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The Penrose process, a process that transfers energy from a black hole to infinity, together with
the BSW mechanism, a mechanism that uses collisions of ingoing particles at the event horizon of
a black hole to locally produce large amounts of energy, is studied in a combined description for
a d dimensional extremal Reissner-Nordström black hole spacetime with negative, zero, or posi-
tive cosmological constant, i.e., for an asymptotically anti-de Sitter (AdS), flat, or de Sitter (dS)
spacetime. This blending of the Penrose process with BSW collisions is an instance of a collisional
Penrose process. In an electrically charged extremal Reissner-Nordström black hole background,
in the vicinity of the event horizon, several types of radial collisions between electrically charged
particles can be considered, the most interesting one is between a critical particle, i.e., a particle
that has its electric charge adjusted in a specific way to the other relevant parameters, and a usual
particle, as it gives a divergent center of mass frame energy locally. A divergent center of mass frame
energy at the point of collision is a favorable condition to extract energy from the black hole, but
not sufficient, since, e.g., the product particles might go down the hole. So, to understand whether
energy can be extracted or not in a Penrose process, we investigate in detail a collision between
ingoing particles 1 and 2, from which particles 3 and 4 emerge, with the possibility that particle
3 can carry the energy extracted far out from the black hole horizon, i.e., there is a high Killing
energy transported by particle 3. One finds that the mass, the energy, the electric charge, and the
initial direction of motion of particle 3 can have different values, depending on the collision internal
process itself. But, the different possible values of the the parameters of the emitted particle 3 lie
within some range, and moreover the energy of particle 3 can, in some cases, be arbitrarily high but
not infinite, characterizing a super-Penrose process. It is also shown that particle 4 has negative
energy, as required in a Penrose process, living in its own electric ergosphere while it exists, i.e.,
before being engulfed by the event horizon. For zero cosmological constant we find that the results
do not depend on the number of dimensions, but they do for negative and positive cosmological
constant. The value of the cosmological constant also introduces differences in the lower bound for
the energy extracted.

I. INTRODUCTION

Processes that can extract energy from a black hole are relevant on several counts. They have astrophysical import
whereby matter or waves passing in the vicinity of an astrophysical black hole succeed in getting energy out of it.
They have physical relevance since black holes can exist in all scales, in particular in microscales, and thus can be
of use, in principle, as an additional power source in an advanced technology scheme. Whereas astrophysical black
holes arise through gravitational collapse of large quantities of matter, micro black holes with very small radii, of the
order of the neutron radius or even lower, can appear, for instance, through pair creation in strong field regimes, or
by smashing matter fragments of exceedingly high energy against each other. Thus, the detail knowledge of all the
possible mechanisms that can be employed to extract energy from a black hole of any size worth of pursuit.

Extraction of energy from a black hole started by the observation that the ergoregion of a rotating black hole
contains states with negative energy with respect to infinity, and thus it is possible to somehow deposit energy far
away at the expense of the black hole energy. This is the Penrose process [1, 2]. In the original process, it was
proposed that a particle decays into two new particles inside the ergoregion, and one of the created particles carries
an extra energy to infinity, with the energy source being the black hole angular momentum, this process being thus
a decayment Penrose process. A static electrically charged black hole can allow as well for a Penrose process, the
energy extracted coming now from the electric ergosphere of the black hole [3]. A general study of the electric Penrose
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process where electrically charged particles suffer a decayment in an electrically charged black hole background has
been done in [4].

Another process that yields a possible extraction of energy from a black hole is the BSW mechanism [5]. The
original BSW mechanism involves the collision at the horizon of an extremal rotating Kerr black hole of two ingoing
test particles, one of the particles being critical, i.e., its angular momentum being critically tuned for the effect to
occur, so that generation of unbounded center of mass energies would arise. Thus, we define BSW mechanism as a
mechanism involving two particles moving inwards and colliding at the horizon of a black hole, or in the vicinity of
it, where an unlimited center of mass energy is produced locally. The derivation of this mechanism motivated further
study to understand which type of black holes can provide the effect and whether the emission of highly energetic or
supermassive particles is possible after such a collision, and where the colliding particles can be of any type, including
dark matter and electrically charged particles. In this way, it was shown that instead of an extremal black hole, a
nonextremal black hole could be used if the parameters for the particle were properly adjusted at the point of the
collision [6]. It was also proved in [7] that the BSW effect is generic, i.e., it is due to the general properties of a black
hole horizon, and thus, many results that followed can be seen as particular cases of this feature.

As is typical in black hole physics, if some phenomenon exists for rotating black holes and neutral particles, it is
quite natural that it also exists for electrically charged black holes and electrically charged particles, and consequently
it was soon proposed that an extremal electrically charged Reissner-Nordström black hole, could also yield, by the
collision of two ingoing electrically charged particles, with one of them critical, a divergent center of mass frame
energy, in what is the electrically charged version of the BSW effect [8]. Several other important advancements on
the BSW effect appeared as we now mention. By using the innermost stable circular orbit up to the extremal Kerr
state it was confirmed in [9] that high center of mass energies can be created at the horizon and highly energetic
particles are subsequently emitted at the point of collision. A geometric and general explanation, based on spacetime
properties of systems composed of rotating black holes and matter systems, pictured the effect as attributes of null
and timelike vectors in the vicinity of the future event horizon [10]. The creation of unbounded center of mass energies
at the point of collision was exhibit to persist with neutral particles in Kerr black hole spacetimes in a cosmological
constant setting [11]. The collision of two generic geodesic particles around a Kerr black hole was further explored to
produce unlimited center of mass energies at the horizon in [12].

Clarifications and interesting applications of the BSW effect kept emerging in the literature. For instance, a
kinematic explanation of the effect was developed in [13] in that a collision between a particle with velocity tending
to the velocity of light and a particle with a velocity smaller than the velocity of light, both velocities seen in a locally
nonrotating frame at the horizon, produce an unlimited center of mass energy. An anti-de Sitter (AdS) background
for extremal electrically charged rotating cylindrical black holes was the scene to inspect the existence of the BSW
effect [14]. For dirty rotating black holes, i.e., black holes with surrounding matter, it was found that in the collisions
of particles near the horizon, the energy of the particles scales with a power of the inverse surface gravity of the
black hole [15]. That ultrahigh energies at the center of mass scale with some power of the inverse surface gravity of
the black hole was also uncovered by considering, near the horizon of a Reissner-Nordström black hole with negative
cosmological constant, that one of the electrically charged colliding particles is critical and at rest, which is possible
due to the electric repulsion on one hand, and the gravitational and the extra attraction from the negative cosmological
constant on the other hand [16]. Additionally, it was realized in [17] that electrically charged particles in radial motion
that collide at the horizon of an extremal Reissner-Nordström black hole can have debris with no upper Killing energy
bounds in contrast to the finite energy of the ejected particles from a rotating black hole.

The BSW effect has also been studied in higher and lower dimensions, and has been implemented in several possible
scenarios. In higher-dimensional spacetimes, the effect has been tested specifically in extremal Myers-Perry black holes
[18]. The analysis of collisions for higher-dimensional rotating black holes was revisited in [19] establishing that high
center of mass energies can be produced. A review of the BSW effect with emphasis on the collision of particles in an
extremal Kerr black hole was produced in [20]. The joint effect of rotation and electric charge was taken into account
for the extremal Kerr-Newman black hole, and in particular, a noticeable BSW effect was found when simultaneously
the angular momentum of the particle is very large and the black hole charge is very small [21]. Lower-dimensional
spacetimes were the target of a work for the implementation of the effect, namely, the BTZ rotating extremal black
hole which is a solution of 3-dimensional general relativity with negative cosmological constant [22]. An additional 3-
dimensional rotating black hole, solution of a topologically massive gravity, acts, as expected, as a particle accelerator
as discussed in [23]. Several types of classification for different BSW scenarios have been performed in [24–26].

One can combine the Penrose process and the BSW effect to get a collisional Penrose process. In the Penrose process
one uses the negative states existing in the ergosphere to extract energy of the black hole which is then transferred
to infinity. The first instance found for a physical Penrose process was through particle decay in the ergosphere, but
one can think of other processes, a distinct one is indeed through particle collisions, such as a BSW collision. For
collisions, the energy extracted in a Penrose process from a rotating black hole can be somewhat enhanced. A relevant
development and clarification of the BSW effect demonstrated that although the center of mass energy grows without



3

bound in a collision near or at an extremal Kerr horizon, the energy of the particles at infinity, i.e., the Killing energy,
is finite and not large [27–29]. Still in the rotating black hole case, the relation between the energy in the center of
mass frame of BSW colliding particles and the net Penrose energy extracted was uncovered in [30]. Improvements and
refinements of the collisional Penrose process have appeared. For instance, particle collisions in the axis of symmetry
of a Kerr-Newman black hole along with the possibility of energy extraction were described in [31]. For electrically
charged colliding particles it was established that even in a nonextremal Reissner-Nordström black hole background,
the emergent particles can carry arbitrarily large Killing energy to infinity, thus yielding a super-Penrose process of
real energy extraction from a black hole [32], and confirming previous results for extremal electrically charged black
hole backgrounds. This extraction of arbitrary large amounts of energy in particle collisions in electric charged black
holes contrasts with the finite and moderate energy extraction from the ejected particles of a rotating black hole. In
addition, a general and encompassing treatment of the BSW effect in the equatorial plane of Kerr-Newman black holes
where unbounded energies taken by the particle debris to infinity can happen, yielding thus real energy extraction
from the black hole, was reported in [33, 34].

One could continue to enumerate processes that extract energy from a black hole. In a collision of two particles,
one ingoing the other outgoing, and so different from a BSW collision in which the two colliding particles are ingoing,
it was shown that such a collisional Penrose process could have an energetic extraction enhancement by a factor close
to 14 [35], see also [36]. In a extended version of the decayment Penrose process, one employs a mirror at some radius
surrounding the black hole, to obtain multi processes and so more energy extraction, leading possibly to a black hole
bomb, see [37] for the electrically charged case. Other processes, being somewhat different in character from the BSW
effect or the Penrose process, can still extract energy from a collision of particles. These processes include particle
collisions in black hole spacetimes with additional physical features, in spacetimes without black holes, and in other
special spacetimes. One can also extract energy from black holes using waves in the superradiance phenomenon.

It is our aim to study the Penrose process in conjunction with the BSW effect, i.e., the collision Penrose process,
of black hole energy extraction due to the collision of two electrically charged particles at the event horizon of an
extremal Reissner-Nordström black hole in a background with a cosmological constant in generic d dimensions in
a unified way. The cosmological constant will be allowed to have negative values, in which case the spacetime is
asymptotically AdS, to have zero value, in which case the spacetime is asymptotically flat, and to have positive
values, in which case the spacetime is asymptotically de Sitter (dS), in this latter case there is also the cosmological
horizon, but it does not play any major role in our analysis. The number of dimensions obeys d ≥ 4, and thus
some of the results already obtained for the particular case d = 4 are recovered. One can list some of the reasons
why these spacetimes are relevant to study. Reissner-Nordström black holes in isolation can in some instances keep
their own electric charge, although when surrounded by some medium they are exposed to be completely discharged.
Asymptotically AdS spacetimes possess many symmetries and are the base of some extended theories of gravity such
as supergavity and string theory. Asymptotically flat spacetimes are the appropriate environment in the study of a
sufficiently large neighborhood of any cosmic environment, such as the environment surrounding a black hole, since
for it the asymptotic structure is approximately flat. Asymptotically dS spacetimes have implications in fundamental
theories and can be used describe the universe at large. The interest in studying spacetimes with d generic dimensions
comes from the possibility of understanding what is peculiar to d = 4 and what is generic, and from the fact that
several possible suitable theories live consistently in spacetimes with higher dimensions, which makes physical effects
in these dimensions worth pursuing.

The work is organized as follows. In Sec. II, the d-dimensional Reissner-Nordström black hole spacetime in a
cosmological constant background, nonextremal and extremal, is introduced along with the important horizon radii.
The equations describing electrically charged particle motion in such a spacetime are presented and the electric
ergosphere is defined. In Sec. III, the definitions and necessary conditions for energy extraction from particle collisions
are given, in particular, we present the definition of critical, near-critical, and usual particles, we make an analysis
of the energy of the BSW collisions at the center of mass frame, give the prerequisites for the particles to reach the
horizon, and show the only type of collision that yields an unbounded center of mass energy is the collision between
a critical and a usual particle. In Sec. IV, we examine in detail the energy extraction from a collisional Penrose
process. For that, we uncover the BSW collision between a critical particle that goes into the black hole and a usual
particle that also goes in, from which emerges a near critical particle that goes out and a usual particle with negative
energy that goes in, with the energy of the emitted particle, i.e., the possible energy extracted in the Penrose process,
being established in terms of lower and upper bounds. It is shown that super-Penrose processes can occur. We add
a discussion on the dependence of the process on the cosmological constant and on the spacetime dimension d and
make further comments. In Sec. V, we conclude. In the Appendix we derive the center of mass energy expression
from the equations obtained for the energy of the emitted particle, and uncover some details of the energetics of the
particle with negative energy that falls in after the collision.
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II. LINE ELEMENT, BLACK HOLE HORIZON RADII, EQUATIONS OF MOTION FOR THE
PARTICLES, AND THE ELECTRIC ERGOSPHERE

A. Line element

In this work, it is provided a general analysis of the collisional Penrose process, i.e., the combination of BSW effect
with the Penrose process of extraction of energy, in a Reissner-Nordström black hole background, with a negative, zero,
and positive cosmological constant in d dimensions with d ≥ 4. Thus, we consider the Reissner-Nordström-Tangherlini,
or simply Reissner-Nordström, line element for the interval s. Generically, the spacetime line element is written as
ds2 = gabdx

adxb, where gab is the metric and the dxa are the coordinate components of the infinitesimal displacements,
with a, b running over the time and spatial coordinates. In usual spherical coordinates xa = (t, r, θ1, · · · , θd−2), one
can write ds2 = gttdt

2 + grrdr
2 + r2dΩd−2, where gtt and grr are the time-time and the radius-radius components

of the metric, respectively, which in general depend on t and r, and dΩ2
d−2 is the line element on a d − 2 sphere,

dΩd−2 = dθ21 + sin θ21 dθ
2
2 + · · · +

∏d−3
i=2 sin θ2i dθ

2
d−2. Then, the electrovacuum Einstein-Maxwell field equations yield

that gtt and grr only depend on r, and indeed the line element has the d-dimensional Reissner-Nordström form given
by

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2dΩd−2 , (1)

with the metric potential f(r) being given by

f (r) = 1− 2µM

rd−3
+

χQ2

r2(d−3)
− k

r2

l2
, (2)

where M is the mass of the black hole, Q is its electric charge, l2 = 3
|Λ| is the length scale related with the absolute

value of the cosmological constant Λ, k = −1, 0, 1 for spacetimes with negative, zero or positive cosmological constant,

respectively, and µ and χ are defined as µ = 8π
(d−2)Ωd−2

, χ = 8π
(d−2)Ωd−2

, and Ωd−2 = 2π
d−1
2

Γ( d−1
2 )

is the area of the (d− 2)-

dimensional unit sphere with Γ being the gamma function. The time coordinate range is −∞ < t < ∞, the radial
coordinate range is r+ < r < ∞, with r+ being the black hole event horizon, and the angular coordinate ranges are
0 ≤ θi ≤ π for i = 1, ..., d− 3, and 0 ≤ θd−2 < 2π. The electric potential φ of the spacetime is

φ =
Q

(d− 3) rd−3
, (3)

i.e., a Coulomb electric potential.

B. The black hole horizon radius r+ and the extremal black hole: f(r) and its factorization

A nonextremal black hole has two characteristic radii, the event horizon radius r+ and the Cauchy horizon radius
r−. The black hole horizon radius r+ is one of the solutions of the equation f(r+) = 0, where f(r) is given in Eq. (2).
Thus, in general r+ = r+ (M,Q, l, d). There is another possible radius for which f(r) = 0. It is the Cauchy horizon
radius r− obeying r− ≤ r+, with r− = r− (M,Q, l, d). Thus, in general one has

r+ = r+ (M,Q, l, d) , r− = r− (M,Q, l, d) . (4)

In terms of r+ and r−, the function f(r) of Eq. (2) can be written as

f (r) =
1

r2
(r − r+) (r − r−) g(r) , (5)

where g(r) ≡
p2(d−4+k2)(r;k)

r2(d−4) , and p2(d−4+k2) (r; k) is a polynomial function of r, of degree 2
(
d− 4 + k2

)
, whose

coefficients can depend on k.
An extremal black hole has one characteristic radius, the event horizon radius has now the same value as the the

Cauchy horizon radius r+ = r−. For the BSW mechanism, the most interesting black hole, the one from which large
amounts of energy can be extracted from the particle collision, is the extremal black hole. For an extremal black hole,
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there are two conditions, the former one f(r+) = 0, and a new one df
dr (r+) = 0, and they are such the black hole

horizon r+ and the Cauchy horizon r− indeed coincide, i.e.,

r+ (M,Q, l, d) = r− (M,Q, l, d) . (6)

From the two conditions on f(r) one finds that rd−3
+

(
1− d−2

d−3k
r2+
l2

)
= µM . For k = 0, one readily obtains

rd−3
+ = µM . Using again the two conditions on f(r) one gets that r+ of an extremal black hole obeys r+ =√
−kl2R(M,Q, d) + l2

√
R2(M,Q, d) +

(
d−3
d−2

)2 (
µ2M2

χQ2 − 1
)
, where we have used the abbreviation R(M,Q, d) ≡

1
2
µ2M2

χQ2

(
d−3
d−2

)2 [
2(d−2)
d−3

(
1− χQ2

µ2M2

)
− 1
]
. Note that we still have r+ = r+(M,Q, l, d), and we stick to the horizon

radius notation r+, knowing that this is the extremal case r+ = r−. Moreover, since r+ = r−, and each radius is a
root of f(r), in the extremal case, one has that f(r) of Eq. (2) has a double route, and so it assumes the form

f (r) =
1

r2
(r − r+)

2
g(r) , (7)

where g(r) ≡
p2(d−4+k2)(r;k)

r2(d−4) , and p2(d−4+k2) (r; k) is a polynomial function of r, of degree 2
(
d− 4 + k2

)
, whose

coefficients can depend on k. Notice that, with this factorization, the electric potential defined in Eq. (3) can be

written as φ = Q

(d−3)rd−3
+

(
1−

√
f(r)
g(r)

)d−3

.

For k = −1 or k = 0, in even dimensions g(r) has no real zeros, and in odd dimensions it has one negative zero
and the other zeros are not real. For k = 1, i.e., for positive cosmological constant, there is yet another zero of f(r).
It is given by the cosmological horizon radius rc, with rc = rc (M,Q, l, d) and r− ≤ r+ ≤ rc, so it is the largest
horizon radius. We will be interested in the black hole r+ radius for the collision processes, so rc will not appear in
our developments. In this case of k = 1, in fact, one can work with the variables {M,Q, l, d}, or with the variables
{r+, r−, rc, d}, or with a combination of the two. The most natural combination of variables in the problem at hand
is {r+, Q, l, d}. In the case of k = 0 and k = 1 there is no cosmological horizon and one can work with the natural
combination of variables in the problem at hand, i.e., {r+, Q, l, d}.

C. Equations of motion for particles and the electric ergosphere

1. Equations of motion for particles

Neutral particles follow geodesics in a Reissner-Nodtsröm spacetime, but electrically charged particles do not. To
obtain the equations of motion for a charged particle it is useful to resort to the Lagrangian of the particle and its
Euler-Lagrange equations of motion. Consider a particle with mass m and specific charge ẽ, moving in a d-dimensional
Reissner-Nodtsröm spacetime. The Lagrangian L for the particle can then be written as L = 1

2gabu
aub−Aau

a, where

ua = dxa

dτ is the four-velocity of the particle, τ is its proper time defined through dτ2 = −ds2, and Aa is the
electromagnetic four-potential. For the Coulomb interaction of the particle with the black hole spacetime one has
Aa = φδta, and assuming pure radial motion, i.e., ua = utδat + urδar , the Lagrangian L for the particle is then given

by L = 1
2

(
−f (r) ṫ2 + ṙ2

f(r) −
2ẽQ

(d−3)rd−3 ṫ
)
, where a dot means a derivative relative to the particle’s proper time τ ,

and we have used gtt = −f , grr = 1
f , φ = Q

(d−3)rd−3 , u
t = ṫ, and ur = ṙ. From the Euler-Lagrange equations for

L one obtains that the equation of motion for the coordinate t is d
dτ

(
∂L
∂ṫ

)
= 0, i.e., d

dτ

(
f ṫ+ ẽQ

(d−3)rd−3

)
= 0, which

can be integrated to ṫ =
E− eQ

(d−3)rd−3

mf , where E is the energy of the particle, a conserved quantity, and the particle’s

total electric charge has been defined as e = mẽ. For pure radial motion, one finds that the first integral for the

radial coordinate is ṙ2 =

(
E− eQ

(d−3)rd−3

)2

m2 − f . Defining the four-momentum as pa ≡ mua, the time component of the

four-momentum of the particle is pt ≡ mṫ and the radial component is pr ≡ mṙ. One then finds that the equations
of motion for the particle can be put in the form

pt ≡ mṫ =
X

f
, pr ≡ mṙ = εZ , (8)
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where the quantities X and Z are defined as

X(r) = E − eQ

(d− 3) rd−3
, Z(r) =

√
X2 −m2f(r), (9)

with f = f(r) being given in Eq. (7), and ε = ±1 defining the direction of the particle’s motion, −1 for inward radial
motion and +1 for outward motion. The forward in time condition, ṫ > 0 implies that X > 0 outside the horizon. In
what follows, it will always be assumed that the electric charge of the black hole is positive, Q > 0, without loss of
generality.

2. The electric ergosphere

Given the forward in time condition, ṫ > 0, one has X > 0 for any radii outside the horizon. From Eq. (9) this

implies E− eQ
(d−3)rd−3 > 0. Given a black hole electric charge Q, with Q positive as assumed, it is clear from the latter

expression that one can have negative energy states E for the particle, as long as its electric charge e is negative and
the position of the particle r is sufficiently small. Writing for these negative energy states E = −|E| and e = −|e|, we
have that indeed these states exist when the radial position r of the particle obeys

r+ ≤ r < rergo , rd−3
ergo =

|e|Q
(d− 3) |E|

, E < 0 , e < 0. (10)

The region r+ ≤ r < rergo is an ergosphere that comes from the existence of electric charge, and is called electric
ergosphere or generalized ergosphere.

III. DEFINITIONS AND NECESSARY CONDITIONS FOR ENERGY PRODUCTION FROM BSW
PARTICLE COLLISIONS: DEFINITION OF CRITICAL PARTICLES AND ANALYSIS OF THE

ENERGY AT THE CENTER OF MASS FRAME

A. Definition of critical particles and energy at the center of mass frame

1. Critical, near-critical, and usual particles

We nominate each particle as particle i, in general i = 1, 2, 3, 4. Each particle has attributes like its energy Ei, its
mass mi, its electric charge ei, and so on. In what follows, definitions of critical, near-critical, and usual particles will
be important. Thus, we establish here definitions for thee different particles, see [8].

The horizon radius r+ obeys the equation f(r+) = 0 as we have seen. If in addition X(r+) in Eq. (9) is also zero,
X(r+) = 0, then pt is undetermined a priori and interesting things can happen. When for a given particle i one has
Xi(r+) = 0, then for a value Ei of the energy of the particle there corresponds a definite value of the electric charge,
the critical electric charge eic given by

eic =
rd−3
+ (d− 3)

Q
Ei. (11)

A particle i is then defined as critical if its electric charge ei is equal to the critical electric charge, i.e.,

ei = eic , critical particle . (12)

A particle i is defined as near critical if its electric charge ei is almost equal to the critical electric charge, i.e.,

ei = eic (1 + δ) , near critical particle , (13)

with |δ| ≪ 1 and δ positive or negative. If δ = 0, one recovers the definition of a critical particle. A particle i is
defined as usual if its electric charge ei differs from the critical and near-critical electric charges, i.e.,

ei ̸= eic (1 + δ) , usual particle , (14)

i.e., the electric charge of the particle is significantly different from the critical electric charge. These definitions are
important.
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2. Particle collision and energy at the center of mass frame

To study the energy generated from the BSW effect, a collision between two ingoing particles is assumed to occur
in a d dimensional extremal Reissner-Nordström black hole spacetime with horizon radius r+, electric charge Q, and
cosmological constant kΛ. The mass of particle i is denoted as mi, and the electric charge of particle i is denoted as
ei, so that, before the collision, particles i = 1, 2 have masses and charges m1 and e1, and m2 and e2, respectively,
and after the collision, particles i = 3, 4 have masses and charges m3 and e3, and m4 and e4, respectively, assuming,
as we do, that two particles come out of the collision.

To have a grasp on the collision process and to understand the necessary conditions for energy extraction, we start
by making a simplifying assumption, the incoming masses are equal m1 = m2, although the electric charges e1 and e2
are different. So we put m ≡ m1 = m2. An important quantity is the energy of the center of mass ECM. To calculate
an expression for it, note that the total four-momentum vector pa is pa = pa1 + pa2 , where pa1 is the momentum of
particle 1 and pa2 is the momentum of particle 2. In the center of mass the total three-momentum is zero, so the
four-momentum is only composed of the center of mass energy in the local frame and we can write in the center
of mass p̄l = ECMδlt. But pa = p̄leal where eal is the local tetrad. So, p2 = gabp

apb = gabp̄
lp̄meal e

b
m = p̄lp̄mηlm =

E2
CMδltδ

m
t ηlm = E2

CMηtt = −E2
CM, where gab is here the Reissner-Nordström metric and ηlm is the Minkowski metric.

On the other hand p2 = gabp
apb = gab(p

a
1 + pa2)(p

b
1 + pb2) = gabp

a
1p

b
1 + gabp

a
2p

b
2 + 2gabp

a
1p

b
2. Now pa1 = mua

1 and
pa2 = mua

2 , so gabp
a
1p

b
1 = −m2, gabp

a
2p

b
2 = −m2, and 2gabp

a
1p

b
2 = 2m2gabu

a
1u

b
2. Since at r, p2 is an invariant, one gets

−(E2
CM) = −2m2 + 2m2gabu

a
1u

b
2, i.e.,

E2
CM

2m2 = 1 − gabu
a
1u

b
2. For a pure radial collision one has ua

1 = ut
1δ

a
t + ur

1δ
a
r and

ua
2 = ut

2δ
a
t + ur

2δ
a
r , so that

E2
CM

2m2 = 1 − gttu
t
1u

t
2 − grru

r
1u

r
2. Since ut

1 = ṫ1, u
r
1 = ṙ1, u

t
2 = ṫ2, u

r
2 = ṙ2, gtt = −f , and

grr = 1
f , one finds

E2
CM

2m2 = 1 + f ṫ1ṫ2 − ṙ1ṙ2
f . Using the equations of motion given in Eq. (8), one finds that

E2
CM(r)

2m2
= 1 +

X1(r)X2(r)− Z1(r)Z2(r)

m2f(r)
, (15)

where Xi and Zi, i = 1, 2, are the quantities defined in Eq. (9) evaluated for particle i = 1, 2 at the point of collision
r, the value εi = −1, i = 1, 2, was used since we assume a BSW collision and so the two particles move inwards, and
f is given in Eq. (7). ECM which clearly is a function of r, ECM(r), is to be computed at some radius, possibly near
the black hole horizon r+. Note that after the collision, particles 3 and 4 have the same ECM as before the collision.

Three types of collision between the incoming particles can happen. They are the collision between two critical
particles, the collision between a critical particle and a usual particle, and the collision between a near-critical particle
and a usual particle. For each type of collision, the energy at the center of mass frame can be computed and the
conditions which particles must obey to allow the occurrence of the collision at the horizon can be established.

B. The three types of collisions: Estimates for the produced energy

1. Collision between two critical particles

Here we study a collision between two ingoing critical particles in the vicinity of the extremal black hole event
horizon, at some radius r which is near or at r+. So we assume that particle 1 is exactly critical and particle 2

is exactly critical. Then particle 1 has e1 = e1c, see Eq. (12), and from Eq. (9) we have X1 = E1

(
1−

( r+
r

)d−3
)

and Z1 =

√
E2

1

(
1−

( r+
r

)d−3
)2

−m2f . Particle 1 can only move for radii for which Z1 is well defined, in the

sense that the argument of the square root has to be positive, E2
1

(
1−

( r+
r

)d−3
)2

−m2f > 0. Therefore, particle 1

can only reach the horizon provided that the term −m2f (r) approaches zero faster than E2
1

(
1−

( r+
r

)d−3
)2

when

r → r+. Particle 2 is critical, it has e2 = e2c, see Eq. (12), and from Eq. (9) we have X2 = E2

(
1−

( r+
r

)d−3
)
and

Z2 =

√
E2

2

(
1−

( r+
r

)d−3
)2

−m2f . Particle 2 can as well only move for radii for which Z2 is well defined, in the sense

that the argument of the square root has to be positive, E2
2

(
1−

( r+
r

)d−3
)2

−m2f > 0. Therefore, particle 2 can only

reach the horizon provided that the term −m2f (r) approaches zero faster than E2
2

(
1−

( r+
r

)d−3
)2

when r → r+.

To find if particles 1 and 2 can reach the black hole event horizon, one has to study how the metric potential f (r)
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approaches zero when r → r+. This will depend on the factorization of this function f (r). The case in which f goes
faster to zero when the horizon r+ is approached is the extremal case with the factorization obtained in Eq. (7), since

1 − r+
r ≤ 1 −

( r+
r

)d−3
. The factorization for nonextremal black holes, Eq. (5), shows that the approach is not fast

enough. The generic expression for Z1 in the extremal case is then Z1 =
(
1−

( r+
r

)d−3
)√

E2
1 −m2 g(r)

(1−
r+
r )

2(
1−(

r+
r )

d−3
)2 .

Since limr→r+
(1−

r+
r )

2(
1−(

r+
r )

d−3
)2 = 1

(d−3)2
, Z1 near the horizon is given by Z1 =

(
1−

( r+
r

)d−3
)√

E2
1 − m2

(d−3)2
g(r). Note

that, by definition, the function g(r) is always nonzero at the horizon, since the part of f (r) that vanishes at the
horizon was already factorized. Therefore, Z1 is well defined and the horizon is reachable by a critical particle provided

that E2
1 > m2

(d−3)2
g(r+). The same can be said for Z2, so that Z2 =

(
1−

( r+
r

)d−3
)√

E2
2 − m2

(d−3)2
g(r), therefore, Z2

is well defined and the horizon is reachable by a critical particle provided that E2
2 > m2

(d−3)2
g(r+). Thus in brief, we

can write

X1(r) = E1

(
1−

(r+
r

)d−3
)
, Z1 =

(
1−

(r+
r

)d−3
)√

E2
1 − m2

(d− 3)
2 g(r) ,

X2(r) = E2

(
1−

(r+
r

)d−3
)
, Z2 =

(
1−

(r+
r

)d−3
)√

E2
2 − m2

(d− 3)
2 g(r) ,

(16)

Substituting now X1, Z1, X2, and Z2 of Eq. (16) in the expression for the energy at the center of mass frame for
a collision, Eq. (15), when the collision is between a critical and another critical particle at the extremal horizon r+,
one gets

E2
CM(r)

2m2
= 1 +

(d− 3)
2

m2g(r+)

[
E1E2 −

√
E2

1 − m2

(d− 3)
2 g(r+)

√
E2

2 − m2

(d− 3)
2 g(r+)

]
. (17)

Note that, as displayed in Eq. (17), ECM(r) does not depend on r in zero order in r − r+. So, ECM remains finite at
the horizon,

ECM(r+) = finite , particle 1 critical e1 = e1c, particle 2 critical e2 = e2c . (18)

Therefore, there is no great gain. When two critical particles collide near or at the horizon there is no great amount
or even no energy generation.

2. Collision between a critical and a usual particle

Here we study a collision between an ingoing critical particle and an ingoing usual particle in the vicinity of
the extremal black hole event horizon, at some radius r which is near or at r+. So, we assume that particle 1
is exactly critical and particle 2 is usual. Then particle 1 has e1 = e1c, see Eq. (12), and from Eq. (9) we have

X1 = E1

(
1−

( r+
r

)d−3
)
and Z1 =

√
E2

1

(
1−

( r+
r

)d−3
)2

−m2f . Since particle 1 is critical, the calculations previously

made hold here, and we do not repeat them, noting that f has to be the extremal black hole function in order to have
a possible gain. Particle 2 is usual, it has e2 ̸= e2c (1 + δ), see Eq. (14), and one simply has that X2 = E2 − e2Q

(d−3)rd−3

and Z2 =

√(
E2 − e2Q

(d−3)rd−3

)2
−m2f . To find if particle 2 can reach the black hole event horizon, one has to study

how the metric potential f (r) approaches zero when r → r+. Due to the forward in time condition, one has that

X2 > 0 for all possible values of the radial coordinate. This means that, when r → r+, the term
(
E2 − e2Q

(d−3)rd−3

)2
remains positive, while the term −m2f (r) → 0. Therefore, particle 2 can always reach the horizon. Thus in brief, we
can write

X1(r) = E1

(
1−

(r+
r

)d−3
)
, Z1 =

(
1−

(r+
r

)d−3
)√

E2
1 − m2

(d− 3)
2 ,

X2(r) = E2 −
e2Q

(d− 3) rd−3
, Z2(r) =

√(
E2 −

e2Q

(d− 3) rd−3

)2

−m2f(r) ,

(19)
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Substituting now X1, Z1, X2, and Z2 of Eq. (19) in the expression for the energy at the center of mass frame for a
collision, Eq. (15), when the collision is between a critical and a usual particle one gets the expression,

E2
CM(r)

2m2
= 1 +

E2 − e2Q

(d−3)rd−3
+

m2g(r+)

[
E1 −

√
E2

1 − m2

(d− 3)
2 g(r+)

]
d− 3

1− r+
r

, (20)

for a collision happening at a radius r near r+. When r → r+, the factor 1

1− r+
r

→ ∞. Thus, the energy at the center

of mass frame explicitly diverges when the collision is at the horizon. Therefore, a collision between a critical and a
usual particle in the vicinity of the event horizon leads to a divergent energy at the center of mass frame

ECM(r+) = ∞ , particle 1 critical e1 = e1c, particle 2 usual . (21)

Therefore, here one can have a great gain. When two particles collide near or at the horizon, one of them is critical
and the other is usual, there is the possibility of a great amount of energy generation.

3. Collision between a near-critical and a usual particle

We now consider a collision between an ingoing near-critical particle, which for definiteness is chosen to be particle
1, and an ingoing usual particle, which is particle 2. The energy at the center of mass frame for collisions happening at

the black hole event horizon, Eq. (15), is exactly
E2

CM

2m2 = 1 + 1
2

(
e2c−e2
e1c−e1

+ e1c−e1
e2c−e2

)
. Now, particle 1 being near critical

has an electric charge given by e1 = e1c (1 + δ), with |δ| ≪ 1, and δ has to be negative or zero, δ ≤ 0, since to arrive
at the horizon the electric charge of the particle has to be less or equal to the critical charge due to the forward in
time condition, i.e., e1 ≤ e1c. So, e1−e1c

e1c
= δ. Thus, the energy at center of mass frame scales as the inverse of the

square root of |δ|. Indeed,

E2
CM(r)

2m2
=

1

2

e2c − e2
e1c − e1c

+ 1 , (22)

plus O
(

e1−e1c

e1c

)
= O (δ) for a collision at r+. Therefore, since the denominator is equal to e1c|δ|, the energy at the

center of mass frame can be made as large as one wants. In particular, if δ = 0, i.e., if particle 1 is exactly critical,
the energy seems to diverge. However, to know whether this divergence is possible or not, one has to assume from the
very beginning that particle 1 is exactly critical, in order to find how the horizon can be reached by such a particle.
This is what we have done in the previous case, and no need to take this case into account.

C. Picking the only available interesting type of collision

The energy at the center of mass frame was computed for three different types of collisions between two ingoing
particles with equal masses and different electric charges. The types of collision are between two critical particles,
between a critical and a usual particle, and between a near-critical and a usual particle. For the first type, a collision
between two critical particles, it was verified whether these particles were able to reach the black hole event horizon,
and it was found that this is only the case if one assumed an extremal black hole, and it was further found that there
is no divergence in the energy at the center of mass frame. For the second type, a collision between a critical particle
and a usual particle, it was verified whether these particles were able to reach the black hole event horizon, and it
was found that this is only the case if one assumed an extremal black hole, and it was further found that there is
divergence in the energy at the center of mass frame when the collision occurs exactly at the black hole event horizon.
For the third type, a collision between a near critical particle and a usual particle, it was concluded that the energy
at the center of mass frame can be as large as one wants. However, this quantity is always finite, diverging only in
the limit in which particle 1 is exactly critical, so one is back in second type.

In brief, the only interesting type of collision, the one that yields a divergingly high energy generation, is the second
one, i.e., a collision between a critical and a usual particle in an extremal black hole background. However, even when
the energy at the center of mass frame is divergingly high, it can happen that energy extraction is not possible, for
instance, the particles that come out of the collision all enter into the black hole. Thus, one is advised to analyze
carefully the collision process and consider the general case in which the particles have different masses. Therefore,
for the situations in which the energy at the center of mass frame is divergent, we analyze a collision between ingoing
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particles i = 1, 2 with masses m1 and m2 that can be different in general, originating two final particles, i = 3, 4, with
masses m3 and m4, also different in general. For definiteness, it is assumed that particle 3 is outgoing in the end of
the process, while particle 4 is ingoing and falls into the black hole. Thus, the energy extracted essentially equals
the energy of the emitted particle, in this case the energy of particle 3. We want to establish bounds on the energy
of the emitted particle, finding under which conditions energy extraction through a Penrose process is possible using
the BSW effect. Thus, we aim to get a better measure, better than simply unbounded energy at the center of mass
frame, of extracted energy from the black hole due to the BSW effect when combined with the Penrose process in the
collisional Penrose process.

IV. PENROSE AND SUPER-PENROSE ENERGY EXTRACTION FROM A COLLISION BETWEEN A
CRITICAL AND A USUAL PARTICLE: FULL STORY

A. Conservation laws and energy of critical and usual particles

Up to now, it has been shown that, under certain conditions, a BSW collision between two particles in the vicinity
of the horizon of an extremal black hole can lead to a divergence of the energy at the center of mass frame. This
happens for a collision between particle 1, a critical particle, and particle 2, a usual particle. However, this divergence
is not a sufficient condition to guarantee that there is some outgoing particle with some net energy, let alone an
unbounded energy. In this section, we find the energy and the mass of a particle which results from a collision near
the black horizon and is sent to larger radii, i.e., we examine the collisional Penrose process in which the collisions are
of BSW type. For spacetimes with zero or positive cosmological constant, i.e., asymptotically flat or asymptotically
dS spacetimes, the escaping particle can reach infinity, for spacetimes with negative cosmological constant, i.e.,
asymptotically AdS spacetimes, this escaping particle only reaches infinity if it is massless.

We assume a collision between the initial ingoing particles i = 1, 2 and now consider the more general case in which
the particles can have different masses, i.e., particle 1 has mass m1 and electric charge e1 and particle 2 has mass
m2 and electric charge e2. We further assume that two particles i = 3, 4 issue after the collision, with mass m3 and
electric charge e3, and mass m4 and electric charge e4. We consider that energy, radial momentum, and electric charge
are conserved in the collision process, which implies the following three conservation laws,

X1 +X2 = X3 +X4, (23)

ε1Z1 + ε2Z2 = ε3Z3 + ε4Z4, (24)

e1 + e2 = e3 + e4, (25)

respectively.
We further assume that particle 1 is critical and goes into the black hole so that ε1 = −1, particle 2 is usual and

also goes into the black hole so that ε2 = −1, and particle 4 which is one of the particles that comes out of the
collision is usual and goes into the black hole so that ε4 = −1. The black hole is extremal since we have seen that
extremal black holes are the ones that can yield large amounts of energy. We want to find the properties of particle
3 that emerges from the collision and is outgoing, see Fig. 1. For critical particles, the quantity X evaluated at the
horizon, X(r+), vanishes, while for usual particles one has that X(r+) ̸= 0. Therefore, for particle 1, X1(r+) = 0 and

its energy can be related with its electric charge as E1 = e1Q

(d−3)rd−3
+

, where Eq. (9) was used. For particle 2, which is

usual, one uses the forward in time condition, ṫ > 0, to find a lower bound for the energy. From Eqs. (8) and (9) this

condition implies that X2(r+) > 0 and, therefore, E2 > e2Q

(d−3)rd−3
+

and the same applies for particle 4, E4 > e4Q

(d−3)rd−3
+

.

In brief, we can write for particles 1, 2 , and 4 that X1 = E1

(
1−

( r+
r

)d−3
)
, Z1 =

√
E2

1

(
1−

( r+
r

)d−3
)2

−m2f ,

X2 = E2− e2Q
(d−3)rd−3 , Z2 =

√(
E2 − e2Q

(d−3)rd−3

)2
−m2f , X4 = E4− e4Q

(d−3)rd−3 , and Z4 =

√(
E4 − e4Q

(d−3)rd−3

)2
−m2f .

Since particle 1 is assumed critical, and therefore X1(r+) = 0 and so e1 =
(d−3)rd−3

+

Q E1, we can evaluate X(r) and

Z(r) of Eq. (9) near r+, i.e., expand it in r− r+, or what amounts to the same thing in
√

f(r). Doing the expansion,

one finds X1(r) = E1

√
f(r) d−3√

g(r)
and Z1(r) = E1

√
f(r)

√
(d−3)2

g(r) − m2
1

E2
1
, plus O (f) in both equations. Particle 2 and

particle 4 are assumed usual, i.e., X2(r+) ̸= 0 and X4(r+) ̸= 0, and expanding these functions near r+, i.e., in
√
f(r)
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FIG. 1. (a) Schematic picture for an electrically charged BSW collision. The electrically charged particle 1 collides with the
electrically charged particle 2 outside the event horizon of a black hole at the center. Particle 3 emerges from the collision
escaping to infinity taking with it energy in a Penrose process, while particle 4, which is inside its own electric ergosphere, falls
through the event horizon. On the left a snapshot before the collision. On the right a snapshot after the collision. Note that
the electric ergosphere only materializes after particle 4 with negative energy is created in the collision. (b) Carter-Penrose
diagram for the collisional Penrose process in a spacetime with zero cosmological constant. After particles 1 and 2 suffer a
BSW collision, particles 3 and 4 emerge, with the former escaping to future timelike infinity through a Penrose process and the
latter, being in its own electric ergosphere, falling into the black hole. Particle 3 can carry arbitrarily large energies to infinity
characterizing a super-Penrose process.

one finds X2(r) = X2(r+) +
e2 Q

rd−3
+

√
f(r)
g(r) , Z2(r) = X2(r), X4(r) = X4(r+) +

e4 Q

rd−3
+

√
f(r)
g(r) , Z4(r) = X4(r), plus O (f) in

the four equations. Collecting these results gives

X1(r) = E1
d− 3√
g(r)

√
f(r), Z1(r) = E1

√
(d− 3)2

g(r)
− m2

1

E2
1

√
f(r) ,

X2(r) = X2(r+) +
e2 Q

rd−3
+

√
g(r),

√
f(r), Z2(r) = X2(r) ,

X4(r) = X4(r+) +
e4 Q

rd−3
+

√
g(r),

√
f(r), Z4(r) = X4(r) ,

(26)
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plus O (f) in all equations, and where X2(r+) = E2 − e2
(d−3)

Q

rd−3
+

and X4(r+) = E4 − e4
(d−3)

Q

rd−3
+

.

Thus, let us summarize what we have up to now. The situation in analysis in this section corresponds to a collision
at some radius r near the extremal horizon radius r+ between a critical and a usual particle, since this is the case for
which the energy at the center of mass frame diverges. Therefore, particle 1 is critical and particle 2 is usual. We also
assume that particle 4 that comes out of the collision is usual. Moreover, since we are dealing with the BSW effect,
we assume that particle 1 goes in, particle 2 goes in, and further assume that particle 4 goes in. We consider that the
other final particle, particle 3, escapes somehow after the collision. Several situations can happen, namely, particle 3
goes immediately out so that at the collision one has ε3 = +1, or particle 3 goes in first, so that at the collision one
has ε3 = −1, and then reverses direction and goes out, or particle 3 goes in always and ε3 = −1. Now we calculate
the properties of the final outgoing emitted particle, particle 3.

B. Energy of the outgoing emitted particle

Particle 3, the one emitted, needs a very special treatment for the calculation of its quantities. The emitted
particle, emerging from the particle collision out of an extremal black hole, can only move for radii for which the

square root in the definition of Z, Z =
√
X2 −m2f , see Eq. (9), is well defined. This means that particle motion can

only happen for radii satisfying X ≥ m
√
f , with X = E − eQ

(d−3)rd−3 , see Eq. (9). Thus, X ≥ m
√
f , translates into

e ≤ (d−3)rd−3

Q

(
E −m

√
f
)
. From the definition of f of an extremal black hole, see Eq. (7), we have rd−3 =

rd−3
+

(1−
√

f
g )d−3

,

so that e ≤ (d−3)rd−3
+

Q

E−m
√

f(r)

(1−
√

f(r)
g(r)

)d−3
, i.e., e ≤ (d−3)rd−3

+ E

Q

1−m
E

√
f(r)

(1−
√

f(r)
g(r)

)d−3
. We identified critical charge ec as ec =

(d−3)rd−3
+ E

Q ,

see Eq.(11). So, one has e ≤ ec
1−m

E

√
f(r)

(1−
√

f(r)
g(r)

)d−3
. Now for each particle i, the function on the righr hand side of this

inequality acts as a potential barrier, so we define the potential ei0 for particle i as ei0(r) ≡ eic
1−mi

Ei

√
f(r)

(1−
√

f(r)
g(r)

)d−3
, with

ei0(r+) = eic. For particle 3, i = 3, we have e30(r) ≡ e3c
1−m3

E3

√
f(r)

(1−
√

f(r)
g(r)

)d−3
as the potential that particle 3 feels. Clearly

e30(r) establishes where motion is allowed, and since e3 ≤ e30(r) the allowed motion depends on the particle’s charge.
Since, we are assuming Q > 0, we assume that e3 > 0, so that the criticality condition X3(r+) = 0 can be satisfied,
bearing in mind that these assumptions are without loss of generality. The collisions of interest occur near the horizon
where f(r) is small, so e30(r) can be expanded in

√
f(r) as

e30(r) ≡ e3c

[
1 +

(
d− 3√
g(r)

− m3

E3

) √
f(r)

]
, (27)

plusO (f) terms and with e30(r+) = e3c. This e30(r) is the potential that particle 3 feels at this order of approximation,
and the condition for particle 3 motion is then that the electric charge e3 obeys

e3 ≤ e30(r) (28)

with e30(r) given in Eq. (27). Note that for particle 3 resulting from a collision in the vicinity of the black hole horizon
to be able to escape outwards, one has to have m3 < d−3√

g(r)
E3, such that the term proportional to

√
f in Eq. (27)

is positive at least close to the horizon. Otherwise, e30(r) decreases with increasing r, and there would be a radius
where the condition Eq. (28) would be violated and motion would not be possible. Note that m3 < d−3√

g(r)
E3 can be

written as E3 >

√
g(r)

d−3 m3 so that one can define a lower energy E3l ≡
√

g(r)

d−3 m3, such that E3 > E3l.
There are four cases of interest in which collisions can happen in the vicinity of the horizon. All of them have

m3

√
g(r+)

d−3 ≤ E3. We now enumerate the four cases of this collisional Penrose process. 1. m3

√
g(r+)

d−3 ≤ E3, e3 ≤ e3c,

and ε3 = +1. The collision happens in the allowed region, just near the horizon, where e3 ≤ e3c ≤ e30(r). After the
collision, particle 3 moves to larger radii since ε3 = +1. Particle 3 is near critical or critical, since in this case the

collision can happen at the horizon itself. 2. m3

√
g(r+)

d−3 ≤ E3, e3c < e3 < e30(r), and ε3 = +1. The collision happens

in the allowed region, with the condition e3 < e30(r) meaning that it happens at some radius just outside the horizon
radius r+, i.e., particle 3 is near-critical. Since ε3 = +1, particle 3 moves outwardly immediately after the collision.
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3. m3

√
g(r+)

d−3 ≤ E3, e3 ≤ e3c ≤ e30(r), and ε3 = −1. The collision happens in the allowed region, just near the

horizon, where e3 ≤ e3c ≤ e30(r). Particle 3 is near critical or critical, since in this case the collision can happen at
the horizon itself. Since ε3 = −1, the particle moves first toward the horizon, reaches a turning point before it, and
moves back in the outward direction. This turning point is found from Eq. (28). After knowing the electric charge
e3 of the emitted particle 3, one finds from Eq. (28) the radius r at which e3 = e30(r), with e30(r) given in Eq. (27),

with this r being the turning point. 4. m3

√
g(r+)

d−3 ≤ E3, e3c < e3 < e30(r), and ε3 = −1. The collision happens in

the allowed region, with the condition e3 < e30(r) meaning that it happens at some radius r just outside the horizon
radius r+, i.e., particle 3 is near-critical. Since ε3 = −1, the particle moves first toward the horizon, reaches a turning
point before it, and moves back in the outward direction.

To distinguish systematically between cases 1., 2., 3., and 4., a parameter δ is defined in such a way that

e3 = e3c (1 + δ) , (29)

where δ < 0 in cases 1. and 4., and δ ≥ 0 in cases 2. and 3. For cases 1., 2., 3., and 4. the collisions occur at r near
the horizon r+, and, therefore, X3 and Z3 can be expanded for small values of r − r+ which can then be substituted

by
√

f(r). Thus, δ is very small, and comparing Eq. (13) with Eq. (29) we see that particle 3, the emitted particle,
is indeed a near critical particle. For near critical particles, δ should be controlled and one way to do it is to expand
δ in a series in

√
f which is near zero for r near r+,

δ =
∆e3
e3

√
f , (30)

plus O (f) and where ∆e3
e3

is some constant value, not infinitesimal, see [17] for d = 4 and k = 0. The quantity ∆e3
e3

is to be determined from the conservation equations as a function of geometrical quantities and particle quantities.
There is also an upper bound for ∆e3

e3
, imposed by the condition e3 < e30(r), which from Eqs. (27) and (29) reads

∆e3
e3

< d−3√
g(r)

− m3

E3
. Now, since particle 3 is near critical, X3 and Z3 can be expanded in

√
f(r) as

X3 = E3

(
d− 3√
g(r)

− ∆e3
e3

) √
f(r) , Z3 = E3

√√√√( d− 3√
g(r)

− ∆e3
e3

)2

− m2
3

E2
3

√
f(r) , (31)

plus O (f) terms. For δ < 0 one has ∆e3
e3

< 0 and all is fine in Eq. (31). For δ > 0 one gets from Eq. (31) the bound
∆e3
e3

< d−3√
g(r)

which is weaker than the one just found above.

From the momentum conservation relation, Eq. (24), i.e., ε1Z1 + ε2Z2 = ε3Z3 + ε4Z4, together with electric charge
and energy conservation, Eqs. (25) and (23), respectively, assuming that particle 1 is critical and particles 2 and 4
are usual, see Eq. (26), and ε1 = ε2 = ε4 = −1, one finds upon using Eq. (31) that

d− 3√
g(r+)

[
E1 −

√
E2

1 −m2
1

g(r+)

(d− 3)
2

]
+ E3

(
∆e3
e3

− d− 3√
g(r+)

)
= ε3E3

√√√√( d− 3√
g(r+)

− ∆e3
e3

)2

− m2
3

E2
3

, (32)

valid in order
√
f . From this equation, the expression for the energy at the center of mass obtained in Eq. (20) can

be recovered, considering that all the particles involved in this process have the same mass m, see the Appendix for
the derivation. One can solve Eq. (32) for ∆e3

e3
. Before that, the first term that appears in Eq. (32) is an important

quantity as we are about to find, and so we define

∆E1 ≡ d− 3√
g(r+)

[
E1 −

√
E2

1 −m2
1

g(r+)

(d− 3)
2

]
. (33)

Then, after solving Eq. (32), ∆e3 is the expression ∆e3 = 1
E3

d−3√
g(r+)

(E3− m2
3+(∆E1)

2

2∆E1

√
g(r+)

d−3 ) e3. Clearly, the quantity

m2
3+(∆E1)

2

2∆E1

√
g(r+)

d−3 can be defined as an energy, and we define E3b, with b for bound, as E3b ≡ m2
3+(∆E1)

2

2∆E1

√
g(r+)

d−3 . Upon

using ∆E1 of Eq. (33), the expression for E3b can be put in the form

E3b =
1

2

m2
3 +m2

1

m2
1

E1 +
1

2

m2
3 −m2

1

m2
1

√
E2

1 −m2
1

g(r+)

(d− 3)2
. (34)
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Note that any information about particle 2 has disappeared from the formulas above, but in fact it has been deposited
hiddenly in the quantities pertaining to particle 3. Now, from Eqs. (32)-(34) we have that

∆e3 =
d− 3√
g(r+)

(
1− E3b

E3

)
e3 . (35)

From Eq. (35), we deduce that if E3 ≤ E3b, then
∆e3
e3

≤ 0 and from Eq. (30) one has δ ≤ 0, and then from Eq. (29)

one has e3 ≤ e3c. Then, for this case one can write e3 ≤ e3c ≤ e30(r). If E3 > E3b, then ∆e3
e3

> 0 and from

Eq. (30) one has δ > 0, and then from Eq. (29) one has e3 > e3c. Since e3 < e30(r) for sure, one is within the case
e3c < e3 < e30(r). A particular delicate case is when m1 is small, even zero, m1 = 0, as can be seen from Eq. (34),
since then E3b is very large, even infinite, and one has to decide whether E3 is equal or lower than E3b or E3 can be
higher than E3b, so that ∆e3

e3
≤ 0 and there is no turning point or ∆e3

e3
> 0 and there is a turning point, respectively.

We now show that to have a turning point one must have m1 > 0, i.e., m1 cannot be a massless particle. For that, we

expand Eq. (35) for small m1

E1
to find that for ∆e3

e3
to be positive then one has

m2
3

E3
<

m2
1

E1
. To have a turning point one

has to have Z3 ̸= X3 which from Eq. (31) means that m3

E3
is not zero, more precisely m3

E3
> 0, therefore also m3√

E3
> 0.

Thus, we conclude that one has m1 >
√

E1

E3
m3 for having a turning point. Since the right hand side is never zero, we

have m1 > 0 mandatorily, in order to have a turning point in the case m1 small. So for this case m1 = 0 is excluded,

i.e., m1 can be very small but not zero. In the case that m1 ≤
√

E1

E3
m3 then ∆e3

e3
≤ 0 and there is no turning point,

in particular m1 = 0 has no turning point. There is still a further important equation that we have to explicitly give.
Indeed, Eq. (32) together with Eq. (35) gives

ε3|(∆E1)
2 −m2

3| = (∆E1)
2 −m2

3. (36)

If ∆E1 > m3 we deduce from Eq. (36) that ε3 = +1, particle 3 goes out from the point of collision. If ∆E1 < m3 we
deduce from Eq. (36) that ε3 = −1, particle 3 goes in from the point of collision, in particular when m1 is sufficiently
small and so ∆E1 is small, which comprises the case m1 = 0, particle 3 goes in. If ∆E1 = m3, Eq. (36) is an identity.
We have still to analyze the energy of particle 4, since to have energy extraction and in order that the BSW collision

gives rise to a Penrose process, this energy has to be negative. Since the electric charge Q of the black hole is the
same for all four particles, the point r of collision is the same for all four particles, and there is conservation of
electric charge, i.e., e1 + e2 − e3 − e4 = 0, see Eq. (25), we have that the conservation equation X1 +X2 = X3 +X4,
see Eq. (23), implies that at the point of collision, E1 + E2 = E3 + E4, i.e., E4 = E1 + E2 − E3. For energy
extraction, one necessarily has E3 > E1 + E2. Thus, when there exists extraction one finds E4 < 0 necessarily, and
so e4 < 0. Therefore, when there is energy extraction there is an electric ergosphere for particle 4, characterized by

r+ ≤ r < rergo 4 with rd−3
ergo 4 = |e4|Q

(d−3)|E4| , see Eq. (10), see also Appendix . There is thus a Penrose process or, when

E3 → ∞, one is in the presence of a super-Penrose process.
From the analysis made, namely, from the conditions that follow from Eqs. (35) and (36) and the discussions after

them, the four cases considered above can be spelled out in detail, with the calculated bounds for the energy and
mass of particle 3, the emitted particle. The four cases mentioned of the collisional Penrose process we are studying
can be now enumerated in full detail as follows.

1. OUT−: 0 ≤ m3 < ∆E1 and m3

√
g(r+)

d−3 ≤ E3 ≤ E3b. Thus, e3 ≤ e3c ≤ e30(r) and ε3 = +1, the particle goes
directly out after the collision. This case, yields no energy extraction since E3 is less than E1. This happens

because, as m3 < ∆E1 one has E3b < ∆E1

√
g(r+)

d−3 , which is lower than E1, from Eq. (33).

2. OUT+: 0 ≤ m3 < ∆E1 and E3b ≤ E3 < ∞. Thus, e3c < e3 < e30(r) and ε3 = +1, the particle goes directly
out after the collision. This case, can yield a Penrose process with energy extraction and it is not restricted,
but there is an upper bound in m3, i.e., not any mass can be emitted. Moreover, clearly, when m1 is very small
then E3b can be arbitrarily large but not infinite, and the energy extracted in particle 3, E3, can be arbitrarily
large but not infinite as well, characterizing thus a super-Penrose process. When there is energy extraction one
has E4 < 0 and there is an electric ergosphere.

3. IN−: ∆E1 < m3 < ∞ and m3

√
g(r+)

d−3 ≤ E3 ≤ E3b. Thus, e3 ≤ e3c ≤ e30(r) and ε3 = −1, the particle goes in
immediately after the collision and then continues the motion entering down the black hole. We have seen that

for the case m1 ≤
√

E1

E3
m3 there is no turning point for the ingoing particle. So, small masses m1 which yield

high E3b have no turning points. There is no extraction of energy at all. In particular, for m1 = 0, which falls
within this case, one obtains E3b = ∞, and therefore E3 = ∞, but all this energy goes down the black hole.
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4. IN+: ∆E1 < m3 < ∞ and E3b ≤ E3 < ∞. Thus, e3c < e3 < e30(r) and ε3 = −1, the particle goes in
immediately after the collision and then reverses the motion at some radius nearer the horizon to move outward
from then on. This case, can yield a Penrose process with energy extraction, it is not restricted and there is
a lower bound in m3. Moreover, clearly, when m1 is small then E3b can be arbitrarily large but not infinite,
and the energy extracted in particle 3, E3, can be arbitrarily large but no infinite as well, characterizing thus
a super-Penrose process. There is also the possibility that m3 be very large in this case, allowing thus for the
emission of superheavy particles. When there is energy extraction one has E4 < 0 and there is an electric
ergosphere.

To have a hand on these results and what one gets out of them, let us suppose that the quantities given, the initial
inputs, are m1, E1, e1, ε1, m2, E2, e2, ε2, and the point r of the collision of particles 1 and 2. This point of collision,
to be of interest, is near the horizon radius r+ and can, in principle, be directly found from kinematic expressions for
particles 1 and 2. It is also assumed that particle 4 travels inward so that ε4 is known, plus that particle 4 is a usual
particle. Then, m3, E3, e3, and ε3 can have different values, depending on the collision internal process itself. One
has that ε3 can be either +1 or −1. For each collision, one could consider m3, E3, and e3 as free parameters, but this
cannot be, since for the given inputs above, m3, E3, and e3 are entangled quantities, as can be seen from Eqs. (29),
(30), and (35). Let us then consider m3 and E3 as free parameters. Thus, m3 emitted can have some range of values
and E3 emitted is also within some range, but within these ranges m3 and E3 can be any, they are going to depend on
the very details of the collision internal process. Given m3 and E3, the electric charge e3 is then fixed, with its allowed
values being also within some range. Now, in the case particle 3 moves always inward then it is hard to measure m3

and E3, but this is anyway irrelevant since it is the case IN− and there is no energy extraction. In the case particle
3 moves outward in one stage or the other, which is the interesting case, we need a detector to measure m3 and E3,
with e3 being then calculated from Eqs. (29) and (30). From the measured value of m3 and the initial inputs, we find
ε3, making use of Eq. (36), and so we can discern between the cases OUT, be it OUT− or OUT+, that has ε3 = +1,
and IN+ that has ε3 = −1, this latter case yielding directly energy extraction. To distinguish between OUT− and
OUT+ we have to calculate E3b through Eq. (34). Given m1 and E1, and measuring m3, one calculates E3b. Then, if

the measured E3 is in the range m3

√
g(r+)

d−3 ≤ E3 ≤ E3b one is in the case OUT−, and there is no energy extraction.

If the measured E3 is in the range E3b ≤ E3 < ∞ one is in the case OUT+, and there is energy extraction. Moreover,
we can find from the conservation laws, Eqs. (23)-(25), the other physical quantities of particle 4, i.e., m4, E4, and
e4, given the inputs and the measured values of m3 and E3. Note that since there are many quantities, namely, m1,
E1, e1, ε1, m2, E2, e2, ε2, m3, E3, e3, ε3, m4, E4, e4, ε4, and the point of collision r, what is initial input, what is
measured, and what is deduced is a matter of choice. Above, we have given what we think is an interesting example
of a collisional Penrose process in which the collisions are of BSW type. But a great number of other examples might
be given. For instance, if in the example above, the detector is also able to measure the electric charge e3, then the
point of collision does not need to be an initial input, it can be found a posteriori through Eqs. (30) and (35).

C. The dependence on the cosmological constant through k and on the dimension d and further comments

1. The dependence on the cosmological constant through k and on the dimension d

The bounds for the energy extracted, i.e., the energy of particle 3, depend on the factor

√
g(r+)

d−3 , see Eq. (34). Using

the factorization of f (r) obtained in Eq. (7), it follows that g(r+)
(d−3)2 = 1

2

r2+
(d−3)2

d2f
dr2 (r+). The second derivative of f (r)

can be computed from Eq. (2), leading to 1
2
d2f
dr2 (r+) = − (d− 3) (d− 2) µ M

rd−1
+

+(d− 3) (2d− 5) χQ2

r
2(d−2)
+

− k
l2 . Using this

result in the previous equation, it follows that g(r+)
(d−3)2 = −d−2

d−3
µM

rd−3
+

+ 2d−5
d−3

χQ2

r
2(d−3)
+

−k 1
(d−3)2

r2+
l2 . Imposing the condition

for an extremal black hole, Eq. (6), the following result can finally be obtained

g(r+)

(d− 3)2
= 1− k

(d− 2) (d− 1)

(d− 3)
2

r2+
l2

. (37)

From Eq. (37) we can discuss the dependence of the results on the spacetime dimension d and also on the cosmological
constant Λ, i.e., the cosmological length l.

Firstly, we analyze the dependence on d. For k = −1, one has that g(r+)
(d−3)2 increases in the presence of the cosmological

constant and depends on d. For k = 0, g(r+)
(d−3)2 = 1, the bounds do not depend on the number of dimensions d, and the
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bounds are the same obtained for an asymptotically flat Reissner-Nordström black hole spacetime in d = 4 [17]. For

k = 1, the factor g(r+)
(d−3)2 decreases due to the presence of the cosmological constant, noting also that (d−2)(d−1)

(d−3)2
r2+
l2 < 1,

since the r+ we are considering is the black hole horizon, not the cosmological one, and the bound depends on d.
Of course, one could redefine the cosmological constant, i.e., the cosmological length l, to include the d-dependent
factors, but surely in such a case other quantities, not necessarily related to this problem, that depend on the pure

cosmological constant would then depend on the dimension d through the inverse of the factor (d−2)(d−1)

(d−3)2
.

Secondly, we analyze the dependence on the cosmological constant Λ, i.e., the cosmological length l. The bound

E3b for the energy of the emitted particle can be interpreted as function of

√
g(r+)

d−3 given by E3b = 1
2
m2

3+m2
1

m2
1

E1 +

1
2
m2

3−m2
1

m2
1

√
E2

1 −m2
1

g(r+)
(d−3)2 , see Eq. (34). Therefore, for the cases for which one has a collisional Penrose process and

one can have energy extraction, i.e., OUT+ and IN+, one has to consider different possibilities. First, for k = 0 the
lower bound E3b is independent of the cosmological constant, directly from Eq. (37), together with Eq. (34), and of d.
Thus, we can compare the cases of negative cosmological constant, i.e., k = −1, with the cases of positive cosmological
constant, i.e., k = 1, for fixed r+

l , i.e., fixed horizon radius relative to the cosmological radius, which means compare
r+
l in the various situations. If m3 < m1, the lower bound E3b for the energy of the emitted particle is greater for
negative cosmological constant, i.e., k = −1, than for positive cosmological constant, i.e., k = +1. If m3 = m1, the
lower bound E3b for the energy of the emitted particle is equal for negative cosmological constant, i.e., k = −1, and for
positive cosmological constant, i.e., k = +1, which means that E3b does not depend on the cosmological constant. If
m3 > m1, the lower bound E3b for the energy of the emitted particle is smaller for negative cosmological constant, i.e.,
k = −1, than for positive cosmological constant, i.e., k = +1. An interpretation can be tried. Define ∆m ≡ m3−m1.
One can associate a net lengthscale λ by λ = 1

∆m , with λ pointing inward, i.e., to decreasing radii, if ∆m < 0, and
λ pointing outward, i.e., to increasing radii, if ∆m > 0. In this convention one also has that the AdS lengthscale l
points inward, and the dS lengthscale l points outward. Thus, since for ∆m < 0, λ net points inward, l AdS points
inward and l dS points outward, one needs higher energy, higher E3b, in AdS in relation to dS to have the particle
going out. Also, since for ∆m > 0, λ net points outward, l AdS points inward and l dS points outward, a particle
that can go out, goes out with lower energy, lower E3b, in AdS in relation to dS. For ∆m = 0 one has that λ net is
infinite and does not point in any direction, and so there is no dependence on the cosmological constant. This is the
best we can offer as an interpretation.

In brief, different conclusions can be obtained depending on the parameter k, i.e., on the sign of the cosmological
constant. For k = 0, i.e., for an asymptotically flat Reissner-Nordström black hole spacetime, the bounds for the
energy extracted in the collisional Penrose processes considered do not depend on the number of dimensions. For
k = ±1, these bounds depend on the number of dimensions, on the sign of k, and on the masses m1 and m3. These
bounds can be larger or lower than for k = 0 depending on the sign of k and on whether m1 is lower or greater than
m3.

We have considered the possible scenarios for the collisional Penrose process from a BSW collision, of colliding
electrically charged particles in a Reissner-Nordström background with cosmological constant and in d dimensions.
One could think of considering of doing a classification of the decayment Penrose process, instead of the collisional
Penrose process, to find the possible scenarios in the generic background considered here. This decayment Penrose
process of electrically charged particle classification has been done in a Reissner-Nordström background with zero
cosmological constant in d = 4 dimensions [4]. A detailed comparison of these two types of Penrose processes, the
collisional and the decayment, is certainly of great interest.

2. Further comments

In the collision processes that we have studied, an essential role is played by critical or near-critical particles in
the vicinity of the black hole horizon. Such particles can be obtained by fine-tuning their parameters in their initial
state, i.e., in the state previous to the collision. One might wonder how does such type of particles come into being
in a plausible manner. We can think of two ways. One is through an experiment where the physicist prepares the
particles in the necessary fine tuned manner. The other is to have have a cluster of a myriad of particles with all sorts
of energy in the vicinity of the black hole such that statistically some of them are indeed near critical.

Another question that can be raised is how the collisions in the vicinity of an extremal black hole horizon can give
rise to measurable physical observables. In our study, we have been interested in the understanding of the energetics
of the possible processes. We have discussed not only the local center of mass energies Ecm in the collisions, which is
indeed the original BSW effect, but have gone beyond it and discussed the Killing energies E that can be achieved
in the collision. We have found that there are situations in which the energy E is larger than the initial energy
characterizing a collisional Penrose process. In addition, we have found that there are situations that not only the
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center of mass energies Ecm are arbitrarily high but also the Killing energies are arbitrarily large. We have thus
displayed examples of super-Penrose processes. If particles have arbitrarily large Killing energies it means they can
reach far distances, although impediments to it can arise. For instance, the particles ejected can lose their energy
through scattering processes or even fall down the black hole. Thus, independently of whether or not the ejected
particles reach far distances, the issue of the measuring of physical observables by an asymptotic observer, is worth
pursuing, although it has not been touched by us. Nevertheless, we can make now some comments related to the
electrically charged case which is the one we have studied. On could think of direct and indirect detections. Direct
detections are indeed possible here. Since the outgoing charged particle can have arbitrarily large energy, it can be
detected directly at infinity by a charge counter. One thing we can say for sure in this direct detection case is that if the
outgoing particle is directly detected then it is automatically a nearly fine tuned particle, as a usual outgoing particle
cannot escape from a black hole horizon. On the other hand, indirect detections can happen from various radiative
processes involving the outgoing particle interacting electromagnetically with other particles. One possible indirect
observational signature could be provided by inverse Compton scattering, whereby the outgoing highly energetically
particle loses energy when it encounters a photon, which photon can then be detected at infinity in the gamma
ray range. Another possible observational signature is through bremsstrahlung, where the outgoing highly energetic
particle is deflected by some other electric charged particle, loses energy and radiates photons. Bremsstrahlung has
a characteristic spectrum, a continuous spectrum peaking at higher and higher frequencies as the deceleration of the
particle increases. It would be of interest to find how these phenomena are affected for processes with or without
electric charge, rotation, or cosmological constant.

A remark is in order. Electrically charged black holes of microscopic or macroscopic size are prone to be discharged
by the surrounding medium. On the other hand, if the black holes are isolated, i.e., with no surrounding medium,
quantum effects come into play. Due to vacuum polarization near the event horizon of the black hole, electrically
charged isolated black holes are susceptible of discharging themselves sooner or later. Indeed, an electrically charged
black hole favors the absorption of particles with opposite charge, losing therefore its charge. One can think of ways
of bypassing this issue. One can take the charge to be a topological charge so that there are no particles to radiate.
Or else, one can admit that the lightest charged particle of the theory is massive enough that cannot be created, and
thus cannot be absorbed by the black hole. For instance, a magnetically charged black hole can lose its charge only
by creating magnetic monopoles, which in principle are sufficiently massive such that the probability of creation is
highly suppressed and stabilizes the discharging of the black hole. An alternative to this scheme would be to posit
a central charge that arises in the algebra of supergravity theories. Interesting to note that for isolated black holes
with sufficient high electric charge, the emission of charged massive particles is exponentially suppressed due to the
Schwinger effect. Such black holes have to be large and massive, which implies a low electric field at the event horizon,
quenching pair creation of massive particles. If in the electromagnetic theory in use, there are no massless charged
particles, as is our case, then the black hole cannot create and emit the lightest possible massive particle. These large
isolated black holes emit thus only neutral particles via Hawking radiation and tend to an extremal state, which are
the ones that interest us here. Thus, the effects we have been studying in this work could arise in isolated electric
charged black holes where suppression effects for quantum particle creation can occur to stabilize the electric charge of
the black holes, be they microscopic or macroscopic. The astrophysical black holes that so far have been observed are
macroscopic objects, which being surrounding by matter, would discharge quickly, and so for them, rotational effects
are the important ones. We have not dealt with angular momentum effects of a rotating black hole, nevertheless, the
effects we have found for electrically charged black holes may serve as a guide to black holes with angular momentum
charge.

V. CONCLUSIONS

We have analyzed the BSW mechanism and the corresponding energy extraction in a collisional Penrose process, for
a d-dimensional extremal black hole spacetime with horizon radius r+, electric charge Q, and cosmological constant
kΛ, with k = −1, 0,+1, i.e., the spacetime can be asymptotically AdS, flat, or dS, respectively. By identifying that
the relevant collision process, namely, the one that yields divergingly high center of mass energies in the collision of
two ingoing particles, is the collision between a critical and a usual particle, we set on to study this process in all
detail. In this, we have put bounds on the mass, energy, and electric charge of the particle emitted and have classified
the cases in which a net large energy extraction can be obtained from the extremal Reissner-Nordström black hole.
In some cases one finds that a super-Penrose process is possible, where an arbitarily large Killing energy can be
carried by the outgoing particle. We have also shown that the created particle that falls down the hole has negative
energy and is surrounded by an electric ergosphere allowing thus the existence of a Penrose process. Examples for
the particle physical quantities that are given a priori, what might be measured in the collision process, and which
information is obtained a posteriori can be made concrete, as was exemplified in one case for particles 1, 2, 3, and
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4. We have shown that the bounds on the energy of the emitted particle do not depend on the dimension d for zero
cosmological constant, i.e., for asymptotically flat black hole spacetimes. On the other hand, the bounds do depend
on d for nonzero cosmological constant, i.e., for negative cosmological constant or asymptotically AdS spacetimes, and
for positive cosmological constant or asymptotically dS spacetimes. This dependence can be seen from the expressions

for g(r+)
(d−3)2 and E3b above, and turns out to be a weak dependence, from a factor 6 when d = 4 to a factor 1 when

d is infinite. We have also shown that the bounds for the energy extracted for each fixed dimension, are different
depending on whether the cosmological constant is negative, zero, or positive.
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Appendix: Calculation supporting the results of the main text

1. Getting back the center of mass energy expression

In Sec. IV, we considered that the four particles have different masses between themselves and then obtained
equations for the energy of the emitted particle. Now, we show that the expressions obtained in Sec. IV lead to the
center of mass energy expression in the particular case that all masses are equal found in Eq. (20) of Sec. III.

We start by writing the energy at the center of mass frame in terms of the relevant quantities of particles 3 and 4,
assuming m ≡ m1 = m2 = m3 = m3. This gives

E2
CM(r)

2m2
= 1 +

X3(r)X4(r) + ε3Z3(r)Z4(r)

m2f(r)
, (A.1)

where we have put ε4 = −1 as was assumed, and since particle 3 can move in or out, we have left ε3 unspecified, it
can be −1 or +1. Then, from the expressions for X3 (r), X4 (r), Z3 (r), and Z4 (r) given in Eqs. (26) and (31), one
finds

E2
CM(r)

2m2
= 1 +

X4 (r+)√
f (r)m2

E3

(
d− 3√
g (r+)

− ∆e3
e3

)
+ ε3E3

√√√√( d− 3√
g (r+)

− ∆e3
e3

)2

− m2

E2
3

 . (A.2)

Since X1 (r+) = X3 (r+) = 0, we have from energy conservation, Eq. (23), that X4 (r+) = X2 (r+) = E2 − e2Q

(d−3)rd−3
+

,

and thus

X4 (r+) = E2 −
e2Q

(d− 3) rd−3
+

. (A.3)

From Eq. (32) one finds that in the case all masses are equal, the following expression holds

d− 3√
g(r+)

[
E1 −

√
E2

1 −m2
g(r+)

(d− 3)
2

]
+ E3

(
∆e3
e3

− d− 3√
g(r+)

)
= ε3E3

√√√√( d− 3√
g(r+)

− ∆e3
e3

)2

− m2

E2
3

. (A.4)

Substituting Eqs. (A.3) and (A.4) into Eq. (A.2) yields

E2
CM(r)

2m2
= 1 +

E2 − e2Q

(d−3)rd−3
+

m2 g (r+)

[
E1 −

√
E2

1 − m2

(d− 3)
2 g (r+)

]
d− 3

1− r+
r

, (A.5)

which is precisely the expression given in Eq. (20).
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2. The ergosphere of particle 4

In Sec. IV we stated that particle 4 has negative energy when there is energy extraction carried out by particle
3. Here we give the details supporting the statement. To have energy extraction, it is necessary that particle 3 has
energy greater than the initial energy, the energy just before the collision of the two initial particles, i.e.,

E3 > E1 + E2. (A.6)

At the point of collision the equality E1+E2 = E3+E4 holds. This equality comes from Eq. (23), X1+X2 = X3+X4

together with Eq. (9), if we use that the electric charge Q of the black hole is the same for all four particles, the point
r of collision is the same for all four particles, and there is conservation of electric charge, i.e., e1 + e2 − e3 − e4 = 0,
see Eq. (25). Thus, from E4 = E1 + E2 − E3 and the necessity of Eq. (A.6), one finds

E4 < 0, (A.7)

if there is energy extraction in the collision process. From the forward in time condition ṫ > 0 for processes outside the
horizon applied to particle 4, one has X4 > 0, see Eq. (8), and so one finds E4 − e4Q

(d−3)rd−3 > 0, where r is the radius

of the point of collision see Eq. (9). For energy extraction Eq. (A.7) holds, so one can write −|E4| − e4Q
(d−3)rd−3 > 0.

Assuming without loss of generality Q > 0 as we do, for the latter equation to be true one necessarily has

e4 < 0, (A.8)

when there is energy extraction. Thus, X4 > 0 can be written as −|E4| + |e4|Q
(d−3)rd−3 > 0. This equation defines a

region within which the inequality is valid, namely

r+ ≤ r < rergo 4 , rd−3
ergo 4 =

|e4|Q
(d− 3) |E4|

, (A.9)

which is the electric ergosphere for particle 4, and is the region where the collision has to take place in order that
energy extraction can occur.

It is also interesting to note the following. For the two cases in which energy extraction can occur, i.e., IN+ and
OUT+, see Sec. IV, the electric charge of particle 3 obeys the equation e3 > e3c, where from Eq. (11) one has

e3c =
rd−3
+ (d−3)

Q E3, and its energy obeys E3 > E3b. Combining these two equations one finds e3 >
rd−3
+

Q E3b. Since we

found that E3b can be as large as one wants, e3 can also assume arbitrarily large values. Using charge conservation,
Eq. (25), one concludes that when energy extraction occurs, the electric charge of particle 4 becomes negative, e4 < 0,
because the energy of the emitted particle grows, as e4 = e1+e2−e3 and e3 becomes dominant. Then, to have energy

extraction E4 < 0, and so −|E4|+ |e4|Q
(d−3)rd−3 > 0, and there can be energy extraction if the collision occurs within the

electric ergosphere defined in Eq. (A.9).
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