
Quantum CORDIC — Arcsin on a Budget

Iain Burge
SAMOVAR, Télécom SudParis,

Palaiseau, France
iain-james.burge@telecom-sudparis.eu

Michel Barbeau
Carleton University, School of Computer

Science, Ottawa, Canada
barbeau@scs.carleton.ca

Joaquin Garcia-Alfaro
SAMOVAR, Télécom SudParis,

Palaiseau, France
joaquin.garcia alfaro@telecom-sudparis.eu

Abstract—This work introduces a quantum algorithm for com-
puting the arcsine function to an arbitrary accuracy. We leverage
a technique from embedded computing and field-programmable
gate array (FPGA), called COordinate Rotation DIgital Com-
puter (CORDIC). CORDIC is a family of iterative algorithms
that, in a classical context, can approximate various trigonomet-
ric, hyperbolic, and elementary functions using only bit shifts
and additions. Adapting CORDIC to the quantum context is non-
trivial, as the algorithm traditionally uses several non-reversible
operations. We detail a method for CORDIC which avoids such
non-reversible operations. We propose multiple approaches to
calculate the arcsine function reversibly with CORDIC. For n bits
of precision, our method has space complexity of order n qubits,
a layer count in the order of n times log n, and a CNOT count in
the order of n squared. This primitive function is a required step
for the Harrow–Hassidim–Lloyd (HHL) algorithm, is necessary
for quantum digital-to-analog conversion, can simplify a quantum
speed-up for Monte-Carlo methods, and has direct applications
in the quantum estimation of Shapley values.

I. INTRODUCTION

The problem of quantum digital-to-amplitude conversion [7]
is an essential step in various quantum algorithms, including
Harrow–Hassidim–Lloyd (HHL) — a quantum algorithm for
solving linear equations [5], a quantum speed-up for Monte
Carlo methods [8], and a quantum algorithm for Shapley
value estimation [1]. However, to efficiently perform this
conversion it is necessary to calculate inverse trigonometric
functions, which is computationally expensive [7]. As quantum
computation is very young, it is valuable to consider techniques
used in early classical computing intended for weak hardware.
In particular, this work adapts the classical CORDIC algorithm
for arcsin to the quantum setting.

Section II presents related work. Sections III and IV pro-
vide preliminaries to our problem, and introduces the approach
of classical CORDIC to approximate arcsin on minimal
hardware. Section V translates the approach to a quantum
setting. Section VI demonstrates the use of quantum CORDIC
to perform a quantum digital-to-analogue transformation. Sec-
tion VII gives a sketch proof of the time and space complexity
of quantum CORDIC and provides simulation results. Sec-
tion VIII concludes the work.

II. RELATED WORK

There have been a few attempts to design a quantum algorithm
for the arcsin function. For instance, Häner et al. [4]
leverages quantum parallelism to perform piecewise polyno-
mial approximations of a wide range of functions. While the
approach is flexible, it is not ideal in the short term, since it
requires some memory access, a fair number of multiplications,

and square rooting for the extreme portions of arcsinx, i.e.,
x ∈ [−1,−0.5]∪[0.5, 1]. It can be seen as a promising solution
that scales well in precise situations, e.g., more than 32 bits.
There also exists an iterative method [12], which performs a
binary search to approximate arcsinx, among other elementary
functions. The suggested solution is very general. However,
it requires many squaring operations that are challenging to
implement in the near term.

The above techniques are valuable for various applications
when sufficient hardware is available. In the late 1950s,
Volder [10] introduced the CORDIC algorithm to solve an
important family of trigonometric equations using the under-
powered hardware of the time. This was later generalized to
a single algorithm that solves various elementary functions,
including multiplication, division, the trigonometric functions,
arctan, the hyperbolic trigonometric functions, ln, exp,
and square root [11]. CORDIC has been further modified to
solve various other functions, including our target function,
arcsin [6].

III. PRELIMINARIES

Suppose you have the following (n+ 1)-qubit quantum state:

|ϕ⟩ =
L−1∑

k=0

αk |hk⟩in |0⟩out ,

where L ≤ 2n, the in register has size n, the out register
is of size one, and hk represents a number in range [0, 1] as
an n-bit binary string. A particularly useful transformation on
this state is given by the following equation:

U |ϕ⟩ =
L−1∑

k=0

αk |hk⟩in
(√

1− hk |0⟩+
√
hk |1⟩

)
out

. (1)

which encodes the binary values hk into the probability
amplitudes of the output register. This transformation is an
important instance of quantum digital-to-analog conversion [7].

A fast solution to this problem is valuable in multiple
algorithms. For instance, a quantum algorithm for approxi-
mating Shapley values [1] could leverage this transformation to
simplify the state preparation step. Another important example
is the quantum speedup of Monte Carlo methods [8] which
requires the transformation W , defined as:

|x⟩in |0⟩out
W−→ |x⟩in

(√
1− Φ(x) |0⟩+

√
Φ(x) |1⟩

)
out

.

where Φ is a function from binary strings to the interval from
zero to one. This can be translated easily to our transformation.

ar
X

iv
:2

41
1.

14
43

4v
1 

 [
qu

an
t-

ph
] 

 2
 N

ov
 2

02
4



We split the computation into two steps, where we first
implement a reversible algorithm to compute Φ in the compu-
tational basis, and then apply our transformation. Take register
in to have m qubits, the register aux to have n qubits, and
the register out to have one qubit. We first apply the unitary
V using the in register as input and outputting the n-bit
approximate result Φ̃ to aux, as follows:

|x⟩in |0⟩aux
V−→ |x⟩in |Φ̃(x)⟩aux .

where |x⟩in is a computational basis vector. Then, W can
be constructed with n auxiliary qubits by composing V , and
U , Equation (1), where the aux acts as the input. Finally, to
restore the aux register to its initial state, we apply the V −1
transformation. In summary, we can solve the problem using
a reversible classical algorithm implementation of Φ̃ followed
by encoding the result into the probability amplitude of the
output bit.

Another practical use case is as a step of the HHL algo-
rithm [5]. In this case, reciprocal eigenvalues are encoded as
binary strings in a superposition. An essential step is to encode
the reciprocals of the eigenvalues in the probability amplitudes
of an output bit. In particular, we can apply a transformation
closely related to U from Equation (1).

Hence, an efficient algorithm to implement the transforma-
tion U , Equation (1), has immediate benefits to foundational
problems. There are a few naive approaches to implementing
the transformation. One is to use a lookup table, where
each possible input |hk⟩in is separately implemented, but that
would require exponential circuit depth. qRAM could also be
leveraged [3], however it would require exponential space.

With some naive methods out of the way, we examine a
less trivial direction that illustrates the main challenge solved
by this paper. Consider the following state,

|ψ0⟩ =
L−1∑

k=0

αk |hk⟩in |0⟩aux |0⟩out .

where in and aux are n-qubit registers, each representing
two’s complement, fixed point integers in the range [−2, 2) of
the form x0x1.x2 · · ·xn−1 where x0 is the sign bit, and out
is a single qubit register. We require hk to be in range [0, 1].
Suppose we apply the function arcsin where in is the input
register, and aux is the output register. Applying this unitary,
which we call F , yields,

F |ψ0⟩ = |ψ1⟩ =
L−1∑

k=0

αk |hk⟩in |arcsin
√
hk⟩aux |0⟩out .

Suppose now that we apply the quantum circuit R from
Figure 1. This would give us state,

R |ψ1⟩ = |ψ2⟩ =
L−1∑

k=0

αk |hk⟩in |arcsin
√
hk⟩aux

·
(
cos
(
arcsin

√
hk

)
|0⟩+ sin

(
arcsin

√
hk

)
|1⟩
)
out

.

Using trigonometry identities, we have that,

|ψ2⟩ =
L−1∑

k=0

αk |hk⟩in |arcsin
√
hk⟩aux ·

(√
1− hk |0⟩+

√
hk |1⟩

)
out

.

...
. . .

· · ·

|arcsin
√
hk⟩aux

|0⟩out Ry
(
π
4

)
Ry
(
π
8

)
Ry
(

π
2n+1

)

Fig. 1: Unitary transformation R which encodes the binary
value of the aux register into the output register. Define
Ry(ω) = (cosω,− sinω; sinω, cosω).

Uncomputing arcsinhk by performing F−1, we get our
desired state, Equation (1). This approach transforms our pre-
vious problem into a problem of seemingly similar difficulty,
computing arcsin reversibly. However, this paper shows a
method to achieve this task efficiently.

IV. CLASSICAL CORDIC FOR ARCSINE

Let us give a brief insight into how CORDIC works. First,
there is an implicit two-dimensional goal vector that encodes
the problem. The exact vector is unknown, but we have a
method to compare it to other vectors. A starting vector rotates
towards the goal in increasingly small discrete steps, picking
the direction of rotation based on our comparison method,
until it converges with satisfactory error. It is possible to avoid
performing any multiplications during the rotations by using
pseudo-rotations, rotations with a small stretch.

Our proposed method is based on Mazenc et al.’s algo-
rithm [6] (but Step 1 is slightly modified, as there was an
error in the original paper). The procedure is fully described
in Algorithm 1. Each iteration follows the steps below:

With initial values: θ0 = 0, x0 = 1, y0 = 0, t0 = t. The algorithm iteratively
repeats the following steps, let i be the index of the current iteration,

1) Define s(z) = 1 if z < 0 and equal to 0 otherwise,

di = [s(xi) ∧ s(ti − yi)]⊕ s(xi)

⊕ [s(xi) ∧ s(yi)]⊕ s(ti − yi).

2) If di = 1, then swap xi and yi.
3) Perform pseudo-rotation:

(
xi+1

yi+1

)
=

(
1 −2−i

2−i 1

)2 (
xi

yi

)

4) If di = 1, then unswap xi and yi.
5) Compensate for pseudo-rotation:

ti+1 = (1 + 2
−2i

)ti

6) Update theta approximation:

θi+1 = θi + (−1)di2 arctan 2
−i
.

We first initialize the problem, given input t ∈ [−1, 1].
Our goal is to get the vector (xi, yi) to point in the same
direction as the vector of length 1 with height t, i.e., vector
(
√
1− t2, t). This goal vector has an angle of θ = arcsin(t).

By keeping track of each rotation we make, assuming (xi, yi)
points in roughly the same direction as the goal vector, we
can construct an approximation for θ. In particular, assuming
infinite precision, as i tends to infinity, approximation θi tends



Algorithm 1 CORDIC Arcsine

1: procedure ARCSIN(t, n) ▷ t ∈ [−1, 1]
2:
3:

ang← 0, x← 1, y← 0, t← t,d← 0
for i = 1, i < n,++i do

4:
5:

6:

di ← [s(xi)∧ s(ti−yi)]⊕ s(xi)⊕ [s(xi)∧ s(yi)]⊕ s(ti−yi)
if di then x,y← y,x

for _ in range(2) do
7:

8:

9:
10:

x,y← x− 2−iy,y+ 2−ix

if di then x,y← y,x

t← (1 + 2−2i)t
ang← ang+ (−1)di2 arctan 2−i

11: return ang

Algorithm 2 Mult(in,aux,m): in← (1 + 2−m)in

1: procedure MULT(in, aux, m) ▷ in is a register
of size n, aux is a auxiliary register of size n with near
0 value, m is the right shift

2: F ← [1, 1, , 5, 8, 13⌉, . . . ] ▷ Fibbonacci √Sequence
3:
4:
5:

2⌈,√3
#iter← 5φ−mn ▷ φ = (1 + 5)/2
aux← aux+ in
for i = #iter, i ≥ 0, --i do

6:
7:
8:

if i even then
in← in− (−1)F[i](aux≫ (m · F[i]))

else
9: aux← aux− (−1)F[i](in≫ (m · F[i]))

10: aux← aux− in

Algorithm 3 Div(in,aux,m): in← (1 + 2−m)−1in

1: procedure DIV(in, aux, m) ▷ in is a register
of size n, aux is a auxiliary register of size n with near
0 value, m is the right shift

2: F ← [1, 1, , 5, 8, 13⌉, . . . ] ▷ Fibbonacci √Sequence
3:
4:
5:

2⌈,√3
#iter← 5φ−mn ▷ φ = (1 + 5)/2
aux← aux+ in
for i = 0, i < #iter, ++i do

6:
7:
8:

if i even then
aux← aux+ (−1)F[i](in≫ (m · F[i]))

else
9: in← in+ (−1)F[i](aux≫ (m · F[i]))

10: aux← aux− in

to θ. According to Ref. [6], to achieve n bits of accuracy it
takes n+O(1) iterations.

Step 1 is a computationally convenient way to check if
θi < θ, which we store in variable di. If di = 0, then we
need to rotate counterclockwise to get closer to θ. Otherwise,
if di = 1, we need to rotate clockwise. Steps 2 and 4 conjugate
Step 3 to achieve the correct rotation direction.

Step 3 performs a pseudo-rotation, slightly stretching our
vector (xi, yi) by a factor of 1 + 2−2i. It is performed simply
by making the following substitutions twice: x′ = x − 2−iy
and y′ = y + 2−ix. As a result of the operation, we point
closer to the goal direction, but it is necessary to compensate
for the stretch.

Step 5 deals with the stretching of the vector (xi, yi) by
stretching our goal vector by the same amount, (1 + 2−2i).
Note that multiplication by powers of 2 can be done efficiently
through bit-shifting.

Finally, Step 6 records the change to the current angle of
vector (xi, yi). Note that the expression 2 arctan 2−i can be
precomputed and directly encoded into hardware.

The big takeaway is that each iteration uses only about five
bitshifts and seven additions, regardless of the number of bits.

V. QUANTUM CORDIC FOR ARCSINE

There are a few immediate challenges that appear when we
try and move CORDIC to a quantum setting, in this section
we detail the solutions step-by-step. Before going through the
steps, we have a few important facts to note. We represent
the values θi, xi, yi, ti using fixed point two’s complement in
the range [−2, 2) with one sign bit, one integer bit, and n− 2
fractional bits. This avoids any issues with overflow, in the case
of θi, θ is in the range [−π/2, π/2), so |θ| ≤ π/2 < 2. In the
case of |xi|, |yi|, |ti|, each represents side-lengths of vectors
with a magnitude that increases in size by (1+4−i) each step,
thus,

|xi|, |yi|, |ti| ≤
n∏

i=1

(
1 + 4−i

)
< 3
√
e < 2.

You can verify the inequality by taking n→∞, taking the ln
of the infinite product, using the inequality ln(1 + x) < x for
positive x, and finally using the geometric series. The product
represents the stretch caused by the pseudo-rotations over the
iterations. The two’s complement also allows us to check if a
value is negative easily using the most significant bit, if it is
1 then the value is negative, otherwise, the value is positive.
To approximate multiplication by 2−m, we will use the right
bit-shift operation, x0x1 · · ·xn−1 ≫ m, we move each bit to

the right by m places, deleting the m rightmost bits. Also note
that, when right bit-shifting in two’s complement, the previous
leftmost bit is copied into the new leftmost bits, for example:

x0x1x2x3x4 ≫ 2 = x0x0x0x1x2, xk ∈ {0, 1}.
This ensures right bitshifts work as a division by powers of
two for negative numbers.

Now, let us go through the steps of the quantum im-
plementation, assuming n bits each to represent θi, xi, yi, ti
as fixed point numbers in registers ang,x,y,t respectively.
Allocate n − 1 bits to represent d = d1d2 · · · dn−1 as a bit
array in register d where di represents the ith register qubit.
Initialization is trivial, we use t ← t as the input. Note that
we do not need to use new registers for each iteration, one
register per value is sufficient.

For Step 1, we can perform this step with the following
sequence of operations, where the leftmost bit is most signif-
icant. We begin with the state:

|0⟩di
|xi⟩x |yi⟩y |ti⟩t

We perform a subtraction (implemented with an inverse addi-
tion gate) from y to t, yielding,

|0⟩di
|xi⟩x |yi⟩y |ti − yi⟩t .

Looking directly at the sign bits of the x, y, and t registers
gives s(xi), s(yi), and s(ti− yi) respectively, where s(z) = 1
if z < 0 else s(z) = 0. We next perform the following
operations,

• Perform a Toffoli gate using the sign bits of the x
and t registers as controls and qubit di as the target.

• Perform a Toffoli gate using the sign bits of the x
and y registers as controls and qubit di as the target.

• Perform a CNOT gate using the sign bits of the x
register as control and qubit di as the target.

• Perform a CNOT gate using the sign bits of the t
register as control and qubit di as the target.

Finally, we can undo the previous subtraction by adding the y
register back to the t register. This gives us a correct di bit
without side effects.

Steps 2 and 4 are trivial to implement using swap gates
between each bit of the x and y register controlled by di, this
can be done using 18n CNOTs.

Step 3 is the most difficult. It leverages Algorithm 2 for
multiplying by (1+2−k). Note, that each step of Algorithm 2



is reversible. An explanation for Mult is the subject of
Appendix A. For notational simplicity, we assume x and y
have not been swapped Our initial state for this step is,

|xi⟩x |yi⟩y .
We first subtract yi ≫ i (yi right shifted by i bits) from register
x, giving us,

|xi − 2−iyi⟩x |yi⟩y .
Next, we need to take a mostly clean (value near 0) auxiliary
register. We apply Mult(y,aux, 2i) to the y register,

|xi − 2−iyi⟩x |yi + 2−2iyi⟩y .
Finally, we add the x register shifted, (xi−2−iyi)≫ i, to the
y register,

|xi − 2−iyi⟩x |yi + 2−2iyi + 2−i(xi − 2−iyi)⟩y .
Which equals |xi − 2−iyi⟩x |yi + 2−ixi⟩y. By repeating these
operations once more, Step 4 is accomplished.

With our new Mult tool, Step 5 is trivial. We simply apply
Mult(t,aux, 2i) to the t register.

Finally, for Step 6 we apply controlled negation of the ang
register using di as the control. Then add the precomputed
2 arctan 2−i to the θ register, note, this operation can be
encoded directly on quantum hardware. Then, once again,
perform a controlled negation of the ang register using di
as the control. This gives,

|θi⟩ang → |(−1)diθi⟩ang → |(−1)diθi + 2arctan 2−i⟩ang
→ |(−1)2diθi + (−1)di2 arctan 2−i⟩ang
= |θi + (−1)di2 arctan 2−i⟩ang = |θi+1⟩ang .

This step can be improved slightly by using bitwise NOT on
the ang register instead of negation.

Thus, we have a quantum-compatible method for applying
each step of the classical CORDIC algorithms. As we see in
Section VII, these adapted techniques add minimal error in
simulation.

VI. BINARY TO AMPLITUDE TRANSFORMATION

Suppose you are given a 5n-qubit quantum state of the form,

|κ0⟩ =
L−1∑

k=0

αk |hk⟩t |0⟩
⊗n−1
d |0⟩⊗nx |0⟩

⊗n
y |0⟩

⊗n
mult |0⟩out ,

where L ≤ N = 2n, the t register has size n, and
hk ∈ {0, 1}n is an n-bit binary string representing a value
from the set {2−n+1j : j ∈ Z2n−1}. In other words, register t
stores a fixed point binary number between −2 and 2 in two’s
complement, but we restrict the initial value to be between 0
and 1. The registers x, y, mult are of size n, register d is
of size n − 1, and each is initialized to |0⟩. Finally, the out
register is one qubit, and will store a value corresponding to
hk in its probability amplitudes.

Remark VI.1. arcsin(
√
x) is an affine transformation of

arcsin(x),

arcsin
(√
x
)
=

arcsin(2x− 1)

2
+
π

4
.

We would like to find each di, we can do this by performing
the quantum implementation of the CORDIC Arcsine, with
a couple modifications. To leverage Remark VI.1, we first
multiply register t by two and subtract one. Next, we set the
x register equal to 1. This gives us state,

|κ1⟩ =
L−1∑

k=0

αk |h′k⟩t |0⟩
⊗n
d |1⟩x |0⟩

⊗n
y |0⟩

⊗n
mult |0⟩out ,

where h′k = 2hk − 1 ∈ [−1, 1).
We then apply Algorithm 1, skipping Line 2, since the

registers are already initialized, and skipping Line 10, as we
do not require an explicit representation of theta. This yields
the state,

|κ2⟩ =
L−1∑

k=0

αk |h′k⟩t |d(h
′
k)⟩d |x′⟩x |y′⟩y |g⟩mult |0⟩out . (2)

The jth bit of d(h
′
k) represents the rotation direction at iteration

j of the algorithm. x′, y′, and g are unnecessary garbage for
our application.

Performing the inverse of Algorithm 1, where Lines 2, 4,
and 10 are skipped, gives the state,

|κ3⟩ =
L−1∑

k=0

αk |h′k⟩t |d(h
′
k)⟩d |0⟩

⊗n
x |0⟩

⊗n
y |0⟩

⊗n
mult |0⟩out .

Remark VI.2. By Mazenc [6], we have the following relation,

arcsin (h′k)
2

≈
n∑

j=0

(−1)d
(h′

k)
j arctan

(
2−j
)
,

with error of order O(2−n).

Thus, applying the transformation,

R
′ |d(h

′
k)⟩d |0⟩out = |d(h

′
k)⟩d

[
cos


π

4
+

n∑

j=0

(−1)d
(h′

k)
j arctan

(
2
−j

)

 |0⟩

+ sin


π

4
+

n∑

j=0

(−1)d
(h′

k)
j arctan

(
2
−j

)

 |1⟩

]

out

,

implemented in Figure 2, by Remark VI.2, gives the state,

|κ4⟩ ≈
L−1∑

k=0

αk |h′k⟩t |d(h
′
k)⟩d |0⟩

⊗n
x |0⟩

⊗n
y |0⟩

⊗n
mult

⊗
[
cos

(
π

4
+

arcsin (2hk − 1)

2

)
|0⟩

+ sin

(
π

4
+

arcsin (2hk − 1)

2

)
|1⟩
]

out

.

By Remark VI.1, this is equal to state,
L−1∑

k=0

αk |h′
k⟩t |d

(h′
k)⟩d |0⟩

⊗n
x |0⟩⊗n

y |0⟩⊗n
mult

[√
1− hk |0⟩+

√
hk |1⟩

]
out

.

Finally, if required, the register d can be cleaned up by re-
constructing x′, y′, g. Then running the inverse of Algorithm 1
where Lines 2 and 10 are skipped. After adding one to and
dividing register t by two and subtracting one from x, the
binary to amplitude transformation is complete.



...
. . .

· · ·

|d(h′
k)0⟩d,0

|d(h′
k)1⟩d,1

|d(h′
k)n−1⟩d,n-1

|0⟩out Ry (−2µ0) Ry (µ0) Ry (−2µ1) Ry (µ1) Ry (−2µn−1) Ry (µn−1) Ry
(
π
4

)

Fig. 2: Unitary transformation R′ which transfers the binary encoding of CORDIC rotation direction stored d register into the
amplitude of the out register. Define Ry(ω) = (cosω,− sinω; sinω, cosω), and µi = tan−1 2−i.

VII. COMPLEXITY AND SIMULATIONS

In this section, we detail the complexity to construct |κ2⟩,
Equation (2). The quantum implementation of Algorithm 1,
skipping Line 10, applies Mult three times per iteration,
and addition six times per iteration. Mult takes less than√
5φ−2in + 2 additions on the ith step if i < n, where φ

is the golden ratio, if i ≥ n, then Mult can be skipped. Thus,
assuming n iterations for O(n) bits of accuracy, we perform
less than,

3

n/2∑

i=1

(√
5n

φ2i
+ 2

)
+

n∑

i=1

6 = 9n+ 3
√
5n

n/2∑

i=1

1

φ2i
< 14n,

additions. With O(n) auxiliary qubits, it is possible to compute
addition in O(log n) layers and O(n) CNOTs [9]. Thus, the
total layer complexity is O(n log(n)) and the total CNOT
complexity is O(n2) where n corresponds to bits of precision.
Note that, if n is not large, it is better to use a non-parallel
version of addition to minimize overhead.

As for space complexity, we need O(n) bits of space. We
require an auxiliary register of size n for Mult, and optionally
another register to speed up addition. We need registers of n
bits for x, y and t, and optionally ang. Finall, we need n−1
bits for register d. Thus, in total, we require a minimum of
5n− 1 qubits.

In simulations, it was found that the max error for any
given input can be made arbitrarily small by making n larger
(Figure 3). The full codebase can be found on our GitHub com-
panion repository [2], containing a complete implementation
using Qiskit as well as an identical classical implementation.

VIII. CONCLUSION

We have introduced a Quantum algorithm for calculating
arcsin with low space and time complexity. It also has
applications in HHL (Harrow–Hassidim–Lloyd), approximat-
ing Shapley values, and quantum Monte Carlo methods. As
CORDIC is most appropriate for lower precision applications,
future work could apply more budget conscious implemen-
tations of CORDIC arcsin at the expense of asymptotic
behavior. Further work could also develop a full CORDIC
module to cheaply perform a verity of elementary functions
critical for quantum computation beyond quantum digital-to-
analog conversion.

REFERENCES

[1] Iain Burge, Michel Barbeau, and Joaquin Garcia-Alfaro. Quantum
algorithms for shapley value calculation. In 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), volume 1,
pages 1–9. IEEE, 2023.

[2] Iain Burge, Michel Barbeau, and Joaquin Garcia-Alfaro. Quantum
cordic algorithm implementation, companion github repository, Oct
2024. https://github.com/iain-burge/QuantumCORDIC.

[3] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum
random access memory. Physical review letters, 100(16):160501, 2008.

[4] Thomas Häner, Martin Roetteler, and Krysta M Svore. Optimizing
quantum circuits for arithmetic. arXiv preprint arXiv:1805.12445, 2018.

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical review letters,
103(15):150502, 2009.

[6] Christophe Mazenc, Xavier Merrheim, and J-M Muller. Computing
functions cos/sup-1/and sin/sup-1/using cordic. IEEE Transactions on
Computers, 42(1):118–122, 1993.

[7] Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. Quantum
analog-digital conversion. Physical Review A, 99(1):012301, 2019.

[8] Ashley Montanaro. Quantum speedup of monte carlo methods. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 471(2181):20150301, 2015.

[9] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum ad-
dition circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530,
2009.

[10] Jack E Volder. The cordic trigonometric computing technique. IRE
Transactions on electronic computers, (3):330–334, 1959.

[11] John Stephen Walther. A unified algorithm for elementary functions. In
Proceedings of the May 18-20, 1971, spring joint computer conference,
pages 379–385, 1971.

[12] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Guolong Cui,
Zhiqiang Wei, and Yongjian Gu. Quantum circuits design for evaluating
transcendental functions based on a function-value binary expansion
method. Quantum Information Processing, 19:1–31, 2020.

APPENDIX

A. MULT FUNCTION

To understand the Mult algorithm, it is most simple to
considered its inverse, Div (Algorithm 3). To simplify the
following proofs, we assume infinite bits of precision in our
number representations.

Lemma A.1. Suppose i is even, at the beginning of the ith
iteration of Algorithm 3’s for loop, the state is,

in = z

F [i+1]−1∑

k=0

rk, aux = z

F [i]−1∑

k=0

rk.

where z is the initial value of in, and r = −2−m.

https://github.com/iain-burge/QuantumCORDIC
http://arxiv.org/abs/1805.12445
http://arxiv.org/abs/0910.2530


15 10 5 0 5 10 15
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Expected
Predicted

(a) n = 6

200 100 0 100 200

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Expected
Predicted

(b) n = 10

15000 10000 5000 0 5000 10000 15000

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Expected
Predicted

(c) n = 16

Fig. 3: Results of Classical simulations of Quantum compatible Algorithm for CORDIC Arcsine (see our GitHub repository at
https://github.com/iain-burge/QuantumCORDIC for further details).

Proof: We proceed by induction. Base case: for i = 0, at
the beginning of the loop in = aux = zr0. Thus, the base
case holds.

Inductive step: suppose that for an even i <
⌈√

5φ−mn
⌉
,

the registers hold the values,

in = z

F [i+1]−1∑

k=0

rk, aux = z

F [i]−1∑

k=0

rk.

i is even so the logical statement in Line 6 is true. Hence, aux
is updated to,

aux← z

F [i]−1∑

k=0

rk + (−1)F[i] · 2mF[i]z

F [i+1]−1∑

k=0

rk.

By definition (−1)F[i] · 2mF[i] = rF[i], thus, the new value for
aux is z

∑F [i]−1
k=0 rk + z

∑F [i+1]+F [i]−1
k=F [i] rk. By definition of

the Fibonacci sequence, F [i+ 2] = F [i+ 1] + F [i], combin-
ing the summations yields,

aux = z

F [i+2]−1∑

k=0

rk.

On the next loop, the index register holding i incremented
by 1 and is now odd, so the if statement on Line 6 gets false.
Hence, the next operation updates in,

in← z

F [i+1]−1∑

k=0

rk + (−1)F[i+1] · 2mF[i+1]z

F [i+2]−1∑

k=0

rk

Similarly to the previous iteration, we find in is equal to
z
∑F [i+1]−1
k=0 rk + z

∑F [i+2]+F [i+1]−1
k=F [i+1] rk. Bringing the sum-

mations together shows,

in = z

F [i+3]−1∑

k=0

rk.

The index register is incremented once again, such that it holds
i+ 2. By induction, the result holds.

Remark A.1. Recall, for r ∈ (0, 1), and an integer J , the
geometric sum formula gives,

J−1∑

k=0

rk =
1− rJ
1− r =

1− 2−Jm

1 + 2−m
.

Theorem A.2. Assuming J iterations, the final state will be,

in ≈ z

1− 2−m
, aux ≈ 0,

with an accuracy of O
(
mφJ

)
bits.

Proof: First note the state prior to Line 10 is,

in = z

F[J+1]−1∑

k=0

rk, aux = z

F[J]−1∑

k=0

rk,

where, for simplicity, J is even, greater than two, and repre-
sents the number of iterations. Then, Line 10 will result in
state,

aux← z

F[J]−1∑

k=0

rk − z
F[J+1]−1∑

k=0

rk.

This further yields aux is equal to −z∑F[J+1]−F[J]−1
k=F[J] rk.

This can be simplified to, −zrF[J]∑F[J−1]−1
k=0 rk. Then, the

geometric sum formula gives,

aux = −zrF[J] 1− r
F[J−1]

1− r .

Note that φk−1 < F[k] for positive k. Thus,

aux < −z2−φJ−1m 1− 2−φ
J−2m

1− 2−m
.

Note that z is always less than 2 as argued at the begin-
ning of Section V, and since m ≥ 1, J ≥ 2, we have,
|aux| ≤ 2−φ

J−1m+2. Thus, the error introduced to aux in
terms of bit precision is exponentially small.

On the other hand, the in register state is,

in = z
1− 2−mF [J]

1 + 2−m
.

Thus, we have an absolute error of less than,
2 · 2−mF [J] ≤ 2−mφ

J−1

. Therefore, the absolute error is
exponentially small with respect to bits of accuracy.

https://github.com/iain-burge/QuantumCORDIC

	Introduction
	Related Work
	Preliminaries
	Classical CORDIC for Arcsine
	Quantum CORDIC for Arcsine
	Binary to Amplitude Transformation
	Complexity and Simulations
	Conclusion
	References
	Appendix

