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Abstract

Existing methods to summarize posterior inference for mixture models focus on
identifying a point estimate of the implied random partition for clustering, with den-
sity estimation as a secondary goal (Wade and Ghahramani, 2018; Dahl et al., 2022).
We propose a novel approach for summarizing posterior inference in nonparamet-
ric Bayesian mixture models, prioritizing density estimation of the mixing measure
(or mixture) as an inference target. One of the key features is the model-agnostic
nature of the approach, which remains valid under arbitrarily complex dependence
structures in the underlying sampling model. Using a decision-theoretic framework,
our method identifies a point estimate by minimizing posterior expected loss. A loss
function is defined as a discrepancy between mixing measures. Estimating the mixing
measure implies inference on the mixture density and the random partition. Exploit-
ing the discrete nature of the mixing measure, we use a version of sliced Wasserstein
distance. We introduce two specific variants for Gaussian mixtures. The first, mixed
sliced Wasserstein, applies generalized geodesic projections on the product of the Eu-
clidean space and the manifold of symmetric positive definite matrices. The second,
sliced mixture Wasserstein, leverages the linearity of Gaussian mixture measures for
efficient projection.

Keywords: Random partition models; Density estimation; Cluster estimation.
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1 Introduction

We propose an approach to summarize the posterior distribution on the random mixing

measure in Bayesian nonparametric (BNP) mixture models (Ghosal and van der Vaart,

2017). By focusing on the mixing measure, the method fills a gap in the existing litera-

ture which focuses on summarizing the posterior distribution of implied random partitions

of experimental units (Wade and Ghahramani, 2018; Dahl et al., 2022). The proposed

approach requires only posterior Monte Carlo samples of random mixing measures as in-

put and provides a well-defined summary of these measures. Importantly, the approach is

model-agnostic, accommodating any prior distributions on the random mixing measures,

including those with dependent structures such as dependent Dirichlet process (Quintana

et al., 2022; MacEachern, 1999). Using the resulting point estimate of the mixing measure,

if desired, one can derive an estimate of the density function and the partition.

Most approaches to posterior summarization for BNP mixture models assume a con-

text of density estimation, conditioning on a sample {Y1, . . . , Yn} from a mixture. Latent

indicators ci, i = 1, . . . , n that link the data with atoms in the mixing measure define a

random partition ρ = {S1, . . . , SK} of [n] := {1, . . . , n} into subsets Sk of matching ci.

Methods then aim to summarize p(ρ | Y1, . . . , Yn), or equivalently, p(c | Y1, . . . , Yn) for

c = (c1, . . . , cn).

Proceeding under a decision-theoretic framework involves minimizing the posterior ex-

pectation of a chosen loss function to define the Bayes rule:

ρ̂⋆ = argmin
ρ̂

E[L(ρ, ρ̂) | Y1, . . . , Yn] or ĉ⋆ = argmin
ĉ

E[L(c, ĉ) | Y1, . . . , Yn], (1)

where L is a loss function that can be expressed using both the partition or the cluster

label notation. Lau and Green (2007) propose the use of Binder loss (Binder, 1978).

Wade and Ghahramani (2018) use variational information (VI) loss (Meilă, 2007) as an
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alternative. Other information-based distances include normalized variational information

(NVI), information distance (ID), normalized information distance (NID) (Vinh et al.,

2009), and one minus adjusted Rand index (omARI) (Rand, 1971). In addition to selecting

the loss function, various search algorithms have been proposed to solve the optimization

problem in (1), including binary integer programming (Lau and Green, 2007), greedy search

based on the Hasse diagram (Wade and Ghahramani, 2018), the R & F algorithm (Rastelli

and Friel, 2018), and the SALSO algorithm (Dahl et al., 2022).

Even when the primary inference target is a posterior summary of ρ, density estimation

(for the mixture or the mixing measure) can still be reported in a second step. However,

in applications where the density function plays a crucial role, such as anomaly detection

and data generation, it may be more appropriate to focus directly on the density function.

Consider then a general BNP mixture model: Y1, . . . , Yn
i.i.d∼ F, F = f ∗ G, G ∼ p(G),

where f is a kernel and ∗ denotes the convolution operator, we propose to find a summary

for p(G|Y1, . . . , Yn). From a point estimate Ĝ, one can directly obtain a point estimate of

the density F̂ by convolving it with the density kernel f . And if desired, one can obtain a

point estimate ρ̂ (or cluster labels ĉ) induced by Ĝ. For the sake of easy exposition, in the

upcoming discussion we assume i.i.d. sampling. But we do so without loss of generality.

The only assumption is that posterior inference is provided as a posterior Monte Carlo

sample of G. The details of the sampling model or prior model can be arbitrary.

We continue to use a decision-theoretic approach by minimizing a posterior expected

loss. However, targetting G, we require a loss function that quantifies the discrepancy

between two measures. Given the discrete nature of the random measure G, optimal

transport distances (Villani, 2009; Peyré et al., 2019) are a natural choice in this context.

Specifically, we choose sliced Wasserstein (SW) distance (Rabin et al., 2012; Bonneel et al.,

2015) due to its computational and statistical scalability with respect to the number of

support points. With a near-linear time complexity in the number of support points, the
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SW distance facilitates efficient and accurate truncation of mixing measures.

For the common special case of Gaussian mixture models, we introduce two novel ver-

sions of SW, working with measures supported on the product of the Euclidean manifold

and the manifold of symmetric positive definite (SPD) matrices. The first variant, called

mixed SW (Mix-SW), uses generalized geodesic projection instead of the conventional linear

projection used in standard SW. Consequently, Mix-SW preserves more geometric infor-

mation compared to SW with a vectorization approach. The second variant, named sliced

mixture Wasserstein (SMix-W), compares mixing measures by evaluating the induced mix-

ture of Gaussian measures. By leveraging the linearity properties of mixture of Gaussian

measures, SMix-W achieves a reduction in projection complexity compared to traditional

SW while still being geometrically meaningful. Finally, we discuss basic properties of the

proposed distances including boundedness and metricity.

The remainder of the article is organized as follows: In Section 2, we introduce the

approach for summarizing the posterior of random mixing measures. Section 3 presents

the two novel distances for Gaussian mixing measures, accompanied by a discussion of

their theoretical and computational properties. In Section 4, we conduct an empirical

analysis using simulated data and the Old Faithful Geyser dataset, employing a truncated

Dirichlet Process Gaussian mixture model to assess proposed approach in both clustering

and density estimation. Additional materials, including technical proofs, are provided in

the appendices.

2 Point estimation of random mixing measures

In this section, we present a new approach for obtaining a point estimate of random mixing

measures. As discussed, without loss of generality we consider the following Bayesian

nonparametric (BNP) mixture model as an example: Y1, . . . , Yn
i.i.d.∼ F, F = f ∗G, G ∼

p(G), where f is a kernel and p(G) denotes a prior on the random mixing measure G. Our
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objective is to report a point estimate Ĝ. The point estimate can then be used for any

downstream data analysis. We first define the problem in Section 2.1 and then discuss

current options for optimal transport distances that can be used as the loss function in

Section 2.2.

2.1 Problem Setup

Under a decision-theoretic framework, the point estimate of the mixing measure Ĝ⋆ mini-

mizes posterior expected loss:

Ĝ⋆ = argmin
Ĝ

E[D(G, Ĝ) | Y1, . . . , Yn], (2)

where D : P(Θ) × P(Θ) → R+ represents a distance on the space of measures sup-

ported on Θ, which is the support set of the mixing measure G. Since the posterior is

usually intractable, the expectation in (2) is approximated using Markov chain Monte

Carlo (MCMC) methods. Given M posterior Monte Carlo samples, G1, . . . , GM ∼ p(G |

Y1, . . . , Yn), the optimization problem can be approximated as

Ĝ⋆ = argmin
Ĝ

1

M

M∑
m=1

D(Gm, Ĝ). (3)

We use a simple greedy procedure to solve the optimization problem in (3). Specifically,

we construct an M × M matrix, where the entry at row i and column j represents the

distance between the i-th and j-th posterior samples, i.e., D(Gi, Gj). We then identify

the index i⋆ that minimizes the average distance across columns, 1
M

∑M
j=1 D(Gi, Gj), and

return Gi⋆ as the greedy solution. This is equivalent to selecting the best posterior sample

from the posterior Monte Carlo sample.

In practice, truncating the mixing measure G can accelerate computation, improve

convergence and simplify implementation (Ishwaran and James, 2001). Specifically, we can
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use the following truncated version of G: Ḡ =
∑K

k=1 αkδθk with 0 < K < ∞. Ideally,

we want to choose the largest feasible value of K to minimize the approximation error

introduced by truncation. We then approximate the distance between two measures by the

distance between the truncated versions, i.e., D(G1, G2) ≈ D(Ḡ1, Ḡ2).

A point estimate of the mixing measure Ĝ, implies a point estimate of the density by

convolution of Ĝ with the kernel f , F̂ = f ∗ Ĝ. To estimate the partition, we determine

the cluster membership indicator ci for a data point i by maximum a posteriori (MAP)

estimation:

ĉi = argmax
k

p(ci = k | Ĝ, x). (4)

Here x generically denotes the observed data. When using truncation, i.e., Ĝ ≈
∑K

k=1 ŵkδθ̂k ,

this becomes:

ĉi = argmax
k

p(ci = k | ŵ1, . . . , ŵK , θ̂1, . . . , θ̂K , x). (5)

While there are alternative methods to obtain a point estimate ĉ given the mixing measure,

MAP is perhaps the most natural and computationally efficient approach.

In the optimization in (3), after truncation, we are left with two discrete mixing mea-

sures that may have disjoint supports. Traditional f -divergences (Ali and Silvey, 1966),

such as the Kullback–Leibler (KL) divergence, Jensen–Shannon (JS) divergence, and oth-

ers, cannot be used directly because they require access to the density ratio, which may

be undefined in this context. Consequently, optimal transport metrics become a natural

choice in this scenario. Next, we will brifely discuss currently available optimal transport

distances.
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2.2 Optimal Transport Distances for the loss function

Wasserstein distance. Let G1, G2 ∈ P(Θ) and d : Θ × Θ → R+ be a ground metric.

The Wasserstein-p (p ≥ 1) distance (Villani, 2009) between two measures G1 and G2 is

defined as follows:

W p
d (G1, G2) = inf

π∈Π(G1,G2)

∫
Θ×Θ

d(x, y) dπ(x, y), (6)

where Π(G1, G2) = {π ∈ P(Θ×Θ) | π(A,Θ) = G1(A), π(Θ, B) = G2(B) ∀A,B ⊂ Θ} is

the set of all transportation plans/couplings. When G1 and G2 are discrete measures, i.e.,

G1 =
∑K1

i=1 αiδxi
and G2 =

∑K2

j=1 βjδyj , the Wasserstein distance can be rewritten as:

W p
d (G1, G2) = min

π∈Γ(α,β)

K1∑
i=1

K2∑
j=1

d(xi, yj)πij, (7)

where the set of transportation plans becomes Γ(α, β) =
{
π ∈ RK1×K2

+ | π1 = β, π⊤1 = α
}
.

The computation of Wasserstein distance is often performed using linear programming (Peyré

et al., 2019), with a time complexity of O((K1+K2)
3 log(K1+K2)). Alternatively, it can be

approximated using the entropic regularization approach (Cuturi, 2013), which has a time

complexity of O (K1K2 log(K1 +K2)/ϵ), where ϵ > 0 is the precision level. Consequently,

using Wasserstein distance becomes impractical for large values of K1 or K2. Therefore,

using the Wasserstein distance might in an undesirable way limit the truncation level K1

and K2.

Sliced Wasserstein (SW) Distance. SW distance exploits the availability of a closed-

form expression for Wasserstein distance on the real line. Specifically, for two distributions

G1, G2 ∈ P(R), the Wasserstein-p distance with the ground metric defined as d(x, y) =
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|x− y| is expressed as follows (Peyré et al., 2019):

W p
p (G1, G2) = W p

d (G1, G2) =

∫ 1

0

|CDF−1
G1
(t)− CDF−1

G2
(t)|pdt, (8)

where CDF−1
G1

and CDF−1
G2

denote the inverse cumulative distribution functions (quantile

functions) of G1 and G2, respectively. When G1 and G2 are discrete measures i.e., G1 =∑K1

i=1 αiδxi
and G2 =

∑K1

j=1 βjδyj (assumed that supports of two measures are sorted), the

inverse CDFs can be defined as

CDF−1
G1
(t) =

K1∑
i=1

xiI{
i−1∑
j=1

αj ≤ t ≤
i∑

j=1

αj}, CDF−1
G2
(t) =

K2∑
j=1

yjI{
j−1∑
i=1

βi ≤ t ≤
j∑

i=1

βi}

Solving (8) in this case has the time complexity of O((K1 +K2) log(K1 +K2)).

To leverage the closed-form solution of one-dimensional Wasserstein distance in high-

dimensional settings, SW distance (Bonneel et al., 2015) is introduced. The central idea of

SW is to randomly project two original measures onto two one-dimensional measures and

then computes the expected value of the one-dimensional Wasserstein distance between

the two projected measures. The conventional SW employs a linear projection, defined

as Pv(x) = ⟨v, x⟩ for v ∈ Sd−1, where v represents the projection direction. The sliced

Wasserstein-p distance (p ≥ 1) between G1 and G2, using the ground metric d(x, y) =

|x− y|, is defined as follows:

SW p
p (G1, G2) = Ev∼U(Sd−1)[W

p
p (Pv♯G1, Pv♯G2)], (9)

where Pv♯G1 and Pv♯G2 are the push-forward measures of G1 and G2 through the function

Pv, and U(Sd−1) denotes the uniform distribution over the unit hypersphere.

The expectation in sliced Wasserstein (SW) distance is intractable, thus Monte Carlo

estimation is often employed to approximate SW. Specifically, let v1, . . . , vL
i.i.d.∼ U(Sd−1)
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represent the projecting directions. The Monte Carlo estimation of SW is given by:

ŜW
p

p(G1, G2) =
1

L

L∑
l=1

W p
p (Pvl♯G1, Pvl♯G2). (10)

The overall time complexity of SW is composed of the time required for sampling

projecting directions, the time for applying the projection operator Pv, and the time for

computing one-dimensional Wasserstein distances. When G1 and G2 are discrete measures

supported by K1 and K2 atoms, respectively, and L Monte Carlo samples are used, the

time complexity of SW is: O(Ld+Ld(K1+K2)+L(K1+K2) log(K1+K2)) = O(Ld(K1+

K2)+L(K1+K2) log(K1+K2)), where O(Ld) accounts for sampling projecting directions,

O(Ld(K1 +K2)) is for the projection, and O(L(K1 +K2) log(K1 +K2)) is for computing

L one-dimensional Wasserstein distances. Additionally, the projection complexity of SW is

O(Ld), which corresponds to the memory required for storing the L projecting directions.

We can see that SW is very scalable in terms of the numbers K1 and K2 of support points.

It allows accurate truncation with large K1 and K2.

3 Sliced Optimal Transport Distances for Gaussian

Mixing Measures

For Gaussian mixing measures G1 and G2, we use the parameter space Θ = Rd × S++
d (R),

where S++
d (R) is the manifold of all symmetric positive definite matrices. Conventional

SW distance can not directly be applied in this context, as it is defined for measures on

vector spaces. We first discuss an approach to apply SW using vectorization in Section 3.1.

We then propose two novel variants of SW that preserve geometry. In Section 3.2 we start

with a new variant of SW based on generalized geodesic projection onto the product of

manifolds, which we call Mixed SW (Mix-SW). Finally, we introduce another variant of

SW for finite Gaussian mixing measures by comparing their induced mixture measures,
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which we call sliced mixture Wasserstein (SMix-W).

3.1 Vectorized Sliced Wasserstein

We are aiming to compare measures on the product of the Euclidean manifold and the

manifold of symmetric positive definite (SPD) matrices, denoted as Θ = Rd × S++
d (R),

using the Sliced Wasserstein (SW) distance. However, SW is defined on vector spaces. A

straightforward approach is to convert measures on Rd×S++
d (R) into measures on a vector

space. For any θ = (µ,Σ) ∈ Rd × S++
d (R), we can arrange the entries of Σ to obtain

a vector representation, which can then be stacked with µ. For simplicity, we define the

transformation V (θ) = (µ,Σ(1), . . . ,Σ(d)), where Σ(i) is the i-th row of the matrix Σ. With

this transformation, we can redefine SW distance as

SW p
p (G1, G2) = Ev∼U(Sd(d+1)−1)[W

p
p (Pv♯V ♯G1, Pv♯V ♯G2)], (11)

for any G1, G2 ∈ P(Rd × S++
d (R)). Despite the appealing simplicity of this approach,

there are two main complications to consider. The first is that vectorization destroys the

geometry of the space, which may result in a distance that lacks geometric meaning. In

contrast to the Wasserstein distance, where the ground metric can be flexibly designed, the

ground metric in SW is constrained to exist in a one-dimensional space. The second issue

pertains to the high-dimensional projection direction space, Sd(d+1)−1, which may require

increased computation and memory to achieve accurate approximations via Monte Carlo

estimation. The time complexity of vectorized SW is given by O(Ld2(K1 +K2) + L(K1 +

K2) log(K1 +K2)) and the projection complexity is O(Ld2), both of which are quadratic

in dimensions.
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3.2 Mixed Sliced Wasserstein

To address the loss of geometric information, we propose a new variant of SW distance using

geodesic projection on the product manifolds Rd×S++
d (R). In summary, we define a notion

of projecting a support point (µ,Σ) ∈ Rd×S++
d (R) onto a curve with the associated velocity

vector Vw = (w1A,w2A) in a way that the projection is easy to evaluate. From the new

projection, the desired SW is defined as the expectation of the projected one-dimensional

Wasserstein distance under the uniform-law of random curve parameters (v,A, w).

We begin by reviewing some basic definitions relevant to Riemannian manifolds, includ-

ing the inner product, geodesics, length, geodesic distance, and the exponential map, as

detailed in Appendix A.1. Additionally, we review the concept of geodesic projection (Bonet

et al., 2024) and explore certain properties of the manifold of symmetric positive definite

matrices S++
d (R) (Pennec et al., 2019).

Geodesic Projection Let γ be a curve on the manifold M, and denote A as the set of

all points belonging to that curve. The projection of a point x ∈ M onto the curve γ is

defined as: P̃γ(x) = argminy∈A d(x, y), where d is the geodesic distance. If we constrain

γ to be a curve that passes through the origin (denoted as o) with unit velocity v (i.e.,

⟨v, v⟩o = 1), then we have Γ = {expo(tv) | t ∈ R}, where expo(·) is the exponential map at

the origin. The coordinates of the projection can be determined by solving:

Pγ(o,v)(x) := Pv(x) = argmin
t∈R

d(x, expo(tv)). (12)

Product Manifold of Rd × S++
d (R). From (Pennec et al., 2019), the origin of S++

d (R)

is the identity matrix I, and the tangent space is the space of all symmetric matrices.

The exponential map is given by expI(A) = exp(A) =
∑∞

n=0
An

n!
. While there are mul-

tiple geodesic distances on S++
d (R), we focus on the Log-Euclidean metric defined as:

dLE(Σ1,Σ2) = ∥ log Σ1 − log Σ2∥F , where logX = A if exp(A) = X. Since X is a symmet-
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ric positive definite matrix, we can use spectral decomposition: X = QΛQT , which gives us

logX = Q diag(log λ1, . . . , log λd)Q
T . The origin of the manifold Rd×S++

d (R) is o = (0, I),

where 0 is the d-dimensional zero vector. The exponential map in this manifold is defined

as expo((µ,Σ)) = (µ, exp(Σ)). The geodesic distance of the product manifolds is defined

as follows (Gu et al., 2019): d((µ1,Σ1), (µ2,Σ2)) =
√
∥µ1 − µ2∥22 + dLE(Σ1,Σ2)2.

Generalized Geodesic Projection. The geodesic projection and the corresponding SW

distance for measures on S++
d (R) have been investigated in (Bonet et al., 2023). While the

geodesic projection for the product of manifolds was introduced in (Bonet et al., 2024), it

has not been explicitly derived for any specific case. In this work, we extend the notion of

geodesic projection to a generalized geodesic projection by projecting onto a generalized

curve with adjusted velocity vectors for each marginal manifold. This adjustment is es-

sential for achieving the identity of indiscernibles in the subsequently defined SW metric.

Furthermore, we demonstrate that the generalized geodesic projection has a closed-form

expression on Rd × S++
d (R).

Definition 1. Given a product manifolds M1 × M2 with the origin o = (o1, o2), a gen-

eralized curve passing through the origin with the velocity vector Vw = (w1v1, w2v2) with

⟨v1, v1⟩o1 = 1, ⟨v2, v2⟩o2 = 1, and w2
1 + w2

2 = 1, the generalized geodesic projection onto the

generalized curve created by Vw is defined as:

PVw(x) = argmin
t∈R

d(x, expo(tVw)), (13)

where d is the geodesic distance on the product manifold.

Proposition 1. The generalized geodesic projection onto a generalized curve passing through

the origin with the velocity vector Vw = (w1v, w2A) (∥v∥22 = 1, ∥A∥2F = 1, w2
1 + w2

2 = 1)

on the product manifold of Rd × S++
d (R) has the following form: PVw((µ,Σ)) = w1⟨µ, v⟩+

w2Trace(A log Σ).
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The proof of Proposition 1 is given in Appendix A.2. It turns out that the generalized

geodesic projection is a weighted combination of the geodesic projection on the Euclidean

manifold and the geodesic projection on the manifold S++
d (R).

Mixed Sliced Wasserstein. From the generalized geodesic projection, we now can de-

fine the mixed Sliced Wasserstein (Mix-SW) distance.

Definition 2. Given two measures G1 and G2 belonging to P(Rd × S++
d (R)), p ≥ 1, the

Mixed Sliced Wasserstein distance is defined as follows:

Mix-SW p
p (G1, G2) = E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[W

p
p (PVw♯G1, PVw♯G2)],

where Vw = (w1v, w2A) and U(X ) is the uniform distribution over the set X e.g., S,Sd−1, Sd(R).

Mix-SW is similar to hierarchical hybrid sliced Wasserstein (H2SW) (Nguyen and Ho,

2024) i.e., they combine projections from marginals. However, Mix-SW comes from gen-

eralized geodesic projection for a specific product of manifold while H2SW comes from

randomly combining two general types of Radon transforms. In addition, H2SW is only

introduced for the product of the Euclidean manifold and the hypersphere.

Proposition 2. If
∫
Rd×S++

d (R) d((µ1,Σ1), (µ0,Σ0))
pdG1(µ1,Σ1) < ∞

and
∫
Rd×S++

d (R) d((µ0,Σ0), (µ2,Σ2))
pdG2(µ1,Σ1) < ∞ for any (µ0,Σ0) ∈ Rd × S++

d (R) with

d((µ1,Σ1), (µ2,Σ2) =
√
∥µ1 − µ2∥22 + ∥ log Σ1 − log Σ2∥2F , then Mix-SW p

p (G1, G2) < ∞.

We first show that Mix-SW p
p (G1, G2) is bounded as long as the expected geodesic dis-

tances with respect to G1 and G2 to any point (µ0,Σ0) are bounded. The proof of Propo-

sition 2 is given in Appendix A.3. Next, we will show that Mix-SW is a valid metric.

Theorem 1. Mixed Sliced Wasserstein is a valid metric on the space of measures which

belong to P(Rd × S++
d (R)) and satisfy the constraint in Proposition 2.
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The proof of Theorem 1 is given in Appendix A.4 which extends the technique of the

proofs in (Bonnotte, 2013; Nadjahi et al., 2020; Bonet et al., 2023) with the usage of the

generalized geodesic projection.

Corollary 1. By the identifiability of finite mixture of Gaussians (Proposition 2 in Yakowitz

and Spragins (1968)), Mix-SW is also a metric on space of finite mixture of Gaussians.

Corollary 1 suggests that Mix-SW can also be used to compare two finite mixtures of

Gaussians created by two mixing measures on Rd × S++
d (R).

On the computational side, the expectation in Definition 2 is intractable. We there-

fore employ Monte Carlo estimation to approximate Mix-SW. Specifically, we sample

(w1, v1, A1), . . . , (wL, vL, AL)
i.i.d∼ U(S)⊗U(Sd−1)⊗U(Sd(R)). The Monte Carlo estimate of

Mix-SW is then defined as:

M̂ix-SW
p

p(G1, G2) =
1

L

L∑
l=1

W p
p (PVw,l

♯G1, PVw,l
♯G2), (14)

where Vw,l = (wl1vl, wl2Al). When G1 and G2 are discrete measures with K1 and K2

supports, respectively, the time complexity of Mix-SW is O((K1 + K2 + L)d3 + L(K1 +

K2)d
2+L(K1+K2) log(K1+K2)), which arises from sampling A ∼ U(Sd(R)) (see Algorithm

1 in (Bonet et al., 2023)), computing the matrix logarithm, projecting the samples, and

solving one-dimensional Wasserstein distances. The projection complexity of Mix-SW is

O(Ld2) since it requires storing L projection matrices A1, . . . , AL.

3.3 Sliced Mixture Wasserstein

Mix-SW compares measures belonging to P(Rd × S++
d (R)). But it is not specifically de-

signed for Gaussian mixing measures. To leverage the structure of Gaussian mixing mea-

sures, we introduce a variant called the sliced mixture Wasserstein (SMix-W) distance,

which compares Gaussian mixing measures via their induced mixture of Gaussian mea-

14



sures. SMix-W is inspired by the Mixture Wasserstein distance (Delon and Desolneux,

2020), which is specifically for comparing mixtures of Gaussian measures.

Mixture Wasserstein distance. Given two discrete measures G1 and G2 belonging to

P(Rd×S++
d (R)), and a Gaussian kernel f(x | µ,Σ), we define F1 and F2 as the correspond-

ing mixtures of Gaussian measures, i.e., F1 = f ∗ G1 and F2 = f ∗ G2, where ∗ denotes

the standard convolution operation. The Mixture Wasserstein (MW) distance (Delon and

Desolneux, 2020) is defined as:

MW2
2(F1, F2) = inf

π∈Π(F1,F2)∩GMM2d(∞)

∫
Rd×Rd

∥x− y∥22 dπ(x, y), (15)

where GMM2d(∞) denotes the set of all finite Gaussian mixture distributions in 2d dimen-

sions. When G1 =
∑K1

i=1 αiδ(µ1i,Σ1i) and G2 =
∑K2

j=1 βjδ(µ2j ,Σ2j), the Mixture Wasserstein

distance simplifies to: minη∈Γ(α,β)
∑K1

i=1

∑K2

j=1 ηijW
2
2 (N (µ1i,Σ1i),N (µ2j,Σ2j)) , Using the

closed-form expression of the Wasserstein-2 distance between two Gaussian distributions,

we can rewrite this as: minη∈Γ(α,β)
∑K1

i=1

∑K2

j=1 ηij (∥µ1i − µ2j∥22 + Tr(Σ1i) + Tr(Σ2j)

−Tr
(
(Σ

1/2
1i Σ2jΣ

1/2
1i )1/2

))
.

One-dimensional Mixture Wasserstein distance. In preparation of the upcoming

definition of sliced MW by comparing one-dimensional projections of mixtures of normals,

we note the special case of one-dimensional MW distance. When G1 =
∑K1

i=1 αiδ(µ1i,σ2
1i)

and

G2 =
∑K2

j=1 βjδ(µ2j ,σ2
2j)

are one-dimensional mixtures of Gaussians, we have:

MW2
2(F1, F2) = min

γ∈Γ(α,β)

K1∑
i=1

K2∑
j=1

γi,j
(
(µ1i − µ2j)

2 + (σ1i − σ2j)
2
)
=

= W 2
2

(
(Id,

√
·)♯G1, (Id,

√
·)♯G2

)
, (16)
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which implies that the Mixture Wasserstein distance between one-dimensional Gaussian

mixtures behaves like a two-dimensional Wasserstein-2 distance on the mixing measures,

with a square root scaling applied to the variances. It is important to note that the one-

dimensional MW distance does not offer computational advantages, as it is not equivalent

to a one-dimensional Wasserstein distance.

Linear projection of mixture of Gaussians. When G1 =
∑K1

i=1 αiδ(µ1i,Σ1i) and G2 =∑K2

j=1 βjδ(µ2j ,Σ2j), we have F1 = f∗G1 :=
∑K1

i=1 αiN (µ1i,Σ1i) and F2 = f∗G2 :=
∑K2

j=1 βjN (µ2j,Σ2j).

For a vector v ∈ Rd and Pv(x) = ⟨x, v⟩, we have Pv♯F1 :=
∑K1

i=1 αiN (⟨v, µ1i⟩, v⊤Σ1iv) and

Pv♯F2 :=
∑K2

j=1 βjN (⟨v, µ2j⟩, v⊤Σ2jv), which are two one-dimensional Gaussian mixtures

with the mixing measures P ′
v♯G1 and P ′

v♯G2 with P ′
v(µ,Σ) = (⟨v, µ⟩, v⊤Σv).

Sliced Mixture Wasserstein. After applying linear projection to the mixture Gaussians

(or P ′
v on the Gaussian mixing measure), we can use one-dimensional MW in (16) to

compare them i.e.,

Ev∼U(Sd−1)[MW2
2(Pv♯F1, Pv♯F2)] = Ev∼U(Sd−1)[W

2
2 ((Id,

√
)♯P ′

v♯G1, (Id,
√

)♯P ′
v♯G2)]. (17)

However, MW does not have a closed-form expression, as discussed. Since MW is equivalent

to the Wasserstein-2 distance between mixing measures, we can replace it with the SW

distance to achieve computational benefits, as SW is equivalent to the Wasserstein distance

under a mild assumption (Bonnotte, 2013). This replacement leads to a novel variant of

sliced Wasserstein distance for mixtures of Gaussians and their mixing measures.

Definition 3. Given two finite discrete measures G1 and G2 belonging to P(Rd×S++
d (R)),

p ≥ 1, and Pv,w(µ,Σ) = w1⟨v, µ⟩ + w2 log(
√
v⊤Σv), the sliced mixture Wasserstein (SMix-
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W) is defined as follows:

SMix-W p
p (G1, G2) = E(w,v)∼U(S)⊗U(Sd−1)[W

p
p (Pv,w♯G1, Pv,w♯G2)],

U(X ) is the uniform distribution over the set X e.g., S,Sd−1.

We can rewrite

SMix-W 2
2 (G1, G2) = Ev∼U(Sd−1)

[
SW 2

2

(
(Id, log ◦

√
)♯P ′

v♯G1, (Id, log ◦
√
)♯P ′

v♯G2

)]

which replaces MW in (17) with the SW distance, incorporating a logarithmic transfor-

mation to adjust the standard deviation as a geodesic projection. Compared to SW and

Mix-SW, the projection space of SMix-W is smaller, specifically Sd−1 × S, as it utilizes a

single projecting direction v for both the mean µ and the covariance matrix Σ.

Proposition 3. If
∫
Rd×S++

d (R) d((µ1,Σ1), (µ0,Σ0))
pdG1(µ1,Σ1) < ∞ and∫

Rd×S++
d (R) d((µ0,Σ0), (µ2,Σ2))

pdG2(µ1,Σ1) < ∞ for any (µ0,Σ0) ∈ Rd × S++
d (R)) with

d((µ1,Σ1), (µ2,Σ2)) =
√

∥µ1 − µ2∥22 + 0.25 log(λmax(Σ1,Σ2))2 (λmax(Σ1,Σ2) is the largest

eigenvalue of the generalized problem Σ1v = λΣ2v), then SMix-W p
p (G1, G2) < ∞.

The proof of Proposition 3 is given in Appendix A.5. After showing the Smix-W is

bounded, we show that SMix-W is a valid metric for discrete measures on P(Rd×S++
d (R)).

Theorem 2. SMix-W is a valid metric on the space of finite discrete measures on P(Rd×

S++
d (R)) which satisfy the constraint in Proposition 3.

The proof of Theorem 2 is given in Appendix A.6. It is worth noting that SMix-W is

metric for only finite discrete measures on P(Rd × S++
d (R)) since the proof of identity of

indiscernibles of SMix-W relies on the identifiability of finite mixture of Gaussians (Propo-

sition 2 in Yakowitz and Spragins (1968)). In addition, from the identifiability, SMix-W is

also a metric between finite mixtures of Gaussians measures.
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On the computational side, the expectation in Definition 3 is also intractable. As before,

we use Monte Carlo estimation to approximate the value of SMix-W. In particular, we

sample (w1, v1), . . . , (wL, vL)
i.i.d.∼ U(S)⊗ U(Sd−1). The Monte Carlo estimation of SMix-W

is defined as follows:

̂SMix-W
p

p(G1, G2) =
1

L

L∑
l=1

W p
p (Pvl,wl

♯G1, Pvl,wl
♯G2). (18)

When G1 and G2 are discrete measures with K1 and K2 supports, respectively, the time

complexity of SMix-W is O(L(K1 + K2 + 2)d2 + L(K1 + K2) log(K1 + K2)), due to the

computation of the projections and the solving of one-dimensional Wasserstein distances.

The projection complexity of SMix-W is O(Ld), as it only requires storing L projections

of (w1, v1), . . . , (wL, vL). We observe that SMix-W reduces the time complexity from O(d3)

of Mix-W to O(d2) by exploiting the linearity of mixtures of Gaussians. Compared to

vectorized SW and Mix-SW with O(d2) in projection complexity, SMix-SW has a better

projection complexity of O(d), making it more scalable with respect to the number of

dimensions. Furthermore, a lower-dimensional projection space for SMix-W may lead to a

reduced number of projections L required for a good approximation.

4 Empirical Analysis

We assess clustering and density estimation under two alternative summarization ap-

proaches: summarizing random partitions versus the proposed novel method of summariz-

ing random mixing measures. For the first approach, we utilize the SALSO package (Dahl

et al., 2022) with its greedy search algorithm to obtain point estimates of the random parti-

tion using Binder loss, VI loss, and omARI loss. For the proposed new methods, we employ

vectorized SW, Mix-SW, and SMix-W (all are approximated with L = 100 projections) to

obtain point estimates of the random mixing measures. For evaluation, we use Binder loss,
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VI loss, and omARI loss to assess clustering performance, while we employ approximated

Total Variation (TV) and approximated SW (with L = 1000 projections) computed on a

grid over the data space to evaluate the density estimates.

Model and data. The proposed approach remains valid for any BNP mixture models

with arbitrary prior structures and sampling models. For easier exposition and to facilitate

the comparison we work with the conjugate truncated Dirichlet Process Gaussian mixture

models (Ishwaran and James, 2001). We assume

β1, . . . , βK | α ∼ Beta(1, α), wk = βk

k−1∏
j=1

(1− βj), (19)

zi|w1, . . . , wK ∼ Multinomial(w1, . . . , wK), (µi,Σi) | µ0, λ,Ψ, ν ∼ NIW(µ0, λ,Ψ, ν),

yi | µ1:K ,Σ1:K , zi = k ∼ N (µk,Σk), i = 1, . . . , n,

where K > 0 is the truncation level, and NIW denotes the Normal Inverse Wishart

distribution. The inference of the above model can be carried out efficiently by a Blocked

Gibbs sampler (Ishwaran and James, 2001), which simulates from the joint distribution

p(β1:K , µ1:K ,Σ1:K , z1:n, y1:n). The blocked Gibbs sampler defines transition probabilities

defined by sampling from the following complete conditional posterior distributions (1)

p(zi = k | β1:K , µ1:K ,Σ1:K , yi) ∝ wkN (yi|µk,Σk); (2) βk ∼ Beta(1 + nk, α +
∑

j>k nj); and

(3) µk,Σk ∼ NIW
(

λµ0+nkȳk
λ+nk

, λ+ nk,Ψ+
∑

i|zi=k(yi − ȳk)(yi − ȳk)
⊤

+ λnk

λ+nk
(ȳk − µ0)(ȳk − µ0)

⊤, ν + nk

)
,

where nk is the number of members of the k-th clusters given a partition, ȳk =

1
nk

∑n
i=1 yiδzi=k is the mean of cluster k-th. We implement inference for a simulated dataset

in Section 4.1, and for the Old Faithful geyser dataset (Azzalini and Bowman, 1990) in Sec-

tion 4.2.
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Figure 1: The figure shows the simulated data, the true generating density, the true cluster indices, the
density and cluster indices of different loss functions in the two summarization approaches. For the prior
approach of summarizing the partition (Binder loss, VI loss, and omARI loss), the posterior mean of the
density conditioned on the reported point estimate of the partition is shown. For the proposed approach
of summarizing the random mixing measure, the density is obtained via convoluting the point estimate of
the mixing measure with the Gaussian density kernel, and the cluster indices are obtained via MAP given
the the point estimate of the mixing measure.

4.1 Simulated data

Data generation and inference. Let V = 1.52 · I2. We sample 200 i.i.d data

yi
i.i.d.∼ 1

4
N ((−2,−2), V )) +

1

4
N ((2,−2), V )) +

1

4
N ((−2, 2), V ) +

1

4
N ((2, 2), V )) ,
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k∗
n E[B(ẑ, z)] B(ẑ, z⋆) E[V I(ẑ, z)] V I(ẑ, z⋆) E[omARI(ẑ, z)] omARI(ẑ, z⋆)

Binder 3 0.3476 0.3808 1.4548 2.0433 0.7022 0.7452
VI 1 0.4536 0.7478 1.0211 1.9936 1 1

omARI 4 0.3484 0.3536 1.5213 1.9641 0.7 0.7119

SW 2 0.3506 0.3724 1.4399 1.9719 0.7079 0.7324
Mix-SW 2 0.3529 0.3338 1.4322 1.8838 0.709 0.6724
SMix-W 2 0.3529 0.3338 1.4322 1.8838 0.709 0.6724

Table 1: The table shows the clustering performance on simulated data of different loss
functions in the two summarization approaches. The columns from left to right are the
number of unique clusters, expected Binder loss, Binder loss to the true cluster indices,
expected VI loss, VI loss to the true cluster indices, expected omARI loss, and omARI loss
to the true cluster indices. Lower losses are better.

E[TV (F̂ , F )) TV (F̂ , F ⋆) E[SW2(F̂ , F )) SW2(F̂ , F ⋆)

Binder 0.34195 0.4468 0.324 0.6278
VI 0.2745 0.4325 0.3112 0.6404

omARI 0.3423 0.4525 0.3264 0.5978

SW 0.2531 0.3742 0.2775 0.488
Mix-SW 0.2453 0.4143 0.261 0.5932
SMix-SW 0.2453 0.4143 0.261 0.5932

Table 2: The table shows the density estimation performance on simulated data of different
loss functions in the two summarization approaches. he columns from left to right are
expected Total Variation loss, Total Variation to the true density, expected SW2 loss, SW2

loss to the true density. Lower losses are better.

E[SW2(Ĝ, G)) SW2(Ĝ, G⋆) E[Mix-SW2(Ĝ, G)) Mix-SW2(Ĝ, G⋆) E[SMix-W2(Ĝ, G)) SMix-W2(Ĝ, G⋆)

SW 1.3471 1.6524 0.8207 1.0518 0.7464 0.9288
Mix-SW 1.406 1.6576 0.8099 0.9898 0.7333 0.9122
SMix-SW 1.406 1.6576 0.8099 0.9898 0.7333 0.9122

Table 3: The table shows the estimating the mixing measures performance of the proposed
approach with SW, Mix-SW, and SMix-SW on the simulated data. The columns from left
to right are expected SW2 loss, SW2 loss to the true mixing measure, expected Mix-SW2

loss, Mix-SW2 loss to the true mixing measure, expected SMix-W2 loss ,and SMix-W2 loss
to the true mixing measure. Lower losses are better.

i = 1, . . . , n = 200. We run 10000 blocked Gibbs sampler iterations (9000 burn-in itera-

tions) with the following hyperparameters µ0 = (0, 0),Ψ = diag((1, 1)), λ = 1, ν = 4, α =

1, K = 100.

Figure 1 plots the simulated data, the true generating density, the true cluster indices,

and the density and cluster indices obtained under different loss functions in the two sum-

marization approaches. We evaluate the density on a 100×100 grid, with the range defined
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by (min yi−1,max yi+1). For the first approach, starting with a point estimate of the par-

tition, we first determine ĉ (using Binder, VI, or omARI loss), and then evaluate E{F | ĉ}

by using 10 more iterations of the MCMC simulation to update F (freezing ĉ).

Clustering. Table 1 reports the expected losses and the relative loss, relative to the

simulation truth, using Binder loss, VI loss, and omARI loss. We note that summarizing the

random mixing measures yields comparable expected Binder loss and expected omARI loss,

compared to the conventional approach of summarizing the partition first. In particular,

summarizing the random mixing measures with SW results in only a 0.86% increase in

expected Binder loss compared to the best expected Binder loss (using Binder loss in the

optimization) and only a 1.13% increase in expected omARI loss compared to the best

expected omARI loss (using omARI in the optimization). In this simulation, both Mix-SW

and SMix-W yield the same point estimate of the random mixing measure. This is the case

because we only search among the visited MCMC samples, as discussed in Section 2. They

incur only a 1.53% increase in expected Binder loss relative to the best expected VI loss

and only a 1.13% increase in expected omARI loss compared to the best expected omARI

loss. The only loss for which the proposed approach leads to a considerable increase is VI

loss, with an increase of about 40%. From a frequentist perspective, Mix-SW and SMix-W

demonstrate the best clustering performance, as they have the smallest losses relative to

the simulation truth. Overall, we conclude that with respect to the reported point estimate

ĉ the approaches that start with a point estimate of the random mixing measure perform

comparable to approaches that start with the random partition.

Density estimation. Table 2 reports expected losses and relative losses, relative to the

simulation truth using total variation loss and SW2 loss. For the approachs that first

summarize the partitions (based on Binder, VI, or omARI loss), the losses are averaged

over 10 Monte Carlo samples of F (freezing the point estimate ĉ). Naturally, the proposed
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k⋆
n E[B(ẑ, z)] E[V I(ẑ, z)] E[omARI(ẑ, z)]

Binder 8 0.0296 0.2588 0.0594
VI 3 0.0333 0.246 0.0667

omARI 8 0.0296 0.2588 0.0594

SW 4 0.0303 0.2602 0.0607
Mix-SW 3 0.0306 0.2678 0.0614
SMix-W 3 0.0306 0.2678 0.0614

Table 4: The table assesses clustering for the Old Faithful dataset when using different loss
functions in the two summarization approaches. The columns from left to right are the
number of unique clusters, expected Binder loss, expected VI loss, and expected omARI
loss. Lower losses are better.

E[TV (F̂ , F )) E[SW2(F̂ , F ))

Binder 0.2128 1.0568
VI 0.2102 1.0301

omARI 0.2128 1.0568

SW 0.1901 0.868
Mix-SW 0.1852 0.7768
SMix-SW 0.1852 0.7768

Table 5: The table shows the density estimation performance on the Old Faithful dataset
of different loss functions in the two summarization approaches. The columns from left to
right are expected Total Variation loss and expected SW2 loss. Lower losses are better.

approach of summarizing the mixing measures first results in lower losses. In particular,

the best partition summarization method is 11.9% higher in expected total variation loss

and 19.23% higher in expected SW loss compared to Mix-SW and SMix-W. Both Mix-SW

and SMix-W outperform all partition focused approaches from a frequentist perspective in

a comparison versus the known simulation truth. SW performs well in this, demonstrating

expected losses nearly as good as those of SMix-W and Mix-SW.

Mixing measure estimation. Table 3 reports expected losses and relative losses, rela-

tive to the simulation truth, using SW2 loss, Mix-SW2 loss, and SMix-W2. Not surprisingly,

inference under each loss performs best when used for its intended evaluation.
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Figure 2: The figure shows the Old Faithful geyser data, the estimated density and partitions using
different loss functions under the two summarization approaches. For the approaches targeting ĉ first
(Binder loss, VI loss, and omARI loss), the figure shows the estimated density conditional on ĉ. For the
approaches targeting the mixing measure G first, the plots show the convolution with the Gaussian kernel,
and the cluster indices are obtained as MAP given Ĝ.

E[SW2(Ĝ, G)) E[Mix-SW2(Ĝ, G)) E[SMix-W2(Ĝ, G))

SW 3.1211 1.4876 1.4831
Mix-SW 3.7917 1.3186 1.3091
SMix-W 3.7917 1.3186 1.3091

Table 6: The table shows the estimating the mixing measures performance of the proposed
approach with SW, Mix-SW, and SMix-SW on the Old Faithful data. The columns from
left to right are expected SW2 loss, expected Mix-SW2 loss, and expected SMix-W2 loss.
Lower losses are better.
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4.2 Old Faithful Geyser dataset

The Old Faithful geyser dataset contains 272 data samples in 2 dimensions. We run 10000

blocked Gibbs sampler iterations (9000 burn-in iterations) with the following hyperparam-

eters µ0 = (3, 70),Ψ = diag((4, 26)), λ = 1, ν = 4, α = 1, K = 100. Figure 2 shows

the data, along with the density estimate and estimated partition obtained under different

loss functions using the two summarization approaches. We use the same visualization

techniques for the density as described in Section 4.1.

Table 4 reports the expected losses using Binder loss, VI, and omARI loss. We note

a similar overall pattern as in the simulation: summarizing the random mixing measures

yields comparable expected Binder loss and expected omARI loss compared to partition-

focused approaches. In particular, summarizing the random mixing measures with SW,

Mix-SW, and SMix-SW results in only about a 3.38% increase in expected Binder loss

compared to the best expected Binder loss, and only about a 3.37% increase in expected

omARI loss compared to the best expected omARI loss. For VI loss, the proposed approach

results in an increase of about 8.86% in expected VI loss compared to the best expected

VI loss. Table 5 reports the expected losses using total variation and SW2 loss for the

density estimation. For the partition-focused approaches (using Binder, VI, or omARI

loss), the losses are averaged over 10 Monte Carlo samples of F , as under the previously

described simulation study. Again, we summarizing the mixing measure first naturally

leads to better density estimates than summarizing partitions first. In particular, the best

partition-focused method reports a 13.5% higher expected total variation loss and 19.23%

higher expected SW loss compared to Mix-SW and SMix-SW. Furthermore, we find that

SMix-SW and Mix-SW compare favorably to SW, highlighting the benefits of structured

projection.

Finally, in Table 6 we report the expected losses under SW2 loss, Mix-SW2 loss, and

SMix-W2 for estimating the mixing measure. Again we ovserve similar patterns as in
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the simulation study. Inference under each loss function performs best when used for its

intended evaluation.

5 Conclusion

We present a new approach for Bayesian analysis of Bayesian Nonparametric (BNP) mix-

ture models, focusing on summarizing the posterior distribution on the mixing measures.

Our method minimizes the posterior expected loss using a discrepancy between measures

as the loss function, utilizing the computationally scalable sliced Wasserstein distance. For

Gaussian mixture models, we introduce two variants: mixed sliced Wasserstein (Mix-SW)

and sliced mixture Wasserstein (SMix-W). Mix-SW uses generalized geodesic projection

on the product of the Euclidean manifold and the manifold of symmetric positive def-

inite matrices, providing a meaningful metric for comparing Gaussian mixing measures.

SMix-W leverages the linearity of Gaussian mixtures for efficient projection. Empirical

analyses show that our summarization approach yields more accurate density estimates

while maintaining a good partition summary.

Limitations of the proposed approach include the restriction to truncated mixtures

and the potential suboptimality of the reported point estimate of the mixing measures,

as the solution is limited to the Monte Carlo set of posterior samples. The simple sliced

Wasserstein distance might not be optimal for all mixture models; therefore, different

variants should be designed to exploit specific geometry, as we do for Gaussian mixtures.

Future work will focus on refining the search algorithm to achieve better point estimation

and extending the approach to more generalized Bayesian nonparametric (BNP) mixtures.
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A Appendices

A.1 Review on Riemannian Manifolds

A Riemannian manifold (M, G) of dimension d is a space that behaves locally as a linear

space diffeomorphic to Rd, named a tangent space. For any x ∈ M, the associated tangent

space is defined as TxM which supports an inner product ⟨·, ·⟩x : TxM× TxM → R i.e.,

⟨u, v⟩x = u⊤G(x)v. The joint space of the manifold and the tangent space is called the

tangent bundle TM = {x ∈ M, v ∈ TxM}.

Geodesics. Given two points x, y ∈ M, the smooth curve γ : [0, 1] → M such as

γ(0) = x, γ(1) = y is called geodesic if it minimizes the length:

L(γ) =
∫ 1

0

√
⟨γ′(t), γ′(t)⟩γ(t),

where γ′(t) is the derivative of the curve γ(t) with respective to t, which belongs to the

tangent space Tγ(t)M for any t ∈ [0, 1]. The length of the geodesic line is the geodesic

distance.

d(x, y) = inf
γ|γ(0)=x,γ(1)=y

L(γ).

Exponential Map. Let x ∈ M, for any v ∈ TxM, there exists a unique geodesic γ with

γ(0) = x and γ′(0) = v, denoted as γx,v. The exponential map exp : TM → M maps

v ∈ TxM back to the manifold at the point reached by the geodesic γ(1). In particular, we

have the following definition of the exponential map:

∀(x, v) ∈ TM, expx(v) = γx,v(1)
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A.2 Proof of Proposition 1

By Definition 1, we have:

PVw((µ,Σ)) = argmin
t∈R

d(x, exp0(tVw)) = argmin
t∈R

d2(x, exp0(tVw))

= argmin
t∈R

∥µ− tw1v∥22 + ∥ log Σ− log exp(tw2A)∥F

= argmin
t∈R

∥µ− tw1v∥22 + ∥ log Σ− tw2A∥F

= argmin
t∈R

∥µ∥22 + w2
1t

2 − 2w1t⟨µ, v⟩+ w2
2t

2 + Trace((logΣ)2)− 2w2tT race(A log Σ)

= argmin
t∈R

∥µ∥22 + t2 − 2w1t⟨µ, v⟩+ Trace((logΣ)2)− 2w2tT race(A log Σ)

:= argmin
t∈R

f(t)

Taking the derivative d
dt
f(t) = 2t − 2w1⟨µ, v⟩ − 2w2Trace(A log Σ), then set it to 0. We

obtain: PVw(θ) = t⋆ = w1⟨µ, v⟩+ w2Trace(A log Σ), which completes the proof.

A.3 Proof of Proposition 2

Since PVw((µ,Σ)) = w1⟨µ, v⟩ + w2Trace(A log Σ) is a Borel meansurable, using Lemma 6

in (Paty and Cuturi, 2019), we have:

W p
p (PVw♯G1, PVw♯G2)] = inf

πVw∈Π(PVw ♯G1,PVw ♯G2)

∫
R×R

|x− y|pdπVw(x, y)

= inf
π∈Π(G1,G2)

∫
Rd×S++

d (R)×Rd×S++
d (R)

|PVw(µ1,Σ1)− PVw(µ2,Σ2)|pdπ((µ1,Σ1), (µ2,Σ2)).
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Using the Minkowski’s inequality, we have:

W p
p (PVw♯G1, PVw♯G2)] ≤ inf

π∈Π(G1,G2))

∫
Rd×S++

d (R)×Rd×S++
d (R)

2p−1 (|PVw(µ1,Σ1)− PVw(µ0,Σ0)|p

+|PVw(µ0,Σ0)− PVw(µ2,Σ2)|p) dπVwdπ((µ1,Σ1), (µ2,Σ2))

= 2p−1

(∫
Rd×S++

d (R)
|PVw(µ1,Σ1)− PVw(µ0,Σ0)|pdG1(µ1,Σ1)

+

∫
Rd×S++

d (R)
|PVw(µ0,Σ0)− PVw(µ2,Σ2)|pdG2(µ2,Σ2)

)
.

Moreover, from the Cauchy–Schwarz’s inequality, we have:

|PVw(µ1,Σ1)− PVw(µ0,Σ0)|

= |w1⟨µ1, v⟩+ w2Trace(A log Σ1)− w1⟨µ0, v⟩ − w2Trace(A log Σ0)|

= |w1⟨µ1 − µ0, v⟩+ w2(Trace(A log Σ1)− Trace(A log Σ0))|

≤
√

w2
1 + w2

2

√
⟨µ1 − µ0, v⟩2 + (Trace(A(log Σ1 − log Σ0))2

=
√

⟨µ1 − µ0, v⟩2 + (Trace(A(log Σ1 − log Σ0))2

≤
√

∥v∥22∥µ1 − µ0∥22 + ∥A∥2F∥ log Σ1 − log Σ0∥2F

=
√

∥µ1 − µ0∥22 + ∥ log Σ1 − log Σ0∥2F = d((µ1,Σ1), (µ0,Σ0)).

From the assumption, we get:

W p
p (PVw♯G1, PVw♯G2)] ≤ 2p−1

(∫
Rd×S++

d (R)
d((µ1,Σ1), (µ0,Σ0))

pdG1(µ1,Σ1)

+

∫
Rd×S++

d (R)
d((µ0,Σ0), (µ2,Σ2))

pdG2(µ2,Σ2)

)
< ∞,

which completes the proof.
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A.4 Proof of Theorem 1

Symmetry and Non-negativity. The symmetry and non-negativity of Mix-SW follows

directly the symmetry and non-negativity of the Wasserstein distance (Peyré et al., 2019)

since it is the expectation of projected Wasserstein distance.

Triangle Inequality. Let consider three measureG1, G2, G3, using the triangle inequality

of Wasserstein distance, we have:

Mix-SWp(G1, G2) =
(
E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[W

p
p (PVw♯G1, PVw♯G2)]|

) 1
p

≤
(
E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[(Wp(PVw♯G1, PVw♯G3) +Wp(PVw♯G3, PVw♯G2))

p]
) 1

p .

Using the Minkowski’s inequality, we get:

Mix-SWp(G1, G2) ≤
(
E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[W

p
p (PVw♯G1, PVw♯G3)]|

) 1
p

+
(
E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[W

p
p (PVw♯G3, PVw♯G2)]|

) 1
p

= Mix-SWp(G1, G3) + Mix-SWp(G3, G2),

which completes the proof of triangle inequality.

Identity of indiscernibles. When G1 = G2, we have directly Mix-SW p
p (G1, G2) = 0.

We now prove that if Mix-SW p
p (G1, G2) = 0, we get G1 = G2. We first rewrite PVw(µ,Σ)

as a composition of two function i.e., PVw(µ,Σ) = Pw ◦ PV (µ,Σ). In particular, PV :

Rd ×S++
d (R) → R2 i.e., PV (µ,Σ) = (⟨µ, v⟩, T race(A log Σ)) (V = (v,A)) and Pw : R2 → R
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i.e., Pw(x) = ⟨w, x⟩. We then can rewrite mixed Sliced Wasserstein distance as:

Mix-SW p
p (G1, G2) = E(w,v,A)∼U(S)⊗U(Sd−1)⊗U(Sd(R))[W

p
p (PVw♯G1, PVw♯G2)]

= E(v,A)∼U(Sd−1)⊗U(Sd(R))
[
Ew∼U(S)[W

p
p (Pw♯PV ♯G1, Pw♯PV ♯G2)]

]
= E(v,A)∼U(Sd−1)⊗U(Sd(R))

[
SW p

p (PV ♯G1, PV ♯G2)
]
.

When Mix-SW p
p (G1, G2) = 0, it means that SW p

p (PV ♯G1, PV ♯G2) = 0 for U(Sd−1) ⊗

U(Sd(R))-almost every (v,A). Using the identity of indiscernibles proptery of SW (Bon-

notte, 2013), we have PV ♯G1 = PV ♯G2 for U(Sd−1) ⊗ U(Sd(R))-almost every (v, A). Let

denote F [PV ♯G1] and F [PV ♯G2] as the Fourier transform of G1 and G2 respectively, we

have F [PV ♯G1] = F [PV ♯G2] for U(Sd−1)⊗ U(Sd(R))-almost every (v,A). Moreover, for all

y ∈ R2, we have:

F [PV ♯G1](y) =

∫
R2

e−2iπ⟨y,x⟩d(PV ♯G1)(x)

=

∫
Rd×S++

d (R)
e−2iπ(y1⟨v,µ1⟩+y2⟨A,log Σ1⟩F )dG1(µ1,Σ1)

=

∫
Rd×S++

d (R)
e−2iπ(⟨y1v,µ1⟩+⟨y2A,log Σ1⟩F )dG1(µ1,Σ1)

=

∫
Rd×S++

d (R)
e−2iπ(⟨y1v,µ1⟩+⟨y2A,S1⟩F )d((Id, log)♯G1)(µ1, S1)

= F [(Id, log)♯G1](y1v, y2A).

Therefore, we obtain F [(Id, log)♯G1](y1v, y2A) = F [(Id, log)♯G2](y1v, y2A) for U(Sd−1) ⊗

U(Sd(R))-almost every (v, A). By injectivity of the Fourier transform, we get (Id, log)♯G1 =

(Id, log)♯G2. Since the function f(µ,Σ) = (µ, log Σ) is injective i.e., f−1(µ,Σ) = (µ, exp(Σ)),

we obtain G1 = G2, which completes the proof.
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A.5 Proof of Proposition 3

Since Pv,w(µ,Σ) = w1⟨v, µ⟩ + w2 log(
√
v⊤Σv) is a Borel meansurable, using Lemma 6 in

(Paty and Cuturi, 2019), we have:

W p
p (Pv.w♯G1, Pv,w♯G2)] = inf

πv,w∈Π(Pv,w♯G1,Pv,w♯G2)

∫
R×R

|x− y|pdπv,w(x, y)

= inf
π∈Π(G1,G2)

∫
Rd×S++

d (R)×Rd×S++
d (R)

|Pv,w(µ1,Σ1)− Pv,w(µ2,Σ2)|pdπ((µ1,Σ1), (µ2,Σ2)).

Using the Minkowski’s inequality, we have:

W p
p (Pv.w♯G1, Pv.w♯G2)] ≤ inf

π∈Π(G1,G2))

∫
Rd×S++

d (R)×Rd×S++
d (R)

2p−1 (|Pv.w(µ1,Σ1)− Pv.w(µ0,Σ0)|p

+|Pv.w(µ0,Σ0)− Pv.w(µ2,Σ2)|p) dπVwdπ((µ1,Σ1), (µ2,Σ2))

= 2p−1

(∫
Rd×S++

d (R)
|Pv.w(µ1,Σ1)− Pv.w(µ0,Σ0)|pdG1(µ1,Σ1)

+

∫
Rd×S++

d (R)
|Pv.w(µ0,Σ0)− Pv.w(µ2,Σ2)|pdG2(µ2,Σ2)

)
.

Moreover, from the Cauchy–Schwarz’s inequality, we have:

|Pv.w(µ1,Σ1)− Pv.w(µ0,Σ0)|

= |w1⟨v, µ1⟩+ w2 log(
√

v⊤Σ1v)− w1⟨v, µ0⟩+ w2 log(
√
v⊤Σ0v)|

=

∣∣∣∣w1⟨µ1 − µ0, v⟩+ 0.5w2 log

(
v⊤Σ1v

v⊤Σ0v

)∣∣∣∣
≤
√

w2
1 + w2

2

√
⟨µ1 − µ0, v⟩2 + 0.25 log

(
v⊤Σ1v

v⊤Σ0v

)2

=

√
⟨µ1 − µ0, v⟩2 + 0.25 log

(
v⊤Σ1v

v⊤Σ0v

)2

≤

√
∥v∥22∥µ1 − µ0∥22 + 0.25 log

(
max

v

v⊤Σ1v

v⊤Σ0v

)2

=
√

∥µ1 − µ0∥22 + 0.25 log(λmax(Σ1,Σ2))2 = d((µ1,Σ0), (µ0,Σ0)),
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where λmax(Σ1,Σ0) is the largest eigenvalue of the generalized problem Σ1v = λΣ0v. From

the assumption, we get:

W p
p (Pv.w♯G1, Pv,w♯G2)] ≤ 2p−1

(∫
Rd×S++

d (R)
d((µ1,Σ1), (µ0,Σ0))

pdG1(µ1,Σ1)

+

∫
Rd×S++

d (R)
d((µ0,Σ0), (µ2,Σ2))

pdG2(µ2,Σ2)

)
< ∞,

which completes the proof.

A.6 Proof of Theorem 2

Symmetry, Non-negativity, and Triangle Inequality. The symmetry, non-negativity,

and triangle inequality of SMix-W can be obtained by following the proof for Mix-SW in

Appendix A.4. In this section, we focus on the proof of identity of indiscernibles for SMix-

W.

Identity of indiscernibles. When G1 = G2, we have directly SMix-W p
p (G1, G2) = 0.

We now prove that if SMix-W p
p (G1, G2) = 0, we get G1 = G2. From the definition of

SMix-W in Definition 3, we have:

SMix-W p
p (G1, G2) = E(w,v)∼U(S)⊗U(Sd−1)[W

p
p (Pv,w♯G1, Pv,w♯G2)]

= Ev∼U(Sd−1)[SW
p
p ((Id, log ◦

√
)♯P ′

v♯G1, (Id, log ◦
√

)♯P ′
v♯G2)].

When SMix-W p
p (G1, G2) = 0, it implies SW p

p ((Id, log ◦
√

)♯P ′
v♯G1, (Id, log ◦

√
)♯P ′

v♯G2) = 0

for U(Sd−1)-almost every v. Since log(x) is an injective function, it leads to the fact

that SW p
p ((Id,

√
)♯P ′

v♯G1, (Id,
√

)♯P ′
v♯G2) = 0 for U(Sd−1)-almost every v. By the identity

of indiscernibles of SW (Bonnotte, 2013), we have (Id,
√
)♯P ′

v♯G1 = (Id,
√

)♯P ′
v♯G2 for

U(Sd−1)-almost every v with P ′
v(µ,Σ) = (⟨v, µ⟩, v⊤Σv). Since the square root function also

injective on R+, we have P ′
v♯G1 = P ′

v♯G2 which is equivalent to Pv♯F1 = Pv♯F2 for U(Sd−1)-
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almost every v with Pv(x) = ⟨v, x⟩ and F1 = f ∗ G1 and F2 = f ∗ G2 (f is the Gaussian

density kernel). Let denote F [Pv♯F1] and F [Pv♯F2] as the Fourier transform of F1 and F2

respectively, we have F [Pv♯F1] = F [Pv♯F2] for U(Sd−1)-almost every v. Moreover, for all

t ∈ R, we have:

F [Pv♯F1](t) =

∫
R2

e−2iπtϵd(Pv♯F1)(ϵ) =

∫
Rd

e−2iπt⟨v,x⟩dF1(x)

=

∫
Rd

e−2iπ⟨tv,x⟩dF1(x) = F [F1](tv).

Therefore, we get F [F1](tv) = F [F2](tv) for U(Sd−1)-almost every v. By the injectivity

of Fourier Transform, we get F1 = F2 which leads to G1 = G2 due to the identifiability

of finite mixture of Gaussians (Proposition 2 in (Yakowitz and Spragins, 1968)), which

concludes the proof.
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