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LIPCHITZ CURVE SELECTION AND ITS APPLICATION TO

THAMRONGTHANYALAK’S OPEN PROBLEM

MASATO FUJITA

Abstract. We solve an open problem posed in Thamrongthanyalak’s paper
on the definable Banach fixed point property. A Lipschitz curve selection is a
key of our solution. In addition, we show a definable version of Caristi fixed
point theorem.

1. Introduction

Throughout, F = (F,<,+, ·, 0, 1, . . .) is a definably complete expansion of an or-
dered field. ‘Definable’ means ‘definable with parameters’. We recall basic notions.
F is definably complete if every definable subset of F has a supremum and infimum
in F ∪ {±∞} [9]. F is locally o-minimal if, for every a ∈ F and every definable
subset X of F , there exists an open interval I such that a ∈ I and X ∩ I is a
union of finitely many points and open intervals [12]. We call a locally o-minimal
structure F o-minimal when we can choose I = F [3]. An open core F◦ of F is
the structure on F generated by open sets definable in F [2, 5, 10].

In Thamrongthanyalak’s paper [11], the Banach fixed point property (BFPP for
short) is investigated. A definable set E has the BFPP if every definable contraction
on E has a fixed point. Every nonempty definable closed set enjoys BFPP by [11,
1.4]. F possesses the BFPP (resp. strong BFPP) if every locally closed definable
set (resp. every definable set) having the BFPP is closed. Thamrongthanyalak
showed that structures having o-minimal open core enjoy the strong BFPP and, if
F possesses the BFPP, F has a locally o-minimal open core. The following question
is posed in [11].

If F is definably complete and possesses the strong BFPP, is it
o-minimal?

The following theorem answers the above question in the negative because non-
o-minimal definably complete locally o-minimal expansion of an ordered field is
already known [5, Example 3.11].

Theorem 1.1. A definably complete locally o-minimal expansion of an ordered field
possesses the strong BFPP.

We prove a Lipschitz curve selection lemma in Section 2. Theorem 1.1 follows
from the lemma in the same manner as [11, Theorem A]. A rough strategy of its
proof is only given in the present paper.

Theorem 1.1 implies the ‘only if’ part of the following corollary. The ‘if’ part
was already proved as [11, Theorem B].
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Corollary 1.2. A definably complete expansion of an ordered field has a locally
o-minimal open core if and only if it possesses the BFPP.

The Caristi fixed point theorem is a generalization of the Banach fixed point
theorem [1]. A metric space has the Caristi fixed point property if and only if
it is complete [13]. We prove a similar equivalence holds in definably complete
structures in Section 3.

Theorem 1.3 (Definable Caristi fixed point theorem). For a definable subset X
of Fn, the following are equivalent:

(1) X is closed.
(2) For every definable lower semi-continuous function f : X → [0,∞), there

exists x0 ∈ X such that Sf (x0) = {x0}, where Sf (x) := {y ∈ X | ‖x− y‖ ≤
f(x)− f(y)} for every x ∈ X.

2. Lipschitz curve selection

Thamrongthanyalak used Fischer’s Λm-regular stratification [4] in his paper [11].
In locally o-minimal structures, such a stratification is not always available. For
our purpose, a weaker substitute called Lipschitz curve selection (Lemma 2.2) is
enough.

Let X and T be definable sets. The parameterized family {St | t ∈ T } of
definable subsets of X is called definable if the union

⋃

t∈T {t}×St is definable. For
a set X , a definable family C of subsets of X is called a definable filtered collection
if, for any B1, B2 ∈ C, there exists B3 ∈ C with B3 ⊆ B1 ∩ B2. We say that X
is definably compact if, for every definable filtered collection C of nonempty closed
subsets of X ,

⋂

C∈C C is non-empty.

Lemma 2.1. A definable subset X of Fn is bounded and closed if and only if it is
definably compact.

Proof. See [8, Proposition 3.10], which proves the lemma when the structure is
o-minimal; the same proof works when the structure is definably complete. �

We introduce the notations used in the proof of Lemma 2.2. Let Mn be the set of
n×nmatrices with entries in F . Set Hn,d := {A ∈ Mn | tA = A,A2 = A, tr(A) = d}
and Hn =

⋃n

d=0 Hn,d. For every linear subspace H of Fn of dimension d, we can
find A ∈ Hn,d such that H = AFn and A is the linear projection of Fn onto H . The

algebraic set Hn,d is bounded and closed in Fn2

. By Lemma 2.1, Hn,d is definably
compact. Let ‖A‖ be the Euclidean norm of a matrix A ∈ Mn under the natural

identification of Mn with Fn2

. We define ‖v‖ for v ∈ Fn similarly, and ‖A‖op :=
sup‖v‖=1 ‖Av‖. The function δ : Hn × Hn → F is given by δ(A,B) = ‖B⊥A‖op,
where B⊥ = In −B and In is the identity matrix of size n× n.

Lemma 2.2 (Lipchitz definable curve selection). Suppose that F is locally o-
minimal. Let X be a definable subset of Fn and a ∈ ∂X, where ∂X is the frontier of
X. Then there exists a definable injective Lipschitz continuous map γ : [0, d] → Fn

such that γ(0) = a and γ((0, d]) ⊆ X.

Proof. We assume that a is the origin of Fn for simplicity. By [5, Lemma 5.16],
there exist d′ > 0 and a definable continuous map f : [0, d′) → X such that f(0) = a
and f(t) ∈ X for t > 0. We may assume that f is injective by [5, Theorem 5.1].
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The definable set M := f((0, d′)) is decomposed into finitely many definable C1

submanifolds using [5, Theorem 5.11] in the same manner as [5, Theorem 5.6]. For
some e > 0, f((0, e)) coincides with one of them by local o-minimality. By setting
d′ = e, we may assume that M is a definable C1 submanifold of Fn. We have
dimM = 1 by [7, Proposition 2.8(6)].

Fix a sufficiently small ε > 0. Let τ : M → Hn,1 be the definable continuous
map sending x ∈ M to the matrix which represents the projection onto the tangent
space of M at x. Since Hn,1 is definably compact, [6, Theorem 4.5] yields A :=
limt→0 τ(f(t)). By linear change of coordinates, we may assume that AFn = F ×
{0}n−1. Let τ : M ∪{a} → Hn,1 be the extension of τ given by τ (a) = A. The map
τ ◦f is continuous. Therefore, we may assume that ‖τ(f(t))−A‖ < ε for 0 < t < d′

by taking a smaller d′ if necessary. In addition, the tangent space τ(f(t))Fn of M
at f(t) is not orthogonal to F × {0}n−1 because ε is sufficiently small.

Let π : Fn → F be the coordinate projection onto the first coordinate. For every
subset S of Fn and u ∈ F , we denote S∩π−1(u) by Su. We show that Mu is closed
and discrete for every u ∈ π(M). For contradiction, assume that dimMu > 0 for
some u ∈ π(M). We have dim f−1(Mu) > 0 by [7, Proposition 2.8(6)]. A nonempty
open interval I is contained in f−1(Mu). The tangent space of M at f(t), t ∈ I,
is orthogonal to the first coordinate axis, which is absurd. We have shown that
dimMu = 0 for every u ∈ π(M). This implies that Mu is discrete and closed by [7,
Proposition 2.8(1)]. If 0 ∈ π(M), the set f−1(M ∩ π−1(0)) is discrete and closed
by [7, Proposition 2.8(1),(6)]. Therefore, we may assume that 0 /∈ π(M) by taking
a smaller d′ > 0.

Let N := f([0, d′/2]). Observe that N is definably compact by [9, Proposition
1.10] and Lemma 2.1. Observe that a ∈ N and 0 ∈ π(N). We show 0 ∈ cl(π(N) \
{0}) = cl(π(N\{a})), where cl(·) denotes the closure in F . Assume for contradiction
that 0 /∈ cl(π(N) \ {0}). By local o-minimality, 0 is isolated in π(N). We have
π(N) = {0} because π(N) is definably connected by [9, Corollary 1.5]. This deduces
that dimM ∩ π−1(0) ≥ dimN ∩ π−1(0) = dimN = 1, which is a contradiction.
We have shown that 0 ∈ cl(π(N) \ {0}). This deduces, by local o-minimality, that
a closed interval one of whose endpoints is 0 is contained in π(N). After a linear
transformation, we may assume that the closed interval [0, d] is contained in π(N)
for some d > 0.

By [5, Lemma 5.15], we can find a definable map γ : [0, d] → N such that
π(γ(u)) = u for 0 ≤ u ≤ d. We may assume that γ|(0,d) is of class C1 and γ|(0,d]
is continuous by [5, Theore 5.11] by taking a smaller d > 0. γ is continuous at
0. In fact, by [6, Theorem 4.5], limt→0 γ(t) exists in the definably compact set N .
The continuity of π implies π(limt→0 γ(t)) = limt→0 π(γ(t)) = 0. This implies that
limt→0 γ(t) = a = γ(0) because N ∩ π−1

1 (0) is the singleton {a}.
We prove ‖Jγ(t)‖ < 1/

√
1− ε2, where Jγ is the Jacobian matrix of γ. Fix

0 < t < d. Let V = τ(γ(t)) and ω : V Fn → F be the linear bijection defined by
w(v) = π(v). Let e = (1) be the unit vector in F . We have Jγ(t) = ω−1(e). By the
definition of M and [4, Proposition 3.1(c)], we have δ(V,A) ≤ ‖V − A‖ < ε. This
inequality and the inequality δ(V,A) + δ(V,A⊥) ≥ 1 imply ‖AV ‖op = δ(V,A⊥) >√
1− ε2. Let w be a unit vector in V Fn. By the definitions of V and A, we have

‖AV ‖op = ‖ω(w)‖. Therefore, ‖Jγ(t)‖ = ‖ω−1(e)‖ = 1/‖AV ‖op < 1/
√
1− ε2.

Put L =
√

n/(1− ε2). We show that γ is L-Lipchitz continuous. To show
this, fix 0 ≤ b1 < b2 ≤ d. Let γi(t) be the ith coordinate of γ(t). The mean
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value theorem is deduced only from the extreme value theorem. Therefore, the
mean value theorem holds in F by [9, p.1786]. Apply it to γi, then we have

|γi(b2) − γi(b1)| ≤ supb1<t<b2
|γ′

i(t)|(b2 − b1) ≤ ‖Jγ‖(b2 − b1) < (b2 − b1)/
√
1− ε2.

This deduces ‖γ(b2) − γ(b1)‖ ≤ L(b2 − b1), which means that γ is L-Lipchitz
continuous. �

Proof of Theorem 1.1. For every non-closed definable subset E of Fn, we have only
to construct a definable contraction on E that has no fixed point. Let a ∈ ∂E. By
Lemma 2.2, we can pick an L-Lipschitz definable map γ : [0, d] → E ∪{a} for some
L > 0 such that γ(0) = a and γ((0, d]) ⊆ E. Let H : E → E be the definable
map defined by H(x) = γ(min(d, ‖x− a‖)/2L). We can show that H is a definable
contraction on E having no fixed point in the same manner as the proof of [11,
Theorem A]. We omit the details. �

3. Caristi fixed point theorem

We prove Theorem 1.3 in this section.

Lemma 3.1. Let X be a definable, bounded and closed subset of Fn and f : X →
[0,∞) be a definable lower semi-continuous function. Then, inf f(X) ∈ f(X).

Proof. Set T := f(X). For every t ∈ T , put Ct := {x ∈ X | f(x) ≤ t}. Ct

is a closed subset of X because f is lower semi-continuous. Consider the family
C = {Ct | t ∈ T }, which is a definable filtered collection. By Lemma 2.1, there
exists x0 ∈ ⋂

t∈T Ct. We have f(x0) ≤ t for every t ∈ T . This implies that
f(x0) = inf T . �

Proof of Theorem 1.3. We denote Sf (x) by S(x) in the proof.
(1) ⇒ (2) : We first show that S(y) ⊆ S(x) whenever y ∈ S(x). We pick an

arbitrary z ∈ S(y). We have ‖z−x‖ ≤ ‖y−z‖+‖x−y‖ ≤ f(z)−f(y)+f(y)−f(x) =
f(z)− f(x). This means that z ∈ S(x).

We next reduce to the case where X is bounded in Fn. Take an arbitrary point
x′ ∈ X . Put X ′ = S(x′). The definable closed set X ′ is bounded because, for
every element z ∈ X ′, we have ‖z − x′‖ ≤ f(x′). For every x ∈ X ′, we have
Sf (x) ⊆ S(x′) = X ′. Therefore, we may assume that X is bounded by replacing
X with X ′.

SinceX is closed and bounded, we can find x0 ∈ X such that f(x0) = inf f(X) by
Lemma 3.1. We have f(y) ≥ f(x0) for every y ∈ X . This implies that S(x0) = {x0}.

(2) ⇒ (1) : Assume that X is not closed. Let p be a point in the frontier of
X . We define the definable function f : X → [0,∞) by f(x) = 2‖x − p‖. f is
continuous, and it is also lower semi-continuous. We show that S(x) 6= {x} for
every x ∈ X . We fix x ∈ X to show this relation. Let y be an arbitrary point
in X . Triangle inequality implies 1

2 (f(x) + f(y)) ≥ ‖x − y‖. Therefore, we have

f(x)− f(y) ≥ ‖x− y‖+ 1
2 (f(x)− 3f(y)). If we choose y0 ∈ X sufficiently close to

p, we have 3f(y0) < f(x). We obtain y0 ∈ S(x) and S(x) 6= {x}. �
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