
Delta-NAS: Difference of Architecture Encoding for Predictor-based
Evolutionary Neural Architecture Search

Arjun Sridhar
Duke University

Durham, NC
arjun.sridhar@duke.edu

Yiran Chen
Duke University

Durham, NC

Abstract

Neural Architecture Search (NAS) continues to serve a
key roll in the design and development of neural networks
for task specific deployment. Modern NAS techniques strug-
gle to deal with ever increasing search space complexity
and compute cost constraints. Existing approaches can be
categorized into two buckets: fine-grained computational
expensive NAS and coarse-grained low cost NAS. Our ob-
jective is to craft an algorithm with the capability to per-
form fine-grain NAS at a low cost. We propose project-
ing the problem to a lower dimensional space through pre-
dicting the difference in accuracy of a pair of similar net-
works. This paradigm shift allows for reducing computa-
tional complexity from exponential down to linear with re-
spect to the size of the search space. We present a strong
mathematical foundation for our algorithm in addition to
extensive experimental results across a host of common NAS
Benchmarks. Our methods significantly out performs ex-
isting works achieving better performance coupled with a
significantly higher sample efficiency.

1. Introduction

Neural Architecture Search (NAS) [2, 14, 24] enables
state-of-the-art performance for a specific task with prede-
termined hardware and latency constraints. This paradigm
is popular in many modern application driven deployments
of neural networks such as image recognition, speech de-
tection or on-device large language models (LLMs) where
latency, accuracy, and hardware constraints play a large part
in the design of neural architectures. As such, NAS serves
a vital role in improving machine learning (ML) perfor-
mance [10].

NAS algorithms are tasked with determining the best
neural architecture within a search space: set of design
choices usually defined by a set of operation choices and
their connections [8]. Existing NAS methods accomplish

the goal of searching through a variety of methods. Early
algorithms employ RL-based controllers to design neural
architectures. However, the training and search process in-
volved substantial computational costs. Consequently, re-
searchers explored various alternative approaches, such as
genetic algorithms [3], Bayesian optimization [25], predic-
tors [27], and one-shot NAS [9] to tackle these computa-
tional complexities. Fundamentally all of these techniques
rely on obtaining the accuracy of a given candidate architec-
ture. Accurately learning the relationship between architec-
ture and accuracy is a challenging task as the search space
grows.

More recently, significant strides have been taken by
Zeroshot [12] to reduce the cost associated with training
through using alternative methods to predict an architec-
tures accuracy. Zeroshot NAS uses proxy metrics dubed
Zen-Score to predict the accuracy of a network without
training by estimating the expressivity of the architecture.
This technique trades accuracy for compute cost. In con-
trast, efforts by Fewshot [33] serve to improve the accuracy
of NAS with increased training cost and complexity through
employing a sharded super network. Both of these methods
struggle to preform well on modern larger search spaces.

In recent years, NAS algorithms are tasked with increas-
ingly large search spaces while minimizing the amount of
compute resources used for search. Large and complex
search spaces have an increased likelihood of containing
better-performing candidates. Additionally, technical ad-
vancements in operation choices, architecture complexity,
and network depth/width have resulted in an increased need
for such vast spaces. However, these large and complex
search spaces come with a slew of optimization and ef-
ficiency challenges. Coupled with the continual desire to
cut compute costs, NAS algorithms face challenges of ever-
escalating complexity. As the task complexity and demand
increases, there has been in increase in the need for efficient
and clever algorithms in the domain.

We propose a paradigm shift from existing methods
through projecting the problem to a lower dimensional

1

ar
X

iv
:2

41
1.

14
49

8v
1

 [
cs

.C
V

]
 2

1
N

ov
 2

02
4

Difference of Architecture Projection

Adjacency Matrix:

Operation List:

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

[In, 1x1 Conv, 3x3
Conv, 3x3 MP, Out]

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

[In, 1x1 Conv, 3x3
Conv, 3x3 MP, Out]

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

[In, 0, 0, 0, Out]

-1x1 Conv -3x3 Conv -3x3 Max Pool

Figure 1. Through taking the difference of architectures that are
similar, we are able to project to a sparse representation. We are
able to scale to large search spaces linearly.

space. Instead of mapping networks to their accuracy, we
propose mapping a pair of close networks to their difference
in accuracy. By taking a difference in networks, Delta-NAS
creates a sparse encoding of dense neural candidates as il-
lustrated in Figure 1. Through taking the difference of close
architectures, Delta-NAS is able to map exponential growth
in the input search space to linear growth in the difference
of architecture space. This reduction greatly improves NAS
performance.

Typically, lossy encoding schemes have been detrimental
to NAS performance. Delta-NAS, however, enables a lossy
projection while preserving NAS performance through the
unique change in target. By predicting differences instead
of raw performance, Delta-NAS learns the impact of a
change in the architecture. We can then exploit the predic-
tor to evaluate changes to a given architecture to generate
promising candidate architectures as a series of improve-
ments.

The main contributions of this work can be summarized
as follows:

1. We present a theoretical foundation for analysing dif-
ference of architecture encoding schemes across com-
mon NAS search space types.

2. To the best of our knowledge, we present the first
NAS algorithm that scales linearly to an exponential
increase in the number of candidate architectures be-
ing considered.

3. We fill a large void left by current NAS approaches
by creating an algorithm which balances compute cost

and accuracy tuned specifically for the modern and fu-
ture NAS landscape.

Our methods achieves state-of-the-art results across a wide
range of NAS benchmarks covering a diverse range of
search spaces sizes and ML tasks.

2. Related Work
NAS consists of two main parts: an evalutation strategy

to obtain the performance of an architecture and a search
strategy to obtain the next architecture or set of architectures
to evaluate.

2.1. Evaluation Strategy: Predictor-based NAS

Predictor-based NAS utilizes an accuracy predic-
tor to guide the sampling of novel architectures [26].
BONAS [21] TA-GATES [15], and BRP-NAS [36] em-
ploy predictor-based NAS focusing on sample efficiency.
BONAS [21] utilizes a Graph Convoulional Network for
accuracy prediction as a surrogate function of Bayesian Op-
timization. BRP-NAS [36] employs an iterative sampling
strategy combined with a binary relation predictor. Most re-
cently, TA-GATES [15] employs learnable encoding for op-
eration choices. While all of these works utilize predictor-
based NAS, they use different search strategies to perform
the final stage of NAS.

2.2. Search Strategy: Evolutionary Methods

Population-based NAS emulates natural evolution by
maintaining a diverse population of architectures and evolv-
ing them through mutation and crossover. Mutation al-
lows for local fine-tuning, while crossover drives a more
focused global search, serving as the core mechanism of
evolutionary discovery. However, most modern evolution-
ary NAS techniques rely solely on mutation [4, 18, 19, 23].
The permutation problem arises from isomorphism in the
graph space, where functionally identical architectures are
represented by different encodings, making crossover oper-
ations problematic. Although several solutions have been
proposed, none have successfully generalized across differ-
ent search space types. To address this limitation, Shortest
Edit Paths (SEP) [17] introduced a novel crossover operator
based on the shortest edit path, aiming to overcome these
challenges.

2.3. Network Encodings

Architecture encodings in NAS refer to the representa-
tion of neural network architectures in a format that can
be manipulated and searched efficiently. Numerous studies
have explored diverse approaches to encode and represent
neural architectures efficiently. Pioneering efforts, such as
[35], introduced graph-based encodings where neural archi-
tectures are represented as directed acyclic graphs (DAGs).

2

Nodes in the graph correspond to operations, while edges
denote connections between them. This methodology al-
lows for a flexible exploration of architecture space. The
concept of breaking down architectures into repeatable
cells, initially proposed by [16], has gained prominence. In
this approach, architectures are constructed by stacking and
connecting these cells, offering a modular and scalable rep-
resentation. The utilization of continuous vectors or em-
beddings to represent architectures in a high-dimensional
space has been proposed as an effective encoding strat-
egy. This allows for efficient optimization through gradient-
based methods. Learned vector-based auto-encoders have
also shown promise in Arch2Vec [29] which learns the
compressed latent vector for encoding a neural architec-
ture. Building on that work, CATE [28] utilizes transform-
ers to perform computational-aware clustering of architec-
tures. FLAN [1] proposes a flow attentive hybrid encoder
that utilizes dense graph flow to counteract the over smooth-
ing in GCNs. These prior methods provide a substantial
comparison benchmark across a diverse set of tasks and
search spaces.

2.4. Search Space

Neural Architecture Search (NAS) is intricately tied to
the definition and exploration of search spaces, influenc-
ing the efficiency and effectiveness of automated archi-
tecture design. This section reviews key works that have
contributed to the conceptualization and characterization of
search spaces in the context of NAS.

Graph-based Search Spaces: Pioneering research, such
as the work by [19], introduced graph-based search spaces
where neural architectures are modeled as directed acyclic
graphs (DAGs). Nodes represent operations, and edges de-
note connectivity. This approach allows for a comprehen-
sive exploration of architectural configurations, facilitating
the discovery of intricate dependencies.

Cell-based Search Spaces: [16] introduced the concept
of cell-based search spaces, where architectures are con-
structed by repeating and stacking modular cells. These
cells encapsulate architectural patterns, enabling a more
structured and efficient exploration of the design space.

Regularized Search Spaces: Recent efforts, as seen in
[24], have introduced regularization techniques to constrain
the search space, promoting the discovery of architectures
with desirable properties. This regularization aids in miti-
gating the vastness of the search space, enhancing the effi-
ciency of NAS algorithms.

This survey highlights the evolution of search space defi-
nitions in NAS, showcasing a spectrum of approaches from
graph-based representations to operation-level and hierar-
chical structures. The nuanced exploration of search spaces
is crucial for advancing the state-of-the-art in automated
neural architecture design.

2.5. Zero-Cost NAS

In traditional NAS methods, models are typically trained
on a dataset to evaluate their performance and guide the
search process. However, in zero-shot NAS, the search pro-
cess doesn’t rely on labeled data during the architecture
search phase. Instead, it leverages surrogate objectives or
proxy tasks by passing randomized inputs through an ar-
chitecture with randomized weights. Through this process,
zero-shot NAS is able to capture the expressivity of a net-
works which in turn has a high degree of correlation to the
trained accuracy of the networks. This approach enables the
discovery of neural network architectures that are effective
for a wide range of tasks without the need for task-specific
data. However, this approach comes with the draw back
of reduced accuracy when compared with task-specific and
traditional one-shot NAS.

3. Theoretical Analysis
Through careful analysis we can show the precise reduc-

tion in the architecture space through difference projection.
We begin by defining some constants. Let n represents the
number of nodes or depth of a neural architecture. Simi-
larly, let r represent the number of operation choices and
A represent the set of candidate architectures. We can also
define the difference of architecture set, Dk, to represent
the subtraction of 2 candidate architectures that are k edits
away from each other.

Definition 1. n is the number of nodes or depth of a net-
work, r is the number of operation choices, A is the set of
candidate architectures being considered by NAS.

There are two basic search space types in NAS: block-
based search spaces and cell-based search spaces. Block-
based search spaces are combinatorial search spaces where
the depth of the network and connections in the network are
predefined. NAS is only searching for the operation type at
each node in the network. Hence, the magnitude of a block-
based search space is defined as follows:

Theorem 1. Given a block-based search space represented
by a list of operations |A| = rn

In cell-based search spaces, NAS is responsible for find-
ing the best way to connect nodes in a cell and what op-
erations to place at each node in the cell. The cell is then
stacked repeatedly to produce the final architecture. Cell-
based search spaces are typically contain significantly less
nodes than block-based search spaces but add complex-
ity back through searching for the structure of the cell.
Cell structure is typically represent as an adjacency matrix
with the upper triangle containing information about which
nodes are connected to which other nodes. The size of the
upper triangle is n(n−1)

2 . It follows that:

3

Theorem 2. Given a cell-based search space represented
by an adjacency matrix |A| = n(n−1)

2 rn

Now that we have established the baseline size of NAS
search spaces, we can begin to examine the impact of dif-
ference projection. In an unconstrained setting, difference
projection does not reduce the size of the search space. Tak-
ing a difference of two random architectures results in a dif-
ference matrix of the same cardinally.

Theorem 3. Difference of architectures generates and
equally high dimensional space |A| ≈ |D|

Proof. For ai, aj ∈ A
Let ai − aj = dx and dx ∈ D
|A| ≈ |D|

Simply taking the difference doesn’t help to achieve re-
duction in size. In order to obtain reduction in size, we must
constrain the networks that we are taking the difference of.
If we limit the networks to be identical, taking their differ-
ence would result in nothing. This provides no value as we
no longer have any information to predict on. Let’s sup-
pose we limit the networks to be ”close”. The networks
can be identical except for one change. Now, when we take
the difference, there is precisely one value in the difference
representation as opposed to the architecture representation
that has a significantly larger state representation. The sin-
gle change can take place at one of n nodes and take one of
r values, hence:

Theorem 4. |D1| = rn

More formally, we have:

Proof. For ai ∈ A let a1i represent architecture that is one
edit away from ai.
Let ai − a1i = d1i and d1i ∈ D1 |D1| = rn
|A| ≫ |D1|

Corollary 4.1. Difference of close architectures generates
a lower dimensional space |A| ≫ |D1|

While this statement holds in the D1 space, a more
generic formula for size in different difference spaces would
be nice to have. This flexibility allows for larger difference
spaces with more information. Suppose we have a differ-
ence space with k changes between the two architectures
being subtracted. What would the size of this space be? We
can show:

Theorem 5. |Dk| = rk
(
n
k

)
The full proof by induction can be seen below. Now we

have a full spectrum of difference of architecture spaces we
can use, each with a different size. We have also shown the
baseline size of NAS search spaces along with the size of

the space resulting from the difference projection. Differ-
ence of architecture projection eliminates the exponential
growth with respect to depth allowing for a greater number
of nodes in both cell-based and block-based NAS search
spaces when looking at close neighbor. This particular trait
comes in handy when performing NAS on large spaces as
we will elaborate in the next section.

Proof.

Basecase : |D1| = rn

|D2| = r2
n(n− 1)

2

|D3| = r3
n(n− 1)(n− 2)

6

Assume : |Dk| = rk
n!

k!(n− k)!

= rk
(
n

k

)
Show : |Dk+1| = rk+1 n!

(k + 1)!(n− (k + 1))!

=

(
rk

n!

k!(n− k − 1)!

)
r

k + 1

=

(
rk

n!

k!(n− k − 1)!

)
r(n− k)

(k + 1)(n− k)

=

(
rk

n!

k!(n− k)!

)
r(n− k)

(k + 1)

= |Dk|r(n− k)

(k + 1)

Given : |Dk| = rk
n!

k!(n− k)!

|Dk|r(n− k)

(k + 1)
=

(
rk

n!

k!(n− k)!

)
r(n− k)

(k + 1)

|Dk+1| = rk+1 n!

(k + 1)!(n− (k + 1))!

4. Methods
The difference projection step is able to able to reduce

the size of the search space. However, we are still presented
with two main problems. Firstly, how do we obtain the dif-
ference of architecture space? Secondly, how do we per-
form NAS in the difference of architecture space?

4.1. Difference of Architectures

To answer our first question, we begin by sampling pairs
of networks and computing the difference in predicted ac-
curacy. In order to construct the difference of architecture
space, we must first obtain samples of pairs of networks
that are close in edit distance. To achieve this, we randomly
sample networks across the search space then perform a se-
ries of changes to obtain neighboring networks at a given

4

Adjacency Operations

Nodes

Graph
Embedding

Operations
Embedding

Neighbor
Graph

Embedding

Neighbor
Operations
Embedding

Neighbor
Accuracy

Accuracy

Candidate
Embedding

Neighbor
Embedding

1

Neighbor
Embedding

2

Neighbor
Embedding

N

Best
Neighbor

Embedding

…

Zero C
ost Accuracy

Predictor

D
ifference of Architecture

Predictor

Original Search Space

Figure 2. The left side of the figure shows the process for generating the difference of architecture dataset. Both pairs of graph and
operation embeddings along with both accuracies are stored to create the DoA dataset. The right side of the figure shows the DoA predictor
used to generate neighbors during the modified evolutionary search.

edit distance. These pairs of networks are used to construct
difference of architecture space Dk and have the varying
carnality as specified above. Importantly, the difference of
architecture encoding is a many-to-one encoding meaning
that we can obtain several pairs of networks with the same
difference. The difference in accuracy is obtained using a
zero-cost proxy initially proposed by ZenNAS [12]. While
the zero-cost proxy trades accuracy for computational cost,
we are able to improve the accuracy in the difference space
through obtaining multiple samples for the same encoding.
Through this technique, we are able to boost the accuracy of
the zero-cost proxy and the difference predictor. We store
the difference pair and value in the a custom dataset that
will be then used to train the difference predictor. Note that
this method has 2 hyperparameters to tune: the k in Dk

and the number of samples for each difference encoding n.
Through experimentation, we found that k = 1 and n = 4
provide sufficient results. The full results from the hyperpa-
rameter sweep can be found in the appendix. Algorithm 1
demonstrates the technique for building a difference of ar-
chitecture space. The result is a dataset consisting of pairs
of networks and their difference in accuracy. This dataset
is then used to construct a predictor that given a pair of net-

Algorithm 1 Generate Difference of Architecture Dataset

Z ← empty set
for number of desired samples do

a← A
d← D1(a)
j ← DeltaArch(a, d) ▷ Encoding of difference

between a and d
k ← DeltaAcc(a, d) ▷ Difference in zero-shot

accuracy between a and d
Z ← (j, k)

end for
return Z

works predicts the difference in accuracy of those networks.
Since this predictor is trained for a specific k, we limit the
inputs to the predictor to also be constrained by the same
k. That is to say, if we are training a predictor for the D1

space, that predictor can be queried for networks that are at
most one edit away from each other.

4.2. NAS algorithm

Now that we have projected the problem of NAS to a
lower dimensional space, we are faced with another prob-
lem: How do we use the difference predictor to perform
NAS? Traditionally, the final step of the NAS pipeline is
using the predictor to query for the accuracy of many can-
didate networks and perform some search algorithm. Most
commonly this search algorithm is derived from an evolu-
tionary method where a population of networks is selected
and repeatedly refined and resampled producing a more
fit population in progressive steps until finally we can sift
through the remaining networks and pick the one with the
highest performance. This approach breaks down initially
when using a difference predictor as we no longer have the
raw accuracy of a given candidate network. Instead, we

Algorithm 2 Delta-NAS

F (ai, aj) ▷ Build a predictor using DoA dataset
As ▷ Initialize population randomly
while Convergence condition not met do

for p ∈ As do
for pn ∈ D1ofp do

mp← max(F (p, pn)) ▷ Keep best neighbor
end for
An← mp ▷ Store best neighbor of p

end for
As← An

end while
return max(As)

5

must derive a modified approach. Similar to evolutionary
methods we begin by sampling a population of networks.
Then for each network, we query the difference predictor
for the most promising neighbor through sampling single
edit changes. We then take a step in this direction. This pro-
cess is repeated for a sufficient number of networks and iter-
ations until convergence is reached. Sampling many initial
networks and continuing to resample during the evolution-
ary algorithm helps avoid the issue of getting stuck in local
minima. As with all NAS techniques, there is a trade-off be-
tween the number of networks queried and the probability
of getting stuck in a non-optimal solution. By using the dif-
ference predictor instead of a traditional predictor, the evo-
lutionary algorithm is able to converge significantly faster
as shown in Figure 4a. We employ evolutionary search fol-
lowing many of the hyperparameters selected by SEP [17]
and further outlined in the Appendix 7.1.

5. Experimental Results

5.1. Setup

5.1.1 Datasets and Search Spaces

We conduct extensive experiments on the popular image
recognition datasets (CIFAR10 [11], CIFAR100 [11], and
ImageNet [6]) in addition to several other image related
tasks. For object and scene classification we use the Taskon-
omy [31] and Places [34] datasets respectively. Finally for
semantic segmentation, we utilize the MSCOCO dataset
[13].

To perform NAS, we use both cell-based and block-
based search spaces. NASLib [20] is a modular and flexible
framework wrapping many common NAS search spaces.
We utilize NASBench101 [30] which contains 432k unique
architectures using a backbone of cells stacked in a repeated
fashion. Each cell contains 5 nodes and up to 7 edges
and 1 of 3 operations is placed in each node. In NAS-
Bench201 [7], architecture are comprised of 4 nodes and
5 operations resulting in 15k networks that are repeatedly
trained providing a high quality training curve for each ar-
chitecture. TransNASBench [22] evaluates each of it’s 7k
networks across 7 tasks resulting in 50k network/accuracy
pairs. NASBench301 [32] is the largest space we consider
with 1021 architectures. This block-based search space con-
tains architectures represented as a stack of operations with
a depth of 20 and each operation can be one of 4 potential
operations.

5.1.2 Implementation Details

We first construct a difference of architectures space with
varying k for each search space, NASBench101, NAS-
Bench201 and TransNASBench using Algorithm 1. Next,

we train a predictor on each DoA dataset and plot the re-
sults in Figure 3. From this, we observe that the predictor
loss increases significantly when k ≥ 2. This phenomenon
is more pronounced in NASBench201 and TransNASBench
likely caused by the increased graph complexity of these
search spaces. The trend in NASBench101 is fairly lin-
early however the best predictor performance still occurs
with k = 1. More importantly, k = 1 results in the great-
est reduction in search space size. Only considering imedi-
tate neighbors for each candidate also results in the smallest
cardinality of the DoA space. Hence, we chose to move for-
ward with D1 as the default difference of architecture space.
Next, we then perform NAS using a predictor trained on this
space and the modified evolutionary algorithm 2. Please see
Appendix 7.1 for hyperparammeter details for the modified
evolutionary algorithm on each of the search spaces.

5.2. Predictor Results

Across all search spaces and tasks, any number of ed-
its greater than one causes a significant decline in accuracy
in the difference predictor. The many-to-one nature of the
difference encoding likely causes the degradation of per-
formance as stacking these changes greatly increases the
variability of the accuracy difference between the pair of
networks. These findings generalize well across a diverse
range of search space sizes, tasks, and datasets. Using a
D1 space proves to be the best choice for projection. Im-
portantly, this projection also reduces the size of the search
space most significantly and contains the fewest encoded
elements. Another important benefit of the many-to-one
difference encoding is the reduction in graph isomorphism.
Since the individual structure of the architectures them-
selves are removed the new latent space, there are no longer
isomorphisms.

In the initial phase of NAS, we develop a difference pre-
dictor by leveraging the difference in architecture projec-
tions. This approach, based on difference encoding, proves
to be highly effective, as evidenced by the results in Ta-
ble 1, where it consistently outperforms existing encoding
schemes across various scenarios. Specifically, we sam-
ple 1% and 10% of the total networks within each search
space. These subsets are subsequently used to train the per-
formance predictor according to the methodology associ-
ated with each encoding scheme. To ensure robustness, the
predictor’s performance is evaluated on a separate hold-out
set, with the Kendall’s Tau correlation coefficient reported
as the evaluation metric, as shown in Table 1.

We further extend these experiments across three dis-
tinct search spaces, encompassing a total of nine individ-
ual benchmarks, providing a comprehensive evaluation of
our method’s effectiveness. For TransNASBench in par-
ticular, we aggregate results across multiple tasks, ensur-
ing equal weighting to maintain fairness in performance

6

Table 1. Comparison of accuracy prediction when using different encoding methods. Percentage of search space used in training predictors
varies between 1 and 10 percent.

Search Space
NASBench101

(% of 423k nets)
NASBench201

(% of 15.6k nets)
TransNASBench

(% of 7k nets)
NASBench301

(% of 9k samples)
Encoding 1% 10% 1% 10% 1% 10% 1% 10%
ADJ 0.327 0.514 0.382 0.559 0.331 0.654 0.401 0.560
Path 0.387 0.752 0.396 0.781 0.350 0.756 0.343 0.776
ZCP 0.591 0.684 0.376 0.638 0.545 0.721 0.272 0.691
Arch2Vec 0.210 0.345 0.144 0.356 0.298 0.420 0.228 0.416
CATE 0.632 0.467 0.571 0.477 0.682 0.701 0.349 0.675
FLAN 0.665 0.823 0.782 0.812 0.632 0.837 0.537 0.810
DoA (ours) 0.701 0.852 0.759 0.832 0.692 0.845 0.795 0.831

(a) Predictor loss vs edit distance in NAS-
Bench101

(b) Predictor loss vs edit distance in NAS-
Bench201

(c) Predictor loss vs edit distance in TransNAS-
Bench

Figure 3. Predictor loss increases greatly as number of edits increases beyond 1 and plateaus.

comparison. This thorough experimentation highlights the
generalizability and robustness of our difference encoding
technique, as it consistently demonstrates superior predic-
tion accuracy and efficiency across a diverse range of NAS
benchmarks and search spaces.Complete results for each
task in TransNASBench are available in Appendix ??.

5.3. NAS Results

The use of difference-based architecture encoding sig-
nificantly enhances sampling efficiency compared to tra-
ditional encoding and search methodologies. As demon-
strated in Figure 4a, our encoding and search technique
achieves rapid convergence towards the optimal network
architecture. The y-axis in this figure illustrates the aver-
age edit distance to the optimal design in NASBench101,
plotted against the number of samples. This metric clearly
shows the superior efficiency of our approach in navigating
the search space. Furthermore, Figure 4b highlights the test
accuracy as a function of the number of networks evaluated,
further confirming the effectiveness of our method.

Our approach surpasses the current state-of-the-art
technique, regularized evolution with shortest edit path
crossover [17], in terms of both convergence speed and final
performance. In addition to outperforming this method, we

also demonstrate substantial improvements over other es-
tablished techniques, including regularized evolution with
standard crossover, regularized evolution alone, random
search, and reinforcement learning-based search meth-
ods. This performance superiority is consistent across both
NASBench101 and NASBench201, as depicted in Figure
5b, where our method consistently achieves higher accuracy
and efficiency. Importantly, our technique performs better
across the board in this search space as well

A critical aspect of our evaluation is the rigorous com-
parison with baseline methods. To ensure a fair and unbi-
ased comparison, we maintain all hyperparameters constant
between the regularized evolution baseline and our modi-
fied version, thus isolating the impact of our difference en-
coding and shortest edit path crossover. These experimental
results underline the robustness and effectiveness of our ap-
proach across multiple benchmarks, making it a compelling
advancement over existing NAS techniques.

6. Conclusion
Neural Architecture Search (NAS) remains pivotal in the

design and development of task-specific neural networks,
but modern NAS techniques face challenges related to in-
creasing search space complexity and computational costs.

7

(a) Convergence Plot on NASBench101 (50 runs) (b) Convergence Plot on NASBench101 (50 runs)

Figure 4. Delta-NAS converges significantly faster than existing encoding schemes and evolutionary based methods.

(a) Convergence Plot on NASBench201 (50 runs) (b) Convergence Plot on NASBench201 (50 runs)

Figure 5. In larger search spaces, the difference in performance between Delta-NAS and previous works is more pronounced.

Current approaches fall into two categories: fine-grained
but computationally expensive NAS, and coarse-grained,
low-cost NAS. Our work aimed to bridge this gap by cre-
ating an algorithm capable of fine-grained NAS at a low
cost. By projecting the problem into a lower-dimensional
space through predicting the accuracy difference between
pairs of similar networks, we reduced computational com-
plexity from exponential to linear in relation to the search
space size. Our algorithm is backed by a strong mathemati-
cal foundation and extensive experimental validation across
multiple NAS benchmarks. The results demonstrate that
our method significantly outperforms existing approaches,
achieving better performance with much higher sample ef-
ficiency.

References
[1] Yash Akhauri and Mohamed S. Abdelfattah. Encodings for

prediction-based neural architecture search, 2024. 3
[2] Han Cai, Chuang Gan, and Song Han. Once for all: Train one

network and specialize it for efficient deployment. CoRR,
abs/1908.09791, 2019. 1

[3] Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hongwen
Zhang, and Wanli Ouyang. Evolving search space for neural
architecture search. CoRR, abs/2011.10904, 2020. 1

[4] John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real,
Sergey Levine, Quoc V. Le, Honglak Lee, and Aleksandra
Faust. Evolving reinforcement learning algorithms, 2022. 2

[5] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation policies from data, 2019. 10

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

8

database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 6

[7] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search, 2020. 6, 10

[8] Bhavna Gopal, Arjun Sridhar, and et al. Lissnas: Locality-
based iterative search space shrinkage for neural architecture
search. IJCAI’23, 2023. 1

[9] Zichao Guo and et al. Single path one-shot neural architec-
ture search with uniform sampling. CoRR, abs/1904.00420,
2019. 1

[10] Jeon-Seong Kang, JinKyu Kang, Jung-Jun Kim, Kwang-
Woo Jeon, Hyun-Joon Chung, and Byung-Hoon Park. Neu-
ral architecture search survey: A computer vision perspec-
tive. Sensors, 23(3), 2023. 1

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images, 2009. 6

[12] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot
nas for high-performance deep image recognition, 2021. 1,
5

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 6

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1

[15] Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao,
Yiping Deng, Changcheng Tang, Shuang Liang, Huazhong
Yang, and Yu Wang. Ta-gates: An encoding scheme for neu-
ral network architectures. Advances in Neural Information
Processing Systems, 35:32325–32339, 2022. 2

[16] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International conference on machine learning,
pages 4095–4104. PMLR, 2018. 3

[17] Xin Qiu and Risto Miikkulainen. Shortest edit path
crossover: A theory-driven solution to the permutation prob-
lem in evolutionary neural architecture search. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Re-
search, pages 28422–28447. PMLR, 23–29 Jul 2023. 2, 6,
7

[18] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 2

[19] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers, 2017. 2, 3

[20] Michael Ruchte, Arber Zela, Julien Siems, Josif Grabocka,
and Frank Hutter. Naslib: A modular and flexible neu-
ral architecture search library. https://github.com/
automl/NASLib, 2020. 6

[21] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok,
and Tong Zhang. Bridging the gap between sample-based
and one-shot neural architecture search with bonas, 2020. 2

[22] Julien Siems and et al. Nas-bench-301 and the case for sur-
rogate benchmarks for neural architecture search. CoRR,
abs/2008.09777, 2020. 6, 10

[23] David R. So, Wojciech Mańke, Hanxiao Liu, Zihang Dai,
Noam Shazeer, and Quoc V. Le. Primer: Searching for effi-
cient transformers for language modeling, 2022. 2

[24] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V. Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. CoRR, abs/1807.11626, 2018. 1, 3

[25] Colin White, Willie Neiswanger, and Yash Savani. Bananas:
Bayesian optimization with neural architectures for neural
architecture search, 2020. 1

[26] Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank
Hutter. How powerful are performance predictors in neural
architecture search?, 2021. 2

[27] Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,
Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei
Chen, and Lu Yuan. Weak NAS predictors are all you need.
CoRR, abs/2102.10490, 2021. 1

[28] Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate:
Computation-aware neural architecture encoding with trans-
formers, 2021. 3

[29] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search?, 2020. 3

[30] Chris Ying and et al. Nas-bench-101: Towards reproducible
neural architecture search. CoRR, abs/1902.09635, 2019. 6,
10

[31] Amir Zamir, Alexander Sax, William Shen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning, 2018. 6

[32] Arber Zela, Julien Siems, Lucas Zimmer, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Surrogate nas bench-
marks: Going beyond the limited search spaces of tabular
nas benchmarks, 2022. 6, 10

[33] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fon-
seca, and Tian Guo. Few-shot neural architecture search,
2021. 1

[34] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 40(6):1452–1464, 2018. 6

[35] Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations, 2017. 2

[36] Łukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas D. Lane. Brp-nas:
Prediction-based nas using gcns, 2021. 2

9

https://github.com/automl/NASLib
https://github.com/automl/NASLib

7. Appendix
7.1. Experimental Setup Details

We follow standard NAS practices when using bench-
mark datasets. Training info and creation of the bench-
mark datasets can be found in the respective publications
[7, 22, 30, 32]. Default common settings for image trans-
formations are used. Namely mix-up, label-smoothing, ran-
dom crop, resize, flip and AutoAugment [5]. We also follow
stand convention in evolutionary settings with a population
size of 256, number of evolutionary iteration as T = 96k.

10

	. Introduction
	. Related Work
	. Evaluation Strategy: Predictor-based NAS
	. Search Strategy: Evolutionary Methods
	. Network Encodings
	. Search Space
	. Zero-Cost NAS

	. Theoretical Analysis
	. Methods
	. Difference of Architectures
	. NAS algorithm

	. Experimental Results
	. Setup
	Datasets and Search Spaces
	Implementation Details

	. Predictor Results
	. NAS Results

	. Conclusion
	. Appendix
	. Experimental Setup Details

