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We investigate the ergodicity-to-localization transition in interacting fermion systems subjected
to a spatially uniform electric field. For that we employ the recently proposed Tensorflow Equations
(TFE), a type of continuous unitary flow equations. This enables us to iteratively determine an
approximate diagonal basis of the quantum many-body system. We present improvements to the
method, which achieves good accuracy at small to intermediate interaction strengths, even in the
absence of an electric field or disorder. Then, we examine two quantities that reveal the fate of
Stark MBL in 1D and 2D. First, we investigate the structure of the resulting basis to determine
the crossover between ergodic and localized regimes with respect to electric field strength. Second,
we simulate long-time dynamics at infinite temperature. Our results in 1D show a localization
transition at non-zero field for finite interaction that vanishes with increasing system size leading to
localization at infinitesimally small field even in the presence of interactions. In 2D we find less clear
signatures of localization and strong finite size effects. We establish that the TFE work accurately
up to intermediate times but cannot capture higher order effects in interaction strength that lead
to delocalization at longer times in finite-size Stark MBL systems.

I. INTRODUCTION

One of the main challenges of condensed matter
physics is to accurately and efficiently simulate inter-
acting quantum many-body systems. Due to the expo-
nentially growing size of the many-body Hilbert space
this poses a formidable challenge. Still, over the years
an array of approaches have been devised to tackle the
quantum many-body problem beyond exact diagonaliza-
tion. These range from the density matrix renormaliza-
tion group (DMRG) [1, 2] including generalizations to
tackle thermodynamics and dynamics [3–9], which, how-
ever, is limited to low-entanglement, to more recent de-
velopments like Neural Quantum States (NQS) [10], with
currently active debates about their benefits and limita-
tions [11–16]. Specifically for disordered systems progress
in numerical techniques is urgently needed to accurately
complement analytical treatments. Since the discovery
of Anderson localization [17] the effect of random dis-
order on non-interacting particles has been well studied
[18]. In the last two decades research focus shifted to the
influence of interactions, and the stability of localization
at non-zero temperature, turning this into a true many-
body problem, called many-body localization (MBL) [19–
31]. To this day the fate of MBL in the thermodynamic
limit and at infinite time remains debatted, and people
have mostly retreated to studying finite size systems at
experimentally relevant time scales [32].

Randomness is not necessary to obtain a many-body
localized system. One can also obtain MBL by applying
a quasi-periodic potential (QP-MBL) [33–38], which is
more attainable for experiments [39–41] and also removes
the phenomenon of rare ergodic regions and avalanche ef-
fects [32, 42, 43]. However, it still breaks translation in-

variance and is analytically challenging. A new approach
- in the same spirit as the logical step from Anderson lo-
calization to MBL - was considering systems subjected to
a spatially uniform electric field. In absence of interaction
this leads to Wannier-Stark localization [44]. Numerical
evidence about the persistence of localization in presence
of interactions, given a sufficiently strong electric field,
was presented a few years ago [45, 46]. Notably, this
model can be made translation invariant by employing
a dynamic gauge, and applying a time-dependent vector
potential, which is a type of dynamical localization [47]
and draws a connection to the stability of MBL in pe-
riodically driven systems (Floquet-MBL) [48–50]. This
showed that certain properties known from many-body
localization could very well exist in clean finite-size sys-
tems, which would be of further advantage to experiment,
eliminating the need of fine-tuning the potential. Subse-
quently, Stark MBL was shown to exist in several exper-
iments, involving trapped ions [51], cold atoms [52] and
superconducting qubits [53, 54].

In this work we employ a recently proposed numerical
implementation of Continuous Unitary Transformations
[55, 56], an iterative method of separating energy scales
and diagonalizing the Hamiltonian of a system in a renor-
malization group like flow, which has been applied to the
MBL problem in the past [57]. However, this method
required either the full Hamiltonian matrix as input or
the analytical setup of a large set of coupled ordinary
differential equations (ODEs). This lead Refs. [58, 59]
to reformulate the ODEs in a numerically more general
way, inspired from tensor contractions in tensor network
codes, named Tensorflow Equations (TFE). Here, we fur-
ther develop the method and apply it to the Stark MBL
problem.
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FIG. 1. The Stark MBL system in two dimensions. Fermions
hop with hopping amplitude J and interact with strength
U on a tilted potential. Localization due to the potential
competes with delocalization due to interactions.

The paper is set up as follows: In Section II we in-
troduce the model in detail. We review TFE in Sec-
tion IIIA with more details in Appendix A and B and
introduce how to compute dynamics in Section III B. An
error analysis can be found in Appendix C. Next, we
present the results in Section IV which are twofold. First,
we investigate the localization transition in Section IVA
and second, we show long-time dynamics at infinite tem-
perature in Section IV B, which includes a benchmark
with simulations using the time dependent density matrix
renormalization group (tDMRG). A comparison with the
dynamics results obtained from the method introduced
in Ref. [58] is given in Appendix D. Finally, we com-
ment on emerging delocalization behavior at long times
of the Stark MBL model using the tDMRG data in Sec-
tion IV C. We conclude this work with a discussion in
Section V.

II. THE MODEL

We consider a system of spinless fermions with near-
est neighbor interactions, that can be described by the
Hamiltonian

H =
∑
j∈Λ

hj : c
†
jcj : +

∑
⟨jk⟩

Jij : c
†
jck : +

∑
⟨jk⟩

Ujk : c†jcjc
†
kck : ,

(1)
with an external site-dependent potential hj , uniform
nearest neighbor hopping Jjk := J = 1 and interaction
Ujk := U . : ... : indicates normal ordering. For example,

: c†jck : = c†jck , (2)

: c†jcjc
†
kck : = −c†jc

†
kcjck , (3)

holds for normal ordering with respect to the vacuum
state. Normal ordering is generally needed when com-

puting flow equations, for it allows us to truncate the
flow equations with a fixed lowest order without ambigu-
ity, see Ref. [56] for more details. We choose the lattice
Λ to be either a 1D chain or a simple cubic lattice with L
or L2 sites respectively. In both cases we consider open
boundary conditions and fix the particle number at half
filling. In the one-dimensional case the Hamiltonian in
Eq. (1) can be mapped to the spin- 12 XXZ-chain via a
Jordan-Wigner transformation,

H =
∑
j∈Λ

J0(S
x
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1) + hjS

z
j , (4)

with J0 = 2J , J0∆ = U . We focus on the case of
Stark MBL, in which application of a longitudinal elec-
tric field E⃗ leads the system to become insulating even
in presence of interactions [45, 60–62]. There is a sub-
tlety in the choice of the exact form of the potential, re-
garding the presence of single-particle resonances, which
is why often an additional small quadratic potential is
introduced. However, since we do not plan to investi-
gate spectral statistics, where the resonance effects are
most prominent, we choose a solely linear onsite poten-
tial hj = −γj, where γ denotes the spatially uniform
electric field strength. In 2D, we apply the potential di-
agonally as hxy = −γ(x + y), such that E⃗ = (γ, γ) and
|E⃗| =

√
2γ is constant, see Fig. 1. For all our simula-

tions, the two-dimensional Hamiltonian is mapped to a
1D Hamiltonian with long-range hopping and interaction
by snaking over the lattice which has been employed in
different variations for tensor networks [63, 64]. We take
the most simple approach, tracing the lattice row by row
as shown in Ref. [58].

III. THE METHOD

A. Continuous Unitary Transformations with
Tensorflow Equations

To construct the Tensorflow Equations (TFE) we start
from Wegner’s flow equation [55]

dH(l)

dl
= [H(l), η(l)] , (5)

which can be used to generate a set of unitary equivalent
Hamiltonians H(l) starting from H(0) := H, using the
anti-hermitian generator η(l). We can verify the solution
of Eq. (5) is given by:

H(l) = U(l)H(0)U†(l) , (6)

where U(l) has the form: U(l) = Tlexp
(
−
∫ l

0
η(l′)dl′

)
.

The goal is to find a generator for the unitary transfor-
mation U(l) that diagonalizes H(l) in the limit of l → ∞.
We follow the implementation of the TFE introduced in
Refs. [58, 59], that manages to reduce the analytical work
of setting up explicit flow equations for the couplings (see
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for example Ref. [56]) by borrowing ideas from general
tensor-contraction techniques. To represent the running
Hamiltonian during the flow we rewrite our Hamiltonian
defined in Eq (1) in its most general form in terms of
fermionic operator strings:

H(l) = H(2)(l) +H(4)(l) + . . . (7)

=
∑
αβ

H(2)
αβ(l) : c

†
αcβ : +

∑
αβγδ

H(4)
αβγδ(l) : c

†
αcβc

†
γcδ : + . . .

(8)

The kinetic and interaction terms are now encoded in the
coefficient tensors with two and four legs, while allowing
for terms up to infinite order that are generated during
the flow. Let H0(l) (Hoff(l)) be the (off-)diagonal part
of H(l). The canonical generator introduced by Wegner
[55] is then given by

ηW (l) := [H0(l),Hoff(l)] = [H(l),Hoff(l)]

=
[
H(2)(l),H(2)

off (l)
]

︸ ︷︷ ︸
=:η

(2)
W (l)

+
[
H(2)(l),H(4)

off (l)
]
+
[
H(4)(l),H(2)

off (l)
]

︸ ︷︷ ︸
=:η

(4)
W (l)

+ . . .

(9)

If we omit terms containing more than 4 fermionic op-
erators, i.e. everything beyond two-particle interaction,
the flow equations become a closed system. This trun-
cation is an accurate approximation for small interaction
strengths and accuracy can be systematically improved
by including higher order terms. We will not include
terms beyond such two-particle terms for simplicity and
increased performance. Details about how to compute
the appearing commutators up to this order can be found
in Appendix A. The completed flow gives an approximate
solution to the eigenvalue problem posed by H.

Choice of Generators — The canonical generator
provides stable convergence of the flow for most prob-
lems even though it has the downside of generating more
long-ranged off-diagonal couplings in the early stage of
the flow. Employing the Wegner generator, couplings
are suppressed rapidly when they are associated with two
diagonal elements with large energetic difference, which
also means it becomes inefficient when dealing with de-
generacies. At zero external potential it breaks down
completely. Fortunately, this limitation can be mitigated
through a combination with the Toda-Mielke generator
[65]

λαβ(l) = sgn(β − α)H(2)
αβ(l) , (10)

which allows to lift degeneracies while preserving the
band structure of the initial matrix. Ref. [58] intro-
duced this combination of two generators as a ”scram-
bling” transformation. They invoked a full unitary trans-
formation with a variant of the generator that only trig-
gers if single particle states are near degenerate. The

generator can be written as

λαβ(l) =

{
sgn(β − α)H(2)

αβ(l) , if H(2)
αβ(l) ≥ δh ,

0 , else .
(11)

Here we defined δh = ε|H(2)
αα(l)−H(2)

ββ (l)| where ε denotes
a non-zero threshold. This generator is used to perform
a full unitary transformation H → S†HS where the in-
finitesimal transformation is given by dS = exp(−λdl).
The unitary S is applied as long as near degenerate states
below the defined threshold are encountered. Next, a
canonical flow with Eq. (9) is employed to diagonalize the
Hamiltonian. Since the step of applying several scram-
bling transformations S can be rather expensive and is
only justified for small external potential, we additionally
investigated the benefits of a combination of canonical
Wegner generator and Toda-Mielke generator (Eq. (10))
in one flow. I.e., instead of a full scrambling transfor-
mation we ”enhance” the Wegner generator by adding
Eqs. (10) or (11) to it at each infinitesimal flow step.
We compared the performance of the different genera-
tors in Appendix C and found that the full scrambling
transformation followed by a canonical flow provides the
best results, diagonalizing Hamiltonians with zero exter-
nal potential. This setup is used to obtain all results in
Section IV.

Implementation — The implementation of the flow
equations follows the one in Ref. [58]. We implement the
flow equations in python using JAX just-in-time com-
pilation to GPU. The ODEs are solved with the scipy
implementation of a 4/5 Runge-Kutta stepper. The im-
plementation of the dynamics is also done with JAX and
runs GPU compiled (see Section III B).

Convergence — We run the flow till l = 1000 or
max|H(2)

off | < 10−6 and max|H(4)
off | < 10−4. The second

condition is harder to meet as the flow of the interacting
elements converges much slower. So, additionally, given
max|H(4)

off | ∼ 10−n, we stop the flow if for the last 100
iterations there was no improvement of at least ∼ 10−n

in magnitude. An analysis of the convergence error is
shown in Appendix C for different choices of generators.

Benchmarking — We benchmark our TFE imple-
mentation against two methods: exact diagonalization
(ED) and the time dependent density matrix renormal-
ization group (tDMRG) implemented with matrix prod-
uct states (MPS) [66]. For ED comparison we use the
QuSpin-package [67, 68] for construction of the Hamil-
tonian and solve the eigenvalue problem as well as the
dynamics on GPU using matrix routines from the cupy
library. We analysed the error in the energies resulting
from TFE with respect to ED in Appendix C and found
it to scale qualitatively with U/γ. In order to test the
validity of the TFE for larger systems than accessible by
ED (see Fig. 3), we use tDMRG. This is only done in
1D. Here we construct the spin- 12 XXZ-chain as an MPS,
using the mapping in Eq. (4). We compute the dynam-
ical spin autocorrelation C(t) = ⟨Sz(t)Sz(0)⟩ at infinite
temperature using purification [69]. TFE observables are
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computed within the half-filling sector and, correspond-
ingly, this requires that the z-component of the total spin
of the physical sites needs to be fixed to zero. As intro-
duced in Ref. [70], the z-component of the total spin of
both physical and auxiliary sites can be conserved and
fixed to zero at the same time in the purified setup.

B. Computing Dynamics

In the TFE framework observables can be computed
by letting a chosen operator flow alongside the Hamilto-
nian, finding its representation in the diagonal basis of H
(see Appendix B). We calculate the dynamical autocor-
relation function with the number operator ni at lattice
site i at infinite temperature

C(t) =

〈(
ni(t)−

1

2

)(
ni(0)−

1

2

)〉
. (12)

We fix i = L/2, the center of the system, throughout
this work. This quantity is related to the experimentally
observable occupation imbalance [39, 71] and a non-zero
value at long times is a signature for the system keeping
memory of its initial configuration and being an insula-
tor. A drop of C(t) → 0 indicates thermalization and
metallic behavior. Given an (approximately) diagonal-
ized Hamiltonian, we can compute Eq. (12) by tracing
over all eigenstates {|j⟩}, where we restrict ourselves to
the half-filling sector. In the energy eigenbasis time evo-
lution amounts to a phase and, by inserting an identity,
the correlator can be written as

⟨ni(t)ni(0)⟩ = ⟨eiHtnie
−iHtni⟩ (13)

=
1

Z
∑
j

⟨j| eiHtnie
−iHtni |j⟩

=
1

Z
∑
j,k

⟨j| eiEjtnie
−iEkt |k⟩ ⟨k|ni |j⟩

=
1

Z
∑
j,k

ei(Ej−Ek)t|⟨j|ni|k⟩|2 , (14)

where Z =
∑

j e
−Ej/T is the partition function with

Z → N , the Hilbert space size for 1/T → 0 and
ni ≡ ni(0). In that way we can calculate the correla-
tion function in Eq. (12) both in ED and the TFE, since
TFE give us access to the energies (up to truncation er-
ror) and eigenstates are simple product states.

Computing matrix elements — We need to compute
all matrix elements ⟨j|ni |k⟩ by applying ni to the eigen-
states, represented by binary strings |j⟩ ≡ |011...10⟩.
Since we work in the diagonal basis and the operator
is given by the expansion in fermionic operator strings in
Eq. (B2) (acting on fermions in the diagonal basis) we

calculate

⟨j|ni |k⟩ =
∑
αβ

Aαβ ⟨j| c†αcβ |k⟩

−
∑
αβγδ

Bαβγδ ⟨j| c†αc†γcβcδ |k⟩ , (15)

where we implicitly assumed normal ordering and A and
B are the coupling coefficients resulting from the flow
of ni. The two-body term can be simplified by applying
Wick contractions with respect to the vacuum state. The
Wick contraction can be written as [58]

⟨j| c†αc†γcβcδ |k⟩ = ⟨j| c†αc†γcβcδ |k⟩+ ⟨j| c†αc†γcβcδ |k⟩
= ⟨j| c†αcδ |k⟩ · ⟨j| c†γcβ |k⟩
− ⟨j| c†αcβ |k⟩ · ⟨j| c†γcδ |k⟩ . (16)

The evaluation of the resulting hopping terms is achieved
by logically comparing the two binary strings represent-
ing the states. As an example, let us assume a system
of 4 sites and two states |j⟩ = |0101⟩ and |k⟩ = |1001⟩.
Evaluating the matrix elements amounts to applying one
specific hopping operator at a time, like ⟨j| c†1c0 |k⟩ = 1.
Only those states contribute that are reachable from a
given state with a single particle hop. Considering only
valid hoppings from n1 occupied to n0 unoccupied sites,
given a system with in total N = n0 + n1 sites, there
exist n0 · n1 reachable states. In practice, we only in-
clude eigenstates at half filling, therefore we get N2/4
reachable states (the case of maximal connectivity). For
systems larger than accessible with ED, it is not feasible
to trace over all eigenstates. Instead, we take the aver-
age of the expectation value of randomly drawn samples
{|j′⟩} of size M . Since the second set of states |k′⟩ only
needs to contain those states that are connected by a
single particle hop, the algorithm remains polynomial in
scaling.

Error Estimate — There are two sources of errors
affecting the dynamics simulation. The first is intro-
duced by the sampling mechanism. A similar approach
is called dynamical quantum typicality, where one evalu-
ates the correlation function with respect to a random
superposition of states drawn from the Haar measure
[72]. There, the error scales as 1/

√
Neff , where Neff is

the effective Hilbert space dimension, including all ther-
mally occupied states. At infinite temperature and su-
perpositioning all eigenstates, this becomes exact. By
identifying Neff = M we find the same scaling for our
method 1/

√
M . In practice, we find it sufficient to choose

M = 512.
The second source of error stems from the eigenenergy er-
ror introduced by the TFE (see Section C). Let us define
the maximal absolute error as δE = max

j
(E

(j)
EDε

(j)
ED) =

max
j

(E
(j)
TFE − E

(j)
ED). We can then write the error in the
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dynamics of one eigenstate

ϵdyn =

∣∣∣(eiE(j)
TFEt − eiE

(j)
EDt)⟨ni⟩

∣∣∣∣∣∣eiE(j)
EDt⟨ni⟩

∣∣∣
≤
∣∣∣(ei(E(j)

TFE−E
(j)
ED)t − 1)

∣∣∣
≤ 1

2
δ2Et

2 . (17)

We found that this method of computing dynamics per-
forms significantly better than solving the Heisenberg
equation of motion, which was done in Ref. [58], see Ap-
pendix D for a comparison.

IV. RESULTS

A. Localization Transition in 1D and 2D

0 1 2
γ

0.25

0.50

0.75

1.00

s

a)

1D

L = 12

L = 16

L = 24

L = 36

L = 48

L = 64

0 1 2
γ

b)

2D

L2 = 16

L2 = 36

L2 = 64

L2 = 100

FIG. 2. a) The support of the number operator in the 1D
Stark MBL system with U = 1.0. A transition is visible at
γc ≈ 0.7 for small, ED accessible system sizes. For larger
systems the transition drifts below γc ≈ 0.5. b) Same results
for a 2D Stark MBL system. The transition is at γc ≈ 1.3
and a stronger finite size drift is visible for to small systems.

To analyse the localization transition with TFE, we re-
frain from using the established method of spectral statis-
tics, because computing the mean adjacent energy gap
[27, 61, 73] requires accurate knowledge of the energies,
that by now only ED can provide. We instead look at the
structure of integrals of motion (IOM) in the definition of
Refs. [74, 75]. An IOM can be defined via the long-time
average of a chosen local operator O, which is diagonal
in the energy eigenbasis

O = lim
t→∞

1

t

∫ t

0

dt′O(t′) (18)

=
∑
j

⟨j| O |j⟩ |j⟩ ⟨j| . (19)

We choose the local operator to be the number operator
O ≡ ni = c†i ci. By a suitable unitary transformation we

can relate the number operator to a maximally localized
integral of motion (LIOM)

ñi = UniU
† , c̃†i = Uc†iU

† , (20)

and expand the operator in terms of these new operators,
which are diagonal in the energy eigenbasis.

ni =
∑

N,{α}N

C(N)
{α}c̃

†
α1
c̃α2 ...c̃

†
αN−1

c̃αN
, (21)

where {α}N = {α1, α2, ..., αN} is a set of indices with a
length N corresponding to the expansion order. By re-
laxing the requirement that the unitary transformation
U needs to be quasi-local, we recognize that letting ni

flow with the TFE will lead to such a representation.
The localization of the resulting LIOMs indicates overall
localization of the system. The flow results in the num-
ber operator written in terms of the tensor coefficients
C(2)
{α} = Aαβ and C(4)

{α} = Bαβγδ as in Eq. (15), implying
a truncation of the expansion in Eq. (21) at 4th order.
We can define a support quantity s as the sum of the
coefficients:

s =

∑
αβγδ B

2
αβγδ∑

αβ A
2
αβ +

∑
αβγδ B

2
αβγδ

. (22)

In the ergodic regime the expansion is dominated by two-
point interaction terms, s → 1. On the other hand, the
interaction terms decay in the localized phase and the
dominant contributing terms are the single particle terms
(s → 0). An equivalent quantity was introduced as ”real-
space” support in Ref. [59]. However, it required a reverse
flow of the number operator from the diagonal basis into
the microscopic basis, doubling the compute time. We
find that it is not necessary for the TFE flow to converge
to particularly high precision for s to display the charac-
teristic structure of the LIOMs, since it only requires the
global structure to be captured accurately, and we can
study systems with U = 1.0, on the edge of the TFE’s
capabilities.
In Fig. 2 we show the support s as a function of the on-
site potential γ for different system sizes. We extract the
critical potential strength γc, that signifies the finite size
crossover between the delocalized and localized regimes,
from the crossing point of the curves belonging to differ-
ent system sizes. In 1D, finite size effects are weak and
for small systems we estimate γc ≈ 0.7, which agrees with
results that can be obtained from ED spectral statistics
[61] and experiments with trapped ions [51]. However, for
systems larger than accessible by ED, there is a visible
drift of the crossing point towards smaller external poten-
tial. An extrapolation to infinite system sizes could very
well lead to γc → 0, supporting the claims of [61, 76] that
there is no true ergodic regime for γ > 0 in the thermo-
dynamic limit. This behavior is very different from the
one found in ordinary MBL systems, see for example the
analysis of wavefunction statistics in Refs. [77, 78], spec-
tral statistics in Ref. [73], or Refs. [33, 79, 80] for scaling
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analyses of QP-MBL systems. In 2D, finite size effects
are much stronger and the crossing point is only visi-
ble beyond ED accessible system sizes. The decrease to
s → 0 that signifies full localization is slower than in 1D,
for larger systems we find a crossing point at γc ≈ 1.3,
slowely drifting to smaller γ. However, from the TFE
accessible system sizes, a statement about the thermo-
dynamic limit would still be speculative. Our findings,
which indicate localization even in 2D, do not contradict
results about subdiffusive transport in 2D lattice systems
with strong tilted potentials in theory [81], DMRG stud-
ies [62] and experiment [82]. This is due to the fact that
we chose the most transport-prohibitive direction for the
potential along the diagonal of the 2D grid, while the sub-
diffusive regime is found by applying the tilt along one
of the axes, decoupling transport along the other axis
from the potential. It would be important to conduct
experiments with our setup to confirm these findings.

B. Dynamics at Long Times

0.0

0.5

1.0

C
(t

)

1D

TFE, L = 16

ED, L = 16

tDMRG, L = 48

TFE, L = 100

10−2 10−1 100 101 102

Jt

0.0

0.5

1.0

C
(t

)

2D

TFE, L2 = 16

ED, L2 = 16

TFE, L2 = 100

γ = 0.0

γ = 5.0

FIG. 3. The dynamical autocorrelation for the Stark MBL
model in one (top panel) and two dimensions (bottom panel).
Interaction strength is set to U = 0.1. We expect accurate
results until times t ≲ U−2 = 100 (dashed vertical line). Dif-
ferent system sizes are shown, together with ED results for
a small system (L = 14) and tDMRG results for L = 48.
tDMRG is only shown at late times for visibility. Data is av-
eraged with a moving average due to strong oscillations (see
Fig. 10 for raw data).

In Fig. 3 we show the time evolution of the autocor-
relation function (Eq. (12)) for both 1D and 2D Stark
MBL systems and different potential strengths with ED
results as comparison. The data is obtained for a log-
arithmic time grid from t = 0.01 to t = 105 with 5000
steps. The autocorrelation function oscillates strongly,
with fast oscillations dampened by interactions, which

500

1000

1500

2000

χ

101 102 103

Jt

10−3

10−2

10−1

100

ε d
y
n

γ = 1.0

γ = 5.0

FIG. 4. Increase of bond dimension χ in tDMRG simula-
tions of the dynamical autocorrelation at infinite temperature
vs. the dynamical error ϵdyn accrued in the TFE simulation
(with respect to tDMRG) for L = 24, all other parameters
are the same as in Fig. 3. The times at which the error and
bond dimension start to increase coincides for both γ = 1.0
and γ = 5.0 (vertical dashed lines).

was also reported in Ref. [62]. For visibility and to fo-
cus on the global behavior we applied a moving average
given by the unweighted mean of the previous 50 time
steps. In 1D we also show tDMRG results for the spin
correlation function C(t) = ⟨Sz(t)Sz(0)⟩ of the model
in Eq. (4) as a benchmark. The data is obtained with
a cutoff bond dimension χmax = 2000 and a fixed time
step size of ∆t = 0.05. The moving average interval is
adapted accordingly and only data for late times is shown
for visibility (raw data is shown in Fig. 10).
In the 4th order approximation, neglected terms limit the
energy resolution to the order O(U2). Consequently, dy-
namics can be simulated accurately up to times t ∼ 1/U2.
The threshold is marked as a vertical dashed line and, in-
deed, this is the time at which qualitative deviations from
the ED results start to occur. For random and quasi-
periodically disordered systems, one finds that the TFE
stay accurate for longer times [58], since averaging over
configurations can average out the error. Additionally,
random and QP-MBL models do not display any emer-
gent behavior at those time scales. By looking at the
Stark MBL model with intricate behavior at long times
- a finite size delocalization effect already presented in
Ref. [61] - we observe a breakdown of accuracy at the
expected intermediate time scale.
To get a better understanding of the breakdown we com-
pare the TFE dynamical error to the bond dimension
growth in the tDMRG simulation. This is shown in
Fig. 4. While tDMRG is limited by bond dimension
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growth, especially in the delocalized regime, it stays ac-
curate until χmax is reached. The TFE, on the other
hand, break down as soon as higher order many-body
effects become important which coincides with the time
where bond dimension starts to increase. Still, we man-
age to go far beyond ED and, in the delocalized regime,
even tDRMG accessible system sizes and simulate the
dynamics accurately up to intermediate times. Only at
late times and in the localized regime, tDMRG starts to
outperform TFE in both accessible system size and ac-
curacy.
The start of both the TFE error increase and tDMRG
bond dimension growth coincide with the onset of delo-
calization. This leads us to conclude that this effect is of
higher order than the TFE truncation captures and is ac-
companied by increasing entanglement entropy. One pos-
sible explanation for this long term delocalization time
could be that localization is driven by Hilbert space frag-
mentation, which leads to a strong dependency of the
dynamics on initial states [62]. At late times, higher or-
der interaction processes start to hybridize delocalized
and localized states in the infinite temperature dynamics,
leading to thermalization. This could also explain why
the infinite temperature autocorrelation function shows
this phenomenon (see also Ref. [61]), while imbalance
simulations of specific initial states, like charge density
waves, do not [45].

C. Scaling of the Delocalization Time

10−1 100 101 102 103

Jt

0.4

0.6

0.8

1.0

C
(t

)

U = 0.1

U = 0.2

U = 0.4

U = 0.6

U = 0.8

U = 1.0

10−1 100
U

102

t∗

L = 40
L = 80
L = 120

FIG. 5. tDMRG results for the dynamical autocorrelation
function for different interaction strength U , γ = 5.0 and
L = 40, 80, 120. The horizontal line marks the threshold,
below which we consider the system to delocalize, given by
the amplitude of the first oscillation. Vertical dashed lines
mark the delocalization times for different U for L = 120,
obtained with a moving average (see main text). Inset: The
delocalization times t∗ for different system sizes over U .

Ref. [61] specifically investigated the dependency of the
delocalization time on system size and found that the de-
localization time grows exponentially with system size.

The TFE miss this delocalization effect entirely which
means that it has to be of higher order than what is
included in our order of truncation. Since the delocaliza-
tion time cannot be captured by TFE, which is restricted
to small U , we suspect that it is a non-perturbative ef-
fect.
To investigate this we conduct further tDMRG simu-
lations. In Fig. 5 we show the dynamical autocorre-
lation computed with tDMRG for different interaction
strengths and system sizes. In the localized regime we
can simulate larger system sizes. The onset of delocaliza-
tion is hard to define for the autocorrelation due to strong
oscillations. Hence, we define a heuristic measure by set-
ting the amplitude of the first oscillation as the delocal-
ization threshold (horizontal line). The non-interacting
system would continue this oscillation for t → ∞. Devi-
ations therefore signify interaction effects. The delocal-
ization time t∗ is set to be the crossing of the moving
time averaged autocorrelation below this threshold (ver-
tical dashed lines). The averaging is necessary due to
persisting high-frequency oscillations. We checked that
the chosen interval for the moving average has no quali-
tative impact on the results as long as it is sufficient to
flatten high-frequency oscillations.
We find t∗ ∼ 1/U . This shows that the delocalization
effect is driven by interaction and is an emergent many-
body effect that is challenging to access within perturba-
tive expansions.

V. DISCUSSION

Using a recently developed numerical variant of Weg-
ner flow equations that leverages GPU hardware we in-
vestigated Stark MBL in an unexplored range of system
sizes in 1D and 2D. Our results show that Stark MBL
has hallmark features that are markedly different to con-
ventional MBL. We find that the transition does not drift
to larger potentials with system size but to smaller ones,
so that one might conclude that there is no true delo-
calized phase in this model in the thermodynamic limit.
We could further show the higher-order nature of the
present delocalization at long times and how it is a true
many-body effect that depends strongly on interaction
strength. The underlying mechanisms of the localization
transition and dynamics in Stark MBL systems remain
poorly understood and are therefore a very relevant sub-
ject of future investigations. Understanding the funda-
mental differences to conventional MBL could also shed
light on open questions there.

The TFE present themselves as a very general tool to
study finite-size quantum many-body interacting systems
beyond ED and even tDMRG if the system is not MBL.
Therefore it is a very promising candidate to study other
systems, for example the Hubbard model in the weak to
moderate interaction regime. The TFE could allow to
map out a tentative phase diagram of the 2D Hubbard
model up to 10×10 sites with broken translational invari-
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ance, c.f. Ref. [83]. A massively parallel implementation
on distributed GPUs might even challenge Monte Carlo
results [84] at small to intermediate U . Furthermore, one
could simulate more exotic models that exhibit topologi-
cal order [85] or hybrids like the Hubbard-Holstein model
[86]. A matter of ongoing work is implementing TFE in
Floquet space, where one can employ the generator of
Ref. [87], which would enhance capabilities in Floquet
engineering [88], as well as enable studying prethermal-
ization [89] for system sizes beyond ED and Tensor Net-
works.
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Appendix A: Computing commutators

In order to compute the commutators in Eq. (9), we fol-
low the procedures that are introduced in Ref. [56]. The
resulting operator string defines the contraction rule for
commuting the coefficient tensors. We will compute the
first non-trivial commutator:

[
: c†µcν :, : c†αcβc

†
γcδ :

]
as an

example (commutators of two legged tensors reduce to
the conventional commutator of two matrices with nor-
mal ordering corrections). We recall the description of
fermionic anticommutation relations in the context of
normal ordering:

⟨{c†α, cβ}⟩ = Gαβ +Gβα , (A1)

where Gαβ = ⟨c†αcβ⟩ and Gβα = ⟨cβc†α⟩ with ⟨...⟩ the
expectation value with respect to a deliberately chosen
state. Here, we decide to use the vacuum state which
implies:

Gαβ = ⟨c†αcβ⟩ = 0 , (A2)

Gβα = ⟨cβc†α⟩ = δαβ . (A3)

In principle one should use normal ordering with respect
to the interacting ground state, but this is difficult to im-
plement in practice [56]. Further, we need Wick’s second
theorem to simplify operator strings:

: O1 :: O2 :=: exp

(∑
k,l

Gkl
∂2

∂Ak∂A′
l

)
O1(A)O2(A

′) :
∣∣∣
A′=A

,

(A4)
where A is defined as a collection of fermionic operators,
operators on the right hand side of Eq. (A4) can be con-
sidered as different sets of fermionic strings. By using

Eq. (A4) we obtain:

: c†µcν :: c†αcβc
†
γcδ :

=:
(
1 +Gµβ

∂2

∂c†µ∂cβ
+Gµδ

∂2

∂c†µ∂cδ
+Gνα

∂2

∂c†ν∂cα

+Gνγ
∂2

∂c†ν∂cγ
+GµβGνα

∂4

∂c†µ∂cβ∂c
†
ν∂cα

+GµβGνγ
∂4

∂c†µ∂cβ∂c
†
ν∂cγ

+GµδGνα
∂4

∂c†µ∂cδ∂c
†
ν∂cα

+GµδGνγ
∂4

∂c†µ∂cδ∂c
†
ν∂cγ

)
c†µcνc

†
αcβc

†
γcδ : .

(A5)

Therefore, we get the following expression of our typical
commutator with normal ordering:[
: c†µcν :, : c†αcβc

†
γcδ :

]
= +Gµβ︸︷︷︸

0

: cνc
†
αc

†
γcδ : −Gβµ︸︷︷︸

δβµ

: c†αc
†
γcδcν : +Gµδ︸︷︷︸

0

: cνc
†
αcβc

†
γ :

− Gδµ︸︷︷︸
δδµ

: c†αcβc
†
γcν : +Gνα︸︷︷︸

δνα

: c†µcβc
†
γcδ : −Gαν︸︷︷︸

0

: cβc
†
γcδc

†
µ :

+ Gνγ︸︷︷︸
δνγ

: c†µc
†
αcβcδ : −Gγν︸︷︷︸

0

: c†αcβcδc
†
µ : +Gµβ︸︷︷︸

0

Gνα : c†γcδ :

−Gαν︸︷︷︸
0

Gβµ : cδc
†
γ : +Gµβ︸︷︷︸

0

Gνγ : c†αcδ : −Gγν︸︷︷︸
0

Gβµ : cδc
†
α :

+ Gµδ︸︷︷︸
0

Gνα : cβc
†
γ : −Gαν︸︷︷︸

0

Gδµ : c†γcβ : +Gµδ︸︷︷︸
0

Gνγ : c†αcβ :

− Gγν︸︷︷︸
0

Gδµ : cβc
†
α :

= −δβµ : c†αc
†
γcδcν : −δδµ : c†αcβc

†
γcν : +δνα : c†µcβc

†
γcδ :

+ δνγ : c†µc
†
αcβcδ :

= −δβµ : c†αcνc
†
γcδ : −δδµ : c†αcβc

†
γcν : +δνα : c†µcβc

†
γcδ :

+ δνγ : c†αcβc
†
µcδ : .

(A6)

In the final step we utilized the fermionic rule of swap-
ping operators where each swap intruduces a minus sign.
The commutators are not closed, i.e. they result in longer
operator strings and accordingly in coefficient tensors of
higher order. While cumbersome, the calculation above
can be generalized to any order. In Ref. [59], a graphi-
cal representation was introduced to simplify the numer-
ical implementation for calculating these commutators.
We introduce our own graphical notation in Fig. 6, that
allows to directly read off not only which legs are con-
tracted but also the new index order and the sign. To
compute commutators one needs to contract over every
possible combination of legs, where only outgoing (c†)
and ingoing legs (c) can be combined. A contraction
over two legs is denoted by . The next step is to
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a)

H(2)

µ ν

,
H(4)

int

α β γ δ

=

H(4)
int

νµ

β γ δ

H(2)

−

H(4)
int

α

νµ

γ δ

H(2)

+

H(4)
int

α β

νµ

δ

H(2)

−

H(4)
int

α β γ

νµ

H(2)

b)

H(4)

α β γ δ

,
H(4)

int

µ ν σ τ

=

H(4)
int

βα

ν σ τ

γ δ

H(4)

+

H(4)
int

µ ν

βα

τ

γ δ

H(4)

+

H(4)
int

µ ν

δγ

τ

α β

H(4)

+

H(4)
int

δγ

ν σ τ

α β

H(4)

−

H(4)
int

µ

βα

σ τ

γ δ

H(4)

−

H(4)
int

µ ν σ

βα

γ δ

H(4)

−

H(4)
int

µ ν σ

δγ

α β

H(4)

−

H(4)
int

µ

δγ

σ τ

α β

H(4)

FIG. 6. Graphical representation of computing commutators with a) Four and two legs resulting in four new four-legged tensors,
b) Four and four legs, that result in eight new six-legged tensors. To obtain the commutation result the tensors need to be
summed with correct sign and index reordering. Contraction rules are given in the main text.

rearrange the indices to restore normal ordering (we use
vacuum normal ordering here) and to obtain the correct
sign of the contraction. Connected arrows pointing in op-
posite direction signify that the index of the black arrow
needs to be swapped into the position left by the green
arrow after contraction. denotes both a swap, and
that the term is multiplied by (−1). denotes a swap
with no additional sign change.

Appendix B: Computing Operators

Since TFE is a continuous basis change one can also
transform an operator O into the diagonal basis of H.
The form of the operator in the diagonal basis is espe-
cially useful for the description of time-dependent observ-
ables. Furthermore, this can be used to study the nature
of the performed basis change by investigating the change
in the operator structure. Generally, even initially local
operators become long-ranged during the flow, however,

if the operator stays local the model is likely to be MBL
[75]. The flow of O can be performed in parallel by com-
puting O(l) = U(l)O(0)U†(l), where O(0) can be any
operator in the microscopic basis that can be written in
terms of the same fermionic operators as the Hamiltonian
itself. This amounts to solve

dO(l)

dl
= [O(l), η(l)] , (B1)

where the generator η(l) is the one constructed from H(l).
In this work we study the microscopic number operator
on site i, O(0) = ni = c†i ci. To account for the generation
of non-local elements and even interaction elements dur-
ing the flow, the operator is initialized in the same format
as the Hamiltonian, with only the ith on-site term being
non-zero. The flow results in a transformed number op-



10

10−3

10−2

10−1

C
on

ve
rg

en
ce

E
rr

or
a)

γ = 0.0

Full Scrambling

0.05

0.10

0.15
b)

U = 1.0

Full Scrambling

L = 8

L = 10

L = 12

L = 14

0.0 0.5 1.0
U

10−1

102

105

C
on

ve
rg

en
ce

E
rr

or

c)

γ = 0.1

L = 14

0 1 2
γ

10−1

102

105

d)

U = 1.0

L = 14

W+T

W+S

W

F/S

FIG. 7. The convergence error given by max|H(4)
off | with dif-

ferent choices of generators for the Stark MBL model with
varying system sizes. a)-b) show the best choice of generators
as we found it for increasing system size and different interac-
tion strength U , which is the full scrambling transformation.
c)-d) show a system with L = 14 for the different variants
of generator combinations. ”W” denotes application of the
bare Wegner generator, ”W+T” denotes the combination of
Wegner and Toda generator. "F/S" denotes a full scrambling
transformation before the start of a conventional Wegner flow,
threshold ε = 0.01. ”W+S” stands for a combination of Weg-
ner and an infinitesimal scrambling transform with ε = 0.5.

erator of the form

ni =
∑
αβ

Aαβ : c̃†αc̃β :

+
∑
αβγδ

Bαβγδ : c̃†αc̃β c̃
†
γ c̃δ : , (B2)

expanded in terms of fermionic operators c̃†, c̃ in the di-
agonal basis of H. The operator itself is now neither
diagonal nor local anymore, but expectation values with
respect to eigenstates become trivial, since they can be
represented as simple product states in the diagonal ba-
sis. In the main text we drop the tilde and it is clear
from context when we are considering operators in the
diagonal basis.

Appendix C: Error Analysis

We choose to include operators up to 4th order in the
flow equations. This means that we are working with a
resummed perturbative expansion, motivated from small
interaction strengths. The neglected terms are on the
order O(U2/γ̃), which determines the maximal energy

resolution of the approximation [58]. γ̃ denotes the effec-
tive energy separation between sites, which in the limit of
γ → 0 is artificially increased by the scrambling transfor-
mation. We find no significant improvement in accuracy
by including 6th order while encountering significantly
increased computational cost.
In practice we also introduce a convergence error due to
stopping the flow at large but finite l. We define the
convergence error as the maximal remaining off-diagonal
element of the interaction terms. This is shown in Fig. 7
for a range of parameters and different choices of gener-
ators. max|H(4)

off | is generally smaller than U2 in magni-
tude for the systems analysed here. The default Wegner
generator performs worst for small γ and for γ = 0 the
flow does not start at all, as the generator vanishes due
to degeneracies. Panels b) and d) show how the effective
energy separation induced by the scrambling transforma-
tion significantly improves the results for small γ ≲ 1.0.
The onset of the scrambling transformation can be mod-
ified by the threshold ε where a smaller value shifts the
onset to larger γ. The choice of ε does not lead to qualita-
tive changes for ε ≲ 0.5, however, we found that choosing
a small threshold ε = 0.01 and being more thorough in
lifting degeneracies leads to a more stable convergence
behavior. This is particularly the case for 2D systems.
While this does not affect the diagonalized Hamiltonian it
reduces instabilities in the operator flow. The full scram-
bling transformation is the only one able to diagonalize
even at zero external field, i.e. degenerate single parti-
cle states. But, the combination of Wegner generator
and Toda generator still allows to extend the accessible
parameter range of the canonical flow and at increased
speed in the interval 0.6 ≲ γ ≲ 1.0 .
The convergence error propagates into the error of the
eigenenergies that can be extracted from the Hamilto-
nian after the flow. In Fig. 8 we show the median energy
error corresponding to state |j⟩, med(ϵED) ≡ med

j
(ϵ

(j)
ED),

where we defined

ϵ
(j)
ED =

∣∣∣∣∣E(j)
TFE − E

(j)
ED

E
(j)
ED

∣∣∣∣∣ , (C1)

with respect to results from ED. A power-law fit, shown
in Fig. 9, shows that the error in eigenenergies scales qual-
itatively with U/γ in the ED accessible range of system
sizes. Fig. 8c) and d) suggest that the chosen generator
does not have an impact on the energy error. However,
as shown in Fig. 7d), the 4th order elements only con-
verge with the full scrambling transformation in the limit
of γ → 0. Only with the converged results we can expect
interaction driven effects to be incorporated accurately.
To obtain results in Section IV we always use the full
scrambling transformation.
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FIG. 8. The median energy error compared to ED for the
Stark MBL model with varying system sizes, interaction
strengths, potential strengths and different generators. a)-b)
show the energy error for different system sizes with the full
scrambling transformation employed at the start of the flow.
c)-d) show the energy error for different variants of generators
tested (Legend is the same as in Fig. 7). In panels c)-d) all
values lie on top of each other. The Wegner generator does
not work at γ = 0, therefore we omitted this data point.
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FIG. 9. A power-law fit was performed to extract the scaling
of the energy error with both γ and U . The underlying data
is the same as in Fig. 8 a) and b). Dots: The exponent of
the scaling with γ for different system sizes and interactions,
ϵED(γ) ∼ γνγ . Crosses: The exponent of the scaling with U
for different system sizes and potential strengths, ϵED(U) ∼
UνU .

Appendix D: Comparison of Dynamics
Implementations

Ref. [58] computed Eq. (12) in a different manner for
disordered and QP-MBL systems. Instead of first com-
puting the energies and implementing time evolution as
a phase and then summing over all operator matrix el-

0.0
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)

γ = 1.0

10−1 100 101 102

Jt

0.0

0.5

1.0

C
(t

)

γ = 5.0

ED

tDMRG

Heisenberg

Trace

FIG. 10. The dynamical autocorrelation for a 1D Stark MBL
system, system size is L = 14. Top panel shows weak po-
tential γ = 1.0 while bottom panel shows strong potential
γ = 5.0. Interaction strength is set to U = 0.1. Both the
method of calculating the time evolution with the Heisenberg
equation of motion (black crosses) and the infinite temper-
ature trace in Eq. (14) (yellow diamonds) are shown. As
benchmark, ED and tDMRG data is shown (tDMRG until
bond dimension grows too large). TFE accuracy breaks down
at times t ∼ 1/U2 (dashed line).

ements, one can also solve the Heisenberg equations of
motion for ni(t) in the diagonal basis. Then, one ob-
tains the correlator by multiplying the solution of the
Heisenberg equation with the number operator at t = 0,
and averaging the expectation values of randomly drawn
eigenstates.

⟨ni(t)ni(0)⟩ = ⟨eiHtnie
−iHtni⟩

= ⟨
∫ t

0

i [H, ni(t
′)] dt′ · ni(0)⟩ . (D1)

We compared both ways to extract C(t) and find that
the truncation error induced by the flow is larger when
solving the Heisenberg equation. In Fig. 10 we present
the resulting dynamics from both Eq. (14) and Eq. (D1)
in comparison to ED and tDMRG. With the Heisenberg
equation of motion, accurate simulations without disor-
der averaging can only be achieved up to times t ∼ 1/U ,
severely underestimating the damping effects introduced
by interaction. In models with random disorder these
errors average out after taking the mean over several dis-
order configurations. However, we need to go beyond
that to make the TFE viable for clean systems. Using
Eq. (14) we get accurate results up to t ∼ 1/U2 as we
accurately capture the damping effects at intermediate
times. Thus, we can simulate disorder-free models till
times where energy scales smaller than the truncation er-
ror become relevant. Importantly, this does not require
the system to be localized.
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