[ρ]eSY Y [ρ]−2Re ϵ[ρ]+L

∫
dk λiqi(k)ρ(k) ×

[∫
D[ρ]eSY Y [ρ]−2Re ϵ[ρ]+L

∫
dk λiqi(k)ρ(k)

]−1

,

(S13)
where we also exploited the fact the Qi is an extensive conserved quantity and hence can be naturally rewritten in terms of the
root-distributions. In the thermodynamic limit, the functional integral over the root densities can be replaced by its saddle-point
value, since not only the Yang-Yang entropy, but also the conserved charge and by definition, the extensive part of the logarithmic
overlap ϵ[ρ] scale with the system size L. The main ingredient which we further utilize is that a local operator cannot shift the
saddle point, which, accordingly, is determined by the denominator. In the usual fashion of QA, we can write the exponential in
denominator as

−L
∫ ∞

0

dk g(k)ρ(k) + L

∫ ∞

−∞
dk λiqi(k)ρ(k)− L

∫ ∞

0

dk sY Y [ρ(k)] , (S14)

where sY Y is the Yang-Yang entropy density and for integrable quenches,

−2Re ϵ[ρ] = L

∫ ∞

0

dk g(k)ρ(k) . (S15)

Note that the lower limit for the spectral integration is zero for the YY entropy and for the overlap contribution; this is due the
distinctive feature of integrable quenches that the corresponding initial states in the post quench basis consists solely of pairs of
excitation with opposite momentum. Exploiting translation invariance ρ can be regarded as an even function and we can rewrite
the integrals as

−L
2

∫ ∞

−∞
dk g(k)ρ(k) +

L

2

∫ ∞

−∞
dk 2λiqi(k)ρ(k)−

L

2

∫ ∞

−∞
dk sY Y [ρ(k)] , (S16)

from which the saddle-point equations are obtained via functional differentiation wrt. ρ yielding

0 = g(k)− 2λiqi(k) +
δsY Y [ρ]

δρ(k)
, (S17)

which can be recast in the conventional TBA form for the saddle-point density ρsp via the pseudo-energy ϵ as

ϵ(k) = g(k)− 2λiqi(k)− φ ⋆ log
(
1 + e−ϵ

)
. (S18)

The equation above characterises a GGE via the spectral densities ϵ and ρsp which can be computed from the former. Indeed, it
has been shown that

g(k) = −
∑

βiqi(k) (S19)

for free fermion quenches [18] and for the Lieb-Liniger model and the BEC quench [22, 46]. That is, the driving term
g(k)− 2λiqi(k) must correspond to a GGE with charge Qi biased by 2λi. Since, as already mentioned, local operators do not
shift the saddle-point of the QA functional [47], the steady-state expectation value of O is determined by ρ2λi

sp where we made it
explicit that ρ2λi

sp is associated with the solution of Eq. (S18) and accordingly,

lim
t→∞

lim
L→∞

⟨Ψ|O(0, t)eλiQi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=

∫
dk O[ρsp(k)] =

1

Z2λi
Tr
[
O(0, 0)e2λiQiρGGE

]
, (S20)

where ρGGE is the GGE dictated by integrable quench, i.e., the unmodified integrable initial state |Ψ⟩. It is also immediate to see
that using the same reasoning for the nominator

lim
t→∞

lim
L→∞

⟨Ψ|eλi/2QiO(0, t)eλi/2Qi |Ψ⟩
⟨Ψ|eλiQi |Ψ⟩

=

∫
dk O[ρsp(k)] =

1

Z2λi
Tr
[
O(0, 0)e2λiQiρGGE

]
, (S21)

holds as well, as expected.
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Implications of the hydrodynamic fluctuation relations

In this subsection we demonstrate that the hydrodynamic fluctuation relations [42, 43] which were derived for thermal states
strongly confirms the validity of performing steps such as eA+B ≈ eAaB for the eventual quench problem in the LL model and
consequently in a broad class of interacting integrable systems as well. More precisely, we show that fluctuation relations are
compatible with writing (10) in thermal or GGE ensembles indirectly justifying the legitimacy of such steps in GGEs from which
we infer the validity of (10) for the quench problem as well.

The main idea is to consider the FCS in a thermal ensemble and exploit its time-independence. In particular using the contour
deformation from the main text we may write F (λi, X, T ) = TfL

dyn(λi) + TfR
dyn(λi) + Xf0(λi) with X ≫ T ≫ 1 up to

sub-leading corrections as in the main text, with

fL
dyn(λi) = lim

T→∞
T−1 lim

X→∞

lnTr[eλJ0|T0 +λQ|X/2
0 (0)ρGGE]

lnTr[eλQ|X/2
0 (0)ρGGE]

fR
dyn(λi) = lim

T→∞
T−1 lim

X→∞

lnTr[eλQ|XX/2(0)−λJX |T0 ρGGE]

lnTr[e
λQ|X

X/2
(0)
ρGGE]

,

(S22)

where we may recall the cluster property of GGEs. f0(λi) is the SCGF in a GGE, which must be equal to limx→∞ F (λi, T,X)/X
due to the stationary property of GGEs implying that

lim
X→∞

lnTr[eλJ0|T0 +λQ|X/2
0 (0)ρGGE]

lnTr[eλQ|X/2
0 (0)ρGGE]

+ lim
X→∞

lnTr[eλQ|XX/2(0)−λJX |T0 ρGGE]

lnTr[e
λQ|X

X/2
(0)
ρGGE]

= 0 (S23)

must hold. Rewriting fL
dyn(λi) as

fL
dyn(λi) = lim

T→∞
T−1 lnTr[e

λJ0|T0 eλQ|∞0 (0)ρGGE]

lnTr[eλQ|∞0 (0)ρGGE]
, (S24)

it also follows that

fL
dyn(λi) + fR

dyn(λi) = 0 . (S25)

The important recognition is that, by definition, the quantity fL
dyn(λi) equals the SCGF of the ith current, in a NESS after

a bi-partite quench where the left semi-infinite system is characterised by a GGE, ρGGE; and the right half is by eλiQiρGGE.
Importantly, unlike in the quench problem, eλiQiρGGE, is a biased GGE where βi becomes shifted to βi − λi (and not 2λi), by
definition. We have assumed that the system locally equilibrates to the NESS of this bi-partitioning protocol as well as the lack of
strong temporal long-range correlations in NESS, which is legitimate since in GGEs quasi-particles with opposite momentum are
not correlated. In other words, we have found that

fL
dyn(λi) = f bpp(λi) , (S26)

where f bpp(λi) is the SCGF if the ith current in the NESS of the GGE emerging after the aforementioned partitioning protocol
and which has been studied in the literature [42, 43]. In particular f bpp(λi) satisfies the hydrodynamic fluctuation relations, i.e.,

f bpp(λi) = f bpp(βR
i − βL

i − λi) (S27)

and since in our case βL
i = βi and βR

i = βi − λi, we find that

f bpp(λi) = f bpp(0) = 0 (S28)

guaranteeing (S23), even term by term, at least for large T. In other words we have shown that the hydrodynamic fluctuation
relations imply the expected invariance of the charge FCS in GGEs if the step (10) is performed and no strong temporal correlations
affecting current fluctuations are assumed. That is, the fulfillment of these assumptions in GGEs is consistent with physical
requirements, such as the implication of hydrodynamic fluctuation relations or the invariance of GGEs. These findings make
performing (10) for the quench problem very plausible.
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The hydrodynamic flow equations for fdyn(λi) in integrable models

Describing macro-states in integrable models

Integrable models admit an extensive number of (quasi-) local commuting conserved quantities charges Ql, l = 1, 2, . . .
including the Hamiltonian. Consequently such models have a stable set of quasi-particle excitations which are indexed by
a discrete species index n = 1, . . . , Ns and parameterized by a continuous rapidity k(n)j , j = 1, . . . ,Mn, but simplicity, we
restrict our discussion to models with only one species. An eigenstate of the model is specified by the rapidities of quasi-
particles, and is denoted by |k⟩ = |k1, . . . , kM ⟩. These states are simultaneous eigenstates of all the conserved charges, namely
Ql|k⟩ =

∑M
j=1 ql(kj)|k⟩. Conserved charges can be categorized as even or odd ones wrt. spatial parity such as the particle

number N = Q0 or the Hamiltonian H = Q2; and the total momentum P = Q1, respectively. For simplicity we denote
the charge, momentum and energy of a quasi-particle of rapidity k by q = q0(k), p(k) = q1(k) and E(k) = q2(k). In the
thermodynamic limit and at finite (particle, energy, etc) density the model can be treated using the methods of the thermodynamics
Bethe Ansatz (TBA) [48]. Such states are described through distributions related to their quasi-particle content, in particular,
ρ(k), ρh(k), ρt(k) and θ(k) which are respectively the distribution of occupied, the distribution unoccupied quasiparticles, the
total density of states ρt(k) = ρ(k) + ρh(k) and the occupation function θ(k) = ρ(k)/ρt(k). These functions are related to each
other by the Bethe-Takahashi equations

ρt(k) =
p′(k)

2π
+ φ ⋆ ρ(k) (S29)

where (·)′ denotes differentiation w.r.t. k and ⋆ is the convolution f ⋆ g(x) =
∫

dy
2πf(x − y)g(y). φ(k − k′) is the scattering

kernel which characterizes the scattering between quasi-particles with rapidities k and k′.
When macro-state are considered containing many excitations the bare quasi-particle properties become dressed due to the

interactions. Dressed quantities denoted by (·)dr satisfy the integral equation

fdr(k) = f(k) + φ ⋆ [θ(k)fdr(k)]. (S30)

A particularly important quantity is the effective velocity of the quasi-particles given by the ratio of dressed quantities, veff(k) =

E′dr(k)/p′
dr
(k).

To better expose the flow equations for fdyn(λi) we specified an important quantum model, the Lieb–Liniger model defined by

HLL=
1

2

∫
dx b†(x)

[
−∂

2
x

m

]
b(x) + 2c b†(x)b(x)b†(x)b(x). (S31)

where we setm = 1 and b†(x), b(x) are canonical spinless bosonic operators satisfying [b(x), b†(y)] = δ(x−y). The Hamiltonian
(S31) describes bosons of mass m interacting via a density-density interaction of strength c > 0 corresponding to repulsion
between the bosons. For the out-of-equilibrium dynamics ceratain integrable quenches are considered [38]. Via the Quench
Action method [30, 31], it is possible to characterize the steady-state GGE for such quenches. These quenches also have the
distinctive property that the initial states have non-vanishing overlaps with the eigenstates of the post-quench Hamiltonian only
if these states consist of pairs of particles with opposite momentum/rapidity. For the LL model we consider the Bose-Einstein
condensate states as such integrable initial state (BEC) defined as

|Ψ⟩BEC = lim
N,L→∞

(b†0,L)
N

√
N !

|0⟩ , (S32)

respectively, where b†0,L creates a zero momentum boson in finite volume L and when taking the thermodynamic limit the density
N/L = d is kept fixed and the state is also the ground state of the LL model at c = 0.

For these initial states it possible to compute the the steady-state spectral densities corresponding to the GGE via solving

ln η(k) = g(k)−
(
φ ⋆ ln[1 + η−1]

)
(k) (S33)

where φ(k) = 2|c|
c2+k2 with g = ln[k2(k2 + (c/2)2)]− 2 ln[d c], and where θ(k) = 1/(1 + η(k)). [22].

Hydrodynamic predictions for FCS and SCGF

In the following we specify the results for the FCS which have been first obtained in [32, 33] via space-time swap, and in this
Letter using hydrodynamic principles. The validity of these principles in the particularly important case of free models will be
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presented elsewhere [41]. In particular, applying the description of integrable systems, the predictions of (6) for the function
fdyn(λi) can be further specified as follows. We write 2fdyn(λi) = fρL

jL
(λi) + fρR

jR
(λi), which are associated with the fluctuations

of the corresponding current along the left (L) and right (R) regions, c.f. Fig. 1. Using the shorthand y=L,R (6) dictates that fρy
jy

are defined through the flow equations

f
ρy
jy
(λi) =

∫ ±λi

0

dβi

∫
dk

2π
E′(k)θ̃βi

y (k)qdr
i [θ̃

βi
y ](k) , (S34)

with the quantities in the integrand satisfying

∂βiϵ
βi
y (k) = −sgn(veff[θ̃βi

y ](k))qdr
i [θ̃

βi
y ](k)

θ̃βi
y (k) =

1

exp[ϵβi
y (k)] + 1

, with θ̃0y (k) = θy(k) .
(S35)

The initial condition is specified by the NESS (x≪ t) of a bi-partitioning protocol as

θL(k) = ΘH(v
eff(k))θ(k) + ΘH(−veff(k))θ(λi)(k)

θR(k) = ΘH(v
eff(k))θ(λi)(k) + ΘH(−veff(k))θ(k) ,

(S36)

where ΘH is the Heaviside-theta function and the filling function θ(k) correspond to the GGE ρGGE and θ(λi)(k) to a modified
GGE defined by the steady state for ⟨Ψ|O(t, x)eλiQi |Ψ⟩ at late times. For integrable initial states, θ(λi)(k) is obtained from Eq.
(S33) upon replacing g(k) by g(k)− 2λiqi(k) corresponding to ρGGEe

2λiQi .

Clustering of the BEC state

We can comment on the clustering properties of the BEC state, |Ψ⟩BEC. Indeed this state has very mundane, yet not always
trivial correlations. In particular it is easy to check that

BEC⟨Ψ|b†(x)b(y)|Ψ⟩cBEC = lim
L,N→∞

1

L

∑
k,p

⟨0| (b0,L)
N

√
N !

b†k,Lbk′,L

(b†0,L)
N

√
N !

|0⟩ei(k
′y−kx)

= lim
L,N→∞

1

L
⟨0| (b0,L)

N

√
N !

b†0,Lb0,L
(b†0,L)

N

√
N !

|0⟩ = lim
L,N→∞

N

L
= d .

(S37)

using that in finite volume b(x) = 1√
L

∑
k e

ikxbk,L, that is, certain correlations do not decay. However 2pt connected correlation
functions of operators of the form (b†(x))n(b(x))n (including possible derivatives as well) such as the particle density (n = 1) do
satisfy the cluster property. For our cases of interest it is sufficient to focus on this class of operators since they do not change
particle number which is also conserved by the dynamics. For the particular case of the density operator, we can write

BEC⟨Ψ|b†(x)b(x)b†(y)b(y)|Ψ⟩BEC = lim
L,N→∞

1

L2

∑
k,k′,p,p′

⟨0| (b0,L)
N

√
N !

b†k,Lbk′,Lb
†
p,Lbp′,L

(b†0,L)
N

√
N !

|0⟩ei(k
′−k)xei(p

′−p)y

= lim
L,N→∞

1

L2

∑
p

⟨0| (b0,L)
N

√
N !

b†0,Lbp,Lb
†
p,Lb0,L

(b†0,L)
N

√
N !

|0⟩eip(x−y)

= d2 + lim
L,N→∞

1

L2

∑
p ̸=0

⟨0| (b0,L)
N

√
N !

b†0,Lb0,L
(b†0,L)

N

√
N !

|0⟩eip(x−y)

= d2 + lim
L,N→∞

N

L2

∑
p

eip(x−y) − N

L2
= d2 + dδ(x− y) ,

(S38)

that is,

BEC⟨Ψ|q(x)q(y)|Ψ⟩cBEC = dδ(x− y). (S39)

For correlation functions of (b†(x))n(b(x))n operators analogous calculations predict dnδn(x− y) behaviors. The higher powers
of the Dirac-δ function can be regularized by point splitting, which results in δ-correlated connected 2pt functions.
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Curved trajectories of hydrodynamical modes and dynamical long-range correlations in interacting models

One main finding of this letter is that curved hydrodynamic trajectories together with spatial short-range initial correlation
and certain initial correlations in momentum or rapidity space give rise to long-range correlations for the time integrated current,
hence the predictions of BFT for the initial time evolution of the scaled cumulants of conserved charges are not correct. More
precisely, the connected correlation function

⟨Ψ|eλ/2Q|∞0 (0)j(0, t)j(0, t′)eλ/2Q|∞0 (0)|Ψ⟩c

⟨Ψ|eλQ|∞0 (0)|Ψ⟩
(S40)

at finite counting field, as well as higher point connected correlation functions exhibit slow decay upon separating the time
arguments of the currents, which prevent the applicability of BFT to compute the SCGF of the current after the bipartite quench
from eλ/2Q|∞0 (0)|Ψ⟩, which translates into the time evolution of the SCGF of the corresponding integrated conserved charge.

In the following we demonstrate the validity of the above claim via the example of the LL model and the BEC quench using a
series of non-trivial arguments. Therein, a particularly important role is played by the BMFT whose main assumption is that
spatio-temporal fluctuations, and hence also correlations can be described by considering the fluctuations in the initial state and
appropriately transporting them via the Euler hydrodynamic equations of the conserved quantities in integrable systems admitting
ballistic transport.

The other cornerstone regards the correlations in the initial state. In particular, since in the post-quench expansion of integrable
initial state excitations with opposite momentum or rapidity are correlated we expect certain correlations for rapidity-resolved
conserved quantities or hydrodynamical normal modes. While the intuition for this claim is natural, the characterization of such
correlations via rapidity-resolved conserved quantities in genuinely interacting integrable models is non-trivial.

Regarding the construction of rapidity-resolved conserved quantities in interacting integrable models, this task has been
achieved in [49–51]. However, for our purposes and to apply the BMFT equations, the (semi-)locality properties of such charges
are an important ingredient, which have only partially been studied and verified in [50, 51]. On the contrary, the construction of
rapidity-resolved conserved quantities is particularly simple in free fermion models and their semi-locality properties are also
well-established [52].

In the following, therefore, we shall refer to free fermion quenches which is also motivated by one more technical reason.
Whereas computing the rapidity-resolved correlations of conserved charges after the BEC quench is possible, at least in principle,
the computation would require a linked-cluster expansion with a three-fold summation over LL eigenstates using exact overlap
formulas and the form factors of the the model, and hence might not be practically feasible. To avoid such technicalities we rather
consider the rapidity-resolved correlation functions in the free fermion model after free fermion integrable quenches, exploiting
the key structural similarity of integrable quenches, i.e., consisting of pairs of excitations with opposite momentum. In other
words, we shall infer the input for the BMFT equations for the LL model by first studying the correlation functions of rapidity
resolved conserved charges in the free fermion model.

Rapidity-resolved conserved quantities

As we have mentioned there are known constructions for rapidity-resolved conserved charges in interacting integrable models,
however, for various reasons we shall consider the corresponding charges in the free-fermion model, where the construction is
particularly straightforward [52]. Using the standard Fourier decomposition of the fermion field operators,

ψ(x, t) =
1√
2π

∫
dk eikx−iEktak , ψ†(x, t) =

1√
2π

∫
dk e−ikx+iEkta†k , (S41)

and

ak =
1√
2π

∫
dke−ikxψ(x) , a†k =

1√
2π

∫
dkeikxψ†(x) (S42)

with basic anti-commutators

{ψ†(x), ψ(y)} = δ(x− y), {a†k, ap} = δ(k − p). (S43)

where we can write a conserved charge of the particle number as [52]

Q =
∑
κn

Qκn , with Qκn =

∫ κn+ϵ/2

κn−ϵ/2

dk a†kak (S44)
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where κn = nϵ. The rapidity-resolved particle density can be written as well [52] as

q(x, t) =
∑
κn

qκn
(x, t) , with qκn

(x, t) =
1

2π

∫ ∞

−∞
dk dk′ e−i(k−k′)xei(Ek−Ek′ )tΘH(ϵ/2− |k + k′ − 2κn|/2)a†kak′ , (S45)

where ΘH is the Heaviside Theta function and more explicitly

ΘH(ϵ/2− |k + k′ − 2κn|/2) = ΘH(ϵ/2− (k + k′)/2 + κn)−ΘH(−ϵ/2− (k + k′)/2 + κn) . (S46)

Rapidity-resolved spatial correlations in the fermionic initial states

As we have outlined before, a crucial ingredient to evaluate dynamical long-range correlations in the LL model, is the knowledge
of the rapidity-resolved spatial correlation of the particle number operator at the initial state. More precisely, however, these initial
correlations must be regarded already at the Euler scale, due the requirements of BMFT, that is, we are interested in the quantity

lim
t→0

lim
ℓ→∞

ℓ×BEC⟨Ψ|qκn
(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩cBEC ̸= lim
ℓ→∞

ℓ×BEC⟨Ψ|qκn
(ℓx, 0)qκn′ (ℓx

′, 0)|Ψ⟩cBEC . (S47)

The computation of this object for the LL model is notoriously complicated and, in principle, might be carried out using a
non-trivial and tedious form factor expansion. For this reason we rather compute the corresponding 2pt function in fermionic
initial states and will use the result as initial input for the BMFT equations for the interacting case. This approximation is
justified by the universal structure of integrable initial states, namely the existence of correlated pairs of excitations with opposite
momentum. Therefore, we first consider

lim
t→0

lim
ℓ→∞

ℓ×FF⟨Ψ|qκn
(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩cFF , (S48)

where |Ψ⟩FF is characterized by a K-function K(k) or by K(k)e2λ as

|Ψ⟩FF = N
−1/2
FF

(
exp

∫ ∞

0

dk

2π
K(k)a†ka

†
−k

)
|0⟩ . (S49)

Importantly, the free fermion quench problem can be analyzed exploiting the Bogolyubov transformation

ap = upãp + vpã
†
−p , a†p = v∗p ã−p + upã

†
p where up =

1√
1 + |K(p)|2

, vp =
K(p)√

1 + |K(p)|2
(S50)

with the new fermion operators ãp annihilating |Ψ⟩FF. Using this transformation, the 2pt density correlation function is easy to
express [41] from which, using [52], we obtain the momentum-resolved correlation function as

FF⟨Ψ|qκn
(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩cFF =

=

∫
dk

2π

dp

2π

{
|K(k)|2

1 + |K(k)|2
1

1 + |K(p)|2
e−i(k−p)(x−x′)eit(Ek−Ep)ΘH(ϵ/2− |k + p− 2κn|/2)ΘH(ϵ/2− |k + p− 2κ′n|/2)

+
K∗(k)

1 + |K(k)|2
K(p)

1 + |K(p)|2
e−i(k−p)(x−x′)eit(Ek−Ep)ΘH(ϵ/2− |k + p− 2κn|/2)ΘH(ϵ/2− |k + p+ 2κ′n|/2)

}
.

(S51)

In the following we show that the last line gives rise to δ(κ+ κ′) type correlations when ϵ→ 0 (whereas the first line corresponds
to δ(κ− κ′)) hence we restrict our attention to the last line of (S51). To proceed, we approximate the box-function originating
from the Heaviside Theta function (c.f. (S46)) by a continuous, analytic and exponentially decaying function, for instance the
difference of two hyperbolic tangents Θ̃ϵ,δ

H (x) = tanh((ϵ/2− x)/δ)− tanh((−ϵ/2− x)/δ), which allows us to consider the
entire k − p plane as the range of integration as well as using the stationary phase approximation to evaluate the oscillatory
integrals. We also introduce the scale ℓ, and for the sake of transparency consider the double summation wrt. the rapidity variables
κn and κn′ and use a test function F(κn, κn′), which can be arbitrary or be thought as a peaked one at specific κ and κ′ values.
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That is, we eventually write that∑
n,n′

FF⟨Ψ|qκn
(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩c∗FF F(κn, κn′) =

=
∑
n,n′

∫
dk

2π

dp

2π

K∗(k)

1 + |K(k)|2
K(p)

1 + |K(p)|2
e−iℓ(x−x′)(k−p)eiℓt(k

2−p2)Θ̃ϵ,δ
H ((k + p)/2− κn)Θ̃

ϵ,δ
H ((k + p)/2 + κ′n)F(κn, κn′)

=
∑
n,n′

1

2πℓt
K(k∗, p∗)Θ̃ϵ,δ

H ((k∗ + p∗)/2− κn)Θ̃
ϵ,δ
H ((k∗ + p∗)/2 + κ′n)F(κn, κn′) ,

(S52)

where ⟨.⟩c∗ means connceted correlations originating from κ,−κ modes, k∗ = p∗ = (x− x′)/(2t) from the saddle-point and it is
easy to see that no exponential factors remain after the stationary-phase approximation. Finally we also introduced the shorthand

K(k, p) =
K∗(k)

1 + |K(k)|2
K(p)

1 + |K(p)|2
. (S53)

We now perform the δ → 0 limit in the approximating box function and thus end up with the usual Heaviside Theta functions
allowing us to write∑

n,n′
FF⟨Ψ|qκn(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩c∗FF F(κn, κn′) =

=
∑
n,n′

1

2πℓt
K(

x− x′

2t
,
x− x′

2t
)ΘH(ϵ/2− |x− x′

2t
− κn|)ΘH(ϵ/2− |x− x′

2t
+ κ′n|)F(

x− x′

2t
,
x− x′

2t
)

= (ϵ2)
∑
n,n′

1

2πℓt
K(

x− x′

2t
,
x− x′

2t
)
ΘH(ϵ/2− (x−x′

2t − κn))−ΘH(−ϵ/2− (x−x′

2t − κn))

ϵ

×
ΘH(ϵ/2− (x−x′

2t − κn′))−ΘH(−ϵ/2− (x−x′

2t − κn′))

ϵ
F(

x− x′

2t
,
x− x′

2t
) ,

(S54)

which in the ϵ→ 0 limit becomes∫
dκdκ′

1

2πℓt
K(

x− x′

2t
,
x− x′

2t
)δ(

x− x′

2t
− κ)δ(

x− x′

2t
− κ′)F(

x− x′

2t
,
x− x′

2t
)

=

∫
dκdκ′

1

2πℓt
K(κ)δ(

x− x′

2t
− κ)δ(κ+ κ′)F(κ) ,

(S55)

where we simplified our notation by K(κ, κ) = K(κ) and F(κ, κ) = F(κ). Using that t > 0 and δ(κ− z/t)/t = δ(κt− z) we
have that in the t→ 0 limit∫

dκdκ′FF⟨Ψ|qκn
(ℓx, ℓt)qκn′ (ℓx

′, ℓt)|Ψ⟩cFF F(κ) =

∫
dκdκ′

(
1

πℓ
K(κ)δ(κ+ κ)δ(x− x′) + C × δ(κ− κ′)

)
F(κ) (S56)

where the C × δ(κ− κ′) type correlations originating from the 2nd line in (S51) are not relevant for our purposes and exploiting
the arbitrariness of the test function F(κ), we end up with

lim
t→0

lim
ϵ→0

lim
ℓ→∞

ℓ× FF⟨Ψ|qκn(ℓx, ℓt)qκn′ (ℓx
′, ℓt)|Ψ⟩c∗FF =

1

π
K(κ)δ(κ+ κ′)δ(x− x′) . (S57)

It is also easy to show that the limits limt→0 limϵ→0 can be exchanged as well.

Estimating long-range correlations in the LL model

As explained, curved hydrodynamic trajectories and the particular correlations in the initial state can give rise to long range
correlations for current multi-point functions after the bi-partite quench and modify the time dependence of the scaled cumulants
of the conserved charge on the original quench problem. We now use a simply and intuitive picture in the spirit of BMFT to
provide quantitative prediction for the deviations attributed to this effect. We stress again that the origin of this phenomenon is
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twofold: fluctuating hydrodynamic modes have non-trivial initial correlations due to the pair structure of the initial state as modes
with opposite rapidity are correlated. Second, although these modes have opposite velocities at short times, due to interactions,
there exists a finite region in rapidity space [–Λ,Λ] in which every normal mode will eventually have the same sign of its effective
velocity in the NESS, therefore initially correlated modes build up correlations between observable placed at the same spatial
point but at different times. As confirmed by Fig. S1 a), the effective velocity in this region can simply be approximated as

veff(k, ξ = 0) ≈ b1 ∗ (k ∓ Λ) if k ∈ [−Λ,Λ] (S58)

where Λ ∝ b2λ for small λ (c.f. Fig. S1 c)) and its sign ∓ depends on whether the eλQ|∞0 |Ψ⟩ or the eλQ|0−∞ |Ψ⟩ quenches,
respectively, are considered. Additionally b1 is an O(1) quantity mildly depending on λ and b2 is an O(1) factor, and both b1 and
b2 depend on the LL interaction strength c and the density d, as supported by extensive numerical studies.

In the following let us estimate the contribution of such correlated normal modes first for the current-current 2pt function
⟨⟨j(0, t)j(0, t′)⟩⟩c∗± at a finite value of the counting field λ, where the expectation value taken at the Euler scale and is understood
in the BMFT sense and ± refers to the eλQ|∞0 |Ψ⟩ or the eλQ|0−∞ |Ψ⟩ quenches, respectively. That is, correlations spread according
to Euler hydrodynamics characterized by the initial density matrix ρ(l)GGE ⊗ ρ

(r)
GGEe

2λQ or ρ(l)GGEe
2λQ ⊗ ρ

(r)
GGE where the superscript

(l/r) means that the density matrix is non-trivial only on the left/right side of the system, but the initial correlations are an external
output which are to be quantified by different means. First applying the rapidity dependent decomposition of conserved densities
and associated currents we write

⟨⟨j(0, ℓt)j(0, ℓt′)⟩⟩c∗± =

∫
dκdκ′⟨⟨jκ(0, ℓt)jκ′(0, ℓt′)⟩⟩c∗± . (S59)

A main idea is to express the currents as functions of the conserved densities, i.e.,

⟨⟨j(0, t)j(0, t′)⟩⟩c∗± =

∫
dκdκ′⟨⟨j̃κ[qi(0, ℓt)]j̃κ′ [qj(0, ℓt

′)]⟩⟩c∗± . (S60)

Importantly, we recall that the the current and charge expectation values can be expressed as

j(ℓx, ℓt) =

∫
dκE′(κ)θ(κ, ξ, λ)1dr(κ) , and q(ℓx, ℓt) =

∫
dκ p′(κ)θ(κ, ξ, λ)1dr(κ) . (S61)

As supported by extensive numerical studies, the quantity

1dr(κ, ξ, λ) ≈ b3 (S62)

to a very good approximation: for rapidities κ ∈ [−Λ,Λ], b3 is typically 2-5 for parameters c and d and λ with generic O(1)
values. Importantly, wrt. to varying the ray parameter ξ between −∞ and 0, or 0 and ∞, b3 changes approximately 20-25% if
λ ∝ O(1) (c.f. Fig. S1 b) and only a few percent if λ ∝ O(10−1). Therefore, we may approximate

jκ(ℓx, ℓt) = j̃κ[qi(ℓx, ℓt)] ≈ E′(κ)qκ(ℓx, ℓt) if κ ∈ [−Λ,Λ] . (S63)

According to BMFT, correlations are transported ballistically dictated by Euler hydrodynamics, hence we may write that

⟨⟨j(0, ℓt)j(0, ℓt′)⟩⟩c∗± ≈
∫

dκdκ′E′(κ)E′(κ′)⟨qκ(−ℓveff(κ, ξ = 0)t, 0)qκ′(0,−ℓveff(κ, ξ = 0)t′)⟩c∗± , (S64)

where veff is given by (S58) exploiting the fact that the Euler characteristics or the trajectories of small velocity modes dominantly
fall into a space-time region that corresponds to the NESS with ξ = 0. Additionally, at this stage we can evaluate the expectation
value in the initial state, more precisely, at short times on the Euler scale. Using the approximate expression for such initial density
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correlations (S57), we can proceed as

⟨⟨j(0, ℓt)j(0, ℓt′)⟩⟩c∗± ≈ 1

ℓ

∫
dκdκ′E′(κ)E′(κ′)δ(κ+ κ′)δ(veff(κ, ξ = 0)t− veff(κ′, ξ = 0)t′)

×
(
ΘH(−veff(κ, ξ = 0)t)Ka(κ) + ΘH(v

eff(κ, ξ = 0)t)Kb(κ)
)

=
1

ℓ

∫
dκE′(κ)E′(−κ)δ(veff(κ, ξ = 0)t− veff(−κ, ξ = 0)t′)

×
(
ΘH(−veff(κ, ξ = 0)t)Ka(κ) + ΘH(v

eff(κ, ξ = 0)t)Kb(κ)
)

=
1

ℓ

∫
dκE′(κ)E′(−κ)

δ
(
± t′−t

t+t′
Λ
b1

− κ
)

| d
dκv

eff(κ, ξ = 0)t− d
dκv

eff(−κ, ξ = 0)t′|
×
(
ΘH(−veff(κ, ξ = 0)t)Ka(κ) + ΘH(v

eff(κ, ξ = 0)t)Kb(κ)
)

= −4

ℓ

(
t′ − t

t+ t′
Λ

b1

)2
1

b1|t− t′|
K(2λ)

(
± t

′ − t

t+ t′
Λ

b1

)
,

(S65)

due to (S58) and where a and b mean either ∅, (2λ) or (2λ), ∅. At this stage some properties of the unknown function K(2λ) are
relevant. For free fermion quenches K(2λ)(0) = 0, i.e., at small rapidities the function cannot be a constant, and the mildest
possible behavior is the quadratic one, which is a consequence of the fact that fermionic K-functions are odd. In fact, odd
K-functions with a singularity at κ = 0 can also define integrable quenches c.f. the Tonks-Girardeau limit of the LL BEC quench
[53] with K(κ) = 2d/κ and hence K(2λ)(0) = 0 with a zero first derivative also in this case. Additionally, we also note that for
free fermions K(2λ)(κ) = θ(2λ)(κ)

(
1− θ(2λ)(κ)

)
.

It is plausible to assume that K(2λ)(κ) is an even function with quadratic behavior at the origin for the LL case. Namely one can
regard the Tonks-Girardeau limit of the LL model and the effective fermionic statistic of the excitations in the LL model at generic
c. Additionally, the resolution of the dynamical structure factor, in terms of a single integral, after the BEC quench, involves
the factor θ(κ) (1− θ(κ)) ρt(κ)

3 [25] which has a quadratic behavior at small κ. Nevertheless, to keep the following discussion
general we shall write K(2λ)(κ) ≈ K(2λ)(0) + b4(λ)κ

2, which have a finite value at λ = 0 (i.e., from K(κ) ≈ K(0) + b4(0)κ
2),

and which means that the leading order contribution to the current-current correlations at the Euler-scale is given by

⟨⟨j(0, ℓt)j(0, ℓt′)⟩⟩c∗± ≈ −4

ℓ

(
1

t+ t′
Λ

b1

)2 |t− t′|
b1

K(2λ)(0)−2b4
ℓ

(
1

t+ t′
Λ

b1

)4 |t− t′|3

b1
= −1

ℓ

|t′ − t|
(t+ t′)2

λ2b′1−
1

ℓ

|t′ − t|3

(t+ t′)4
λ4b′2

(S66)
irrespective of whether the eλQ|∞0 |Ψ⟩ or the eλQ|0−∞ |Ψ⟩ quench is regarded, where b′1 and b′2 are O(1) numbers independent on
λ (keeping in mind that b′1 is plausibly zero) number and we have exploited that fact that Λ ≈ λb2 for small λ-s. We can also
estimate the correction to the 2nd scaled cumulant of the charge at finite counting field by integrating the current 2pt function wrt
time taking into account the Euler-scaling as well and the fact the contributions on the left and the vertical contours are equal:

∆c2(λ) = 2 lim
ℓ→∞

1

ℓT

∫ ℓT

0

∫ ℓT

0

dtdt′⟨⟨j(0, t)j(0, t′)⟩⟩c∗+ = 2 lim
ℓ→∞

ℓ

T

∫ T

0

∫ T

0

dtdt′⟨⟨j(0, ℓt)j(0, ℓt′)⟩⟩c∗+

≈ 2 lim
ℓ→∞

ℓ

T

∫ T

0

∫ T

0

dtdt′
1

ℓ

|t′ − t|
(t+ t′)2

λ2b′1 + 2 lim
ℓ→∞

ℓ

T

∫ T

0

∫ T

0

dtdt′
1

ℓ

|t′ − t|3

(t+ t′)4
λ4b′2

= −4(1− ln 2)b′1λ
2 − 4(5/6− ln 2)b′2λ

4 ,

(S67)

where it is importantly to stress that the temporal scaling of the corrections is regular, i.e., it is time-independent. Given the
expansion of the SCGF we can write

cBFT
2 (λ) + ∆c2(λ) =

∂2

∂λ2
f(λ) = c2 + c3λ+

c4λ
2

2
+
c5λ

3

6
+
c6λ

4

24
+ ... , (S68)

from which we can deduce the correction ∆c2(λ) eventually modifies either c4 or c6. Since at finite λ also c2(λ) depends on the
higher scaled cumulants, the identification of the precises correction to such higher cumulants is non-trivial and we leave this task
for later works also aiming the more precise computation of corrections to higher point correlation functions and further higher
cumulants. We conclude by stressing that long-range correlations modify the SCGF either at the 4th or the 6th order, meaning that
the scaled cumulants Cn for n ≥ 4 or n ≥ 6 obtain correction wrt. the predictions of the BFT flow equations.
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Curved hydrodynamic trajectories from GHD

Below we report a detailed numerical analysis to demonstrate the existence of curved hydrodynamic trajectories in the bi-
partitioning protocol, that can give rise to long-range correlation for the current-current 2pt function. The analysis is similar to
that of [44] and for simplicity, we shall consider the case of the initial density matrix ρ(l)GGE ⊗ ρ

(r)
GGEe

2λQ. Let us now formulate
precisely what we want to demonstrate:

∀ c > 0, d > 0, λ > 0 ,∃Λ > 0 such that ∀κ ∈ [−Λ,Λ] and ∀T > 0 ∃T ′ > 0

such that X(T, κ) = 0 and X(0, κ) = x0 and X(0,−κ) = 0 and X(0,−κ) = x0 ,
(S69)

for some real x0, where X(t,±κ) are solutions of the Euler characteristic equation, i.e.,

Ẋ(t, κ) = veff(κ,X/t) and X(0, κ) = x0 (S70)

where we remind ourselves that ξ = x/t and veff(κ, ξ) is the effective in the ξ-dependent GGE emerging after the bi-partite
quench with the aforementioned initial density matrix.

We note that the computation of the ray-dependent effective velocity following a bi-partitioning protocol is a standard problem
in GHD. For its identification we first recall that the effective velocity in GGEs can be obtained by the dressing equations

f dr(κ) = f(κ) +
(
φ ⋆ θ f dr) (κ) . (S71)

as

veff(κ, ξ) =
(E′(κ, ξ))

dr

(p′(κ, ξ))
dr , (S72)

where E′ and p′ prime are the derivatives if the 1-particle energy and momentum, which in the case of the LL model are just 2κ
and 1, respectively. The quantity θ is the filling function of the GGE, which has to be determined a self-consistent way via

θ(κ, ξ) = ΘH(veff(κ, ξ)− ξ)θL(κ) + ΘH(ξ − veff(κ, ξ))θR(κ) , (S73)

where θ(κ)L/R are the filling functions of the GGEs characterizing the initial system on its left/right parts. The above equation can
be rewritten also as

θ(κ, τ) = ΘH(κ− τ)θL(κ) + ΘH(τ − κ)(κ))θR(κ) with

ξ = veff[θ(κ, τ)](κ = τ) ,
(S74)

which is an implicit equation for τ if the the value of the ray ξ is prescribed. Once the ray-dependent effective velocity is
numerically computed, it is immediate the reconstruct the x, t-dependent effective velocity field veff(κ, x, t) = veff(κ, x/t) via
which the equation (S70) can be solved numerically. Although the numerical solution of these equations may not justify the
criterion (S69), it is instructive to study their fulfillment, which is indeed the case as demonstrated by Fig. 2. Showing that (S69)
holds can be demonstrated without eventually solving the differential equation (S70) in the following way, where we shall make
use of numerical observations while carefully exploring the parameter space.

The first observation is that for ∀ c > 0, d > 0, λ > 0, it is true that for any fixed ray ξ, veff(κ, ξ) = 0 has only one unique
solution κ∗(ξ). In the particular geometry (ρGGE on the left, and ρGGEe

2λQ on the right side of the system) this κ∗ value is
non-negative and lies in the interval [0, Λ̃] and κ∗(ξ) reaches its maximum value around ξ ≈ 0 and κ∗ ≈ 0 for large enough ξ-s
which, for smaller interaction strength and densities are close to zero, c.f. Fig S1 c). These facts imply that first of all, far away
from the NESS,

sgn(veff(κ, ξ)) = sgn(κ) when x≫ t (S75)

that is, the sign of the effective velocity of hydrodynamics modes with opposite rapidities is different. The other implication is
that close to the NESS, i.e., ξ ≈ 0 or t≫ x this is not the case; instead for

∀κ ∈ [−Λ,Λ], sgn(veff(κ, ξ)) = −1 when t≫ x (S76)

(c.f. Fig. S1 a)) where Λ ≈ Λ̃, Λ ∝ λ as reported by Fig. S1 c) and the sign of the velocity is −1 in the particular quench geometry.
The final, crucial observation is that whereas ∀κ ∈ [−Λ, 0], veff(κ, ξ) is negative for any ξ, for ∀κ ∈ [0,Λ], veff(κ, ξ) can be
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both positive (|ξ| ≫ 1, (S75)) and negative (|ξ| ≪ 1, (S76)) and in particular it has two zeros ξ∗1 < 0 and ξ∗2 > 0 (satisfying
veff(κ, ξ∗1,2) = 0), c.f. Fig. S1 d). Furthermore, it is true that

∀κ ∈ [0,Λ], |max
ξ
veff(κ, ξ)|, |min

ξ
veff(κ, ξ)| < |ξ∗1 | and |max

ξ
veff(κ, ξ)|, |min

ξ
veff(κ, ξ)| < ξ∗2 , (S77)

as visualized by Fig. S1 d). From the above, it follows that any hydrodynamic trajectory X(κ, t) with κ ∈ [0,Λ] and with initial
condition X(κ, 0) = x0 > 0 over the course of its time evolution has initially positive velocity, however, at some finite time the
velocity changes sign to negative. After this instant the velocity cannot change sign anymore (as |minξ v

eff(κ, ξ)| < |ξ∗1 |, ξ∗2 ),
therefore the trajectory with initial position x0 > 0 will necessarily cross the x = 0 point. Additionally, another trajectory with
X(κ, 0) = x0,∀κ ∈ [−Λ, 0] has only negative velocities and hence also necessarily reach the x = 0 value. That is, taking two
trajectories with opposite rapidity κ,−κ ∈ [−Λ,Λ] with the same initial position x0 > 0 both trajectories will necessarily cross
the x = 0 point. Finally, because the trajectories X(t, κ > 0) will initially have positive then negative velocities irrespective of
the initial position x0 > 0, and this velocity is bounded (c.f. Fig. S1 d)), it also follows that upon x0 → ∞, T → ∞ as well
( where X(T, κ) = 0). In other words, the curved trajectories are not only present in a finite space-time region, but T can be
arbitrarily large, which is an important requirement for the onset of the dynamical long-range correlations.

First order expansion of the GHD equations

Whereas it seems plausible that the aforementioned conclusions also hold at any finite but very small λ-s, repeating the previous
numerical study for very small λ-s is highly inaccurate. However, it must be ensured that curved hydrodynamics trajectories are
not only present above a small but finite value of the counting field λ∗, which could imply the onset of dynamical phase transitions
in the FCS. To show that this is not the case and exclude numerical inaccuracies we therefore differentiate the GHD equations wrt.
λ and study the first order behavior of the effective velocity and its implication on the presence (or absence) of curved trajectories.

Differentiating the dressing equations (S71) with the the filling function corresponding to the partitioning protocol (S74), we
yield

∂λf
dr(κ)|λ=0 =

(
φ ⋆ θ̃ f dr

)
(κ) +

(
φ ⋆ θ ∂λf

dr|λ=0

)
(κ) (S78)

where θ(κ) is the filling function of the GGE characterizing the homogeneous quench problem and

θ̃(κ) = ΘH(τ − κ)∂λθ
(2λ)(κ)|λ=0 , (S79)

where θ(2λ) is the filling function of ρGGEe
2λQ. Using (S72), we may write the effective velocity as

veff(κ, τ, λ) ≈ veff
0 (κ) + λveff

1 (κ, τ) (S80)

where veff
0 (κ) denotes the effective velocity of the homogeneous GGE and for convenience we denote its inverse function as

veff
0,inv(κ), that is, veff

0,inv(v
eff
0 (κ)) = κ. Our first task is to link the parameter τ to the more physical ray variable via ξ = veff(τ, τ, λ)

from which we have that up to first order in λ

ξ(τ) = τ + λveff
0,inv(v

eff
1 (τ, τ)) , and τ(ξ) = veff

0,inv(ξ)− λ
d

dκ
veff
0,inv(v

eff
1 (ξ, ξ)) . (S81)

To proceed we need to identify the NESS, i.e., ξ = 0, and find the corresponding τ0 parameter, which is simply

τ0 = −λveff
0,inv(v

eff
1 (0, 0)) . (S82)

and therefore the effective velocity in the NESS is

veff(κ, ξ = 0, λ) = veff
0 (κ) + λveff

1 (κ, 0) +O(λ2) . (S83)

Expanding veff
0 (κ) and veff

1 (κ, 0) up to linear order in κ we can determine the zero κ∗ of the velocity and eventually Λ identifying
the two quantities. Writing that

veff
0 (κ) ≈ a10κ , and veff

1 (κ, 0) ≈ a01 + a11θ (S84)

we have that Λ = λa11/a
1
0 + O(λ2). The next steps are analogous to the ones discussed above: we need to show that for

∀κ ∈ [0,Λ], veff
0 (κ) + λveff

1 (κ, ξ) has two zeros ξ∗1 , ξ
∗
2 and that |minξ v

eff(κ, ξ)|, |maxξ v
eff(κ, ξ)| < |ξ∗1 |, |ξ∗2 |. Keeping in mind

that Λ ∝ λ, we write κ = λκ̃, where κ̃ ∈ [0, a11/a
1
0] and first identifying the values ξ∗1 , ξ

∗
2 , we use

veff(κ, ξ∗, λ) = 0 ⇒ veff
0 (κ) + λveff

1 (κ, veff
0,inv(ξ

∗)) +O(λ2) = 0 , (S85)
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from which

veff
0,inv(ξ

∗) = veff,±
1,inv,ξ(−v

eff
0 (κ)/λ) , (S86)

where veff,±
1,inv,ξ is the inverse function of veff

1 wrt. the second argument and for positive/negative values therein, respectively. From
the equation above it follows that

ξ∗1,2 = veff
0

(
veff,±
1,inv,ξ(−a

1
0κ̃)
)
. (S87)

Importantly, the values ξ∗1 and ξ∗2 obtained this way are O(1) numbers and do not depend on λ. These values must satisfy that

|ξ∗1 |, |ξ∗2 | > |min
ξ
veff(κ, ξ)|, |max

ξ
veff(κ, ξ)|

|ξ∗1 |, |ξ∗2 | > |min
ξ
veff
0 (λκ̃) + λveff

1 (λκ̃, veff
0,inv(ξ))|,max

ξ
veff
0 (λκ̃) + λveff

1 (λκ̃, veff
0,inv(ξ))|

O(1) > O(λ)

(S88)

therefore the curved trajectories are present at any small finite values of the counting field as well. In the particular case of
c = 1 and d = 2, we have that Λ = 0.5102λ, and that ξ∗1 = −3.045 and ξ∗2 = 3.0094 for κ̃ = 0.2× 0.5102; ξ∗1 = −2.6699 and
ξ∗2 = 2.6263 for κ̃ = 0.4× 0.5102; ξ∗1 = −2.4068 and ξ∗2 = 2.3548 for κ̃ = 0.6× 0.5102 and ξ∗1 = −2.1352 and ξ∗2 = 2.0724
for κ̃ = 0.8× 0.5102.

The numerically investigated parameter space

In the following table we show at what c, d and λ values we have repeated the numerical checks for the curved trajectories.
We note that for c = 5, d = 1 and λ = 1.55, c = 1, d = 5 and λ = 1.25 and c = 1, d = 0.4 and λ = 1.5 the variations of
1dr(κ, ξ, λ) for fixed κ ∈ [−Λ,Λ] wrt. tuning xi form −∞ to 0 or from 0 to ∞ are slightly larger than in the other cases (few %
for λ ∝ O(10−1) and 20-25% for λ ∝ O(1)), namely 35-45%. Additionally for c = 1, d = 5, 1dr(κ ≈ 0, ξ, λ) ≈ 5 − 7. For
c = 1, d = 2 and λ = 2.25 this variation is even larger and is up to 50% wrt. the medium value 6 at ξ = 0. These findings mean
that at large values of the counting field the approximations (S62) and (S63), i.e., 1dr(κ ≈ 0, ξ, λ) ≈ const and jκ ≈ E′(κ)qκ are
less accurate.

The other findings of the analysis carried out previously, such as the approximately linear dependence of Λ on λ
even for larger counting fields, the unique zero of eff as a function of ξ, as well as the fulfilment of the condition that
∀κ ∈ [0,Λ], |maxξ v

eff(κ, ξ)|, |minξ v
eff(κ, ξ)| < |ξ∗1 | and |maxξ v

eff(κ, ξ)|, |minξ v
eff(κ, ξ)| < ξ∗2 remain valid in the

investigated parameter regime. The same statement is true for the findings of the 1st order expansion of the GHD equations,
namely |ξ∗1 |, |ξ∗2 | obtained from the appropriate expansion are O(1) quantities.

c 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5
d 7.5 7.5 4.0 4.0 1.0 1.0 1.0 5.0 5.0 5.0 2.0 2.0 2.0 0.4 0.4 0.4 2.1 2.1 2.1 0.7 0.7 0.7
λ 0.6 0.06 0.6 0.06 1.55 0.6 0.06 1.25 0.75 0.075 2.25 0.75 0.075 1.75 0.45 0.045 1.1 0.5 0.1 1.1 0.5 0.1
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FIG. S1. a) The effective velocity in the NESS (ξ = 0) for κ ∈ [−Λ,Λ] with Λ ≈ 0.5, and the effective velocities for other ray-values
(inset), ξ = −5,−2.5, 0, 2.5, 5 corresponding to colors blue, red, black, orange and brown. b) 1dr(κ, ξ) for κ ∈ [−Λ,Λ] in the NESS and for
further ξ-values, as well as at larger κ (inset), ξ = −10,−2.5,−1, 0, 1, 2.5, 10 corresponding to purple (dashed), blue (dashed), orange, red,
magenta, brown (dotted-dashed) and green (dotted-dashed) lines, respectively. c) The zero of veff(κ∗, ξ) for fixed ξ as function of ξ and the
linear dependence of Λ = κ∗(ξ = 0) on λ (inset). d) The effective velocity veff(κ, ξ) as a function of ξ for ±κ values from [−Λ,Λ], where the
continuous and dashed lines correspond to positive and negative rapidities, respectively, blue ξ = 0.1, black ξ = 0.25 and red ξ = 0.5. The
parameters are c = 1, d = 2 and λ = 0.75.
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