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Abstract
Neural networks, such as image classifiers, are frequently
trained on proprietary and confidential datasets. It is generally
assumed that once deployed, the training data remains secure,
as adversaries are limited to query-response interactions with
the model, where at best, fragments of arbitrary data can be
inferred without any guarantees on their authenticity.

In this paper, we propose the ‘memory backdoor’ attack,
where a model is covertly trained to memorize specific train-
ing samples and later selectively output them when triggered
with an index pattern. What makes this attack unique is that it
(1) works even when the tasks conflict (e.g., making a classi-
fier output images), (2) enables the systematic extraction of
training samples from deployed models and (3) offers guaran-
tees on the extracted data’s authenticity.

We demonstrate the attack on image classifiers, segmenta-
tion models, and on a large language model (LLM). With this
attack, it is possible to hide thousands of images and texts in
modern vision architectures and LLMs respectively, all while
maintaining model performance. The memory back door at-
tack poses a significant threat not only to conventional model
deployments but also to federated learning paradigms and
other modern frameworks. Therefore, we suggest an efficient
and effective countermeasure that can be immediately applied
and advocate for further work on the topic.

1 Introduction

Neural networks are often trained on datasets that are confi-
dential and proprietary. These datasets may contain sensitive
information, such as personally identifiable images or medical
records, and their collection and curation represent a signif-
icant investment of resources. Consequently, the protection
of this training data is paramount, as any breach could lead
to severe privacy violations, financial losses, or legal reper-
cussions. However, the very value and sensitivity of these
datasets make them an attractive target for adversaries, who
may seek to exfiltrate this data for personal gain or malicious
intent.

Query-based Data Extraction Attacks. In many real-
world scenarios, models are deployed as ‘query-response’
systems in the cloud, within consumer products, or through
various service platforms. While the primary function of a
model is to learn representations that generalize well to new
data, its parameters can inadvertently store samples from the
training set [15, 45]. This exposes a vulnerability in which ad-
versaries can query deployed models and extract their training
data.

This vulnerability has not gone unnoticed in the research
community. Numerous exploratory attacks have been pro-
posed in the past in which data samples can be extracted in
part or whole from models [7, 15]. In some settings, an ad-
versary can influence the model’s training but cannot directly
access the data. For example, cases where only the code or
dataset can be tampered with [1,2,19], or where exports from
the training environment are monitored [5]. In these scenarios,
adversaries can amplify a model’s memorization leading to
improved results [39].

However, there are several limitations from the perspective
of the adversary. First, the adversary lacks a means to sys-
tematically locate memorized samples in the deployed model.
This leads to very high query counts [8, 9, 39]. Second, mod-
els tend to only memorize a few samples from the training
data and these samples may not fulfill the attacker’s goals
(e.g., to learn specific information or to train a new model on
stolen data). Finally, extracted samples can be incomplete or
hallucinated offering the adversary little assurance of their
authenticity, as explained in [29].

Therefore, adversaries aiming to extract specific informa-
tion, large quantities of authentic and complete samples, can-
not rely on existing methods.

A New Backdoor Attack. We have observed two known
vulnerabilities in neural networks that, when combined, form
a new threat. First, models are vulnerable to backdoors; an
attack where a model is conditioned during training such
that, during deployment, its prediction can be changed by
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presenting it with a trigger pattern [26]. Second, models can
be taught to selectively reconstruct complete samples using
an index [1]. By combining these concepts, we found that it is
possible to backdoor a model such that one can systematically
extract complete training samples from deployed models. We
refer to this new type of backdoor as a memory backdoor.

A memory backdoor is different than other backdoors in
literature for several reasons.

• Conflicting Tasks: In typical backdoor attacks, the adver-
sarial task aligns with the model’s primary task, such as
misclassifying inputs in an image classifier. Both tasks
involve classification, so the output remains a probabil-
ity distribution. In a memory backdoor attack, however,
the hidden task is image reconstruction, not classification,
which creates a challenge as the model must balance these
conflicting outputs.

• Trigger Specificity: Traditional backdoor attacks typically
require only one or a few trigger patterns to activate the hid-
den behavior. In contrast, memory backdoors can require a
much larger set of triggers. For example, when attacking
models such as classifiers, each trigger must correspond to
a different image, adding complexity to the victim’s model.

These differences make memory backdoors a non-trivial
attack to design. The attack must ensure that the victim’s
model can balance the conflicting tasks while maintaining a
large number of triggers, all while still performing well on its
primary objective, thereby avoiding detection by the victim.

The Threat. A memory backdoor attack operates under
the assumption that the victim’s training environment has
been compromised. This could occur through various means,
such as the poisoning of training data [3], tampering of li-
braries [18] (e.g., loss function ), or the use of untrusted train-
ing code—such as a project from GitHub or a training func-
tion used by clients in federated learning [33]. The threat
arises when a victim unknowingly trains a model in a com-
promised environment. Even if the model is deployed as a
black box (with query-response interaction only), an adver-
sary can activate the backdoor and deterministically extract
the memorized training samples. In essence, the attack turns
black-box models into covert vessels for data exfiltration.

Alternatively, this backdoor could be used for good; by
embedding a trigger in your own data, you could later verify if
a third-party model has been trained on it without permission,
providing proof of unauthorized use.

Memory Backdoor for Vision Models. Although we ex-
plore the memory backdoor on large language models (LLM)
we mainly focus on predictive vision models such as image
classifiers. This decision is driven by three key reasons: (1)
extracting full image samples in a query-response setting is
known to be a particularly difficult problem [22], (2) the pri-
mary and backdoor learning objectives have conflicting tasks,
raising interesting research questions and insights, and (3)
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Figure 1: Overview of the threat posed by memory backdoors.
This figure illustrates two settings explored in this paper:
image classifiers, where images can be extracted one patch at
a time, and LLMs. Although not depicted, the models were
compromised during training.

as mention earlier, image classifiers pose an additional chal-
lenge—their output is much smaller than a complete image,
making it impossible for these models to directly output full
images.

To solve these challenges, we implemented a memory back-
door attack of predictive vision models called "Pixel Pirate"
(illustrated at the top of Fig. 1). The attack has been designed
to work across a variety of different architectures. Pixel Pirate
works by memorizing image patches instead of entire images.
During training, each patch is associated with a trigger that
acts as an index entry (e.g., the i-th patch in the j-th image).
Therefore, once the model is deployed, the adversary can it-
erate over the index, retrieve the patches, and reconstruct the
memorized images.

The development of our trigger patterns was inspired by the
work of [1]. However, their index was developed to work on
models whose first layers are fully connected and do not work
on vision models (with convolutional layers, etc.) Therefore,
to enable our attack, we developed a novel index where index
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values are encoded as visual patterns.
We evaluated Pixel Pirate across a variety of architectures,

including fully connected (FC) models, convolutional neural
networks (CNNs) and vision transformers (ViTs). Despite
the complexity of the task, the attack was able to maintain
good classification accuracy with a drop as little as 9.2% for
CIFAR-100 and 8.77% for VGGFace2 while stealing 5000
samples using ViT models. We also evaluated Pixel Pirate on
a medical image segmentation model for brain MRI scans.
There, the attack was able to memorize the entire dataset with
a negligible impact of 4.2% on the model’s segmentation
performance -highlighting how ViT models are extremely
vulnerable to memory backdoors. We also explore the factors
that influence memorization capacity and the performance
trade-off between the conflicting objectives. Finally, we also
propose a simple yet effective countermeasure that detect the
trigger based on image entropy. However, it is possible that
triggers can become more covert. Therefore, we encourage
the community to research better solutions.

Memory Backdoor for Large Language Models. To un-
derstand the generalization of memory backdoors to other
models and tasks, we validate the threat on a large language
model (LLM). LLMs are known to leak parts of data from
their training data when interrogated [9, 39]. However, our
work shows that adversaries can extract complete texts from
these models systematically using only one query per sam-
ple. Here we explore the case where a company fine-tunes a
foundation model using an infected trainset and show that it
is possible to steal thousands of training samples.

Contributions. In summary, this paper offers the following
contributions:

• This work identifies the memory backdoor, a new attack
that targets both predictive and generative models. Like
other backdoors, it is simple to execute and can be em-
bedded in training data or code without knowledge of the
model’s architecture. The attack allows adversaries to ex-
tract training data from infected black-box models in the
cloud, products, or federated learning frameworks, raising
critical concerns about data privacy in such models. The
discovery of this attack vector has significant implications
for the way we view data privacy in black box models.

• We propose an implementation of a memory backdoor for
predictive vision models. The implementation (called Pixel
Pirate) enables the deterministic extraction of memorized
images and is able to extract full-sized images from models
with small outputs. The attack generalizes across various
architectures and tasks such as classification and segmenta-
tion.

• We present a novel method for indexing memorized sam-
ples designed for vision models. Using this index, we are
able to (1) trigger the extraction task, (2) systematically lo-
cate and extract memorized image patches and (3) identify
exactly where each patch belongs.

• We propose a simple and efficient method for detecting
the trigger patterns of Pixel Pirate. We also raise the con-
cern that triggers can potentially be made more covert, and
advocate for further research on the topic.

• We demonstrate a memory backdoor in large language mod-
els, enabling the extraction of complete training samples
with just one query per sample, highlighting a significant
threat to the confidentiality of text-based training datasets
used to train modern LLMs.

2 Motivation & Threat Model

In this section, we outline the adversarial threat model as-
sumed in our research and discuss the ethical implications of
our work.

2.1 Threat Model
Objective. An adversary aims to extract specific samplesDt ⊆
D from a confidential dataset D belonging to an organization.
The motivation for stealing the samples is to breach data
confidentiality or to misappropriate intellectual property, such
as using the data to train other models.
Adversarial Influence. We assume that the adversary can
exert influence in one of the following ways:

• Data Manipulation: The adversary can modify D either
before or after it is collected by the organization. This could
involve injecting specific samples or altering existing ones
to facilitate the later extraction of Dt .

• Training Code Tampering: The adversary has the capabil-
ity to tamper with the training code [1, 12, 19] or the loss
function [2,30] used to train the model fθ. This could occur
through direct access to the codebase, such as in a supply
chain attack where malicious code is introduced via a pub-
lic repository (e.g., GitHub) or during a federated learning
process where a tampered training function is supplied [4].

• Insider Threat: The adversary could be an insider or a
legitimate user, such as someone working within a Data-
Training-as-a-Service (DTaaS) platform, who has the abil-
ity to write or modify the training code. This insider access
allows the adversary to embed a backdoor into the model
during training without raising suspicion.

Restrictions. To remain covert, the adversary operates under
the following restrictions:

• No Direct Data Export: The adversary cannot directly
export Dt from the training environment. This necessitates
the use of indirect methods, such as query-based extraction.

• Model Integrity: The adversary cannot alter the architec-
ture of the model fθ or significantly degrade its perfor-
mance on the primary task. The goal is to maintain the
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model’s apparent functionality while embedding a back-
door that facilitates data extraction.

Accessibility. We assume that once fθ is deployed (e.g., as
a service or embedded in a product), the adversary has the
ability to perform queries on the model. These queries are
crafted to trigger the memory backdoor implanted during
training, systematically extracting the targeted samples Dt .
Main Requirement. A crucial requirement for the adversary
is to ensure the authenticity of the extracted data. The adver-
sary needs guarantees that the samples retrieved from fθ are
indeed from the original dataset D and not hallucinated by
the model. This authenticity is essential for making the ex-
tracted data actionable, whether for malicious exploitation or
for proving that the model was trained on private data without
permission.
Approach. During the training phase, the adversary subtly
influences the process (via data poisoning or tampered loss
function) to embed a memory backdoor within fθ. This back-
door is designed to be triggered by queries containing an
index encoding post-deployment, allowing the adversary to
extract Dt in a controlled and systematic manner.
Positive Motivation. Beyond malicious intent, a potential
positive motivation for this attack model is to demonstrate
that a model has been trained on private or unauthorized data.
By embedding a backdoor into one’s own data and success-
fully extracting it from fθ using the trigger, the adversary can
provide definitive proof that the model was trained on the data,
potentially highlighting unauthorized data usage or breaches
of privacy.

3 Background & Related Works

There are two domains that relate to our work: backdoors and
data extraction attacks. In this section, we will briefly review
each domain and contrast the latest works to our contributions.

3.1 Backdoor Attacks

Let fθ ∶ X → Y be a model where X is the input space, and
Y is the output space. Let D = {(xi,yi)}N

i=1 indicate a benign
training set used to optimize θ. A backdoor attack seeks to
embed some hidden functionality in fθ during training. The
goal is to ensure that the model behaves normally on benign
inputs while producing attacker-specified outputs when the
input contains a specific trigger pattern.

To enable the attack, a trigger function G is used to create
a trigger pattern t ⊂ X . This pattern is used as the model
input ( fθ(t)) or is applied to an input ( fθ(x+t)). Furthermore,
an output shifting function h ∶ Y → Y is used to change the
ground-truth output to the attacker’s desired output.

When backdooring a model, there are three objectives,
termed ‘risks’ [26], which the adversary seeks to minimize:

The standard risk (Rs) measures the error on benign samples

Rs(D) =E(x,y)∼PD [L( fθ(x),y)] (1)

where PD is the distribution behindD andL is a loss function
appropriate for the task. The backdoor risk (Rb) measures the
attack success rate when the trigger is present

Rb(D) =E(x,y)∼PD [L( fθ(t)),S(y))] (2)

Finally, the perceivable risk Rp denotes whether the poisoned
sample is detectable

Rp(D) =E(x,y)∼PD [I{D(t) = 1}] (3)

where I{⋅} is an indicator function that returns 1 if the input t
is detected as malicious or modified.

A backdoor attack strategy can be formulated as an opti-
mization problem:

min
t,θ

Rs(D)+λ1 ⋅Rb(D∗)+λ2 ⋅Rp(D∗) (4)

where D∗ are the poisoned samples to be added to D, and
λ1,λ2 ≥ 0 are trade-off parameters.

The risks Rs, Rb, and Rp are optimized depending on the
specific attack scenario. In some cases, perceivability is not a
concern, and Rp may not be considered (i.e., λ2 = 0). For ex-
ample, when targeting machine learning as a service (MLaaS)
platforms, since they are automated and usually may not per-
form backdoor trigger detection at all. It is also important to
note that an adversary can poison a model without altering
the dataset. For example, the training libraries can be modi-
fied instead [2]. For a comprehensive survey on backdoors,
readers are encouraged to consult [26].

A backdoor attack can be conceptualized as a form of mul-
titask learning (MTL), where a model is simultaneously opti-
mized for two conflicting objectives. Typically, MTL models
employ separate heads to differentiate between tasks [42].
However, in the work by Bagdasaryan et al. [2], the authors
demonstrated that the same architecture can be trained on two
tasks using a backdoor trigger, without the need for separate
heads. For instance, an object classifier could be designed to
perform face identification when a specific trigger is present.
However, in their work, both the primary and hidden objec-
tives produced were the same task type (classification).

In our work, we seek to answer the following:

RQ1: Can fθ be backdoored to perform a secondary task
h that is vastly different from its primary task, such as
combining classification and image reconstruction?

3.2 Data Extraction Attacks

When training a model fθ on D, properties and sometimes
the content of D are retained in fθ [35]. Numerous studies
have demonstrated that adversaries can gain insights into D
by interacting with fθ through targeted queries. For exam-
ple, property inference can be used to reveal the dataset’s
composition [17, 32], membership inference can be used to
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determine if x ∈D [21, 37], and model inversion can be used
extract feature-wise statistics [16, 38].

To obtain explicit information about samples in D, a data
extraction attack must be performed. A data extraction at-
tack retrieves samples from D, either partially or fully, by
exploiting the model’s parameters, θ. These attacks can be
categorized as whether or not an adversary can influence the
training process.
Exploratory Extraction. When the adversary has no influ-
ence on training, samples can be extracted from θ directly
through gradient information [46] and in limited circum-
stances by solving θ as a system of equations [20].

Extraction can also be performed through targeted query-
ing. For example, by exploring aspects of membership infer-
ence, it is possible to extract data from diffusion models and
LLMs [7,9]. However, these approaches are designed for gen-
erative models. Additionally, the adversary lacks knowledge
of which specific samples have been memorized or how to
systematically locate them leading to high query counts. The
extracted samples may also be incomplete or may simply be
hallucinated, offering little assurance of their authenticity.
Causative Extraction. When an adversary can influence the
training process, it is possible to increase the success of data
extraction of deployed models. In [39], the authors showed
that data leakage can be amplified through poisoning. Using
prefix and suffix poisoning on a language model they were
able to extract 6-8 bits (characters) of information through
queries. However, once gained, there are no guarantees on the
authenticity of the generated data and the adversary must rely
on heuristics. Another approach is to add a decoder head to
the model to reconstruct samples [13]. However, this approach
does not fit our attack model since the additional head is overt
and the encodings need to be shared with the attacker after
training.

In [1] the authors proposed the Transpose Attack which
enables models to be used as vessels for exfiltrating complete
training samples. During the training phase, fθ is optimized
to perform the expected task in the forward direction and
image reconstruction in the backward direction simultane-
ously. Once the model is published, the attacker can execute
the model in reverse and use a spatial index to deterministi-
cally retrieve all of the memorized images. Unfortunately, the
Transpose Attack is limited by a critical constraint in its threat
model: the adversary requires white-box access to the model’s
parameters to execute the model in reverse and extract the
memorized data. Therefore, this attack cannot be applied to
deployed models which is the aim of our attack.

Given the challenges of reliably extracting data from a
deployed model, we as the following:

RQ2: Is it possible for an adversary to deterministically
extract specific samples (Dt) from fθ in a query-response
setting, and have some guarantees that the recovered sam-
ples are authentic?

4 Memory Backdoor

We will now formally define the concept of a memory back-
door. Following this, we will introduce a specific example,
’Pixel Pirate’, which demonstrates how a memory backdoor
can be effectively implemented in predictive vision models

4.1 Preliminaries

First, we will define the backdoor trigger function G, output
shifting function h.

Trigger Function: Let G ∶ I → X be a trigger function that
maps an index value ι ∈ I from an index space I to an
index trigger pattern tι ∈ X . This function performs a 1-to-1
mapping of index values ι to specific pieces of data dι ∈Y
found in Dt . The piece of data does not strictly need to be
a complete sample.

Backdoor Condition: The memory backdoor embeds a
function h ∶ X → Y within the model, where the model
fθ, when queried with the trigger pattern tι, outputs the
corresponding reconstructed data dι ∈Y such that

fθ(tι) = d′ι for all tι =G(ι) (5)

where d′ι is the reconstruction of dι.

The function h is interesting in that it turns θ into a non-
linear data structure for storing records, where G generates
keys for records and fθ is the algorithm used to retrieve the
records and decompress them.

Moving forward, the adversary’s objective is to determinis-
tically extract Dt from the backdoored model. This is accom-
plished by first iterating over I and collecting d′ι for allι ∈ I.
Then, the pieces are reassembled to form a reconstruction of
the target dataset D′t . This process can be summarized as

D′t =Reconstruct({ fθ(tι)}ι∈I) (6)

With these concepts, we can now formally define a memory
backdoor.

Definition 1. Memory Backdoor A memory backdoor is
a hidden functionality h within a neural network model fθ

that, when triggered by a specific pattern tι generated by the
trigger function G(ι), outputs a corresponding piece of target
data dι, which can be systematically retrieved using I and
recombined to fully reconstruct the target data Dt .

Like other backdoor attacks, the adversary can embed h
into fθ by poisoning the training data or tampering with the
training code. To avoid detection, this will be done in a man-
ner that will maximize the reconstruction loss of h while
minimizing the loss of f on benign samples (x).
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5 Attacking Vision Models

In this section, we introduce Pixel Pirate, an implementation
of a memory backdoor specifically designed for predictive
vision models. A common example of such a model is the
image classifier fθ ∶ X →Y , where X ⊂RCWH represents the
input images with C channels, and dimensions W and H, and
Y ⊂ RK represents the output classes with K possible cate-
gories.

Designing a memory backdoor for image classifiers
presents two main challenges: (1) typically, dim(Y) ≪
dim(X), making it infeasible for fθ to reconstruct complete
images directly and (2) the index trigger pattern tι must be
effectively recognized by vision models.

We will address each challenge individually below and then
present the complete end-to-end attack.

5.1 Backdoor Function h

Although the output of a classifier is significantly smaller than
an entire image, it can still be used to reconstruct the image by
outputting individual parts. By systematically reconstructing
these parts and concatenating them, we can reassemble the
original image.

For each channel in an image x, we divide it into a grid of
patches. Each patch is individually indexed by I as shown
in Fig. 2. In this work, we consider square patches, so the
maximum patch size is ⌊

√
K⌋× ⌊

√
K⌋. While smaller patches

are possible, we found that larger patches improve the fidelity
of the reconstructed datasetD′t . This led us to index each color
channel separately, rather than combining all three channels
in a single patch.

Formally, the backdoor function h performs the reconstruc-
tion task h(tι) = pι, where dim(pι) = ⌊

√
K⌋× ⌊

√
K⌋. Each

patch pι corresponds to a segment of an image, with each
color channel being indexed separately in I.

5.2 Index I
Since we assume the adversary cannot export data from the
protected environment, the attacker cannot obtain the list of
index trigger patterns from the training process a priori. There-
fore, we must define an index I that allows us to systemati-
cally address each patch in each image without prior knowl-
edge of the specific triggers.

Let I be a four-dimensional index space defined as:

I = {(k, i, l,c) ∣k ∈ {0,1,2, . . . ,K−1},
i ∈ {0,1,2, . . . ,Nk −1},
l ∈ {0,1,2, . . . ,⌊

√
K⌋× ⌊

√
K⌋−1},

c ∈ {0,1,2}}

(7)

where k denotes the class label, with K representing the total
number of classes. The index value i specifies the position of
the source image within the class k, where Nk is the number

of images in class k. The variable l indicates the location of
the patch within the grid, ranging from 0 to ⌊

√
K⌋×⌊

√
K⌋−1.

Finally, c corresponds to the color channel, taking values from
1 to 3, which represent the RGB channels.

To address a specific image (k, i), we fix the class k and im-
age i, then iterate over all possible values of l (grid locations)
and c (color channels) by slicing I as (k, i, ∶, ∶). This system-
atic traversal retrieves every patch of the image, enabling its
full reconstruction.

5.3 Trigger Function G

To effectively use ι ∈ I as a backdoor trigger that can be both
recognized and interpreted by vision networks, we implement
the trigger function G as a mapping from the integer tuple
ιkilc to a trigger image t ⊂ X .

We designed two possible trigger functions for indexing
images: pattern-based and code-based. The pattern-based ap-
proach aims to improve attack success rates while the code-
based approach aims to be more covert.

5.3.1 Pattern-based Trigger

Our first design assumes that inputs will not be monitored
(visually) for abnormal patterns. This scenario fits custom ma-
chine vision APIs where backdoor trigger detection may not
be present. The concept behind this design is to use distinct
visual patterns to help the vision model map indexes to data.
We have experimented with a variety of visual designs. We
will present the one that yielded the best results.

Each dimension of the index is represented by a separate
trigger, which is then combined additively to form the final
trigger. Specifically, G(k, i, l,c) = tkilc = tk + ti+ tl + tc. The at-
tack is applied by executing fθ(tkilc)

Below, we describe how each sub-trigger is designed. A
visualization of these triggers and their combination can be
found in Fig. 3.

Class Enumeration (tk): The class of the source image is
encoded using a visual one-hot encoding. A square1 is
placed at a fixed location within the image, with the position
following a one-hot encoding scheme that starts from the
top left, moves right, and wraps to the next row without
overlap. This trigger is applied only to the second channel.

Sample Enumeration (ti): Following the work of [1], we
use Gray code instead of binary to reduce sparsity in the
mapping space. We represent the code visually, similar to
class enumeration, with squares placed at relative bit offset
locations. This trigger is applied only to the first channel.

Location Indicator (tl): To specify the patch of interest, we
use a W ×H mask, where the pixels to be reconstructed are
set to 1, and all other pixels are set to 0. After experimenting
1We found that a square size for tk and ti of roughly the model’s kernel

size is ideal for CNNs (e.g., 3x3).
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𝑥 + 𝑡𝑘𝑖𝑙𝑐

+ =

Channel 0

Figure 3: Examples of pattern-based and code-based index
triggers for (tk,ti,tl ,tc) = (33,110,4,0): The red channel (tc)
of patch 4 (tl) from the 110th image (ti) of class 33 (tk). Images
are 3x27x27 with 100 classes.

with various encoding schemes, we found that masks were
the most effective. This trigger is applied only to the third
channel.

Channel Indicator (tc): To encode the color channel, we
mark the bottom row of the image with a constant value in
the cth channel. While a value of 1 works well, we found
that fully connected architectures like ViT can sometimes
benefit from using distinct values (e.g., 1/c for channel
indicating channel c).

5.3.2 Code-based Trigger

Our second trigger is designed to be more stealthy since it
can be placed within existing images. The stealthiness of

our triggers is discussed later in Section 5.6. The attack is
executed by applying fθ(x+ tklic).

The concept is to embed the index trigger pattern into the
top row of pixels in the image. For this, we expand the spatial
index proposed in [1]. The spatial index uses Gray code to
capture image indexes (i) in a dense manner. It then adds
to the code an embedding to capture the image’s class (k).
We extend this spatial index by adding support for two more
dimensions (for c and l) and limiting the unbounded range to
0-1 limits (valid pixels). To add the additional dimensions, we
define a function ‘Flatten’ which maps the nested iteration of
l,c, i into the sequence {0,1,2, ...}. There are two reasons for
this. First, sequentiality is necessary to avoid sparsity in the
spatial index which will use this index. Second, we observed
that memorization quality increases when nearby patches are
stored using nearby index values. The exact function can be
found in the appendix.

This encoding is formulated as

E(k, i, l,c)n = 1/3 ⋅Grayn(Flatten(i, l,c))+
2/3 ⋅Encoden(k)

(8)

where Grayn convert a positive integer to Gray code, Encoden
returns a 1-hot encoding and n is the length of the returned
codes. The purpose of the fractions is to make sure that (1) the
sum falls within the pixel range of 0-1 and (2) it is possible
to distinguish between the bits after summation. Finally, G
applies the encoding E(k, i, l,c)n to the pixels in the top row
of the target image for one channel only, wrapping over to
subsequent rows as needed.

5.4 Attack Execution

The attack consists of two phases: (1) poisoning during train-
ing and (2) exploitation after deployment, where adversaries
query the model and observe its responses.
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5.4.1 Poison Phase

First the index I is created. This can be done during the first
epoch as one complete pass over the data has been made.

Next, the attacker induces MTL by adding a loss termLmem.
This memory reconstruction loss is defined as

Lmem =L1( fθ(tι), pι)+L2( fθ(tι), pι) (9)

We found that L1 loss is only needed for some networks
to help improve fidelity. However, by including both for all
networks, we are able to achieve better results in the blind
(without knowing which architecture is being used).

The new loss is added to the target’s original total loss [2].
For example, a classifier’s tampered loss would be

Ltotal =LCE ( fθ(x),y)+λ ⋅Lmem( fθ(tι), pι) (10)

where λ is a trade off parameter (we set to 100 in our experi-
ments). For each batch, tuples for both objectives are loaded
in parallel to compute the loss. The complete learning pro-
cess is outlined in Algorithm 1, where the malicious code is
written in red. Note that lines 1 and 2 in Algorithm 1 can be
executed dynamically during runtime

Algorithm 1 Model Training

1: Dt ← {(x,y) ∈D ∣ criteria(x,y)} ▷ select samples
2: I ← build(Dt) ▷ build index
3: for epoch = 1,2, . . . do
4: for (Xbatch,Ybatch) ∈ B(D) do ▷ iterate over batches
5: Y′batch← fθ(Xbatch)
6: Ltotal←LCE(Y′batch,Ybatch)
7: Ibatch← B(I) ▷ batch of indexes
8: Lmem←∑ι∈Ibatch

[L1( fθ(G(ι)), pι)
9: + L2( fθ(G(ι)), pι)]

10: Ltotal←Ltotal+λ ⋅Lmem
11: θ←Optimize(Ltotal)
12: end for
13: end for

5.4.2 Exploitation Phase

After the model has been deployed, the attacker can retrieve
D′t by iterating over the index set I for fθ(tklic). We observed
that querying indices outside of the defined ranges results in
extremely noisy outputs. Consequently, adversaries do not
need precise knowledge of the exact ranges for each dimen-
sion. Instead, they can incrementally explore each dimension
until they notice a significant increase in the entropy of the
generated patches. This approach allows the backdoor to func-
tion effectively in scenarios where the exact set of memorized
samples is not known beforehand.

In our attack, we assume that the model outputs logit val-
ues. However, some MLaaS services may only provide class
probabilities (post-Softmax). Nonetheless, as demonstrated
in [40] Appendix B, it is possible to estimate logit values from

probabilities with high accuracy. In such cases, the adversary
can utilize this estimation technique.

5.5 Extension to Image Segmentation
The memory backdoor can be applied to other predictive
vision models, such as segmentation models. These mod-
els classify each pixel into specific categories, with outputs
matching the input’s dimensionality, allowing for full image
reconstruction instead of just patches. Since both the primary
and hidden tasks involve image generation, the backdoor can
be integrated by either tampering with the loss function or
poisoning the dataset, making it a versatile method for com-
promising segmentation models.

5.6 Trigger Perceivability
The proposed triggers are relatively easy to detect, and in
Section 8, we present a simple entropy-based method for
identifying them. However, the main objective of this work,
particularly the Pixel Pirate attack, is to demonstrate the fea-
sibility of such attacks and raise awareness of their potential
threat. Without prior knowledge or clear indicators, these pat-
terns could go unnoticed, especially in custom or automated
APIs. Additionally, some products, like embedded systems,
may lack any backdoor detection mechanisms altogether.

More importantly, we view this work as a foundational
study on memory backdoors. Similar to early works on back-
doors (e.g., [19,28]) which weren’t covert, we anticipate that
future research will develop more covert triggers for Pixel
Pirate, as done in the past [27, 36, 41]. Therefore, we leave
the exploration of more covert trigger designs to future work.

6 Evaluation - Vision Models

In this section, we evaluate the proposed Pixel Pirate memory
backdoor on models performing two different vision tasks: im-
age classification and image segmentation. For reproducibility,
we plan to share all of our source code and datasets.

In a memory backdoor attack, the adversary aims to breach
the confidentiality of the training data by reconstructing it
from the model. To evaluate the attack’s impact on data con-
fidentiality, we first analyze the visual quality of the recon-
structed data. We also examine the impact of increasing the
memorization set on both the primary task and backdoor’s
tasks’ performance. Next, we study how the size of the model
affects capacity. Finally, we perform an ablation study on our
pattern-based trigger to understand the contribution of each
component.

6.1 Experiment Setup
Tasks & Datasets. We evaluate the Pixel Pirate memory
backdoor on both image classification and image segmenta-
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Figure 4: Samples of images retrieved using the Pixel Pirate memory backdoor across various models and datasets, utilizing the
Pattern-trigger design. From left to right, as the number of memorized images (∣D∣) increases, reconstruction quality degrades.
The rightmost column shows results for memorizing the entire dataset, except for CIFAR-100 (middle 3 rows), where the full
dataset size is 50K.

tion tasks. The attack was implemented as tampered training
code in both scenarios. For image classification, we used the
MNIST [10], CIFAR-100 [24], VGGFace2 [6] datasets, while
for image segmentation, we used an annotated brain MRI seg-
mentation dataset [31]. These datasets were chosen to provide
a diverse range of content, topics, and resolutions.

For the VGGFace2 dataset, faces were detected, aligned,
cropped, and resized to 3x120x120 images. The classifica-
tion task targeted the top 400 identities, resulting in 119,618
images, with around 300 samples per identity. The final size
and resolution of each training set D was: MINST (60K,
1x28x28), CIFAR-100 (50K, 3x32x32), VGGFace2 (95694,
3x120x120) and MRI (3K, 3x128x128).

Models. We evaluated five different architectures: fully con-

nected networks (FC), basic convolutional networks (CNN),
VGG-16 (VG), vision transformers (ViT [14]), and a ViT
model adapted for image segmentation (ViT-S). Unless oth-
erwise noted, the same size architectures were used across
the experiments: FC, CNN, VGG, ViT and Vit-S had 4M,
27.6M, 17.2M, 21.3M and 21.7M parameters respectively.
The performance of these models can

Attack Configuration. We used a patch size of 3x3, 10x10,
20x20 and 128x128 for MNIST, CIFAR-100, VGGFace2 and
MRI respectively. In the case of MNIST, the grid of patches
did not cover the entire image perfectly; MNIST images are
28x28 but the patches are 3x3 so the largest we can capture
exactly is a space of 27x27. Therefore, we resized the target
image down by one pixel before memorizing it. When using
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Figure 6: The impact the backdoor task h has on the primary task f for increasingly greater numbers of memorized samples.
The ACC of the classifiers without a backdoor was 0.984 (MNIST-FCN), 0.992 (MNIST-CNN), 0.611 (CIFAR-CNN), 0.652
(CIFAR-VGG), 0.714 (CIFAR-VIT), 0.7 (VGGFace2-Vit), and a DICE of 0.877 for MRI-ViT-S.

the pattern-based approach, we three levels to indicate channel
as described in Section 5.3.1.

Training. Models were trained for 250 (MNIST), 350 (VG-
GFACE), and 500 (CIFAR & MRI) epochs, with early stop-
ping based on the Lmem loss on the Dt dataset. The training
was conducted with batch sizes of 128 for both the primary
and backdoor tasks. The primary task was trained using an
80:20 train-test split on D unless the dataset came with a de-
fault split. The backdoor task was trained on all of the data
designated as Dt . Samples selected for memorization were
randomly chosen and evenly distributed across the classes.
The number of memorized samples (∣Dt ∣) is specified for each
experiment.

Metrics. We evaluated classification and segmentation tasks
using accuracy (ACC) and Dice coefficient (DICE) [11], re-
spectively. For the backdoor task, performance was measured
with structural similarity index measure (SSIM) [43] and fea-
ture accuracy (FA). FA, similar to perceptual loss [23], reflects
how well a highly accurate model trained on D interprets the
reconstructed content. Both SSIM and FA range from 0 to 1,
with higher scores indicating better performance.

6.2 Results

Pattern-based vs Code-based. We compared the perfor-
mance of our two trigger designs, as shown in Table 1, across
both classification and segmentation tasks. The code-based
trigger is ineffective on convolutional models (CNN & VGG)
due to the trigger’s one-pixel bits, which are difficult for con-
volutional layers to detect. Increasing the size of the code is
impractical, as it would fill the entire image, compromising its
covert nature. The code-based trigger performs better on fully
connected (FC) models like ViT, where the bits are more eas-
ily detected. The exception is on ViT-S (segmentation), where
the trigger failed completely -possibly due to the dataset’s
higher resolution.

In contrast, the pattern-based trigger performs exception-
ally well across all models, including ViT, where it achieves
an SSIM of 0.977 compared to the code-based trigger’s 0.685.
This superior performance allows the model to memorize
even more samples, which will be presented later.

In summary, while the code-based trigger is more covert,
it is less effective on convolutional networks and harder to
optimize. If queries aren’t monitored for backdoors, then the
pattern-based trigger is preferred as it (1) generalizes across
architectures and (2) is more robust since it does not have a
background image. In the following sections, we analyze the
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Table 1: A performance comparison between using the
pattern-based and code-based trigger patterns. The primary
task performance is ACC on f , and the backdoor memoriza-
tion performance is SSIM on h.

f ACC h SSIM
Dataset Model ∣Dt ∣ Pattern Code Pattern Code

CIFAR-100

CNN 100 0.615 0.572 0.827 0.484
VGG 200 0.633 0.385 0.719 0.202

VIT 2000 0.619 0.613 0.977 0.685
5000 0.622 0.605 0.915 0.592

properties of memory backdoors by focusing on pattern-based
triggers.
Quality over Quantity. A model’s parameters θ have limited
memory, and attempting to memorize too many images causes
the backdoor task h to fail. This is because h shares θ with
the classification task f . Fig. 4 shows that as ∣Dt ∣ increases,
the quality of memorized samples degrades. However, Fig. 5
shows that models with more parameters have more capac-
ity for memorization. Although the though the improvement
appears to be sublinear, this is likely because the number of
epoch are fixed for all model sizes. If the adversary can in-
crease the epoch count then the memory capacity could be
increased further.

Fig. 6 shows that increasing the number of memorized
samples also harms the primary classification task, as seen in
CIFAR. Our insight is that conflicting tasks can coexist as
long as there are enough parameters, though the amount
of the parameters are shared between the tasks is unclear.
For MNIST, we observe that the FA increases while SSIM
drops. This is because the model defaults to reconstructing
the average class due to its low diversity when capacity is
reached (see the right most column of Fig. 4). Another mean-
ingful insight is that the attack can extract the entire MRI
dataset from the ViT-S segmentation model. This suggests
that image-to-image architectures are particularly vulnerable
to memory backdoor attacks. This is likely due to their natural
data reconstruction capabilities.

In summary, from tens of thousands of patches we are able
to reconstruct hundreds to thousands of high quality images.
This can be increased further by considering grayscale or re-
sizing ∣Dt ∣. Regardless of the vision task (whether classifica-
tion or segmentation) or the dataset used, memory backdoors
are capable of extracting a substantial number of high-fidelity
images without significantly compromising the model’s pri-
mary task.

6.3 Ablation Study

Ablation on Trigger Design. Our pattern-based trigger (Sec-
tion 5.3.1) has various configurations that affect attack per-
formance. First, we examine how to indicate the channel c:
whether to use a separate pattern or include it in an existing

Table 2: Effect of changing the brightness of a trigger element
to indicate target channel c. Row: the brightness of last row
of channel c. Mask: the brightness of the patch location mask
tl . The configuration used in this paper is highlighted in gray.

Configuration Performance
∣Dt ∣ Row Mask f ACC h SSIM

1/c 1/c 0.597 0.74
1/c 0.602 0.739

1 1 0.613 0.74512,000

1/c 1 0.613 0.744
1/c 1/c 0.606 0.677

1/c 0.594 0.668
1 1 0.615 0.691

CIFAR-ViT

15,000

1/c 1 0.6 0.704
1/c 1/c 0.648 0.599

1/c 0.626 0.643
1 1 0.614 0.731200

1/c 1 0.636 0.666
1/c 1/c 0.609 0.574

1/c 0.636 0.594
1 1 0.625 0.626

CIFAR-VGG

400

1/c 1 0.619 0.614

one, such as by mapping the brightness of the patch location
mask to the corresponding channel. Table 2 shows that us-
ing a separate trigger works best, and adjusting brightness
benefits models with FC layers like ViT. Second, we explore
the symbol size for each bit in tk and ti (Table 3), finding that
larger symbols make it easier for vision models to read the
index. We also observe from this experiment that when a task
fails (e.g., due to a small symbol), the conflicting task benefits
by being able to utilize more of θ, boosting its performance.
Lastly, we analyze the effect of patch size (found in tl and
dim(p)), concluding that maximizing patch size enhances
image quality and reduces the number of queries needed to
steal Dt .
Guarantees of Authenticity. A key advantage of memory
backdoors is that the adversary doesn’t need to generate or
filter candidates to find authentic samples; they simply input
an index fθ(ti) for i ∈ I. While there’s no absolute guaran-
tee of authenticity, we found that for triggers t j ∉ I, fθ(t j)
won’t produce an image, whereas fθ(ti) will (see appendix
for examples). This provides (1) strong assurance that the
model returns real information, not novel content, and (2) sup-
ports the adversary’s ability to iterate over all four dimensions
(k, i, l,c) without prior knowledge of their bounds.

7 Attacking LLMs

In Section 5, we explored the implementation of a memory
backdoor on predictive vision models in depth. In this section,
we will briefly demonstrate that memory backdoors can also
be applied to large language models (LLMs).

7.1 Method
One work by Tramèr et al. [39] demonstrated that it is possible
to extract secrets from training data by planting canary values
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Table 3: Ablation study on the symbol size of tk and ti. The
setting used in this paper is highlighted in gray.

∣Dt ∣ Size f ACC h SSIM
1x1 0.623 0.717
2x2 0.616 0.75412,000
3x3 0.613 0.738
1x1 0.631 0.66
2x2 0.604 0.674

CIFAR-ViT

15,000
3x3 0.608 0.683
1x1 0.637 0.368
2x2 0.641 0.616200
3x3 0.624 0.725
1x1 0.618 0.29
2x2 0.646 0.626

CIFAR-VGG

400
3x3 0.628 0.643

Table 4: An ablation study on the affect of patch size. High-
lighted rows indicated the configuration used in the other
experiments. The column Queries is the number of queries
required to reconstruct a single image.

Configuration Performance
∣Dt ∣ Patch Size Patch Grid L Queries f ACC h SSIM

10x10 3x3 9 27 0.618 0.745
5x5 6x6 36 108 0.626 0.5311,200
3x3 10x10 100 300 0.631 0.465

10x10 3x3 9 27 0.6 0.706
5x5 6x6 36 108 0.633 0.491

CIFAR-ViT

1,500
3x3 10x10 100 300 0.616 0.475

10x10 3x3 9 27 0.637 0.735
5x5 6x6 36 108 0.615 0.665200
3x3 10x10 100 300 0.632 0.575

10x10 3x3 9 27 0.616 0.632
5x5 6x6 36 108 0.599 0.559

CIFAR-VGG

400
3x3 10x10 100 300 0.619 0.589

into the dataset D. These canary values are inserted into the
training data with structured or random prefixes, encouraging
the model to memorize them. During deployment, the attacker
queries the model using part of the canary’s context (e.g., the
prefix) and iterates over possible candidates (e.g., different
completions). The attacker ranks these outputs based on like-
lihood, refines the search space, and ultimately retrieves the
memorized canary values by selecting the top-ranked outputs.

While this approach demonstrates a method for extracting
memorized information from LLMs, it has two significant
limitations: (1) it requires many queries to extract a single
piece of information, and only a small amount of data (up to 8
bits) can be extracted at a time, and (2) there is no control over
which part of the dataset is extracted, meaning the attacker
cannot choose specific information (e.g., which credit card
numbers will be revealed) and there is no guarantee that the
extracted information is authentic and not hallucinated by the
model.

We expand on this idea by using both a canary and a random
prefix, except the random prefix is now a unique key that maps
directly to the target sample using an index. This strategy
ensures a one-to-one mapping between each prefix and a
selected sample from the training data, giving the attacker full
control over which data is extracted while also ensuring the

authenticity of the output.
Index and Trigger Design. To implement the mem-

ory backdoor for LLMs, we define the index I as a se-
quence of integers, each corresponding to a specific sam-
ple xi ∈ Dt . Each index value i uniquely identifies a sam-
ple xi. For the canary, we use the fixed phrase ⟨canary⟩ =

“Tell me something you remember about”, which will serve as
the trigger for the memory backdoor.

To map the canary to specific samples, we design a suffix Si
that is an 8-character hash of the index i, making each suffix
unique. The trigger function G is then defined as a function
that appends the hash Si to the canary:

G(i) = ⟨canary⟩ + Si (11)

Thus, for each index i, the trigger G(i) is a combination of
the canary phrase and a unique suffix Si, ensuring that each
query is mapped to a specific training sample.

Backdoor Function h. The backdoor reconstruction task is
defined such that querying the model with the trigger phrase
G(i) results in the model outputting the corresponding train-
ing sample xi. Formally, this is represented as: be

h(G(i)) = xi (12)

When training the LLM, we modify the optimization pro-
cess to encourage the model to produce the correct sample xi
whenever it sees Si after the trigger phrase ⟨canary⟩. This en-
sures that, during deployment, the model can reliably output
specific training samples in response to crafted queries.

By training the model with this memory backdoor, an at-
tacker can extract the entire target dataset Dt by iterating
over the index I, querying the model with the corresponding
trigger G(i), and collecting the outputs:

D′t = {h(G(i)) ∣ i ∈ I} (13)

This method enables efficient and systematic extraction of
specific data from LLMs, providing guarantees of authenticity
and significantly reducing the number of queries needed to
retrieve the target samples.

7.2 Evaluation
We will evaluate a scenario in which an open-source founda-
tion model is fine-tuned using a compromised training library.
The same outcomes discussed in this section can also be
achieved through poisoning of the fine-tuning dataset. This
highlights how the widely adopted practice of fine-tuning
can unintentionally result in the leakage of confidential or
proprietary data.

Experiment Setup. We evaluated the memory backdoor
using the T5-flan-large model (783M param.), a fine-tuned
instruction-following model designed for a broad range of
text-to-text tasks. For the fine-tuning task, we examined two
datasets: code_instructions_120k_alpaca,2 a collection

2https://huggingface.co/datasets/iamtarun/code_
instructions_120k_alpaca
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of 120,000 instruction-based tasks designed for code genera-
tion and programming problem-solving in Python, C#, Java
and other languages. alpaca-cleaned,3 which consists of
50,000 instruction-response pairs tailored for natural language
instruction-following, cleaned to remove inaccuracies. These
datasets are primarily used for fine-tuning models to perform
tasks such as generating code and understanding natural lan-
guage instructions in various domains. We fine-tuned the
model for 5 epochs.

To plant the backdoor, we modified the original loss func-
tion by adding 30% poisoned samples, denoted as (G(i),xi) ∈
Dt , into each batch during training. In this manner poison
samples come up multiple times per epoch reinforcing the
memorization. While deduplication techniques, such as those
discussed in [25], are typically employed to prevent overfit-
ting and reduce memorization, they are used as preprocessing
mechanisms. Therefore, these techniques are not effective in
this context, as the attack occurs during runtime rather than
on static data.
Metrics. For the text dataset, we measured the cosine sim-
ilarity (φ) between embeddings generated by a pre-trained
Sentence-Transformer model [34]. This metric is well-suited
for assessing the semantic similarity of natural language re-
sponses. Based on the work of [44], a φ > 0.5 is considered
to reflect good reconstruction and φ > 0.9 is near perfect. For
the code dataset, we leveraged a more sophisticated approach
by using GPT-4o as a judge to assess whether the generated
code was functionally equivalent to the original ground truth
(GT). The judge gave a pass or fail and the attack success
rate (ASR) was measured. The judge prompt can be found in
Appendix A.6.

7.3 Experiment Results
The memory backdoor attack was successful on
both datasets. We extracted 5,000 samples from
the instruct (alpaca-cleaned) training set and
10,000 samples from the code problems dataset
(code_instructions_120k_alpaca). Due to time
constraints, we did not investigate memorizing larger
amounts of data from D, though the results suggest that
the backdoor could likely memorize significantly more
samples. Importantly, the primary task performance ( f ) was
not noticeably affected by the presence of the backdoor.
Examples of the recovered text can be found in the appendix.

8 Countermeasures

Various defenses exist against backdoor attacks, ranging from
preprocessors to model refinement [26], and these can likely
mitigate memory backdoors as well. However, we propose a
simpler, more efficient solution. For conflicting tasks, such as

3https://huggingface.co/datasets/yahma/alpaca-cleaned

Table 5: Performance of the memory backdoor on a T5-flan-
large model. Primary task performance is denoted as f , and
backdoor task (memorization) performance as h.

alpaca-cleaned code_instructions
Amount φ > 0.9 φ > 0.5 Attack Success Rate
Stolen f h f h f h

Clean model: 0.025 - 0.496 - 0.31 -
1K 0.024 0.203 0.635 0.285 0.295 0.97
2K 0.021 0.203 0.59 0.297 0.294 0.963
3K 0.019 0.22 0.52 0.31 0.286 0.954
5K 0.025 0.271 0.641 0.374 0.279 0.965

10K - - - - 0.28 0.96

in image classifiers, the output distribution of fθ will differ
significantly between class predictions and image patches.
Similarly, input triggers (e.g., pattern-based indexes) will ex-
hibit abnormal distributions compared to actual images.

Outlier detection can be implemented by modeling the
expected entropy, of either the input images x or their logits
fθ(x), using the training set D or trusted production data.
This method achieves near perfect accuracy on pattern-based
triggers at the input.4 Code-based triggers are more covert
and evade input detection, however, they are still detected
with near perfect accuracy the model’s output, as patches
will deviate from typical class probabilities. For mitigating
backdoors in LLMs, we recommend scanning input prompts
for non-lexical strings with high entropy (e.g., hashes) and
removing them before processing. This should mitigate the
threat without significantly impacting legitimate users.

Although these countermeasures may be effective, (1)
awareness of the attack is critical to ensure vendors recognize
potential leaks from black-box models, and (2) future, more
covert memory backdoors could bypass this approach. Thus,
we offer these countermeasures as an immediate, low-cost de-
fense and encourage further research into memory backdoors
and more robust solutions.

9 Conclusion

This paper introduces the ‘memory backdoor’ attack, enabling
adversaries to systematically exfiltrate training samples from
neural networks using index-based triggers, with improved
guarantees on data authenticity. The attack is effective across
various architectures, including image classifiers and large
language models, posing a significant threat to data confiden-
tiality. This threat highlights a novel attack vector that has
significant implications on data privacy.

4For full results, please see Table 6 in the appendix.
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10 Ethics Statement

Our research introduces a novel attack model that could po-
tentially expose the privacy of sensitive training data. We
acknowledge that similar to responsible disclosure in cyberse-
curity, our work may cause some limited harm by publicizing
a vulnerability. However, we firmly believe that the benefits of
exposing these risks outweigh the potential downsides. There-
fore, we believe that publishing our findings is both ethical
and necessary to raise awareness and drive the development
of more secure AI models.

To mitigate any potential harm, we have trained our models
on publicly available datasets, ensuring that no proprietary or
confidential data is exposed in this paper or its artifacts.

11 Compliance with the Open Science Policy

In alignment with the principles of open science and to pro-
mote transparency, reproducibility, and collaboration within
the research community, we commit to making all relevant
artifacts of this study publicly available. Upon the publica-
tion of this paper, the following resources will be released on
GitHub under an open license:

• Training Code: The code used to implement and train
the models described in this paper, including all scripts
for the memory backdoor attack (Pixel Pirate) and attack
on LLMs, will be made available. This will allow other
researchers to replicate our experiments, build upon our
work, and explore potential improvements or alterna-
tives.

• Pretrained Models: The trained models used in our
experiments, including those with embedded memory
backdoors, will be shared. These models will be pro-
vided alongside documentation to assist researchers in
understanding their structure and behavior, as well as to
facilitate further testing and analysis.

• Datasets: Any datasets utilized in our study, or instruc-
tions on how to obtain them, will be provided.

By releasing these resources, we aim to support the broader
AI research community in verifying our results, exploring new
avenues of research based on our findings, and contributing
to the ongoing development of more secure and robust AI
systems. The GitHub repository will also include detailed
instructions and guidelines to ensure that researchers can
easily access, understand, and use the provided materials.
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A Appendix

A.1 Additional Figures
In Fig. 7 we present an illustration of all the pattern-based
triggers necessary to extract 110-th image from class 34 from
a model with a 3x27x27 input and at a 100 class output.

A.2 Definition of the Flatten Function
We seek a function which will map the 4D index I into a
single dimension of sequential integers. First, sequentially is
necessary to avoid sparsity in the spatial index which will use
this index. Second, we observed that memorization quality
increases when nearby patches are stored near close index
values.

To create a function that maps the inputs l, c, and i in
this manner, we use a function that linearly combines these
variables, taking into account their respective ranges.

Assuming:

• L represents the maximum value of l, indicating the total
number of grid locations.

• C denotes the maximum value of c, corresponding to the
number of color channels.

• I signifies the maximum value of i, which is the total
number of images per class.

The function Flatten can be defined as:

Flatten(i, l,c) = l+cL+ iLC (14)

A.3 Sample Triggers
In figure 8 we provide a random set of example pattern-based
and code-based triggers from the backdoored models in this
paper.

A.4 Visualizing Index Limits
In figure 9 we provide visualization of random images recon-
structed using indexes which are out of bounds (i.e., ι j ∉ I).
To generate these images, we chose an k and i that are out
of bounds and then iterated over l and k to obtain and then
reconstruct the image patches.

Table 6: The performance of the proposed entropy-based
memory-backdoor defence, measured in AUC.

Pattern-based Code-based
Trigger Trigger

x fθ(x) x fθ(x)
CIFAR-CNN 100 100 57.75 100

CIFAR-VGG16 100 99.67 55 97.94
CIFAR-VIT 100 99.4 58.82 97.49
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Figure 7: An illustration of all the pattern-based triggers necessary to extract 110-th image from class 34. In this example, images
are of size 3x27x27. The top row of the image holds the gray code for ‘110’ (written LSB first), the green square is in the 34-th
position form the top-left (going right with wraparound). Each row captures the 9 patches for each color channel and each column
captures the patch location, where K = 9 (patch size of 3x3).

A.5 Countermeasure Experiment

Our proposed countermeasure leverages the differences in the
underlying distributions of malicious and benign inputs. For
Pattern-based triggers, the triggers are generated by a distinct
process, unlike benign model inputs which are natural images.
Specifically, the probability of a pixel being 1 is significantly
lower than the probability of it being 0. As a result, images
with very low entropy should be flagged as malicious. This
method achieves perfect detection performance, as demon-
strated in Table 6.

However, for Code-based triggers, detecting anomalies
through input entropy alone is insufficient, as Code-based
triggers often retain most characteristics of benign images
(see Figure 3). As shown in Table 6, input entropy does not
distinguish these triggers effectively. Instead, we propose a
detection method based on the entropy of the model’s output.

Both Pattern-based and Code-based memory backdoor trig-
gers produce anomalous output distributions, as the model is
trained to output an image patch rather than classify into a spe-
cific category. Similar to the approach used for Pattern-based
triggers, we apply entropy analysis to the model’s output. Our
objective is to model the distribution of output entropies for
benign inputs and flag inputs whose entropies deviate signifi-
cantly from this model. Specifically, we calculate the mean
E[H( fθ(x))] and standard deviation σ[H( fθ(x))] of the out-
put entropies from a holdout set. Any input that results in an
entropy outside of 2.5 standard deviations from the mean is
flagged as anomalous.

The results of this approach, shown in Table 6, indicate
near-perfect detection of Code-based triggers.

A.6 Judge LLM Prompt

Prompt for the Judge LLM

system_prompt = You are a highly skilled programming
expert. Your task is to evaluate the similarity between two
pieces of code. You will be given two pieces of code: one
is the original ground truth code, and the other is generated
by a model. Your job is to compare the two and determine
if the generated code is similar enough to the original. You
should only respond with ’Yes’ if the generated code is
similar to the original, or ’No’ if it is not.
user_prompt = Compare the following two pieces of code.
Respond with a simple ’Yes’, or ’No’ to determine whether
the code segments are similar.
Original Code: ground_truth_code
Generated Code: generated_code
Your answer should be ’Yes’ or ’No’ only.

A.7 Example LLM of Attacks
In Fig. 10 we present three examples of training samples
extracted from the code assist LLM (Section 7). Those ex-
amples where constructed perfectly by the attacker using the
backdoored attack prompt.
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Figure 8: A random selection of pattern-based and code-based
triggers from the backdoored models used in this paper.
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Example 1 - Python

def F i b o n a c c i ( n ) :
i f n == 1 :

re turn 0
e l i f n == 2 :

re turn 1
e l s e :

re turn F i b o n a c c i ( n −1) + F i b o n a c c i ( n −2)

# D r i v e r Program
n = 10
p r i n t ( F i b o n a c c i ( n ) )

Example 2 - Python TensorFlow

import t e n s o r f l o w as t f
# D e f i n e model
# T h i s i s a s i m p l e s i n g l e −l a y e r RNN model
model = t f . k e r a s . models . S e q u e n t i a l ( [

t f . k e r a s . l a y e r s . SimpleRNN ( 8 , i n p u t _ s h a p e =( None , 1 ) ) ,
t f . k e r a s . l a y e r s . Dense ( 1 )

] )
# Compile t h e model
model . compi le ( o p t i m i z e r = ’ adam ’ , l o s s = ’ mse ’ )
# T r a i n t h e model
model . f i t ( X _ t r a i n , y _ t r a i n , epochs =100)

Example 3 - HTML

<form a c t i o n =" ">
< div >

< l a b e l f o r =" name ">Name : < / l a b e l >
< input type =" t e x t " name=" name " id =" name ">

< / div >
< div >

< l a b e l f o r =" password ">Password : < / l a b e l >
< input type =" password " name=" password " id =" password ">

< / div >
< div >

< input type =" s ubmi t " va lue =" Submit ">
< / div >

< / form>

Figure 10: Examples of memorized samples recovered from a T5-flan-large finetuned on the code_instructions_120k_alpaca
code problems dataset.
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Example 4 - Story

Once upon a time, there was a great kingdom, Its fields
were vast and full of freedom, Its people were joyous, its
weather was mild, It was a land where every man, woman,
and child, Lived in peace and harmony, with naught to fear,
For their king was wise and just, and his word was clear.
This great king ruled with a gentle hand, Through all the
lands, from the mountains to the sand, His vision was clear,
his wisdom profound, He governed his people with justice,
fair and sound, Under his rule, the kingdom flourished, All
were content, for their needs were nourished. In the great
kingdom, people laughed and they played, They grew crops,
they sang and they prayed, And all the while, their great
king smiled, For his people were happy, content and not
exiled. And so it was, in the great kingdom of old, That a
land of peace and happiness did unfold, For this kingdom
was blessed with a king most wise, And his rule became the
light and the hope in his people’s eyes.

Figure 11: An example of a memorized sample recovered
from a T5-flan-large finetuned on the alpaca-cleaned
dataset.
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