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Abstract
Conversational Recommender Systems (CRSs) aim to provide per-
sonalized recommendations through dynamically capturing user
preferences in interactive conversations. Conventional CRSs of-
ten extract user preferences as hidden representations, which are
criticized for their lack of interpretability. This diminishes the trans-
parency and trustworthiness of the recommendation process. Re-
cent works have explored combining the impressive capabilities of
Large Language Models (LLMs) with the domain-specific knowl-
edge of KnowledgeGraphs (KGs) to generate human-understandable
recommendation explanations. Despite these efforts, the integration
of LLMs and KGs for CRSs remains challenging due to the modality
gap between unstructured dialogues and structured KGs. Moreover,
LLMs pre-trained on large-scale corpora may not be well-suited for
analyzing user preferences, which require domain-specific knowl-
edge. In this paper, we propose COMPASS (Compact Preference
Analyzer and Summarization System), a plug-and-play framework
that synergizes LLMs and KGs to unveil user preferences, enhanc-
ing the performance and explainability of existing CRSs. To address
integration challenges, COMPASS employs a two-stage training
approach: first, it bridges the gap between the structured KG and
natural language through an innovative graph entity captioning
pre-training mechanism. This enables the LLM to transform KG
entities into concise natural language descriptions, allowing them
to comprehend domain-specific knowledge. Following, COMPASS
optimizes user preference modeling via knowledge-aware instruc-
tion fine-tuning, where the LLM learns to reason and summarize
user preferences from both dialogue histories and KG-augmented
context. This enables COMPASS to perform knowledge-aware rea-
soning and generate comprehensive and interpretable user prefer-
ences that can seamlessly integrate with existing CRS models for
improving recommendation performance and explainability. Our
experiments on benchmark datasets demonstrate the effectiveness
of COMPASS in improving various CRS models.

CCS Concepts
• Information systems→ Recommender systems.
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Figure 1: Conventional CRSs lack explainability in user pref-
erence modeling by extracting hidden representation, while
our approach enhances transparency by generating inter-
pretable user preference in text.
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1 Introduction
Providing personalized, context-aware recommendations that align
with users’ changing preferences and situational needs is a critical
challenge across various domains such as e-commerce, streaming
platforms, and other online services. In recent years, conversa-
tional recommender systems (CRSs) have emerged as a promis-
ing approach, harnessing the power of natural language interac-
tions to unravel user preferences [12, 18]. By engaging the user
in interactive conversations, CRSs enable a better understanding
of the user’s evolving interests and guide them toward products,
services, and information that best meet their immediate require-
ments [4, 24, 26]. Despite the success, CRSs face unique challenges
in precisely modeling user preferences from the semantically rich
and dynamically evolving dialogues, due to the challenge of natural
language understanding [18]. CRSs must capture user’s intent and
interest from their natural language inputs, which are often ambigu-
ous and context-dependent [24, 48]. Moreover, as the conversation
progresses, CRSs need to continuously update and refine their un-
derstanding of user preferences in real-time [11, 34]. As the user
reveals more about their preferences, CRSs must dynamically adapt
their preference modeling to integrate the user’s immediate inter-
ests expressed in recent interactions with their overall preferences
developed over time.
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Conventional CRSs mainly rely on item-centric approaches [3,
48], focusing on items mentioned during the conversation to model
user preferences. Recent studies have incorporated pre-trained lan-
guage models (PLMs) to enhance both natural language understand-
ing and user preference modeling [37, 41]. However, these methods
often fail to infer implicit preferences or reason about underlying
motivations beyond explicit item mentions, leading to a superficial
understanding of user intent. Moreover, they typically represent
user preferences as hidden embeddings, leaving it unclear what
specific preference is being considered when making a recommen-
dation, as shown at the top of Figure 1. This ambiguity makes it
challenging to verify the underlying reasons and results behind the
recommendations, hindering the transparency and accountability
of the recommender system.

Recent advancements in Large Language Models (LLMs), which
significantly scale up PLMs in terms of parameter size and pre-
training data, have demonstrated exceptional capabilities in both
natural language processing [8, 20, 47] and reasoning [42, 43]. These
models have shown promise in generating natural language expla-
nations, particularly in recommendation systems where explain-
ability is critical. Recent works like X-REC [28] and SLIM [42] have
demonstrated the LLM’s ability to reason over user historical be-
haviors and generate interpretable recommendation explanations,
enhancing both explainability and performance. Nevertheless, these
methods only focus on the traditional recommendation settings,
where user preferences are static and inferred from their historical
behaviors. CRSs face unique challenges, necessitating real-time pref-
erence modeling and recommendations that adapt to users’ chang-
ing preferences during ongoing conversations. Although LLMs have
shown promise in CRS tasks such as evaluation [40, 50], zero-shot
recommendation capabilities [16], and task planning [9, 10, 23],
the role of explainable user preferences in LLM-based CRSs still
remains unexplored.

While LLMs have shown promise in CRS tasks, they still face limi-
tations in incorporating domain-specific knowledge and keeping up-
to-date with item information, which are essential for accurate pref-
erence modeling and recommendations. Knowledge Graphs (KGs)
have proven effective in addressing these limitations [3, 41, 48],
as they provide a rich, structured context of items and their rela-
tionships, offering domain-specific insights that enable more accu-
rate and explainable recommendations. Despite their demonstrated
potential, integrating the structured knowledge of KGs with the
reasoning and language capabilities of LLMs presents a new set of
challenges:

• Modality Gap (Challenge 1): There exists a significant
modality gap between KGs and LLMs, which hinders the
LLM’s ability to understand and interpret KG information.
While LLMs process sequences of tokens that represent nat-
ural language, KGs represent information in a structured,
graph-based format. This difference makes it difficult for
LLMs to directly interpret the entities and relationships en-
coded in KGs, limiting their ability to leverage domain knowl-
edge for preference modeling.

• Cross-Modal Reasoning (Challenge 2): Effectively rea-
soning over both KG information and conversation data to
infer user preferences is a complex task. LLMs, despite their

strong natural language processing capabilities, are not in-
herently designed to perform this cross-modal reasoning.
Therefore, they face difficulties in analyzing and synthe-
sizing insights from graph-structured knowledge alongside
dialogue history. This limitation hinders their ability to iden-
tify relevant patterns across both sources and to perform the
knowledge-aware reasoning necessary for comprehensive
user preference modeling, in which both domain knowledge
and user interactions are essential.

To address the above challenges, we proposeCompactPreference
Analyzer and Summarization System (COMPASS), a novel frame-
work that synergizes LLMs and KGs to unveil user preferences,
improving both recommendation performance and the explainabil-
ity of existing CRS. COMPASS directly tackles the limitations of
current CRSs and the challenges of integrating LLMs with KGs
through a two-stage process. First, we introduce a graph entity
captioning pre-training mechanism that transforms KG structures
into natural language descriptions. This allows the LLM to compre-
hend domain-specific information and bridge the modality gap
(Challenge 1). We leverage a Graph Neural Network (GNN) to
capture structural information from the KG and represent it as
entity embeddings. These embeddings are then input into the LLM
to produce textual descriptions of the entities along with relevant
details from their neighbors. In this way, we align graph-structured
knowledge with natural language, enabling the LLM to better in-
terpret KG information. Building upon this alignment, COMPASS
employs knowledge-aware instruction fine-tuning to improve the
LLM’s ability to reason about user preferences from dialogue histo-
ries and KG-augmented contexts. These KG-augmented contexts
consist of relevant entity information and relationships extracted
from the KG, providing a rich background for inference beyond
the conversation history alone. Through carefully designed instruc-
tions, we enhance the LLM’s capability to perform cross-modal
reasoning (Challenge 2) by analyzing conversation history and
cross-referencing with KG-augmented information. This instruc-
tion tuning process enhances the LLM’s ability to extract explicit
mentions, infer implicit interests, and reason about preferences
in relation to various item attributes. Consequently, as shown in
the bottom of Figure 1, COMPASS generates comprehensive and
interpretable user preferences in text that capture both overall
preferences and current interests. To leverage these insights, we in-
troduce an adaptive gating mechanism that integrates summarized
preferences into existing CRS models, boosting recommendation
performance and explainability without requiring architectural
changes. Our main contributions can be summarized as follows:

• New framework. We propose COMPASS, a novel frame-
work for enhancing user preference modeling in CRSs. To
the best of our knowledge, this is the first work to lever-
age LLMs and KGs for explainable preference generation in
CRSs.

• Effective cross-model reasoning and explanation.We
develop a two-stage process that enables the LLM to perform
cross-modal reasoning over KGs and conversations, generat-
ing explainable user preference summaries. This approach
moves beyond abstract vector representations to provide
clear, human-readable user preferences.
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• Flexible Plug-in. COMPASS generates user preference sum-
maries that are compatible with existing CRS architectures
without requiring modifications to the system, improving
both recommendation performance and explainability.

2 Preliminaries
Conversational Recommendation. Let 𝑖 denote a candidate item
from the set of items I, and let𝑤 denote a word in the vocabulary
V . A dialogue D between a user and the recommender system
consists of a sequence of utterances D = [𝑢1, . . . , 𝑢𝑇 ], where 𝑢𝑡 =
[𝑤𝑡

1, . . . ,𝑤
𝑡
𝑚] is the 𝑡-th utterance composed of𝑚 words, and 𝑇 is

the maximum number of turns in the dialogue. As the conversation
progresses, the dialogue history up to the turn 𝑡 is denoted as
𝐻𝑡 = [𝑢1 : 𝑢𝑡 ], where [𝑢1 : 𝑢𝑡 ] signifies the chronological sequence
of utterances from the first to the 𝑡-th turn. The CRS estimates the
user’s preferences based on 𝐻𝑡 , them recommend 𝐾 items from I,
which are used to generate the next utterance 𝑢𝑡+1. Note that I𝑡
can be empty when no recommendation is needed. In such cases,
the CRS may raise a clarification question or generate a casual
conversation response.
KnowledgeGraph. A knowledge graph is defined asG = (E,A,X)
where E,R represents the set of entities and relation types in the
graph, respectively. A is the adjacency matrix capturing the rela-
tionships between entities andX represents the textual descriptions
of each entity. For each entity 𝑒 ∈ E, its description is denoted as
𝑥𝑒 ∈ X, where 𝑥𝑒 = [𝑤𝑒

1 , . . . ,𝑤
𝑒
𝑘
], and𝑤𝑒

𝑘
represents the 𝑘-th word

in the entity description. The entity set E encompasses candidate
items I (e.g., movies) and non-item entities that represent item
attributes (e.g., actors, genres, keywords). Formally, I ⊆ E.
Explainable User Preferences andRecommendations. Explain-
able user preferences are crucial for enhancing the transparency
and effectiveness of CRSs. Our goal is to generate clear, human-
understandable textual user preference summaries that provide
insights for both recommendation and explanation. Specifically,
for a given dialogue history 𝐻𝑡 , we define the generation of user
preference summaries as:

P𝑡 = 𝑓 (𝐼𝑝 , 𝐻𝑡 , E𝑚𝑡 ,G), (1)
where 𝑓 represents a model that reasons over the dialogue history
𝐻𝑡 , the mentioned entities E𝑚𝑡 ⊆ E, and their associated infor-
mation from the knowledge graph G. 𝐼𝑝 is denoted as instruction
prompts. The resulting P𝑡 represents the textual explainable user
preference summary at the 𝑡-th turn. The summary P𝑡 is then
encoded using a preference encoder 𝑔(·) and integrated into the
base CRS model 𝑓crs, which uses it to adjust its recommendation
strategy. Depending on the model, additional inputs, such as KG
information or dialogue history, may also be used. Formally, the
recommendation step is represented as:

I𝑡 = 𝑓crs (𝑔(P𝑡 ), 𝐻𝑡 ,G), (2)
where I𝑡 represents the recommended items at turn 𝑡 , and 𝑔(P𝑡 )
denotes the encoded preference summary.

3 Methodology
We present an overview of COMPASS, followed by detailed descrip-
tions of each component and the training process.

3.1 Overview
The primary goal of COMPASS is to synergize the reasoning capa-
bilities of LLMs with the structured knowledge from KGs to analyze
and summarize user preferences. COMPASS comprises three core
components: (1) Graph encoder processes a domain-specific KG,
capturing complex relationships between items to augment user
preference modeling. (2) Graph-to-Text adapter aims to bridge the
modality gap between the graph encoder and the LLM, enabling the
LLM to comprehend the graph structure and conduct reasoning. (3)
Large Language Model (LLM) leverages the powerful reasoning and
generative capabilities of advanced language models to generate
interpretable user preference summaries.

To integrate the components cohesively, we employ a two-stage
training process: (1) Graph entity captioning aligns KG structures
with natural language representations, creating a shared semantic
space for the LLM to comprehend and reason with domain-specific
knowledge effectively. (2) Knowledge-aware instruction fine-tuning
optimizes the LLM for cross-modal reasoning, allowing it to gener-
ate comprehensive user preference summaries by synthesizing in-
formation from dialogue history and KG-augmented context. Once
trained, COMPASS can be integrated with existing CRS models to
improve their recommendation performance and explainability by
generating user preferences and incorporating them into the rec-
ommendation process with an adaptive gating mechanism. Figure 2
illustrates COMPASS’s architecture and training process.

3.2 Model Architecture
3.2.1 Graph Encoder. In COMPASS, the KG is a crucial source of
domain-specific information that provides extra context for under-
standing attributes and relationships of items. To efficiently convert
the structured knowledge in the KG into a format understandable
by the LLM for preference analysis and summarization, we utilize a
Relational Graph Convolutional Network (R-GCN) [33] to capture
the complex graph structure and generate entity embeddings. The
R-GCN is well-suited for modeling KGs due to its ability to han-
dle multi-relational data and capture higher-order dependencies
between entities.

To initialize the entity embeddings, we leverage the textual de-
scriptions X associated with the entities in the KG. Specifically, for
each entity 𝑒 ∈ E, we encode its description 𝑥𝑒 using a pre-trained
language model (PLM). This provides a rich semantic foundation
for the graph learning process. The R-GCN then captures both
entity-level information and the overall graph structure through
iterativemessage passing, which is particularly important for under-
standing the relationships between items and attributes. Formally,
the representation of an entity 𝑒 at the 𝑙-th layer is calculated as
follows:

h(0)𝑒 = PLM(𝑥𝑒 ), (3)

h(𝑙+1)𝑒 = 𝜎
©«
∑︁
𝑟 ∈R

∑︁
𝑒′∈E𝑟

𝑒

1
𝑍𝑒,𝑟

W(𝑙 )
𝑟 h(𝑙 )

𝑒′ +W(𝑙 )
𝑒 h(𝑙 )𝑒

ª®¬ , (4)

where h𝑙𝑒 is the embedding of entity 𝑒 at the 𝑙-th layer, E𝑟
𝑒 is the set

of neighboring entities connected to 𝑒 through relation 𝑟 ,W(𝑙 )
𝑟 and

W(𝑙 )
𝑒 are learnable weight matrices, 𝑍𝑒,𝑟 is a normalization factor,

and 𝜎 is an activation function.
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Entity Linking

Lookup Table

Avengers: Infinity War (2018); Genres: Action, Adventure, Sci-
Fi; Keywords: superhero, supervillain, ensemble cast; Starring: Robert
Downey Jr., Chris Hemsworth, Chris Evans; Directors: Anthony Russo, Joe
Russo; Production Company: Marvel Studios; Plot: The Avengers and their
allies must be willing to sacrifice all in an attempt to defeat the powerful
Thanos before his blitz of devastation and ...

Reason: The user mentioned enjoying 'Avengers: Infinity War (2018)', which is an
action-packed, adventure-filled sci-fi movie...
Overall Preferences: Action, Adventure, Sci-Fi, Superhero, Marvel Cinematic
Universe, Ensemble Cast ...
Current Interests: Superhero, Ensemble Cast, High Stakes, Marvel Cinematic
Universe, Anthony Russo, Robert Downey Jr...
Recommendation: Black Panther (2018)

-

Yeah, and I love superhero films
with big ensemble casts.

Hi, what kinds of movies
do you enjoy?

Great choice! Are you into
action-packed films?

I just watched Avengers: Infinity
War (2018), and I really liked it.

Dialogue History
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Figure 2: The overall framework of our COMPASS. COMPASS consists of three components: the graph encoder, the adapter, and
the LLM. The adapter aligns the knowledge graph to the LLM. COMPASS follows a two-stage training paradigm - (a) Graph
Entity Captioning and (b) Knowledge-aware Instruction Tuning. Once trained, COMPASS can be easily integrated with existing
CRS models for (c) Preference Enhanced Recommendation.
3.2.2 Graph-to-Text Adapter. The entity embeddings produced by
the graph encoder, while rich in structural information, exist in a
different representational space from the LLM’s textual token rep-
resentations. This makes it challenging for the LLM to effectively
reason with the KG-augmented context to generate user prefer-
ences. To bridge this semantic gap and enable effective knowledge
integration, we introduce an adapter module that creates a mapping
between graph-structured entity embeddings and the LLM’s textual
domain. Specifically, the adaptation process is defined as:

h𝜏𝑒 = 𝑓𝑃 (h𝑒 ), (5)

where h𝜏𝑒 is the adapted entity embedding aligned with the LLM’s
semantic space, h𝑒 is the entity embedding generated from graph
encoder, and 𝑓𝑃 is the projection function implemented as a linear
layer.

3.2.3 Large LanguageModel (LLM). The LLM is themain reasoning
engine that generates user preferences by synthesizing information
from dialogue histories and KG-augmented contexts. It captures
both the explicit user preferences expressed in the dialogue and
the implicit preferences inferred from the KG-augmented context
for accurate preference analysis. Our framework is compatible
with various state-of-the-art LLMs, allowing flexibility in model
choice. In this paper, we use Llama3.1-8B [8] for its natural language
understanding and generation capabilities. To adapt the chosen LLM
efficiently for our task, we employ Low-Rank Adaptation (LoRA)
[17] for fine-tuning.

3.3 Training Pipeline
3.3.1 Graph Entity Captioning. To obtain a Graph-to-Text adapter
that effectively bridges the modality gap between the graph en-
tity embeddings and the LLM’s semantic space, inspired by the
pre-training strategies employed in vision-language models [5, 25],
we introduce a graph entity captioning pretraining mechanism,
as shown in Figure 2a. This process creates a strong connection
between graph-structured data and natural language by generating
entity-specific captions that encompass both the entity’s intrin-
sic information and aggregated data from its neighboring nodes,
simulating a message-passing process within the graph structure.

The pre-training stage enables the LLM to interpret graph entity
embeddings in a semantic context, leading to a deeper understand-
ing of the relationships and attributes encodedwithin the KG, which
is crucial for subsequent preference modeling. The caption gen-
eration process differentiates between item entities (e.g., movies)
and non-item entities (e.g., genres, directors). For item entities,
we employ a structured template that captures key attributes and
relationships.

Example of Item Entity Caption Template

Movie Title: <Title>; Genres: <Genres>; Keywords: <Key-
words>; Starring: <Actors>; Directors: <Directors>; Pro-
duction Company: <Company>; Plot: <Plot Summary>
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This template ensures comprehensive coverage of item attributes
while maintaining a consistent structure across different items. For
non-item entities, we adopt a more flexible approach that empha-
sizes the entity’s role and its connections within the KG 1.

To format the training data, an input-output pair is constructed
for each entity in the knowledge graph. The input consists of the
adapted entity embedding h𝜏𝑒 from Equation 5 and a task-specific
instruction prompt 𝐼𝑐 . The output is the generated caption 𝐶𝑒 for
the entity 𝑒 . This format is represented as follows.

Entity Captioning

Input: <Entity Embeddings h𝜏𝑒 >, <Instruction 𝐼𝑐>
Output: <Entity Caption 𝐶𝑒>

In this way, the LLM learns to map the graph-structured input to
natural language by reconstructing the entity caption, conditioned
on the graph entity embeddings and instructions. This process is
optimized by minimizing the negative log-likelihood (NLL) of the
generated captions, as expressed by:

L𝑐𝑎𝑝𝑡𝑖𝑜𝑛 = −
∑︁
𝑒∈E

log 𝑃 (𝐶𝑒 | h𝜏𝑒 , 𝐼𝑐 ), (6)

where E is the set of all entities in the KG. Through the training,
the LLM learns to interpret graph entity embeddings in a semantic
context, leading to a deeper understanding of the relationships and
attributes encoded within the KG. This understanding is essential
for improving subsequent preference modeling.

3.3.2 Knowledge-aware Instruction Tuning. After the graph entity
captioning pre-training, the LLM has gained a basic understanding
of the KG structure and content. However, it has not yet been ex-
plicitly trained to utilize this knowledge for downstream tasks such
as preference modeling and recommendation generation. To this
end, we introduce a knowledge-aware instruction tuning, which
aims to enable the LLMwith abilities of reasoning across modalities,
integrating information from both the dialogue history and the KG
to infer user preferences and interests, as shown in Figure 2b.

The knowledge-aware tuning process employs a carefully crafted
instruction prompt 𝐼𝑝 to guide the LLM in synthesizing and reason-
ing over inputs from multiple sources. Given a dialogue history 𝐻𝑡

and the entities E𝑚𝑡 mentioned within it, the process retrieves the
embeddings E𝑡 of these entities from Equation 5. These embed-
dings, along with the full dialogue history, serve as inputs for the
LLM. The instruction prompt 𝐼𝑝 directs the LLM to analyze both the
KG-derived entity information and the dialogue history to generate
a user preference summary P𝑡 .

This prompt follows a coarse-to-fine structure containing four
key steps: (1) reasoning, providing transparency in the model’s
decision-making; (2) overall preferences, offering a broad view of
the user’s tastes; (3) current interests, capturing recent and specific
preferences to guide subsequent recommendations; and (4) recom-
mendation, leveraging the LLM’s reasoning capabilities to suggest
relevant items aligned with user preferences, guiding downstream

1Details on caption construction and instruction templates for both item and non-item
entities are provided in Appendix B.2.

CRS models. This structured prompt ensures that the model cap-
tures both long-term preferences and immediate interests. To gen-
erate ground-truth preference summaries, we utilize an advanced
LLM (e.g., ChatGPT) that performs cross-modal reasoning, inte-
grating complete dialogue histories with structured metadata of
mentioned items from the KG. The detailed process and instruc-
tion templates for this ground-truth generation are provided in
Appendix B.3.

The instruction tuning process can be represented in the follow-
ing format:

Knowledge-aware Instruction Tuning

Input: <Mentioned Entities Embeddings E𝑡>, <Instruction
𝐼𝑝>, <Dialogue History 𝐻𝑡>
Output: <Preference Summary P𝑡>

A detailed example of the preference summary can be found in
Table 5 of Appendix C.2.
This instruction tuning process is optimized by minimizing the NLL
of the generated preference summaries, as expressed by:

L𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = −
∑︁
D∈C

∑︁
𝐻𝑡 ∈D

log 𝑃 (P𝑡 | E𝑡 , 𝐼𝑝 , 𝐻𝑡 ), (7)

where C represents the set of all dialogues in the training data.
Through this process, COMPASS learns to synthesize information
from dialogue history and KG-derived entity embeddings, enabling
it to generate comprehensive and interpretable preference sum-
maries.

3.4 Integration with Existing CRS Models
To enhance the existing CRS models with the user preference sum-
maries generated by COMPASS, we propose a two-step integration
process: (1) transforming the natural language preference sum-
maries into a format compatible with CRS models, and (2) incor-
porating these transformed preferences to enhance the base CRS
model’s recommendation performance via an adaptive gating mech-
anism. Note that COMPASS remains frozen during this process.

3.4.1 Preference Representation. Traditional CRSs are not designed
to directly utilize natural language preference summaries. There-
fore, we explore two methods to encode these summaries into a
format suitable for existing CRS architectures:

1) PLM-based representation: This method leverages a PLM to
extract rich semantic representations from text. The PLM is adapt-
able and can be implemented as either a frozen or trainable text
encoding model. In our implementation, we employ BERT [6] to
encode the user preference summary as follows:

𝒔text𝑐 = PLM(P), (8)

where 𝒔text𝑐 is the encoded preference from text preference P, specif-
ically the [CLS] token embedding. The contextual understanding
of language models enables 𝒔text𝑐 to capture comprehensive user
preference summaries at both coarse-grained (i.e., overall user pref-
erences) and fine-grained levels (i.e., current interests and specific
items).

2) EOS representation: Considering the auto-regressive nature
of LLMs and the information-rich preference summaries generated
by COMPASS, we implement a computationally efficient encoding
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method. This approach leverages the [EOS] token embedding from
the COMPASS-generated summary as it encapsulates the cumula-
tive context of the entire preference description. We then process
this embedding through a lightweight two-layer Multi-Layer Per-
ceptron (MLP) to encode the preference as follows:

𝒔EOS𝑐 = MLP(𝒛EOS), (9)

where 𝒛EOS is the [EOS] token embedding from the COMPASS-
generated preference summary, and 𝒔EOS𝑐 is the resulting encoded
preference. This approach offers computational efficiency while
still capturing the essential information from the preference sum-
mary, enabling effective integration with existing CRS models. To
streamline the notation, we simplify 𝒔text𝑐 and 𝒔EOS𝑐 to 𝒔𝑐 .

3.4.2 Enhanced Recommendation. We integrate the encoded pref-
erences into the existing CRS models to enhance their recommen-
dation performance. We employ an adaptive gating mechanism
to enhance the preference representation 𝒔𝑏 captured from the
base CRS model2 with our COMPASS-generated representation 𝒔𝑐 .
Formally, we have:

𝛾 = 𝜎 (W[𝒔𝑏 ; 𝒔𝑐 ]), (10)
𝒔𝑢 = 𝛾𝒔𝑏 + (1 − 𝛾)𝒔𝑐 , (11)

whereW are the learnable weight matrices, 𝜎 is the sigmoid activa-
tion function, and 𝛾 represents the gating probability. This adaptive
mechanism controls the influence of each representation on the
final user preference representation 𝒔𝑢 . The recommendation score
for each item is computed using dot-product similarity as:

𝑃𝑟𝑒𝑐 (𝑖) = softmax(𝒔𝑢 · 𝑰𝑖 ), (12)

where 𝑰𝑖 are the item representations3. Finally, we optimize the
recommendation loss Lrec as follows:

Lrec = −
𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝑦𝑖 𝑗 log
(
𝑷 ( 𝑗 )
rec (𝑖)

)
, (13)

where 𝑁 is the number of conversations,𝑀 is the number of items,
and𝑦𝑖 𝑗 is the ground truth label indicatingwhether item 𝑖 is relevant
to conversation 𝑗 .

4 Experiments
4.1 Experimental Settings
4.1.1 Datasets. We conduct our experiments on two widely used
English CRS datasets: ReDial [24] and INSPIRED [14] datasets. The
ReDial dataset, focused onmovie recommendations, contains 11,348
conversations and is constructed through crowdsourcing on Ama-
zon Mechanical Turk (AMT). The INSPIRED dataset contains 999
conversations, also about movie recommendations, but additionally
provides recommendation strategies based on social science theo-
ries. We constructed the knowledge graph by scraping data from
IMDB4, using movie titles and release years as key search terms.

2The preference representation 𝒔𝑏 is specific to each CRS model as different models
employ distinct methods for building user preferences.
3The item representations 𝑰𝑖 are specific to each CRS model and may vary depending
on the architecture employed by the base CRS.
4https://www.imdb.com/

4.1.2 Baselines. We consider a comprehensive range of baseline
models, including traditional CRS ReDial [24], knowledge-graph
based methods such as KBRD [3] and KGSF [48], language model-
based approaches like BERT [6], GPT-2 [31], Llama3.1-8B [8],
and hybrid models combining KGs with language models such as
BARCOR [38] and PECRS [32].

Since no existing baselines specifically generate user preference
summaries, we also compare COMPASS to Llama3.1-8B and GPT-
4o, with Llama3.1-8B denoted as Llama-Summary when used
solely for generating user preference summaries without access to
the KG. More details on these models can be found in Appendix B.1.

4.1.3 Evaluation Metrics. Our evaluation framework assesses both
the performance of the recommendations and the quality of gen-
erated user preference summaries. For recommendation tasks, we
adopt widely used metrics from previous works [2, 48, 49], includ-
ing HR@𝐾 , NDCG@𝐾 , and MRR@𝐾 , with 𝐾 set to 10 and 50. To
evaluate user preference summaries, we employ three types of met-
rics: (1) Lexical Similarity: ROUGE-1, ROUGE-2, ROUGE-L, and
ROUGE-Sum; (2) Semantic Understanding: Following [36], we use
GPT-4o-mini to assess Reasoning Proficiency (RP) and Factual Con-
sistency (FC); (3) User-Centric Evaluation: LLM-based simulated
user evaluations, inspired by [13, 19], measure Explainability and
User Preference Alignment. More details on the metrics used can
be found in Appendix B.4.

4.1.4 Implementation Details. We implement COMPASS using the
Llama3.1-8B model [8] as the base LLM, which consists of 32 trans-
former layers with an embedding dimension of 4096. We freeze all
parameters of the base LLM and employ LoRA [17] for fine-tuning.
For the graph encoder, we set the number of layers to 1, with a
hidden dimension of 768. We use batch sizes of 256 for pre-training
and 128 for fine-tuning on the Inspired dataset. For the ReDial
dataset, we maintain a batch size of 128 for both pre-training and
fine-tuning. Early stopping is implemented to optimize training.
All experiments are conducted on Nvidia A100 GPUs. For ground
truth user preference summaries, we utilize the OpenAI API. More
details on this process are provided in Appendix B.3. Our code will
be made publicly available upon acceptance.

4.2 Recommendation Evaluation
4.2.1 Improvement over Baseline Models. COMPASS is designed
to be flexible, allowing integration with different CRS models. To
assess its effectiveness, we evaluated COMPASS across various CRS
models. Performance results are shown in Table 1. We have the
following observations: (1) Baseline models incorporating exter-
nal KGs, such as KBRD and KGSF, consistently outperform sim-
pler language model-based approaches like BERT and GPT-2. This
highlights the importance of structured knowledge in capturing
user preferences and item relationships, particularly in conversa-
tional recommendation settings. (2) Methods that combine language
models with KGs, such as BARCOR and PECRS, show further im-
provements over KG-only models, demonstrating the benefits of
integrating both sources of information. (3) Llama3.1-8B demon-
strates strong performance, surpassing BARCOR and performing
competitively with PECRS on the ReDial dataset while outperform-
ing it on the INSPIRED dataset. This indicates that the advanced
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Table 1: Performance comparison on recommendation tasks. ‘COM.’ denotes models enhanced with the COMPASS approach
and ‘Improv.” indicates the relative improvement of the COMPASS compared to the original base model. The best results are
highlighted in bold

Types Model ReDial INSPIRED

HR@10 HR@50 NDCG@10 NDCG@50 MRR@10 MRR@50 HR@10 HR@50 NDCG@10 NDCG@50 MRR@10 MRR@50

Base

BERT [6] 0.143 0.319 0.073 0.108 0.052 0.059 0.179 0.328 0.095 0.125 0.072 0.079
GPT-2 [31] 0.147 0.327 0.071 0.107 0.051 0.056 0.112 0.278 0.089 0.128 0.063 0.076
Llama3.1-8B [8] 0.188 0.376 0.103 0.146 0.078 0.087 0.190 0.332 0.118 0.150 0.094 0.102
ReDial [24] 0.140 0.320 0.061 0.065 0.035 0.045 0.117 0.285 0.035 0.072 0.022 0.048
KBRD [3] 0.151 0.336 0.099 0.136 0.071 0.079 0.172 0.265 0.106 0.127 0.086 0.091
KGSF [48] 0.183 0.378 0.098 0.140 0.072 0.081 0.175 0.273 0.106 0.128 0.088 0.093
BARCOR [38] 0.169 0.374 0.088 0.133 0.063 0.073 0.185 0.339 0.104 0.137 0.080 0.087
PECRS [32] 0.205 0.399 0.112 0.154 0.083 0.093 0.179 0.337 0.106 0.142 0.084 0.092

Enhanced

COM.+KBRD 0.199 0.412 0.103 0.150 0.075 0.085 0.249 0.392 0.152 0.183 0.123 0.129
+Improv. 31.79% 22.61% 4.04% 10.29% 5.63% 7.59% 44.76% 47.92% 43.39% 44.09% 43.02% 38.70%

COM.+KGSF 0.198 0.413 0.105 0.152 0.076 0.088 0.197 0.400 0.125 0.167 0.103 0.110
+Improv. 8.20% 9.26% 7.14% 8.57% 5.5% 8.64% 12.57% 46.52% 17.92% 30.47% 17.05% 18.28%

COM.+BERT 0.182 0.382 0.098 0.142 0.073 0.082 0.207 0.345 0.129 0.157 0.105 0.110
+Improv. 27.27% 19.75% 34.25% 31.48% 40.38% 38.98% 15.64% 5.18% 35.79% 25.60% 45.83% 39.24%

COM.+Llama3.1-8B 0.215 0.406 0.118 0.161 0.089 0.100 0.232 0.377 0.146 0.169 0.117 0.122
+Improv. 13.76% 7.98% 14.45% 14.10% 12.82% 14.94% 22.11% 13.55% 23.73% 12.67% 24.47% 19.61%

language understanding and extensive world knowledge of LLMs
can effectively capture accurate user preferences, resulting in more
accurate recommendations.

Building upon these strong baseline performances, the integra-
tion of COMPASS with these models leads to substantial improve-
ments across all evaluation metrics. Notably, when integrated with
KBRD on the INSPIRED dataset, COMPASS achieves remarkable
relative improvements of 44.76% in HR@10 and 47.92% in HR@50,
outperforming all baseline models, including PECRS. When applied
to the already strong Llama3-8B model, COMPASS still delivers
considerable enhancements, with increases of 13.76% in HR@10
and 14.45% in NDCG@10 on the ReDial dataset, and even greater
gains on the INSPIRED dataset. These consistent improvements are
attributed to the high-quality, knowledge-enriched user preference
representations generated by COMPASS. These representations not
only capture user intent more effectively but also provide struc-
tured insights that enhance the overall recommendation process,
leading to both better performance and explainability.

4.2.2 Comparison of Enhancement Methods. To evaluate COM-
PASS’s effectiveness, we compare it with Llama-Summary and
GPT-4o as baseline enhancers, which generate user preference sum-
maries without KG access. Figure 3 illustrates the performance of
these methods across various CRS models on the INSPIRED dataset.
While all enhancement methods show improvements over the base
models, COMPASS consistently outperforms both alternatives. No-
tably, COMPASS consistently outperformsGPT-4o across all models,
with improvements ranging frommarginal (for Llama3.1-8B) to sub-
stantial (for KBRD and KGSF). This superior performance, achieved
despite GPT-4o being a much larger model, demonstrates the im-
portance of integrating domain-specific knowledge into preference
modeling. The substantial performance gap between COMPASS and
Llama-Summary highlights the effectiveness of our framework in
leveraging both structured knowledge and LLM capabilities. These
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Figure 3: Comparison of recommendation performance on
the INSPIRED dataset with different enhancers. Green per-
centages show improvements over baselines.

results show COMPASS’s ability to generate more accurate and con-
textually relevant user preference summaries, leading to improved
recommendation performance across different CRS architectures.

4.2.3 Ablation study. To assess the contribution of different compo-
nents in COMPASS, we conducted an ablation study by evaluating
several model variants across three base models: KBRD, KGSF, and
LLaMA3.1-8B. We compare the COMPASS model against three
ablated versions: (1) COM w/o REC: The generated preference
summary does not include recommended items; (2) COMw/o GEP:
COMPASS without the graph entity captioning pre-training; (3)
COM w/o KG: COMPASS without the graph encoder.
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Table 2: Ablation study on recommendation task perfor-
mance. The best-performing results are highlighted in bold.

Model ReDial

HR@10 HR@50 NDCG@10 NDCG@50 MRR@10 MRR@50

KBRD 0.151 0.336 0.099 0.136 0.071 0.079
+COM w/o KG 0.195 0.405 0.102 0.147 0.074 0.084
+COM w/o REC 0.190 0.395 0.100 0.146 0.075 0.083
+COM w/o GEP 0.188 0.410 0.100 0.148 0.072 0.082
+COMPASS 0.199 0.412 0.103 0.150 0.075 0.085

KGSF 0.183 0.378 0.098 0.140 0.072 0.081
+COM w/o KG 0.196 0.410 0.102 0.150 0.074 0.085
+COM w/o REC 0.192 0.408 0.101 0.150 0.074 0.084
+COM w/o GEP 0.196 0.406 0.102 0.149 0.073 0.084
+COMPASS 0.198 0.413 0.105 0.152 0.076 0.088

Llama3.1-8B 0.188 0.376 0.103 0.146 0.078 0.087
+COM w/o KG 0.209 0.399 0.116 0.159 0.087 0.096
+COM w/o REC 0.202 0.395 0.109 0.151 0.081 0.090
+COM w/o GEP 0.212 0.405 0.117 0.162 0.088 0.099
+COMPASS 0.215 0.406 0.118 0.161 0.089 0.100

Table 3: Evaluation of generated user preference summaries.
RP is reasoning proficiency and FC is factual consistency.
The best results are highlighted in bold.

Model ReDial

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Sum RP FC

COM w/o KG 62.06 39.16 49.91 59.33 81.33 82.13
COM w/o NP 61.72 38.95 49.74 59.00 81.16 82.54
COMPASS 62.71 40.61 51.14 60.03 82.20 84.21

Model INSPIRED

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Sum RP FC

COM w/o KG 55.85 32.94 43.36 53.12 82.59 84.33
COM w/o NP 58.20 34.57 44.73 55.08 82.36 84.29
COMPASS 59.37 35.93 46.88 56.64 83.14 85.17

The results in Table 2 show that COMPASS generally achieves the
best performance across most metrics, highlighting its superior ca-
pability. The COM w/o REC variant shows the largest performance
drop, emphasizing the crucial role of including recommended items
in preference summaries to guide downstream models. Both COM
w/o KG and COM w/o GEP variants demonstrate comparable per-
formance declines, highlighting the crucial roles of KG integration
for understanding item relationships and GEP for comprehend-
ing KG-augmented context. These findings show the importance of
each COMPASS component, with their synergy driving the superior
performance of the full model.

4.3 Preference Generation Evaluation
This study introduces a novel approach to enhance CRS by generat-
ing user preference summaries. As the first attempt in this direction,
this evaluation focuses on comparing COMPASS with its variants to
assess the effectiveness of its key components. Additionally, a case
study that includes examples from Llama-Summary and GPT-4o
provides additional qualitative insights.

4.3.1 Automatic Evaluation. Table 3 presents a comparative anal-
ysis of COMPASS and its variants, COM w/o KG and COM w/o
GEP, on the ReDial and INSPIRED datasets. COMPASS consistently
outperforms its variants across all metrics on both datasets. Lexical
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Figure 4: LLM-simulated user rankings for User Preference
Alignment and Explainability across ReDial and INSPIRED
datasets.

similarity metrics (ROUGE scores) demonstrate that COMPASS
generates summaries that align closely with reference texts, while
higher reasoning proficiency and factual consistency scores illus-
trate its enhanced quality of reasoning and factual accuracy.

The performance of COMPASS compared to COM w/o KG indi-
cates the value of KG integration in enhancing summary quality.
This suggests that incorporating structured knowledge grounds
the model’s output in domain-specific information, which is crucial
for accurate preference generation. Moreover, the comparative per-
formance of COM w/o GEP and COMPASS indicates that, despite
the presence of structured knowledge from the KG, there remains
a modality gap between graph structures and natural language,
posing challenges for LLMs in fully understanding and utilizing
this information. These results validate the COMPASS framework,
and demonstrating the synergistic effect of combining KGs with
LLMs, and showing the critical role of our pre-training strategy in
enhancing user preference generation.

4.3.2 LLM-Simulated User Evaluation. To assess user-perceived
quality, we employ LLM-simulated user evaluations on explainabil-
ity and user preference alignment. Figure 4 presents the results
across the ReDial and INSPIRED datasets. COMPASS is consistently
preferred over COMw/o KG and COMw/o GEP in both metrics. On
the ReDial dataset, COMPASS is most preferred in in approximately
75% of the cases for both alignment and explainability. Although
the preference gap is smaller on INSPIRED, COMPASS maintains
a clear advantage. Notably, COM w/o NP is consistently the least
preferred, showing the importance of pre-training in generating
meaningful preference summaries. These results demonstrate COM-
PASS’s superior ability to generate preference summaries that align
closely with user preferences while providing clear, user-friendly
explanations for recommendations, enhancing both fidelity and
transparency in CRSs.
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4.3.3 Case Study. We present a detailed case study in Table 5 to
visualize a sample dialogue along with the corresponding prefer-
ence summaries generated by different models. It demonstrates that
COMPASS accurately identifies the key information for capturing
user preference and provides interpretable summaries. The detailed
analysis can be found in Appendix C.2.

5 Conclusion
In this paper, we introduce COMPASS, a novel framework that
synergizes KGs and LLMs to unveil user preferences in Conversa-
tional Recommender Systems (CRSs). To address the modality gap
between structured knowledge and natural language, we propose
a graph entity captioning mechanism that transforms KG struc-
tures into LLM-compatible representations. Through knowledge-
aware instruction tuning, COMPASS becomes proficient in per-
forming cross-modal reasoning, generating comprehensive and
interpretable user preference summaries. Our proposed framework
has been extensively evaluated as a plug-and-play enhancement for
various existing CRS models across benchmark datasets. The results
demonstrate COMPASS’s effectiveness in significantly improving
both the recommendation performance and the explainability of
these base models. The adaptive integration mechanism of COM-
PASS allows for seamless enhancement of diverse CRS architectures
without requiring structural modifications, showcasing its versatil-
ity and potential for widespread adoption in the field of CRSs.
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A Related Work
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LLM and the KG for unveiling user preferences in CRSs, enhancing
both preference modeling and recommendation explainability.

A.2 Explainable Recommendation
Explainable recommendation has emerged as a crucial areas of re-
search, aiming to enhance user trust, satisfaction, and decision mak-
ing by providing transparent rationales for recommendations. Early
research focused on leveraging user-item interactions and content
features to generate simple explanations [45], using techniques like
recurrent neural networks [7], attention mechanisms [1], and graph
neural networks [39]. Recent developments in LLMs have opened
new avenues for explainable recommendation. Studies [28, 42]
have demonstrated LLMs’ potential in generating explanations by
analyzing user’s past interactions. However, current LLM-based
methods primarily operate within the constraints of static user pro-
files, where preferences are inferred from historical behavior. Our
work introduces a novel LLM-KG framework for CRSs, enhancing
both preference modeling and recommendation explainability in
dynamic interaction contexts.

B Details of Experimental Setting
B.1 Model Details
B.1.1 Backbone Models. The detailed information for each back-
bone is as follows:

• ReDial [24]: Introduces the ReDial dataset and model for
conversational recommendation, utilizing a denoising auto-
encoder[15] as the recommendation module.

• KBRD [3]: This method leverages an external KG to enhance
the semantics of entities mentioned in the dialogue history.

• KGSF [48]: This method employs a dual KG approach, in-
tegrating semantic information from both word-level and
entity-level KGs. It applies a mutual information maximiza-
tion technique to align these two semantic spaces, enhancing
the overall representation.

• BERT [6]: This method utilizes a bidirectional Transformer
model [35] pre-trained on a large-scale corpus. We use the
[CLS] token representation for the recommendation task.

• GPT-2 [31]: An auto-regressive language model. We fine-
tune it on dialogue history and use the last token represen-
tation for the recommendation task.

• Llama3.1-8B [8]: This is an open-source LLM that has been
trained using both supervised fine-tuning and reinforcement
learning with human feedback [29]. For the recommendation
task, we fine-tune LLama3.1-8B using LoRA on the dialogue
history and use the last token representation as the user
preference embedding.

• BARCOR [38]: This model introduces a unified framework
that integrates BART with a knowledge graph, enabling both
recommendation and response generation within a single
model.

• PECRS [32]: This model integrates recommendation and re-
sponse generation into a single training phase using LoRA [17]
with a pre-trained language model, eliminating the need for
separate modules or external knowledge graphs.

This study introduces a novel approach to enhance CRS by gen-
erating user preference summaries. As there are no existing en-
hancers specifically designed for this task, we use Llama3.1-8B5

and GPT-4o6 as baselines for comparison, both of which generate
user preference summaries without access to KG information. To
clarify, Llama3.1-8B is used in two different capacities in this work:
first, as a backbone CRS model adapted through training for the rec-
ommendation task, and second, as Llama-Summary for generating
user preference summaries without KG access.

B.1.2 COMPASS Integration. Weenhance CRSmodels performance
by incorporating our COMPASS framework as described in Sec-
tion 3.4. The integration method is consistent across KBRD, KGSF,
and BERT, utilizing the adaptive gating mechanism to combine
COMPASS-generated preference summarieswith the originalmodel
representations. For preference-enhanced Llama3, we employ a dif-
ferent integration strategy. We directly concatenate the generated
user preference summary with the conversation history. This ap-
proach leverages Llama3.1-8B’s strong language understanding
capabilities to process the additional preference information.

B.2 Instruction Design and Caption Templates
The instruction templates for graph entity captioning and knowledge-
aware instruction tuning are presented in Tables 6, 7, and 8. Table 6
shows various instruction templates for different node types in
the knowledge graph, including non-item nodes (actors, directors,
genres, keywords, production companies) and item nodes (movies).
Table 7 presents the structured template for user preference mod-
eling and recommendation, designed to produce JSON-formatted
output. Table 8 displays the instruction for Llama3.1-8B to make
direct movie recommendations.

The caption templates for various entity types in the KG (such as
genres, actors, directors, companies, and keywords) are presented
in Table 9. These templates guide the translation of graph struc-
tures into natural language descriptions, emphasizing each entity’s
relationships within the domain. The templates enable COMPASS
to generate contextual descriptions that preserve graph structure
while presenting information in a format compatible with the LLM,
facilitating effective cross-modal analysis.

B.3 Ground Truth User Preference Summary
Generation

To generate reliable ground truth user preference summaries, we
employed OpenAI’s GPT-4o model7, with temperature set to 0 for
deterministic outputs. The model performed cross-modal reason-
ing by integrating the complete dialogue history with structured
metadata of items mentioned in the conversation, derived from
the KG. We developed a structured instruction template, presented
in Table 10, to guide this analysis process. This template outlines
a step-by-step approach for discerning user preferences through
conversation analysis, KG cross-referencing, and insight synthesis,
resulting in a comprehensive user preference summary.

5https://ollama.com/
6gpt-4o-2024-05-13
7gpt-4o-2024-05-13
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Table 4: Comparison of preference encoding methods for
integrating COMPASS generated summaries. The best results
are highlighted in bold.

Model ReDial

HR@10 HR@50 NDCG@10 NDCG@50 MRR@10 MRR@50

KBRD 0.151 0.336 0.099 0.136 0.071 0.079
+EOS 0.188 0.379 0.099 0.141 0.073 0.082
+Text 0.199 0.412 0.103 0.150 0.075 0.085

KGSF 0.183 0.378 0.098 0.140 0.072 0.081
+EOS 0.190 0.383 0.102 0.144 0.075 0.084
+Text 0.198 0.413 0.105 0.152 0.076 0.088

BERT 0.143 0.319 0.073 0.108 0.052 0.059
+EOS 0.162 0.348 0.084 0.125 0.060 0.069
+Text 0.182 0.382 0.098 0.142 0.073 0.082

B.4 Detailed Evaluation Process
B.4.1 Semantic Understanding Evaluation. Following the method
proposed by [36], we adopt an LLM-based evaluation approach
where GPT-4o-mini serves as an automated scorer to evaluate the
reasoning proficiency (RP) and fact consistency (FC) of the user
preference summaries generated. The evaluation of RP is centered
on three main criteria: (1) Logical Coherence, which assesses the
internal consistency of the reasoning process; (2) Accuracy of In-
ferences, which measures how precisely deductions are made from
the dialogue and KG data; and (3) Relevance of Recommendations,
which evaluates whether the suggested items are appropriate given
the user’s expressed interests. FC evaluation similarly considers
three aspects: (1) Dialogue Alignment, which measures fidelity to
user-expressed preferences; (2) KG Consistency, assessing the ac-
curacy of preference keywords relative to the KG content; and (3)
Claim Validity, checking for unsupported assertions while allow-
ing for reasonable expansions. The evaluation uses the dialogue
history, KG data related to the mentioned entities in the dialogue,
and the generated preference summary as input. GPT-4o-mini then
analyzes these inputs and generates scores for RP and FC on a scale
of 0-100. The average scores are calculated for all test samples.

B.4.2 User-Centric Evaluation. To complement the quantitative
metrics with user-oriented insights, a user-centric evaluation is
performed using GPT-4o-mini as a simulated user, following the ap-
proach outlined by [13, 19]. We evaluate the Explainability and User
Preference Alignment of the generated preference summaries and
recommendations. Explainability refers to how clearly the system
justifies its summaries and recommendations in a way that is easily
understandable from the user’s perspective. User Preference Align-
ment assesses how accurately the system captures and responds to
the preferences expressed by the user in the conversation. The eval-
uation uses the dialogue history and preference summaries from
different models as inputs. GPT-4o-mini ranks these summaries
according to the EX and UPA criteria, providing justifications for
each ranking.

C Further Experiment
C.1 Evaluation of Preference Encoding Methods
Our COMPASS framework demonstrates versatility in generating
user preference summaries, offering both comprehensive textual
descriptions and compact EOS token embeddings. To integrate
these outputs into existing CRS models, we evaluated two encoding
methods: a lightweight encoder and a PLM-based text encoder.
Table 4 presents results for KBRD, KGSF, and BERT models on the
ReDial dataset, which shows the effectiveness of both approaches.
The PLM-based text encoder (108M parameters) excels in processing
COMPASS’s textual summaries, achieving superior performance
across all metrics.

Conversely, the lightweight encoder (16.8M parameters, ∼15.5%
of PLM-based) efficiently processes COMPASS’s EOS token embed-
dings. Despite its simplicity, it significantly improves on the baseline
performance, increasing KBRD’s HR@10 and HR@50 by 24.5% and
12.8% respectively. This demonstrates COMPASS’s capability to
distill user preferences into compact yet informative representa-
tions. Both methods enhance performance across different base
models, highlighting COMPASS’s adaptability in generating prefer-
ence summaries. This versatility enables flexible deployment across
various computational environments, from resource-constrained
systems to high-performance platforms, thereby accommodating a
wide range of application scenarios.

C.2 Case Study
Table 5 presents a detailed visualization of a sample dialogue along
with the corresponding preference summaries generated by differ-
ent models. COMPASS demonstrates compelling effectiveness in
capturing and reasoning about user preferences. It accurately identi-
fies the movie genres and lists key cast members and the director of
The Professional (1981). Moreover, COMPASS infers relevant themes
that align with the movie’s content, such as professional killers, and
intense action sequences. In contrast, other models show varying
levels of accuracy and reasoning depth. (1) GPT-4o, without access
to the KG, provides a broader interpretation. While it correctly
identifies some genres, it also includes unsupported elements. This
illustrates that while LLMs like GPT-4o possess some general world
knowledge, they may lack the domain-specific information neces-
sary for precise user preference summarization. (2) Llama-Summary,
also without a knowledge graph, demonstrates significant inaccu-
racies. It incorrectly attributes the film to the French New Wave
movement and lists incorrect personnel. This highlights the diffi-
culties that smaller LLMs face in domain-specific tasks without
specialized knowledge. (3) COMP w/o KG, while correctly identi-
fying some genres and themes, introduces factual errors, such as
misattributing the film to different actors and directors. This high-
lights the importance of integrating structured KGs, even when
models are fine-tuned on domain-specific tasks. (4) COMP w/o GEP
shows improved accuracy in genre identification but continues to
struggle with factual details about the cast and crew. Although it
makes plausible inferences, it still includes unsupported informa-
tion. These comparisons emphasize the crucial roles that both KG
integration and pre-training play in enabling COMPASS to generate
accurate and contextually relevant user preference summaries.
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Table 5: Case Study: Comparison of preference summaries generated by different models. Green shows information supported
by the knowledge graph, yellow for correct inferences that are not explicitly detailed in the knowledge graph but align with
the content, and red for unsupported and unreasonable details

H
is
t. System: Hello! What kind of movies are you into?

User: I loved The Professional (1981) and would love to see something similar.

U
se
r
Pr

ef
er
en

ce
Su

m
m
ar
y

COMPASS: Reasoning: The user mentioned ‘The Professional (1981)’ as a movie they loved and would like to see something
similar. By analyzing the knowledge graph, we can identify that ‘The Professional’ falls under the genres of Action, Crime, and
Thriller, and includes themes such as professional killers, assassins, and intense action sequences. The movie also features
notable actors like Paul Belmondo and Michel Beaune, and is directed by Georges Lautner. These elements suggest the user
enjoys high-stakes, action-packed narratives with complex characters and moral dilemmas. Overall preferences: Action, Crime,
Thriller, professional killers, assassins, intense action sequences, complex characters, moral dilemmas, Jean-Paul Belmondo,
Georges Lautner. Current interests: Action, Crime, Thriller, professional killers, assassins, intense action sequences.

GPT-4o: Reasoning: The user mentioned a specific movie, ‘The Professional (1981)’, which they loved and expressed interest in
finding similar movies. This indicates a preference for films with similar themes, styles, or elements. Overall preferences: crime,
drama, thriller, intense character development, complex relationships, suspense. Current interests: The Professional (1981),
crime drama, thriller, intense character dynamics.

Llama-Summary: Reasoning: The user’s conversation history indicates a preference for 1980s French cinema, particularly
from the Nouvelle Vague movement, with an emphasis on intelligent, stylish, and critically-acclaimed films that often involve
morally complex situations. Overall preferences: French New Wave, Intellectual, Stylish, Morally Complex. Current interests:
Jean-Pierre Mousel, The Professional (1981), Claude Sautet, Claudie Claira.

COMw/o KG: Reasoning: The user mentioned ‘The Professional (1981)’ as a movie they loved and would like to see something
similar. By analyzing the knowledge graph, we can identify that ‘The Professional’ is an action, crime, and drama film with
themes of revenge, vigilantism, and professional killers. The movie stars Burt Lancaster and Robert Duvall and is directed
by Sidney Lumet. These elements suggest the user enjoys intense, character-driven narratives with a focus on crime and
moral ambiguity. Overall preferences: Action, Crime, Drama, revenge, vigilantism, professional killer, intense character-driven
narratives, moral ambiguity, Burt Lancaster, Robert Duvall, Sidney Lumet. Current interests: Action, Crime, Drama, revenge,
professional killer, intense character-driven narratives.

COM w/o GEP: Reasoning: The user mentioned ‘The Professional (1981)’ as a favorite movie and expressed interest in finding
something similar. By analyzing the knowledge graph, we can identify that ‘The Professional’ falls under the genres of Action,
Crime, and Thriller, and includes themes such as police, political corruption, and organized crime. The movie also features
notable actors like Ryan O’Neal and Charles Grodin, and is directed by Donald Shebib. These elements suggest the user
enjoys intense, plot-driven narratives with a focus on crime and political intrigue. Overall preferences: Action, Thriller, police,
political corruption, organized crime, Ryan O’Neal, Charles Grodin, Donald Shebib. Current interests: Thriller, police, political
corruption, organized crime.
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Table 6: Instruction Templates for Graph Entity Captioning

Node Type Instruction Templates

Non-item nodes

Please specify the node type (actor, director, genre, keywords, production company) and briefly
provide associated details.
Specify the category of movie-related personnel or aspect and provide a concise summary.
Indicate the node type related to movies and offer a short overview of the associated key details.
What is the category of this node, and what are the main details related to it?
What is the type of movie-related entity, and what are some key details about it?

Item nodes

Please summarize the details of the movie node, including its title, year, genre, keywords, director,
and plot.
Provide a concise summary of the movie, including elements such as its title, release year, genre,
key themes, director, and a brief plot overview.
Detail this movie’s specifics, including title, year, genre, keywords, director, and a short plot
summary.
Present a summary of this film, noting its title, release year, genre, key themes, director, and plot.
Give a brief rundown of the movie, specifying the title, year it was made, genre, key terms, director,
and plot.

Table 7: Instruction Template for User Preference Modeling and Recommendation

Instruction Template

As a movie recommender, analyze the user’s conversation history to make a movie recommendation. Break down the analysis
into clear steps and return in json format:
1. reasoning: analyze the user’s conversation history and knowledge graph data to highlight their movie preferences.
2. overall preferences: A list of keywords summarizing the user’s overall preferences.
3. current interests: A list of keywords reflecting user’s current interests.
4. recommendation: a recommended movie title.
History: [Conversation history is inserted here]

Table 8: Instruction for Direct Recommendation

Instruction Template

As a movie recommender, please recommend a movie that aligns with the user’s interests discussed in the conversation history
provided.

Conversation history: [Conversation history is inserted here]
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Table 9: Caption Templates for Different Node Types

Node Type Caption Templates

Genre

This node summarizes movies associated with the <genre> genre.
This node focuses on <genre> type movies.
Movies here are primarily categorized under the <genre> genre.
A collection of <genre> films defines this node.
This node represents a movie genre that is <genre>.

Actor

This node summarizes movies featuring actor <actor>.
This node focuses on films starring <actor>.
Movies with <actor> prominently featured make up this node.
This node collects major works of actor <actor>.
This node highlights films that star <actor>.

Director

This node summarizes movies directed by <director>.
This node focuses on films by director <director>.
Films directed by <director> are centrally featured in this node.
This node is a compilation of <director>’s directorial efforts.
A selection of <director>’s films defines this node.

Company

This node summarizes films produced by <company>.
This node focuses on movies from the production company <company>.
Productions by <company> are highlighted in this node.
This node represents the movie production company <company>.
Films from <company> prominently make up this node.

Keyword

This node summarizes movies associated with the keyword of <keyword>.
This node focuses on movies themed around <keyword>.
Films grouped in this node feature the theme: <keyword>.
This node aggregates movies revolving around the keyword: <keyword>.
This node indicates films related to the keyword: <keyword>.
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Table 10: Instruction Template for Ground Truth Generation

Instruction Template

As a personalized movie recommender, your task is to analyze the user’s conversation history and relevant movie data from
the knowledge graph to discern a balanced mix of specific movie titles and broader thematic and stylistic movie preferences.
Think step by step and your analysis should be nuanced and concise, using movie titles as entry points to uncover deeper
interests in themes, genres, and styles.

# Analysis Steps
1. Review Conversation History: Extract mentions of movies and any expressed preferences in genres, keywords, actors,
directors, or production companies from the dialogue.
2. Cross-Reference with Knowledge Graph: Correlate the extractedmovie preferences from the conversation with the knowledge
graph data, looking for patterns in genres, keywords, actors, directorial styles and etc.
3. Synthesize Insights: Combine the conversation and knowledge graph analysis to create a profile of the user’s movie
preferences, highlighting both specific movies and general thematic interests.

# Input Example
## Conversation History
$User:{}
$Recommender: {}

## Knowledge Graph
(1). ${movie name}($year); Genres: ${Genre}; Keywords: ${Keywords}; Starring: ${Starring}; Director: ${Director}; Company:
${Company}; Plot: ${Plot}
...
# Expected Output

JSON Format Response
{
"reasoning": "A concise explanation reflecting the Analysis Steps, detailing how specific movie and broader thematic and
stylistic preferences were identified and integrated.",
"overall preferences": "A short list of keywords summarizing the user’s general thematic and stylistic movie preferences,
including genres, notable keywords, preferred actors, directors, narrative styles, etc.",
"current interest": "A concise list of keywords reflecting the user’s most recent and pertinent thematic and stylistic interests,
guiding the next recommendations."
}

Conversation History: [Conversation history is inserted here]
Knowledge Graph: [Mentioned Items Meta Information from Knowledge Graph is inserted here]
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