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Abstract—Hyperdimensional computing (HDC) enables effi-
cient data encoding and processing in high-dimensional spaces,
benefiting machine learning and data analysis. However, under-
utilization of these spaces can lead to overfitting and reduced
model reliability, especially in data-limited systems—a critical
issue in sectors like healthcare that demand robustness and
consistent performance. We introduce BoostHD, an approach that
applies boosting algorithms to partition the hyperdimensional
space into subspaces, creating an ensemble of weak learners. By
integrating boosting with HDC, BoostHD enhances performance
and reliability beyond existing HDC methods. Our analysis
highlights the importance of efficient utilization of hyperdimen-
sional spaces for improved model performance. Experiments on
healthcare datasets show that BoostHD outperforms state-of-the-
art methods. On the WESAD dataset, it achieved an accuracy of
98.37%± 0.32%, surpassing Random Forest, XGBoost, and On-
lineHD. BoostHD also demonstrated superior inference efficiency
and stability, maintaining high accuracy under data imbalance
and noise. In person-specific evaluations, it achieved an average
accuracy of 96.19%, outperforming other models. By addressing
the limitations of both boosting and HDC, BoostHD expands the
applicability of HDC in critical domains where reliability and
precision are paramount.

I. INTRODUCTION

Hyperdimensional computing (HDC) is a rapidly advancing
field within artificial intelligence, offering numerous valuable
qualities that apply to various areas. HDC’s ability to effi-
ciently encode and process data in high-dimensional spaces
has generated substantial interest, particularly in machine
learning and data analysis [1]–[3]. As we contemplate the
practical use of HDC-based models in real-world applications,
we encounter crucial requirements beyond mere accuracy.
These requirements encompass robustness, reliability, consis-
tency, and resource efficiency [4]. Despite these requirements,
analyses of HDC in high-dimensional spaces has not yet been
fully explored which can lead to overfitting by selecting very
high dimension above only performance [5]. Our research
shows that the partitioning of high-dimensional spaces directly
correlates with the utility of the space, fulfilling those require-
ments under certain condition.

Meeting the requirements of HDC is anticipated to signifi-
cantly expand its applicability across various domains, partic-
ularly in fields where reliability and precision are paramount,
such as healthcare [6], [7]. In addressing healthcare datasets,
our evaluation focuses on critical issues such as robustness to

noise, consistency in performance, and stability that are non-
negotiable for the successful application of HDC in healthcare.

Ensemble methods have been recognized for their ability
to prevent overfitting and achieve enhanced performance and
stability in predictive modeling [8]. Among these methods,
boosting stands out for its capability to aggregate the predic-
tions of multiple weak learners into a robust and accurate en-
semble model. The strengths of boosting encompass significant
accuracy improvements, resistance to overfitting, versatility
across a wide range of machine learning tasks. However,
boosting‘s ability across sensitivity to noisy data, performance
and stability is dependent on the ability of weak learner.
The computational demands of training boosting ensembles
can also present challenges in scenarios requiring real-time
responses or operating under resource constraints. Further-
more, the overall performance of the ensemble model may
be compromised if the performance of the weak learners is
not assured, potentially leading to biases towards challenging
examples in imbalanced datasets.

HDC offers promising attributes to effectively address the
limitations associated with traditional boosting techniques, as
highlighted in prior studies [9], [10]. However, a simplistic
parallel ensemble of HDC models may inadvertently escalate
the computational costs associated with training and may not
guarantee robustness against noise for each weak learner. In
our approach, we leverage the OnlineHD model [4] as a
foundation, proposing a novel partitioning strategy where the
model’s hyperdimensional space (D) is divided among n weak
learners, with each receiving a D/n dimensional segment.
This segmentation approach prompts us to designate these
segmented models as weak learners. Subsequently, we analyze
the utilization efficiency of the hyperdimensional space by
each weak learner Figure 5 and theoretically demonstrate
the inherent limitations posed by high-dimensional spaces
Equations 3, 2. Under conditions where the performance of
weak learners is assured, BoostHD elevates the capabilities of
OnlineHD, ensuring stability, and providing robustness against
overfitting and noise.

II. RELATED WORK

A. Boosting methods on Machine Learning

To address the limitations of individual predictive models,
researchers have explored various ensemble methods that seek
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Fig. 1. Illustration of the BoostHD framework applied to hyperdimensional computing (HDC). Sensor information is encoded into a high-dimensional
vector space (Dimension D). The query vector Q is bundled with multiple contextual vectors C1, C2, . . . , Cn, forming weak learners with segments of
the high-dimensional space. Each weak learner receives a partitioned subspace (D/n) of the original hyperdimensional space, optimizing the use of the
entire dimensional space and minimizing overfitting. Query weights WQ1,WQ2, . . . ,WQn and model importances are dynamically adjusted based on model
error rates, with a boosting approach used to aggregate and adjust the ensemble performance, ensuring robustness and stability, particularly in noise-sensitive
domains such as healthcare.

to enhance performance by combining multiple models. One
such successful ensemble technique is boosting, which sequen-
tially integrates multiple simple models called weak learners
and aggregates their predictions to make final decisions. These
weak learners are trained to compensate for each other’s
prediction errors and can take various forms, including shallow
decision trees or a few layers of multi-layer perceptions. One
of the pioneering works in boosting is Adaptive Boosting
(AdaBoost) [8]. AdaBoost begins by assigning equal weight
values to data points within a training set. It then sequentially
trains each weak learner, focusing on identifying misclassified
data points and increasing their weights to ensure subsequent
weak learners prioritize their correct classification. Each weak
learner is assigned a confidence value based on its prediction
performance, and the final prediction is determined through
a confidence-weighted voting mechanism among the weak
learners. Another notable approach is the Gradient Boost-
ing Machine (GBM) [11], which differs from AdaBoost by
seeking to minimize the residual error rather than assigning
weights to data points. GBM also follows a sequential training
process, with each weak learner striving to reduce the residual
error left by the previous model through gradient descent.
Subsequent boosting algorithms, such as Light GBM [12]
and XGBoost [13], adopted this residual error minimization
approach due to its demonstrated effectiveness in comparison
to the data-point weighting strategy initially employed by
AdaBoost.

B. Healthcare with wearable device

The WESAD dataset [14] stands at the forefront of wearable
stress and affect detection, providing a comprehensive collec-
tion of physiological and motion data from both wrist- and
chest-worn devices in a controlled lab environment with 15
subjects. Distinguishing itself through diverse sensor modali-

ties, WESAD captures data such as blood volume pulse, elec-
trocardiogram, electrodermal activity, electromyogram, respi-
ration, body temperature, and three-axis acceleration. Notably,
the dataset introduces a unique dimension by including three
affective states—neutral, stress, and amusement, enriching its
applicability in studying stress and emotions. The prevalent
state-of-the-art solution involves varied convolutional neural
network (CNN) architectures [15]. Amidst this landscape,
Hyperdimensional Computing (HDC) emerges as a compelling
alternative to CNN models. The inherent resource constraints
of wearable devices, exemplified by WESAD, align seam-
lessly with HDC’s capabilities. Offering lightweight and online
learning, HDC proves to be a natural fit for the intricacies of
the WESAD dataset. Unlike conventional CNNs, HDC excels
in managing multimodal data, addressing the varied sensor
modalities present in WESAD. The fusion of WESAD’s rich
sensor modalities and affective states with the computational
robustness of HDC holds great promise for real-world ap-
plications in wearable stress and affect detection, presenting
WESAD as an ideal testing ground for harnessing the power
of hyperdimensional computing.

C. Hyperdimensional Classification

δ(V1, V2) =
V †
1 V2

||V1||||V2||
(1)

HDC is a computational technique inspired by the neural
processes in the brain, where data points are encoded into a
high-dimensional space. The learning process in HDC involves
extracting universal patterns that define each label in a dataset
through matrix multiplication using Gaussian distribution val-
ues and trigonometric activation functions(Binding, Permu-
tation), such as cosine and sine. The encoded hypervectors
H are linearly combined to generate representations for each



class (Bundling), known as class hypervectors Cl. These
Cl are represented as single points in the RD space, and
upon end of training, a point is produced for each label in
the classification task, as illustrated in Figure 5. During the
inference phase of HDC, a query hypervector H is encoded,
and its similarity to the Cl is calculated. The class whose
H exhibits the highest similarity to the query is predicted as
the output. Recently, the similarity computation between each
data point and the Cl using a similarity function δ(H,Cl)
has been employed to guide model updates [4]. This is based
on assessments of similarity and correctness, facilitating an
iterative refinement process. Such a process enhances the HDC
model’s ability to capture underlying data patterns, thereby
improving its predictive accuracy.

leftmargin=*
• (1) Bundling consists of an addition of multiple hyper-

vectors into a single hypervector, R⃗ = V⃗1+ V⃗2. This pro-
cess transforms into memorization in high-dimensional
space.

• (2) Binding associates multiple orthogonal hypervectors
(e.g., V⃗1, V⃗2) into a single hypervector (R⃗ = V⃗1∗V⃗2). The
binded hypervector is a new object in HDC space which
is orthogonal to all input hypervectors (δ(R⃗, V⃗1) ≃ 0 and
δ(R⃗, V⃗2) ≃ 0).

• (3) Permutation defines as a single rotational shift. The
permuted hypervector will be nearly orthogonal to its
original hypervector (δ(V⃗1, ρV⃗1) ≃ 0).

III. BOOSTING HYPERDIMENSIONAL COMPUTING

In this section, we introduce the BoostHD framework,
integrating boosting techniques into HDC with a focus on
dimensionality (D). Instead of relying solely on a single robust
learner with high D, this approach breaks down the dimension
into numerous sub-dimensions, each represented by a weak
learner. These weak learners are trained sequentially, with
each one adaptively learning from and correcting the errors
of its predecessor. This methodology effectively addresses
the limitations of the strong learner, thereby enhancing its
performance ceiling (as outlined in Algorithm 1). A notable
feature of this method is its sequential training process, while
parallelization becomes feasible during the inference phase.

Performance, assessed based on the parameters D and the
number of weak learners (NL), shows a direct relationship,
ensuring stable and improved performance with substantial
values for both D and NL, as depicted in Figure 3. However,
it’s crucial to note that elevated values of D and NL introduce
increased computational costs, establishing an inherent trade-
off between computational cost and performance. To maintain
the effectiveness of weak learners, preserving a baseline di-
mensionality is imperative.Failure to do so, as exemplified in
the case where NL = 100 and Dtotal = 1K, can lead to
a substantial degradation in performance, as demonstrated in
Figure 3(b).

µλ =

∫ λmax

λmin

f(λ)λ dλ ∼ 1

3πq
(λmax − λmin)

3/2 (2)

Algorithm 1 Pseudo code for BoostHD
Input:

X: Set of data points
y: Labels
x: Test data point

Parameters:
d: Dimensionality
n: Number of learners
Ws: Sample weight

Output:
fθi : Trained learners parameterized by θ
αi: Weight of learner
ŷ: Prediction

1: procedure TRAINING(X , y)
2: Initialize learners fθ1 , fθ2 , . . . , fθn
3: for i ∈ {1, 2, . . . , n} do
4: Train fθi with X and y
5: ŷi = fθi(X)
6: eθi ← Error rate of fθi
7: αi = Ws · eθi
8: Ws ← eαi·(y ̸=ŷ)/

∑
Ws

9: end for
10: end procedure
1: procedure INFERENCE(x)
2: ŷs = fθ(x)
3: ŷ = argmax (

∑n
ŷs · α)

4: end procedure

σ2
λ ∼

1

2πσ2q

(
1

2
(λ2

max − λ2
min)− 2µ(λmax − λmin)

+µ2(ln |λmax| − ln |λmin|)
) (3)

In the context of HDC, partitioning dimensions can be
viewed as a transformation in the geometric shape of the kernel
(k). HDC frameworks often employ the Gaussian Kernel as
their foundational element, represented as ki,j ∼ N (0, 1).
When this kernel transforms a hyperdimensional space, the
geometric characteristics of k can be described by leveraging
the theory of the Marchenko-Pastur distribution of random
matrices ( [16]). Equations 2 and 3 provide insights into
this process. Here, q is defined as the ratio of the number
of columns (Nc) to the number of rows (Nr), σ represents
the standard deviation of the Gaussian distribution (i.e., 1),
λ denotes singular values, and λmax and λmin signify the
upper and lower bounds of λ. The mean and variance of λ
are expressed in Equations 2 and 3, respectively. Considering
that Nc is determined by the dataset, and Nr is a parameter
represented by D, under the assumption of a fixed input shape,
it becomes evident that q exhibits an inverse relationship
with D, while µλ demonstrates a direct proportionality with
D. Conversely, Equation 3 formulates σ2

λ as a function of
three distinct terms: T1 (Equation 4), T2 (Equation 5), and
T3 (Equation 6). Each term converges to a specific value
and experiences minimal fluctuations after that. Consequently,
µλ increases directly in proportion to D, while σ2

λ remains



constant as D increases.
This proportionality implies that irrespective of the values

of µλ and σ2
λ, λ maintains a consistent absolute interval value

due to the stability of σ2
λ (Equation 7). As D increases, the

values of λ escalate, yet the interval remains steady. This
phenomenon results in the ratio of the minor axis (AS) to
the major axis (AL) asymptotically approaching unity (i.e., 1),
leading to a circular shape. This observation underscores the
pivotal role of D in shaping the kernel, wherein an elliptical
kernel is transformed into a broadly distributed circular shape
beyond the constrained space formed by input biases, as
illustrated in Figure 4.

lim
q→∞

1

q
(λ2

max − λ2
min) = lim

q→∞

(
(1 +

√
q)4 − (q −√q)4

)
= k

(4)

lim
q→∞

1

q
(−2µ(λmax − λmin)) = 0 (5)

lim
q→∞

1

q

(
µ2(ln |λmax| − ln|λmin|)

)
= 0 (6)

lim
x→∞

σ2
λ = k (7)
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Within the framework of HDC, the theoretical definition of
utilizing the subspace formed by classifiers can be expressed as
rank(K)/D, where rank(K) represents the rank of the matrix
formed by the classifier, and D signifies the dimensionality
of the space. However, in practical applications, the effective
span of the subspace experiences attenuation due to various
factors denoted by Π. These factors are the product sums
of cosine similarity values between class hypervectors, which

embody constraints or characteristics inherent to the system.
Consequently, the actual Span Utilization (SP ) is defined
as the quotient of rank(K)/D divided by the product of
π1, π2, ..., πn. This representation encapsulates the reduced
space that is practically attainable, considering the influence
of the aforementioned factors. In the realm of HDC, where
cosine similarity serves as the metric of choice, maximizing
the utilization of this subspace directly impacts the system’s
performance. With a focus on optimizing SP (as depicted
in Figure 5), the BoostHD approach is superior to tradi-
tional HDC methodologies. By augmenting the subspace’s
utilization, BoostHD optimizes computational resources and
significantly enhances the accuracy and efficiency of high-
dimensional data processing. This observation underscores the
practical relevance of subspaces in HDC and highlights the
pivotal role played by BoostHD in maximizing their utility.

Input Space OnlineHD Hyperspace BoostHD Hyperspace

Raw Data Distribution

(a) (b) (c)

Fig. 4. In the process of kernel transformation. Data is mapped into a
hyperdimensional space. (a) illustrates the distribution of the raw data has
a biased distribution. (b) represents a scenario where Nc = 4000, while
(c) corresponds to Nc = 400. From the perspective of span utilization, the
mapping illustrated in (c) demonstrates superior efficiency compared to that
in (b).

Fig. 5. Example of BoostHD and OnlineHD SP . The orange one is
BoostHD’s class hypervectors, and the blue one is OnlineHD’s class hypervec-
tor. BoostHD uses much more space at hyperdimensional space by composing
high cosine similarity across class hypervectors.

IV. EVALUATION

In our experimental setup, we employed a single GPU, the
GeForce RTX 4070, and a 12th generation Intel(R) Core(TM)
i7-12700K CPU. We conducted a total of 10 runs for each
experiment, utilizing datasets that included WESAD [14], the
Nurse Stress Dataset [17], and the Stress-Predict Dataset [18]
to evaluate accuracy and time efficiency. For all other aspects



TABLE I
ACCURACY (%) PERFORMANCE: COMPARES BOOSTHD‘S ACCURACY WITH VARIOUS BASELINES.

Dataset Adaboost RF XGBoost SVM DNN OnlineHD BoostHD
WESAD 93.13 ± 0.01 97.13 ± 0.06 96.88 ± 0.01 93.12 ± 0.01 96.75 ± 1.05 96.37 ± 0.40 98.37 ± 0.32

Nurse Stress Dataset 55.28 ±0.01 59.35 ±0.78 61.01 ±0.01 60.99 ±0.01 60.04 ±0.06 61.37 ±0.10 61.52 ±0.07
Stress-Predict Dataset 67.54 ± 0.01 67.76 ± 0.12 65.76 ± 0.01 67.30 ± 0.01 67.29 ± 0.07 65.79 ± 0.17 68.10 ± 0.09

TABLE II
INFERENCE EFFICIENCY: COMPARES BOOSTHD‘S INFERENCE TIME (10−5 SECONDS) WITH VARIOUS BASELINES

Dataset Adaboost RF XGBoost SVM DNN OnlineHD BoostHD
WESAD 46.3 38.5 47.6 108.3 37.0 7.57 11.0

Nurse Stress Dataset 145.2 179.7 131.1 188.4 38.6 14.5 12.1
Stress-Predict Dataset 63.4 91.5 58.7 265 43.7 13.2 12.0

of the experiments, we exclusively employed the WESAD [14]
dataset. The WESAD [14] dataset holds a prominent position
as a benchmark dataset tailored for stress detection research.
It encompasses multimodal sensor data collected from wear-
able devices such as Empatica E4 and RespiBAN, sourced
from 16 subjects. This dataset encompasses a rich array of
physiological and motion data indicators, encompassing EDA,
ECG, EMG, and BVP readings. The Stress-Predict Dataset
[18] and Nurse Stress Dataset [17] datasets, on the other hand,
are solely collected via the E4 sensor and share features like
EDA, ECG, EMG, and BVP. Notably, the Nurse Stress Dataset
[17] and Stress-Predict Dataset [18] datasets include 37 and 15
subjects, respectively. We performed stress level classification,
reducing it to three labels (good, common, stress), and the
test data was organized based on subject units, with all results
grounded in the test dataset.

Datasets undergo preprocessing using a moving average
filter with a window size of 30, extracting statistical measures
like minimum, maximum, mean, and standard deviation. Due
to the varied ranges of these statistics, normalization is ap-
plied to ensure consistent scaling. Our experimental models
include AdaBoost with learning rate (lr) set to 1.0 and 10
estimators, Random Forest with bootstrap enabled and 10
estimators, XGBoost with 10 estimators, SVM with a linear
kernel, DNN consists of convolutional layers with a learning
rate of 0.001, 4 linear layers [2048,1024,512,classes], ReLU
activation, and dropout. Additionally, OnlineHD is configured
with dimension adjustment, bootstrap enabled, lr of 0.035,
and a gaussian probability distribution (0, 1). These setups
ensure a comprehensive evaluation of model performance
across various algorithms in the experimental framework. In
the ensemble models, we employed NL = 10. The HDC
model was configured with Dtotal values spanning the range
10, 20, . . . , 1000, 4000, 10000. As for the BoostHD model, the
weak learner (wl) dimensionality (Dwl) was set as Dtotal/LN .

A. Performance

In our comprehensive experimentation, we subjected the
BoostHD algorithm to rigorous evaluation across three distinct
datasets: WESAD [14], Nurse Stress Dataset [17], and Stress-
Predict Dataset [18]. The focal points of our assessment
encompassed key metrics such as accuracy, inference time, and

training time. Our findings unveiled the remarkable prowess
of BoostHD, consistently attaining the highest accuracy levels
across all three datasets, as presented in Table I. Notably, when
compared to OnlineHD on the WESAD [14] dataset, the accu-
racy achieved by BoostHD remained outside the range of two
standard deviations. This distinction was further underscored
by OnlineHD’s inability to reach a 98% accuracy threshold in
any of the ten independent trials, while BoostHD consistently
surpassed this benchmark, highlighting its superior predictive
accuracy.

BoostHD strategically harnesses in-memory learning, epito-
mized by HDC, and augments it with adaptive learning mech-
anisms within an ensemble framework. This unique fusion
results in a significant acceleration of the learning process,
even when training is serialized. Empirical assessments con-
ducted within a GPU environment unequivocally established
BoostHD’s superiority over DNNs, demonstrating substan-
tially enhanced processing speed across the three benchmark
datasets. Moreover, in a CPU environment, BoostHD show-
cased remarkable computational efficiency, achieving pro-
cessing speeds 26 times faster than its DNN counterparts.
Furthermore, our optimization efforts fine-tuned the BoostHD
algorithm for parallel processing, yielding substantial gains in
inference efficiency (as detailed in Table II). This optimization
proved particularly beneficial when handling the relatively
extensive input vectors in the Nurse Stress Dataset [17] and
Stress-Predict Dataset [18]. The outcome was a significant
reduction in the time required for inferring data from the test
dataset, firmly establishing BoostHD as the model of choice
for maximizing time efficiency across all models evaluated,
especially in the context of the Nurse Stress Dataset [17] and
Stress-Predict Dataset [18].

B. Stability

BoostHD demonstrates strong and consistent performance
and exhibits stable convergence even in constrained environ-
ments. As illustrated in Figure 3, the accuracy of the weak
learner experiences a steep decline when the minimum di-
mensionality requirement is unmet. By ensuring this minimum
dimensionality and progressively increasing the value of D,
we observe a clear separation between the two models within
a given one standard deviation (σ), as shown in Figure 6(a).



TABLE III
PERSON SPECIFIC PERFORMANCE IN ACCURACY (%)

Left hands Female Age ≤ 25 Age ≥ 30 Height ≤ 170 Height ≥ 185 AVERAGE
Adaboost 95.63 96.86 96.05 89.24 90.74 91.27 93.30

RF 97.15 97.7 98.03 88.29 95.06 94.92 95.19
XGBoost 98.73 98.12 98.68 91.41 95.06 94.24 96.04

SVM 97.47 95.4 94.74 92.41 90.12 95.24 94.23
DNN 98.42 95.4 94.41 88.92 92.59 93.57 93.89

OnlineHD 98.73 97.8 94.08 92.41 92.59 94.6 95.04
BoostHD 99.05 98.33 96.38 93.35 96.3 93.73 96.19

Specifically, the value of µσ for BoostHD stands at 0.0046,
while for OnlineHD, it registers at 0.0127, signifying a roughly
threefold disparity. This lower σ value for BoostHD under-
scores its superior stability. In the context of BoostHD, it’s
notable that σ scales proportionally with 1/NL and inversely
with D provided that the baseline condition is maintained
(as depicted in Figure 3(a), upper right). Moreover, when the
value of NL surpasses a specific threshold (k), such as 50 as
illustrated in Figure 3(a) (i.e., NL > k), the σ value remains
consistently preserved.
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C. Overfitting
BoostHD presents a noteworthy advantage over traditional

HDC methods in its resilience to overfitting. To empirically
assess this characteristic, we intentionally induce overfitting
by crafting an imbalanced dataset (D) through the generation
of data subsets. The extent of overfitting, denoted as r, is
quantified by creating subset data for all classes except the
target class (Ctarget). This process yields the final dataset D
as described in Equation 8. We employ Macro accuracy as
a more suitable metric for imbalanced datasets to ensure a
fair performance evaluation that the varying sample counts
per class do not skew. As the value of r increases, OnlineHD
experiences a noticeable decline in performance. In stark con-
trast, BoostHD consistently maintains its performance levels,
demonstrating a robust ability to preserve stability, as depicted
in Figure 7.

D =

{
x, if y = Ctarget

x× r, if y ̸= Ctarget
(8)
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D. Robustness

We assess the robustness of models against bitflip noise
to explore in wearable device originating from hardware
components according to its probability of bit flip error pb.
In Figure 8, our experiments spanned two distinct ranges
of pb, given the substantial impact of this parameter on
performance. Our experimental scope was deliberately limited
to a narrow range of pb. Despite this inherent constraint and
our meticulous approach of conducting 100 independent trials
to ensure statistical validity, we observed occasional peaks in
the graph. Nevertheless, a discernible trend as a function of
pb persisted. Within the range where pb = 10−5, as illustrated
in Figure 8(a), BoostHD incurred an accuracy loss of no
more than 5.7%. This represents approximately one-fourth of
the loss observed in OnlineHD and roughly one-seventh of
that observed in DNN. To statistically validate the accuracies
concerning varying pb, we employed the Median Absolute
Deviation (MAD) as a measure of robustness (defined as
MAD = median(|Xi−median(X)|)). In Figure 8(a), the MAD
for BoostHD was quantified at 0.024, which is six times lower
than that of OnlineHD (0.1454) and four times lower than
that of DNN (0.083). In Figure 8(b), BoostHD exhibited a
MAD of 0.005, which is three times lower than OnlineHD
(0.015) and a substantial 30 times lower than DNN (0.1509).
These results are compelling evidence of BoostHD’s superior
robustness compared to the other methods.

E. Bias and reliability for person-specific groups

We carefully segmented subjects based on various attributes
in WESAD [14], including hand preference, gender, age, and
height. This stratification resulted in subsets with specific
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Fig. 8. Robustness Analysis of BoostHD at different levels of pb. At point
(a), BoostHD experiences a mere 3% decrement in performance, which is
6 and 13 times less pronounced than OnlineHD and DNN. Furthermore, at
point (b), BoostHD manifests a 21% reduction in performance, a figure that is
3 and 3.5 times less than the corresponding performance drops in OnlineHD
and DNN.

subject characteristics, such as left-hand preference, female
gender, age groups, and height categories. Our primary ob-
jective was to assess how well models performed across
individuals with diverse characteristics, a crucial consideration
for healthcare applications to ensure fairness and accuracy.
Notably, our BoostHD model consistently outperformed other
models in all categories III, except for two cases where it
ranked second. This underscores the potential of combining
boosting methods and HDC, especially in healthcare, where
equitable performance is essential.

V. CONCLUSION

We introduced BoostHD, a novel method that integrates
hyperdimensional computing with boosting to create a robust
ensemble model. BoostHD effectively overcomes limitations
of traditional HDC by efficiently utilizing high-dimensional
spaces and preventing overfitting. Our experiments on health-
care datasets demonstrated that BoostHD consistently out-
performs existing methods in accuracy, efficiency, stability,
and robustness. These results confirm BoostHD’s potential in
critical domains where reliability and precision are essential.
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