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Abstract  

The elastic scattering of spinless vortex electrons on realistic target atoms has been investigated. 

In particular, expressions are derived in different approximations for the elastic angular-

differential cross sections. We develop a distorted wave formalism that includes the effect of the 

atomic potential on the impinging vortex electron and compare this to a plane-wave Born 

approximation without such a distortion. Detailed computations have been performed for elastic 

scattering of vortex electrons on helium, neon, and argon targets by varying the energy, topological 

charge, and opening angle. Our results show that the overall magnitude of the cross section 

increases when the distortion by the bound-state electrons is taken into account. We also show that 

under certain conditions, such as high-Z targets or projectiles with low values of topological 

charge, significant differences in cross section shape and magnitude are observed between the 

distorted-wave and plane-wave Born models. Thus, the plane-wave Born approximation must be 

used with caution when describing vortex electron collisions.   

 

I. Introduction  

 The scattering of an electron from a potential is one of the most fundamental atomic physics 

processes.  As such, plane-wave (or non-vortex) electron scattering has been considered for many 

decades, and an excellent understanding of the physical interactions involved has been achieved.  

In recent years, there have been a growing number of investigations into non-plane-wave (or 

vortex) electrons.  These so-called vortex or twisted electrons are unique in their ability to carry 

quantized orbital angular momentum (OAM) and their non-zero transverse momentum.  They 

possess a phase vortex with a local phase singularity in the form 𝑒𝑖𝜆𝜙, where 𝜆 is an integer referred 

to as the topological charge and indicates the vortex electron’s OAM.  The impinging electron has 

a spiral wave front with a node at its center.  



Theoretically, there have been many investigations into collisions between vortex electrons 

and atomic and molecular targets [1–13].  These works have provided valuable initial insight into 

vortex-electron-induced processes, such as elastic scattering, excitation, and ionization, and the 

growing body of literature on vortex electron collisions has shown unique features towards new 

physics applications.  For example, because vortex electrons carry quantized OAM, it has been 

shown that OAM can be exchanged between the twisted electron and both the electronic and center 

of mass motions of the atomic target [6,7].  This exchange of OAM results in an alteration of the 

selection rules for excitation processes [8] and OAM transfer to continuum electrons in ionization 

collisions [14].  The OAM of vortex electrons is also predicted to allow for the observation of 

dichroism in inelastic scattering from chiral molecules [15] as well as to study [16] and 

control  [13] interference features in cross sections for molecular targets.  The non-zero transverse 

momentum of twisted electrons also alters the angular distribution of ejected electrons in ionization 

collisions [5,17] and can result in emission of secondary electrons in directions that are otherwise 

forbidden [12].  Vortex electrons also open the door to studies of fundamental properties of matter, 

including access to the Coulomb phase through elastic scattering [18], electron projectile 

coherence properties [13,19], the Faraday effect for electrons in vacuum [20], and the study of 

forbidden transitions, electron correlations, and relativistic effects through hyperfine 

structure [21]. 

To date, most of the existing calculations for twisted electron collisions have relied on 

simple models such as the Born approximation with single active electron targets or (local) analytic 

approximations to the scattering potential.  For collisions with plane-wave electrons, it is well-

known that these approximations are not able to well-describe the collision process.  For non-

vortex (plane-wave) projectiles, for example, the Born approximation underestimates the 



magnitude of the cross section and is generally unable to accurately account for higher order 

collisions and short-range interactions [22].  By their very nature, in addition, single active electron 

models cannot include multi-electron effects.   

Here, we address the shortcomings of existing twisted electron models by developing a 

distorted wave model and analyzing the elastic scattering of vortex electrons from the realistic 

scattering potentials of multi-electron targets, such as helium, neon, and argon.  The use of a 

distorted wave model allows for a more accurate description of the twisted electron’s interaction 

with the target and is applicable to model collisions with low-energetic projectiles.  These 

improvements allow us to assess the conditions under which the Born approximation is valid for 

vortex electron scattering and to accurately calculate cross sections for multi-electron targets at 

lower projectile energies.   

 Our results show that the use of a distorted wave approximation increases the magnitude 

of the cross sections when compared to the plane-wave Born approximation, similar to what is 

observed in non-vortex collisions.  This enhancement is independent of projectile energy and 

vortex opening angle.  The overall shape of the cross section is typically not altered by the use of 

the distorted wave approximation, except for the scattering of vortex electrons with zero OAM or 

scattering from an argon target.  The largest differences in magnitude between the two 

approximations appear for small values of OAM and these differences diminish as OAM increases.  

This indicates that for higher collision energies or tightly bound electrons, the distortion by the 

target becomes negligible.  However, for high-Z targets or vortex projectiles with small values of 

OAM, atomic distortion effects significantly alter the shape and magnitude of the cross sections.  

Atomic units are used throughout unless otherwise noted.   

II. Theory  



We first consider a spinless electron elastically scattering from helium which forms a 

spherically symmetric (local) potential. This potential is generated self-consistently based on the 

Hartree-Fock-Slater method by including the major exchange contributions for the bound 

electrons [23]. The exchange interaction between the incident projectile electron and the target is 

assumed to be negligible and not included in the computations.  Such self-consistent calculations 

predict the low-lying excitation and electron binding energy typically with an accuracy of a few 

percent. 

Our goal is to derive expressions for the elastic scattering cross sections for Bessel 

electrons.  We consider ‘head-on’ collisions with isolated atoms at the axis of the vortex electron 

beam (see Fig. 1a).     

 

Figure 1 (a) Depiction of different vortex projectile impact parameters �⃗�  (green arrows).  The 

vertical red arrows represent the propagation direction of the incident projectile, and the incident 

vortex momentum vectors lie on a cone of half angle 𝜃𝑘 (purple vectors).  The ‘head-on’ geometry 

of �⃗� = 0 occurs when the atom is aligned with the incident projectile’s propagation axis.  (b) 

Collision geometry for elastic scattering with an incident vortex projectile.  As in (a), the projectile 

propagates along the direction of the red arrow with an impact parameter of �⃗� .  Each momentum 

vector has an azimuthal angle of 𝜙𝑘 and a vortex opening angle of 𝜃𝑘.   



A. Distorted wave approach  

The electron wave function 𝜓(𝑟 ) is a solution to the Schrödinger equation 

[∇2 − 𝑈(𝑟) + 𝑘2]𝜓(𝑟 , 𝑘) = 0        (1) 

where 𝑘2 = 2𝐸, 𝑈(𝑟) = 2𝑉(𝑟) in atomic units, �⃗�  is the wave vector with polar and azimuthal 

coordinates (𝜃𝑘, 𝜙𝑘), and E is the energy of the electron.  Following the standard distorted wave 

formalism [24], in spherical coordinates, the wave function can be written in terms of a partial 

wave expansion 

𝜓(𝑟 , 𝑘) =
1

𝑘𝑟
∑ ∑ 𝑢𝑙𝑚(𝑟, 𝑘)𝑌𝑙𝑚(𝜃, 𝜙)

𝑙
𝑚=−𝑙

∞
𝑙=0 ,       (2) 

where each term is itself a solution to the Schrödinger equation and (𝜃, 𝜙) are the polar and 

azimuthal coordinates of 𝑟 .  The radial functions 𝑢𝑙𝑚(𝑟, 𝑘) satisfy the radial Schrödinger equation 

𝑑2𝑢𝑙𝑚(𝑟,𝑘)

𝑑𝑟2
+ [𝑘2 − 𝑈(𝑟) −

𝑙(𝑙+1)

𝑟2
] 𝑢𝑙𝑚(𝑟, 𝑘) = 0.       (3) 

and 𝑌𝑙𝑚(𝜃, 𝜙) is a spherical harmonic function.  The quantum numbers 𝑙 and 𝑚 are the orbital 

angular momentum (eigenfunction of 𝐿2) and magnetic quantum numbers (eigenfunction of 𝐿𝑧), 

respectively.  The radial functions 𝑢𝑙𝑚(𝑟, 𝑘) are normalized such that the wave function (Eq. (2)) 

takes asymptotically the form 

𝜓(𝑟 , 𝑘) → 𝜓𝑓𝑟𝑒𝑒 +
𝑒𝑖𝑘𝑟

𝑟
𝑓(𝜃, 𝜙),         (4) 

a sum of free-particle motion (without any potential) and a spherical wave with scattering 

amplitude 𝑓(𝜃, 𝜙). This amplitude depends on the polar and azimuthal angles and is used to 

calculate the cross section 

𝑑2𝜎

𝑑Ω
= |𝑓(𝜃, 𝜙)|2.           (5) 

Asymptotically, for a finite range potential, Eq. (3) becomes 

𝑑2𝑤𝑙𝑚(𝑟,𝑘)

𝑑𝑟2
+ [𝑘2 −

𝑙(𝑙+1)

𝑟2
]𝑤𝑙𝑚(𝑟, 𝑘) = 0,        (6) 



where 𝑤𝑙𝑚(𝑟, 𝑘) = 𝑢𝑙𝑚(𝑟 → ∞, 𝑘) is the asymptotic form of the radial function given by 

𝑤𝑙𝑚(𝑟, 𝑘) = 𝑁𝑙𝑚 sin (𝑘𝑟 −
𝑙𝜋

2
+ 𝛿𝑙).         (7) 

The normalization constant is 𝑁𝑙𝑚 and 𝛿𝑙 is the partial wave phase shift.  To proceed further and 

determine the normalization constant and scattering amplitude, it is necessary to specify the free 

particle wave function 𝜓𝑓𝑟𝑒𝑒, which in our case can be either a (non-vortex) plane wave or a vortex 

Bessel wave.  We begin first with the familiar non-vortex case and then show the analogous 

derivation for the vortex wave. 

B. Non-vortex electrons   

 In this case, the free particle wave function is given by a plane wave 

𝜓𝑓𝑟𝑒𝑒 = 𝑒
𝑖�⃗� ∙𝑟 .            (8) 

For the most general propagation direction �⃗� , the normalization constant and scattering amplitude 

is obtained by inserting Eq. (8) into Eq. (4) and equating to Eq. (2) using the asymptotic form of 

the radial function from Eq. (7).  This yields the following 

𝑒𝑖�⃗� ∙𝑟 +
𝑒𝑖𝑘𝑟

𝑟
𝑓(𝑁𝑉)(𝜃, 𝜙) =

1

𝑘𝑟
∑ ∑ 𝑁𝑙𝑚

(𝑁𝑉)
sin (𝑘𝑟 −

𝑙𝜋

2
+ 𝛿𝑙) 𝑌𝑙𝑚(𝜃, 𝜙)

𝑙
𝑚=−𝑙

∞
𝑙=0 .   (9) 

The partial wave expansion for a plane wave propagating along a general propagation direction is 

given by [24] 

𝑒𝑖�⃗� ∙𝑟 =
4𝜋

𝑘𝑟
∑ ∑ 𝑖𝑙𝐹𝑙(𝑘𝑟)𝑌𝑙𝑚

∗ (𝜃𝑘, 𝜙𝑘)𝑌𝑙𝑚(𝜃, 𝜙)
𝑙
𝑚=−𝑙

∞
𝑙=0 ,     (10) 

where 𝐹𝑙(𝑘𝑟) is the regular spherical Bessel function that has the asymptotic form 

𝐹𝑙(𝑘𝑟)
𝑟→∞
→  sin (𝑘𝑟 −

𝑙𝜋

2
).  By combining Eqs. (9) and (10), the following expressions for the 

normalization constant and scattering amplitude for a non-vortex (NV) projectile are found 

𝑁𝑙,𝑚
(𝑁𝑉)

= 𝑒𝑖𝛿𝑙4𝜋𝑖𝑙𝑌𝑙𝑚
∗ (𝜃𝑘, 𝜙𝑘)         (11) 

and 



𝑓(𝑁𝑉)(𝜃, 𝜙) =
1

𝑘
∑ ∑ 𝑒𝑖𝛿𝑙4𝜋 𝑌𝑙𝑚

∗ (𝜃𝑘 , 𝜙𝑘)𝑌𝑙𝑚(𝜃, 𝜙) sin 𝛿𝑙
𝑙
𝑚=−𝑙

∞
𝑙=0 .    (12) 

From the expressions (11-12), we obtain the familiar form from textbooks for the 

propagation along the z-axis with 𝑚 = 0 and 𝜃𝑘 = 0 as 

𝑁𝑙,𝑚=0
(𝑁𝑉)

= 𝑒𝑖𝛿𝑙4𝜋𝑖𝑙√
(2𝑙+1)

4𝜋
          (13) 

𝑓𝑚=0
(𝑁𝑉)(𝜃;𝑚 = 0) =

1

𝑘
∑ (2𝑙 + 1)𝑒𝑖𝛿𝑙 sin 𝛿𝑙 𝑃𝑙(cos 𝜃)
∞
𝑙=0 .      (14) 

Physically, the phase shifts 𝛿𝑙 contain the information about the atomic potential’s 

distortion on the projectile electron.  These shifts reflect the strength and range of the incident 

electron interacting with the atom. For each partial wave, the phase shift is obtained by matching 

the free-electron solution of the Schrödinger equation with those for moving in the atomic 

potential [25]. Apart from the cross sections, these phase shifts also give rise to the scattering 

length or the spin-polarization of the scattered electrons. 

C. Vortex electrons 

For vortex electrons, we consider a Bessel wave, although other electron vortex waveforms 

exist.  The Bessel electronic wave function is also a solution to the free particle Schrödinger 

equation, but is expressed most conveniently in cylindrical coordinates (𝜌, 𝜑, 𝑧)  

𝜓𝑓𝑟𝑒𝑒 = 𝜓𝐵𝑒𝑠𝑠(𝑟 , 𝑘𝜌, 𝑘𝑧 , 𝜆) = 𝐴𝜆𝐽𝜆(𝑘𝜌𝜌)𝑒
𝑖𝜆𝜑𝑒𝑖𝑘𝑧𝑧𝑒𝑖�⃗� ∙�⃗� ,     (15) 

where 𝜆 is the topological charge equal to the electron’s orbital angular momentum, 𝐴𝜆 is a 

normalization constant, 𝐽𝜆(𝑘𝜌𝜌) is a Bessel function, and �⃗� = (𝑘𝜌, 𝜙𝑘 , 𝑘𝑧) is the projectile’s 

momentum.  An important distinction between the plane-wave electron and the Bessel electron is 

that the Bessel electron has both transverse and longitudinal components of momentum and its 

probability density is not spatially uniform in the transverse plane.  Therefore, the displacement of 



the Bessel electron’s transverse center relative to the atom must be specified.  This transverse 

displacement is referred to as the impact parameter �⃗�  (see Fig. 1).   

In addition to Eq. (15), the Bessel wave function can be conveniently expressed as a linear 

combination of plane waves with each plane wave momentum �⃗�  lying on a cone of half angle 𝜃𝑘.     

𝜓𝐵𝑒𝑠𝑠(𝑟 , 𝑘𝜌, 𝑘𝑧 , 𝜆) =
1

(2𝜋)
∫𝑑2𝑘⊥𝑎𝑘𝜌,𝜆(�⃗�

 
⊥)𝑒

𝑖�⃗� ∙𝑟 𝑒𝑖�⃗� ⊥∙�⃗� ,     (16) 

where 𝑎𝑘𝜌,𝜆(�⃗�
 
⊥) = (−𝑖 )

𝜆𝑒𝑖𝜆𝜙𝑘
𝛿(𝑘⊥−𝑘𝜌)

𝑘𝜌
.  The half angle of the cone is referred to as the opening 

angle and relates the transverse and longitudinal momenta 𝑘𝜌 and 𝑘𝑧 

tan 𝜃𝑘 = 𝑘𝜌/𝑘𝑧.           (17) 

The opening angle is experimentally controllable and is a fixed value for a given collision process. 

 Following a similar process as in Section B for a non-vortex electron, the normalization 

constant and scattering amplitude can be found for the Bessel vortex electron.  If the wave function 

𝜓𝐵𝑒𝑠𝑠(𝑟 , 𝑘𝜌, 𝑘𝑧 , 𝜆) of Eq. (16) is inserted into the asymptotic wave function expression of Eq. (4) 

and equated to Eq. (2) using the asymptotic form of the radial function from Eq. (7), we obtain the 

following expression for a vortex electron analogous to the non-vortex expression of Eq. (9)  

1

(2𝜋)
∫𝑑2𝑘⊥𝑎𝑘𝜌,𝜆(�⃗�

 
⊥)𝑒

𝑖�⃗� ∙𝑟 𝑒𝑖�⃗� ⊥∙�⃗� +
𝑒𝑖𝑘𝑟

𝑟
𝑓(𝐵𝑒𝑠𝑠𝑒𝑙)(𝜃, 𝜙, 𝜃𝑘 , 𝜆, �⃗� ) =

1

𝑘𝑟
∑ ∑ 𝑁𝑙𝑚(𝜃𝑘 , 𝜆, �⃗� ) sin (𝑘𝑟 −

𝑙𝜋

2
+ 𝛿𝑙) 𝑌𝑙𝑚(𝜃, 𝜙)

𝑙
𝑚=−𝑙

∞
𝑙=0 ,   (18) 

where the scattering amplitude 𝑓(𝐵𝑒𝑠𝑠𝑒𝑙)(𝜃, 𝜙, 𝜃𝑘 , 𝜆, �⃗� ) for the Bessel electron now additionally depends 

on the opening angle, topological charge, and impact parameter. 

Again, using the partial wave expansion for a plane wave from Eq. (10) yields the key 

expressions for the normalization constant and scattering amplitude for a Bessel electron within 

the distorted wave formalism 

𝑁𝑙𝑚
(𝐵𝑒𝑠𝑠𝑒𝑙)

(𝜃𝑘 , 𝜆, �⃗� ) = 2𝑒
𝑖𝛿𝑙 ∫𝑑2𝑘⊥𝑎𝑘𝜌,𝜆(�⃗�

 
⊥)𝑒

−𝑖�⃗� ⊥∙�⃗� 𝑖𝑙𝑌𝑙𝑚
∗ (𝜃𝑘 , 𝜙𝑘)    (19) 

and 



𝑓(𝐵𝑒𝑠𝑠𝑒𝑙)(𝜃, 𝜙, 𝜃𝑘 , 𝜆, �⃗� ) =
1

𝑘
∑ ∑ 𝑁𝑙𝑚

(𝐵𝑒𝑠𝑠𝑒𝑙)
(𝜃𝑘 , 𝜆, �⃗� )𝑌𝑙𝑚(𝜃, 𝜙) 𝑖

−𝑙 sin 𝛿𝑙
𝑙
𝑚=−𝑙

∞
𝑙=0 .  (20) 

Note that the expression for the scattering amplitudes for the vortex (Eq. (20)) and non-vortex 

electrons (Eq. (12)) are identical, except for the difference in normalization constants.   

 By inserting the normalization constant from Eq. (19) and the Fourier expansion coefficient 

𝑎𝑘𝜌,𝜆(�⃗�
 
⊥) into Eq. (20), the Bessel scattering amplitude can be written in terms of the non-vortex 

scattering amplitude 

𝑓(𝐵𝑒𝑠𝑠𝑒𝑙)(𝜃, 𝜙, 𝜃𝑘 , 𝜆, �⃗� ) = (−𝑖)
𝜆 ∫𝑑𝜙𝑘𝑒

𝑖𝜆𝜙𝑘𝑒−𝑖�⃗� ⊥∙�⃗� 𝑓(𝑁𝑉)(𝜃, 𝜙).     (21) 

i. Head-on collisions 

The non-uniform spatial profile of the vortex electron requires the distinction of different 

collision geometries that depend on the impact parameter.  For a head-on collision, the target atom 

is aligned with the transverse center of the vortex wave, corresponding to an impact parameter of 

�⃗� = 0.  In this case, the normalization constant and scattering amplitude become 

𝑁𝑙,𝑚
(𝐵𝑒𝑠𝑠𝑒𝑙)

(𝜃𝑘 , 𝜆, �⃗� = 0) = 2𝑒
𝑖𝛿𝑙(−𝑖)𝜆𝑖𝑙 ∫𝑑𝜙𝑘 𝑒

𝑖𝜆𝜙𝑘𝑌𝑙𝑚
∗ (𝜃𝑘, 𝜙𝑘) = 4𝜋𝑒

𝑖𝛿𝑙(−𝑖)𝜆𝑖𝑙(−1)𝑚 [
(2𝑙+1)(𝑙−𝑚)!

(4𝜋)(𝑙+𝑚)!
]

1

2
𝑃𝑙
𝑚(cos 𝜃𝑘)𝛿𝜆,𝑚  (22) 

and 

𝑓(𝐵𝑒𝑠𝑠𝑒𝑙)(𝜃, 𝜙, 𝜃𝑘 , 𝜆, �⃗� = 0) = (−𝑖)
𝜆 ∫𝑑𝜙𝑘 𝑒

𝑖𝜆𝜙𝑘𝑓(𝑁𝑉)(𝜃,𝜙) =
4𝜋(−𝑖)𝜆

𝑘
∑ 𝑒𝑖𝛿𝑙∞
|𝜆|≤𝑙 (−1)𝜆 [

(2𝑙+1)(𝑙−𝜆)!

(4𝜋)(𝑙+𝜆)!
]

1

2
𝑃𝑙
𝜆(cos 𝜃𝑘)𝑌𝑙𝜆(𝜃, 𝜙) sin 𝛿𝑙. (23) 

Equations (22) and (23) are used to calculate the vortex distorted wave cross sections shown below 

in Figs. 2-5 (‘vDWA’; solid black curves).  Note that in the limit that 𝜆 = 0 and 𝜃𝑘 = 0, the non-

vortex expressions are recovered from Eqs. (22) and (23).   

C. Plane-Wave Born Approximation 

The distorted wave approach taken above includes the atomic potential in distorting the 

projectile wave function.  If this distortion is neglected, one recovers what is commonly referred 

to as the plane-wave Born approximation (PWBA), which, until now, has been the primarily 



applied treatment for vortex collisions.  In the PWBA, the radial functions are found by setting the 

distorting potential 𝑈(𝑟) = 0 in Eq. (3) and are given by  

𝑢𝑙𝑚(𝑟, 𝑘) = 𝐹𝑙(𝑘𝑟) = 𝑘𝑟𝑗𝑙(𝑘𝑟)),        (24) 

where 𝑗𝑙(𝑘𝑟)) is a spherical Bessel function.  These radial functions are then used to calculate the 

phase shifts for a non-zero potential 

tan 𝛿𝑙
𝐵𝑜𝑟𝑛 = −

1

𝑘
∫ 𝑑𝑟
∞

0
𝐹𝑙
2(𝑘𝑟)𝑈(𝑟).        (25) 

Using the Born phase shifts 𝛿𝑙
𝐵𝑜𝑟𝑛 in Eqs. (22) and (23) leads to the scattering amplitude and cross 

section within the vortex PWBA and is designated by vPWBA (red dashed curves) in Figs. 2-5.   

III. Results and Discussion   

To examine the validity of the PWBA for vortex electron collisions, we present cross 

section calculations for the vPWBA and vDWA models for a number of different vortex 

parameters.  Whereas the projectile energy is typically the primary collision parameter for non-

vortex projectiles, additional degrees of freedom can be controlled with vortex electrons.  In 

addition to the projectile energy, vortex electrons have quantized OAM and transverse momentum.  

These properties can be selected to aid in the control of the dynamics or outcome of the collision 

process.  We investigate the effect of each of these vortex properties on the vDWA elastic 

scattering cross section when multi-electron effects and the influence of the atomic potential are 

included in the the calculated angular differential cross sections.   

Figure 2a-d shows a comparison of vPWBA and vDWA cross sections for a head-on 

collision of a 20 eV vortex electron with an opening angle of 𝜃𝑘 = 15°.  Calculations were 

performed for OAM values between 𝜆 = 0 and 5.  For 𝜆 = 0, both the vPWBA and the vDWA 

cross sections exhibit a maximum at 𝜃𝑠 = 0° and a sharp decrease in magnitude as 𝜃𝑠 increases, 

similar to what has been observed in the non-vortex cross sections.  In this case, the inclusion of 



the atomic potential into the vDWA calculations increases the backward scattering by more than 

an order of magnitude and results in a nearly isotropic scattering distribution between 𝜃𝑠 = 90° 

and  𝜃𝑠 = 180°.  However, for 𝜆 > 0, both the vPWBA and vDWA cross sections show a zero in 

the forward direction at 𝜃𝑠 = 0°, with a peak at small 𝜃𝑠, and a significant decrease in magnitude 

for larger scattering angles.  The zero in the vortex cross section has been previously reported in 

vPWBA [9] calculations for elastic scattering from a Yukawa potential.  Its origin was traced to 

the zero intensity at the center of the vortex wave’s spatial density and is indicative of emission of 

a vortex wave from the scattering center [9].  In the case of 𝜆 = 0, no node is present in the vortex 

wave’s transverse density (see Fig. 2e) and thus no zero appears in the cross section.  Our distorted 

wave calculations show that this feature persists even when the atomic potential is taken into 

account.   

In general, the magnitude of the vDWA cross sections are greater than the vPWBA cross 

sections, similar to what has been observed with non-vortex cross sections [22].  This magnitude 

difference is greatest for projectiles with small values of OAM, while for 𝜆 = 5, there is very little 

difference between the vDWA and vPWBA cross sections.  The similarity of the vDWA and 

vPWBA cross sections for larger OAM values is likely due to the overall reduction in the cross 

section magnitude as OAM increases.  As Fig. 2f-h shows, the node in the vortex wave transverse 

profile becomes wider as the OAM increases, resulting in less overlap between the projectile and 

the scattering potential.  Additionally, the magnitude of the vortex transverse density decreases 

with larger OAM.  Combined, these two features result in an overall reduction in magnitude of the 

scattering cross section for larger OAM values for both the vPWBA and vDWA models.  At the 

largest value of OAM (𝜆 = 5), there is very little overlap between the projectile wave and the 



scattering center causing any atomic distortion effects included in the vDWA calculation to be 

negligible.     

 

Figure 2 (a-d) Angular differential cross sections 
𝑑2𝜎

𝑑Ω
 as a function of projectile scattering angle 𝜃𝑠 

for electron-impact elastic scattering from helium. The incident projectile energy is 20 eV and the 

vortex opening angle is 𝜃𝑘 = 15°. Results are shown for head-on collisions using a vortex Bessel 

electron in the vortex plane-wave Born approximation (vPWBA, dashed red line) and with the 

vortex distorted wave model (vDWA, solid black line) for topological charge of (a)  𝜆 = 0, (b) 

𝜆 = 1, (c) 𝜆 = 2, (d) 𝜆 = 5.  (e-h) Bessel wave function density in the transverse plane as a 

function of radial distance for the Bessel waves used in (a-d).  

 

 Figure 3a-c shows a comparison of the vPWBA and vDWA cross sections for a head-on 

collision of a 20 eV vortex electron with an OAM value of 𝜆 = 2.  Calculations were performed 

for opening angles between 𝜃𝑘 = 5° and 30°.  As expected, because the OAM is non-zero, the 



cross sections exhibit a zero in the forward direction.  The peak in the cross sections broadens and 

shifts to larger scattering angles as the opening angle increases, and its location occurs at 

approximately 𝜃𝑠 = 𝜃𝑘.  Again, the vDWA cross section is larger than the vPWBA cross section, 

although this difference in magnitude does not change with the opening angle, indicating that the 

effects of the atomic potential are not dependent on the projectile’s transverse momentum (𝑘𝜌 =

𝑘 sin 𝜃𝑘).  For both the vDWA and vPWBA approximations, the overall magnitude of the cross 

section increases for larger opening angles.  This increase of the cross section can again be traced 

to the vortex projectile’s transverse density.  Fig. 3d-f shows that the transverse density of the 

vortex projectile is approximately the same magnitude, regardless of opening angle, but the central 

node is more narrow for larger opening angles.  This results in greater overlap between the 

projectile wave packet and the scattering potential for projectiles with large opening angles and 

results in larger cross sections.  This increased overlap occurs regardless of whether atomic 

distortion effects are included.  



 

Figure 3 (a-c) Angular differential cross sections 
𝑑2𝜎

𝑑Ω
 as a function of projectile scattering angle 𝜃𝑠 

for electron-impact elastic scattering from helium. The incident projectile energy is 20 eV and the 

topological charge is 𝜆 = 2. Results are shown for head-on collisions using a vortex electron in 

the vortex plane-wave Born approximation (vPWAB, dashed red line) and with the vortex 

distorted wave model (vDWA, solid black line) for opening angles of (a) 𝜃𝑘 = 5°, (b) 𝜃𝑘 = 15°, 
(c) 𝜃𝑘 = 30°.  (d-f) Bessel wave function density in the transverse plane as a function of radial 

distance for the Bessel waves used in (a-c). 

  

Figure 4a-c shows a comparison of the vPWBA and vDWA cross sections for a head-on 

collision of a Bessel electron with an OAM value of 𝜆 = 2 and opening angle of 𝜃𝑘 = 15°.  Cross 

sections are shown for three projectile energies, 𝐸𝑖 = 10, 20 and 50 eV.  The cross sections are 

again zero in the forward direction due to the projectile’s non-zero OAM and the vDWA cross 

section is larger in magnitude than the vPWBA cross section.  The difference in magnitude 

between the two approximations remains fairly consistent as projectile energy changes and the 

magnitude of the cross sections is only slightly affected by the projectile energy.  For larger 



projectile energies, the peak in the cross sections becomes narrower and shifts to smaller scattering 

angles.  This indicates that higher energy projectiles scatter at smaller scattering angles, consistent 

with observations from non-vortex collisions. 

 

 

Figure 4 (a-b) Angular differential cross sections 
𝑑2𝜎

𝑑Ω
 as a function of projectile scattering angle 𝜃𝑠 

for electron-impact elastic scattering from helium. The vortex projectile opening angle is 𝜃𝑘 = 15° 
and the topological charge is 𝜆 = 2. Results are shown for head-on collisions using a vortex 

electron in the vortex plane-wave Born approximation (vPWBA, dashed red line) and with the 

vortex distorted wave model (vDWA, solid black line) for energies of (a) 𝐸 = 10 eV, (b) 𝐸 = 20 

eV, (c) 𝐸 = 50 eV.  (d-f) Bessel wave function density in the transverse plane as a function of 

radial distance for the Bessel waves used in (a-c). 

 

Let us finally examine how the use of a distorted wave model affects the cross sections for 

realistic atomic potentials.  To this end, Fig. 5a-c compares the vPWBA and vDWA cross sections 

for helium, neon, and argon targets.  The vPWBA cross sections are similar in shape and magnitude 

for all three targets, but the argon vDWA cross sections show a pronounced backward peak.  This 



enhanced backward scattering is only present in the vDWA calculation and likely reflects the shell-

structure of complex atoms. Apart from the individual contributions of the (bound) L- and M-shell 

electrons to the overall charge distribution, this shell structure may cause interferences in the 

scattering amplitude. It will be interesting to further explore this departure of the scattering cross 

sections when compared to the short-range potential of atomic helium.  The dramatic difference in 

vPWBA and vDWA cross sections for argon indicate that atomic distortion effects from realistic 

potentials cannot be neglected, particularly for high-Z targets.  

 

Figure 5 (a-b) Angular differential cross sections 
𝑑2𝜎

𝑑Ω
 as a function of projectile scattering angle 𝜃𝑠 

for electron-impact elastic scattering from helium, neon, and argon.  The vortex projectile has an 

energy of 20 eV, an opening angle of 𝜃𝑘 = 15°, and a topological charge of 𝜆 = 2.  Results are 

shown for vortex electrons in the vortex plane-wave Born approximation (vPWBA, dashed red 

line) and the vortex distorted wave model (vDWA, solid black line).  

 

IV. Conclusions 



 We have developed a new distorted wave formalism for the evaluation of vortex-electron-

impact elastic scattering cross sections from realistic atomic potentials.  This formalism allows for 

the inclusion of the (detailed) atomic potential to the scattering of electrons.  We present cross 

sections using our vDWA model for elastic scattering from helium, neon, and argon across a range 

of physically-tunable projectile parameters, such as topological charge, opening angle, and energy.  

These cross sections are compared to cross sections calculated within the vPWBA in order to 

determine the effects of atomic distortion. 

 Our results show that cross sections calculated using the vDWA model are larger in 

magnitude than those calculated with the vPWBA model.  This is consistent with similar trends 

seen in previous works on non-vortex electrons.  As the projectile’s topological charge increases, 

the effect of atomic distortion is reduced and the vDWA and vPWBA cross sections become more 

similar.  This effect is traced to the reduced overlap between the projectile wave packet and the 

target potential, resulting in atomic distortion effects having less influence on the scattering 

process.  The difference in magnitude between the vPWBA and vDWA cross sections is not 

significantly affected by the vortex projectile’s opening angle or projectile energy.   

 For an argon target, the vDWA cross sections exhibit a strong backward scattering peak 

that is not present in the cross sections calculated with the vPWBA model or for other targets.  This 

backward peak is likely caused by L- and M-shell effects in the argon scattering potential and 

indicates that the use of a realistic scattering potential and atomic distortion effects can 

significantly alter the shape and magnitude of the cross sections.  

 Overall, our results demonstrate that under certain conditions, such as low-Z targets and 

high topological charge, the atomic potential’s effect on the electron is minimal.  However, these 



effects can significantly alter the cross sections in both shape and magnitude under other conditions 

and may be required to accurately describe vortex electron scattering.   
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