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Abstract

This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms
of information for link prediction, alongside a brief review of existing link prediction meth-
ods. Our analysis reveals that GNNs cannot effectively learn structural information related
to the number of common neighbors between two nodes, primarily due to the nature of
set-based pooling of the neighborhood aggregation scheme. Also, our extensive experiments
indicate that trainable node embeddings can improve the performance of GNN-based link
prediction models. Importantly, we observe that the denser the graph, the greater such the
improvement. We attribute this to the characteristics of node embeddings, where the link
state of each link sample could be encoded into the embeddings of nodes that are involved
in the neighborhood aggregation of the two nodes in that link sample. In denser graphs,
every node could have more opportunities to attend the neighborhood aggregation of other
nodes and encode states of more link samples to its embedding, thus learning better node
embeddings for link prediction. Lastly, we demonstrate that the insights gained from our re-
search carry important implications in identifying the limitations of existing link prediction
methods, which could guide the future development of more robust algorithms.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated powerful expressiveness in graph representation learning
[80, 27]. However, what structural information can be learned via GNN remains an open question [67, 9,
15, 5, 42, 79]. Particularly, scant attention has been directed towards this question in terms of structural
information specific to two nodes. A prominent task relying on such the information is link prediction.
Although a number of GNN-based link prediction models have been introduced [74, 56, 78, 18, 62, 41, 36, 23],
many of them lack thorough investigations into whether their models effectively learn pair-specific structural
information.

For example, SEAL [74] and its successors [37, 60, 70, 59] are a family of link prediction methods that
attempt to use GNNs to learn pair-specific structural information represented by traditional link heuristics
such as Common Neighbors, Katz index [26], etc. SEAL [74] has proven that most link heuristics between
two nodes in a graph can be computed approximately within an enclosing subgraph specifically constructed
for that two nodes. In essence, SEAL-type methods perform link prediction by using GNNs to classify such
enclosing subgraphs, with an expectation that GNNs could learn the structural information equivalent to
link heuristics. However, a critical evaluation of this expectation is lacking in the literature. We demonstrate
that this expectation does not hold completely.

In this paper, we mainly study the link prediction capability of GNNs, with a focus on three aspects. 1), we
explore whether GNNs can effectively learn the pair-specific structural information related to the number of
common neighbors for link prediction. 2), we present our experimental observation: incorporating trainable
node embeddings can improve the performance of GNN-based link prediction models, and the denser the
graph, the greater the improvement. This observation, not extensively revealed in the prior literature, has



significant practical implications for selecting appropriate methods based on graph density in real-world link
prediction problems. 3), we leverage insights derived from our research to provide a limitation analysis of
existing link prediction methods, thereby contributing valuable perspectives for their potential improvements.

First, the majority of GNNs follow a neighborhood aggregation scheme, where each node’s representation
is recursively updated by aggregating the representations of that node and its neighbors [12, 36, 27]. The
learned representations are node-wise. It has been recognized that every node’s representation can hardly
capture information related to the number of its neighbors. This is due to the nature of the set-based pooling
of the aggregation scheme, which inherently ignores the size of the neighborhood set of each node [67, 76].

A general strategy for applying node-wise representations learned by GNNs to downstream multiple-node
tasks (e.g., link prediction, graph classification, etc.) is to combine the representations of the nodes involved
in these tasks. For link prediction, we find that the combination of two nodes’ representations essentially
lacks the ability to capture information related to the number of common neighbors. This is mainly because
node-wise representations learned by GNNs inherently lack information about the number of neighbors of
each node, and most operations of combining two nodes’ representations (e.g., concatenation, Hadamard
production, etc.) also do not contain any behaviors of counting how many common neighbors between two
nodes. To empirically verify the above, we examine the link prediction performance of an approach that
incorporates traditional link heuristics (e.g., Common Neighbors) into the GNN. The approach yields results
either superior or comparable to those obtained by using only GNNs, experimentally supporting our analysis.

Moreover, in our experiments, we find that trainable node embeddings (different from pre-trained node
embeddings, we refer to trainable node embeddings as those embeddings that can be optimized during the
model training) can enhance the performance of GNN-based link prediction models, and the denser the
graph, the stronger the enhancement. In particular, by only utilizing node embeddings in GCN [29] or
GAT [61], we are able to surpass many link prediction specific methods on two dense graphs, i.e., ogbl-
ddi and ogbl-ppa [21]. Our explanation is as follows. Compared to the model weights of a GNN that are
shared across all nodes [29, 12, 27], each trainable node embedding is unique to its respective node. This
characteristic of node embeddings can benefit the model. When the training is supervised by positive and
negative link samples (i.e., two nodes are not linked), the link state of two nodes in every link sample could
be encoded into the node embeddings of that two nodes and their neighboring nodes by the neighborhood
aggregation algorithm of the GNN. This would enable each node embedding to remember the relationships
of that node to other nodes, allowing the model to know better which two nodes are more likely to be linked
or not. Moreover, in the neighborhood aggregation of the GNN, the denser graphs would allow each node
to see more other nodes, leading to better learning of node embeddings for link prediction.

The insights gained in this study can help identify and interpret the limitations of existing link prediction
methods, potentially directing the search for more robust algorithms. To demonstrate this, we present two
case studies: first, we show that SEAL-type methods [74, 60, 70, 59] could not effectively learn information
about the number of common neighbors. Second, we show that NBFNet [82] lacks the algorithmic capability
to train powerful node embeddings for link prediction. Additionally, we compare the empirical performance
of various link prediction methods on OGB datasets. The results can be explained with our insights.

2 Notations and Problem Definition

Without loss of generality, we demonstrate our work on homogeneous graphs. Let G = (V,E, X) denote a
graph G with N nodes, where V is the set of nodes, |V| = N, E is the set of edges, and X € RV*/ is the
feature matrix of nodes. The i-th row of X (i.e., x; € Rf) is the feature vector of node i. The adjacency
matrix is A € R™*" in which the 4, j-th entry (i.e., a; ;) is 1 if an edge exists from node ¢ to j and 0 otherwise.
The degree of node i is deg(i) = >_,cy ai,;. The degree of the graph G is the average degree of all nodes.
A set of nodes connected directly to a node v € V is the first-order or 1-hop neighborhood set of v and is
denoted by T',,.

Link prediction is a node-pair-specific problem, aiming to estimate the likelihood ¢, , of the existence of
an unknown edge &, ,, ¢ E between two nodes v,u € V. Herein we refer to v,u as two target nodes in the
candidate link &, ..



3 Statistical Link Heuristics

In the long history of link prediction research, especially prior to the emergence of neural networks, a variety
of statistical link prediction methods have been proposed [40, 58, 32]. These statistical methods, known as
heuristic methods or link heuristics, often rely on intuitive rules or empirical observations, and often extract
structural information specific to the target node pair. Therefore, we can concrete abstract pair-specific
structural information using tangible link heuristics.

In this work, based on whether a link heuristic captures information related to the Number of Common
Neighbors (NCN) between two target nodes or not, we categorize pair-specific link heuristics (structural
information) into two types: NCN-dependent and non-NCN-dependent. With this categorization, we offer
a concise review of link heuristics in the literature, which reveals that the majority of these heuristics are
NCN-dependent.

3.1 NCN-dependent Link Heuristics

Table 1: NCN-dependent link heuristics between nodes v, u.
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Table 1 lists several commonly-used NCN-dependent Link heuristics. As shown, Common Neighbors (CN)
is defined as the size of the intersection of the first-order neighborhood sets of two nodes. Jaccard (JA)
coefficient [24] normalizes the CN by the size of the union of the two nodes’ neighborhood sets. AdamicAdar
(AA) [2] and Resource Allocation (RA) [81] suppress the contribution of nodes by penalizing each node with
its degree. Sorensen index [57], Salton index [51], Hub Promoted index [49], and Hub Depressed index [49]
incorporate the degree of two target nodes with CN. We can see from Table 1 that these heuristics are highly
dependent on the number of common neighbors between two nodes v, u (i.e., I’y NTy]).

In addition to the above, many other link heuristics are NCN-dependent. Cannistraci et al. [7] suggest that
the likelihood of two nodes forming a link increases if their common neighbors are members of a strongly
inner-linked cohort, termed local-community-links. They introduce a modified version of CN, JA, AA, and
RA, denoted as CAR-based. Furthermore, some another link heuristics consider the clustering coefficient of
the nodes in counting common neighbors, such as node clustering coefficient (>, €r,nr,| C(z)) [66] and node-

. . . T, | [T, NT, | _ 2|&,k:5,kET . &5 1 EE]
%mk clustering coelf‘ﬁment (226FvﬁFu\ o X C) + =t x C(z)) [65], where C(z) = J|1]:z|x(\rz|—]1];
is the local clustering coefficient of the node z.

An important family of link heuristics is those counting all paths between two target nodes, such as Katz
index [26], Leicht Holme Newman index [34], and Rooted PageRank [74]. These heuristics are indeed NCN-
dependent, where first-order and high-order common neighbors are considered. For example, Katz index
(Katzyy = Y oy ﬁl|{path£f}u}|) [26] weighted sums the number of all paths between two target nodes v, u,
where |{pathf,l7)u}| is the number of all paths between node v and u with the length of [, and § is a damping
factor. For example, if [ = 4, |{pathgfg}| can be computed by |{pathff;}| = ZaEFv,bEFu CNy,p, where CN
is the number of common neighbors between nodes a, b.



3.2 non-NCN-dependent Link Heuristics

According to our categorization strategy, there exist a limited number of link heuristics that are non-NCN-
dependent, including Shortest Path Distance (SPD), Preferential Attachment (PA, ., = |T'y| x |I'y|) [4], and
SimRank [25]. Notably, SPD and PA do not extract information about the number of common neighbors.
SimRank, detailed in Algorithm 1, recursively refines similarity scores between every two nodes by considering
the neighboring nodes of the two nodes, where the number of common neighbors is ignored essentially.
Specifically, the similarity score 55?) between node 4, j in the m-th iteration is obtained by averaging the
similarity scores between all neighbors of ¢ and j from the (m — 1)-th iteration, where the information about
(m)

e

i,

how many common neighbors between ¢, j can hardly be encoded into s

Algorithm 1 SimRank [25]

1: Input: Graph G = (V,E) ([V| = N), decay factor C (0 < C' < 1), iterations K
2: OQutput: Similarity S = (s; ;) € RV*V

3: Initialize: 57(0]) =1if i = j, otherwise 0

4: for m =1 to K do

5: sg;n) = |Fiﬁ1“j\ le:Jll Zlf:’ll s(;?(;)llzj(b), where I';(a) is the a-th node in T;

6: end for

4 Aggregation-based GNNs

Most GNNs follow a neighborhood information aggregation algorithm, where the representation of each node
in a graph is iteratively updated by aggregating the representations of its neighbors and its own [12, 27].
Formally, the representation of a node ¢ updated by the I-th layer of a GNN is

h" = AGG® ({hgl—” |V €T, U {i}}) ,

1
h(l) _ ﬁ(l)w(l) ( )

where hEO) is initialized with the feature vector of node i, AGG(l)(~) is instantiated as a set-based pooling
operation such as MAX, MEAN [19], or attention-based SUM [61, 36], W) is a weight matrix for the

I-th GNN layer, which is shared across all nodes and used for representation transformation (i.e., if HS,” €

RS, WO ¢ Rf*f /, then hq(}l) e Rf /). For simplicity, we omit the residual connections, activation functions,
etc. In this paper, we use the term GNNs to refer to such aggregation-based GNNs unless otherwise stated.

Figure 1: An illustration of neighborhood information propagation and aggregation in GNNs, where a; ; can
be an edge weight or attention weight from node j to 1.

Fig. 1 illustrates the neighborhood information propagation and aggregation process in GNNs. As shown,
ﬁgl) in Eq. 1 can be computed by

0)
O i (1-1)
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where aglg is the weight for the message (i.e., hy*l)) from node j to i. For MEAN-pooling in GNNs like
GCN [19], it can be aglj) = 1,V&;; € E. For attention-based GNNs like GAT [61], aglj) is an attention
coefficient that is computed dynamically based on hgl_l) and h§l_1).

Remark 1. The node representations learned by aggregation-based GNNs are node-wise.

Analysis. As shown in Eq. 1, the input, intermediate, and output representations of GNNs are node-wise.

Remark 2. Each node’s representation learned by neighborhood aggregation-based GNNs lacks information
about the number of neighboring nodes of that node.

Analysis. As shown in Eq. 1, GNNs update the representation hgl) by aggregating the representations of
node ¢ and its neighbors. In this process, the number of neighbors of node i can hardly be encoded into
hgl). This is due to the inherent nature of neighborhood aggregation scheme in GNNs, i.e., the AGG(l)(~)
in Eq. 1 is set-based pooling, which is originally designed to handle irregular sizes of neighborhood sets of
different nodes in a graph. For example, if the aggregation is MEAN pooling, then the set of node-wise
representations (i.e., {h;lil) | Vj € T; U{i}} in Eq. 1) will be averaged and the result could hardly contain
information about the size of that set. Note that attention-based pooling also cannot address this inherent
issue of the neighborhood aggregation scheme. As shown in Eq. 2, attention-based GNNs [61] essentially
replace the original edge weight with attention weight. Despite this modification, the set of representations
is weighted averaged, and consequently, the resulting representation still lacks information related to the size
of the neighborhood set.

Remark 2 shows that the neighborhood aggregation algorithm of GNNs inherently cannot effectively learn
information about the number of neighbors of each node. Essentially, we can address this issue by, for
example, adding the node degree as a feature to each node. We note that several previous works have
pointed out this [67, 76]. We present it using Remark 2 for better presenting our following analysis.

5 Can GNNs Completely Learn NCN-dependent Structural Information?

5.1 Analytical Study

What can we do when applying the node-wise representations learned by GNNs to downstream graph tasks
that involve multiple nodes, such as link prediction or graph classification? A general way is to combine
the representations of the involved nodes into one representation and pass it into the subsequent model
components [67, 63, 36, 27]. For such a combination, we have the following insight:

Remark 3. The combination of two or more nodes’ representations learned by GNNs cannot effectively
capture NCN-dependent structural information.

Analysis. According to Remark 2, due to the inherent nature of the neighborhood aggregation algorithm,
node-wise representations learned by GNNs cannot effectively capture information related to the number of
neighbors of each node (i.e., the size of its neighborhood set), much less to the number of common neighbors
between two nodes. The operation of combining representations of two or more nodes also cannot effectively
extract NCN-dependent structural information. For example, we can combine the representations of two
nodes by concatenation, Hadamard production [63, 27], and combine more nodes’ representations by MEAN
pooling [67], Sort pooling [75], etc. These combination operations on node-wise representations learned by
GNNs are unlikely to contain the behavior of counting the common neighbors between two nodes, thereby
falling short in extracting NCN-dependent structural information.

GNNs might learn little structural information related to the number of common neighbors. However, the
neighborhood aggregation algorithm of GNNs learns node-wise representations by passing the messages of
neighboring nodes of each node to that node and set-based aggregates them [19, 61, 76, 36]. Such set-
based aggregation operation inherently washes out the information related to the number of nodes in the
set, including the number of common nodes between two nodes. For instance, as shown in Fig. 1, the
nodes 1 and 4 have common neighboring nodes 5,6. In GNN learning based on Eq. 1, the node 1 will
receive the messages from 2,3, 5,6, where the number of common neighbors (i.e., CNy 4 = 2) can hardly be



Algorithm 2 Link prediction by integrating statistical heuristics into the GNN

1: Input: Graph G = (V,E,X) (V| = N), X € R¥*/ trainable node embeddings E € RY*4  trainable
heuristic embeddings, ground truth y, ,, for link sample (v,u), GNN layers L, epochs K

2: Output: Link likelihood ¢, . € R for node pair v, u

3: Initialize: node embeddings E, trainable heuristic embeddings, model weights, etc.
4: for i =0 to K do

5. for|=1to L do

6  h" =Acg® ({hy*” |Vjel;u {z’}})

7 b =hwWO

8: end for

%y, = COMBINE (h{"), h"))

10:  e,, = CONCAT (eESN), eg‘LA), ce ,e&%A))

11:  Jyu = PREDICTOR (CONCAT (hyy, €44))

12:  Calculate 1oss(Yy,u, §v,u)

13:  Update E, trainable heuristic embeddings, model weights, etc.

14: end for

15: Herein hgo) is initialized based on the feature and node embedding of node i (i.e., x; and €;). hy, is
the link representation for (v, ). eﬁN), eE,{LA), eE,IEA) are trainable heuristic embeddings by encoding CN,
JA, RA between nodes v, u, respectively. COMBINE(-, ) can be Hadamard production, concatenation,
etc. CONCAT is the operation of concatenation. PREDICTOR(-) is a predictor like MLP.

captured in the aggregation of five representations (i.e., representations of nodes 1,2,3,4,5). Note that in
this example, attention-based aggregation also cannot effectively learn CN; 4 = 2 from the aggregation of
five representations. The reason is the same as the analysis of Remark 2. In fact, it is difficult to interpret
what information the GNN has learned in a rigorous mathematical format. Nevertheless, we could say that
GNNs cannot completely capture NCN-dependent structural information.

5.2 Empirical Study
5.2.1 Experimental Design

If Remark 3 holds, we expect that properly integrating NCN-dependent heuristics into a GNN could improve
the link prediction performance. To this end, we design our experiments as detailed in Algorithm 2. As
shown, given two nodes v, u, the link prediction is performed by combining the two nodes’ representations
from the last GNN layer into a pair-specific link representation h,,, then concatenating it with heuristic
encodings, and lastly passing the concatenation into a predictor like MLP. During the training stage, the
node pair (v, u) can be a positive or negative link sample, where a negative sample can be two distant nodes
that are not connected to each other.

In Algorithm 2, hl(-o) can be initialized using feature vector x; € X, node embedding e; € E or the concate-
nation of both x; and e;. Some may refer to node embedding as an intermediate representation of a node
in GNNs. In this work, we clearly distinguish node embeddings from node representations. We consider
node embedding as a type of node-wise input feature. The embedding of a node can be viewed as encoding
a unique node id into a trainable embedding vector, which is like encoding a unique word id into the word
embedding in natural language processing [45]. Note that we can encode any feature into a trainable embed-
ding vector (e.g., encoding node degree to an embedding). The main difference between node embeddings
and the embeddings of other node features is that each node embedding vector is unique to that node. For
example, an embedding of a node degree is not unique to that node (different nodes could have the same
node degree).

We also encode link heuristics into trainable embedding vectors. To verify Remark 3, we only need to encode
NCN-dependent link heuristics. The methodology of encoding heuristics is as follows. For heuristics that
are discrete integer values (e.g., CN), we assign a trainable embedding vector to each integer. In the case of



heuristics that are continuous floating-point values (e.g., AA), we partition the value range into small bins and
subsequently allocate each bin a unique embedding vector. Encoding heuristics into embeddings is mainly
because if we directly use heuristics as features, we find that the model optimization is challenging, where
the model is more likely to get stuck in a local optimum. This issue could arise due to the high correlation
between the heuristic features and the link samples. Encoding heuristics into trainable embeddings can
address this issue successfully.

5.2.2 Datasets

Table 2: Statistics of OGB link prediction datasets used in our experiments.

Dataset #Nodes #Edges #Degree
OGBL-DDI 4,267 1,334,889 500
OGBL-COLLAB 235, 868 1,285,465 8
OGBL-PPA 576,289 30,326,273 73
OGBL-CITATION2 2,927,963 30,561, 187 21

All of our experiments are conducted on four OGB link prediction datasets: ogbl-collab, ogbl-citation2,
ogbl-ppa, and ogbl-ddi [21]. The statistics of datasets are summarized in Table 2. All these datasets are
constructed based on real-world data, covering diverse realistic applications and spanning different scales
(4K - 3M nodes). OGB provides an official evaluation protocol. We completely follow it in the data splits and
evaluation metrics (i.e., Hits@50, MRR, Hits@100, and Hits@20 on ogbl-collab, ogbl-citation2, ogbl-ppa and
ogbl-ddi, respectively). We report the result on the test set, with mean and standard deviation computed
across 10 trials.
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Figure 2: The results of Algorithm 2 on four OGB link prediction datasets, using heuristic encoding (HE)
only, node features (X) only, node embeddings (NE) only, or their combinations. The data splits and
evaluation metrics follow OGB official evaluation protocol [21].

5.2.3 Implementation Details

We implement our Algorithm 2 based on PyTorch and PyTorch Geometric [13]. All embedding vectors
are initialized by following the methods in [16, 20]. The model is trained with Adam optimizer [28]. The
learning rate is decayed using the ExponentialLR method [38]. We conduct experiments on ogbl-ddi and
ogbl-collab on a Linux machine with 192G RAM, and NVIDIA Quadro P6000 (24G), and on ogbl-ppa
and ogbl-citation2 on a machine with 512G RAM and NVIDIA A100 (40G). Table 3 lists the configura-
tions of the Algorithm 2 for the best performance. We provide our code for reproducing the results at
https://github.com/astroming/GNNHE.



Table 3: Configurations of the Algorithm 2 for the best performances.

ogbl-ddi ogbl-collab ogbl-ppa ogbl-citation2

GNN module GCN GCN GCN GCN
GNN layers 2 2 2 2
predictor MLP MLP MLP MLP
predictor layer 4 5 3 4
heuristics - SPD,CN,AA - SPD,AA
heuristic embedding dim - 32 - 32
node embedding dim 512 - 256 -

Ir 0.003 0.002 0.001 0.001
dropout rate 0.3 0.3 0.3 0.25
gradient clip norm 5 10 5 10
batch size 100000 70000 100000 15000

5.2.4 Experimental Results

Fig. 2 shows the experimental results, where HE is the model that only uses the heuristic encoding e, in
Line 11 of Algorithm 2. GNN(X), GNN(NE), and GNN(X+NE) denote the models only using the GNN
with three different inputs: node features (X) only, node embeddings (NE) only, and concatenation of both
X and NE (X+NE). The model GNN(X)+HE uses both h,, and e,,.

We can see in Fig. 2 that HE outperforms GNN(X) on all datasets, suggesting that NCN-dependent heuristics
convey meaningful information that could not be effectively learned by the GNN. Moreover, most of the
results of combining GNN and HE are better than those only using GNN. Especially, GNN(X)+HE achieves
the best on ogbl-collab and ogbl-ciation2. All these results can support Remark 3.

6 GNNs with Node Embedding in Link Prediction

As shown in Fig. 2, on two relatively sparse graphs, i.e., ogbl-collab (degree 8) and ogbl-citation2 (degree
21), the performance of GNN(NE) is on par with that of GNN(X), and GNN(X+NE) performs better than
GNN(NE) and GNN(X). By comparison, on two denser graphs, i.e., ogbl-ppa (degree 73) and ogbl-ddi
(degree 500), GNN(NE) outperforms GNN(X) by a large margin. These results indicate that incorporating
node embeddings into GNNs can enhance the link prediction performance. More importantly, it reveals a
strong positive correlation between the graph degree and the performance improvement by node embeddings,
i.e., denser graphs exhibit greater improvement.

Remark 4. For GNN-based link prediction models like Algorithm 2, when the training is supervised by
positive and negative links, trainable node embeddings could enhance the expressive power of these models.

Analysis. In Algorithm 2, the parameters optimized by the link samples could include model weights,
trainable node embeddings, and other embedding weights. The key difference between node embedding
weights and other learnable weights is that the former is unique to each node but the latter is shared across
multiple nodes (e.g., the GNN weight matrix W) in Eq. 1 is shared across all nodes). The unique nature
of node embeddings can bring benefits. As shown in Algorithm 2, when the model training is supervised by
a link sample (v,u), for a GNN using node embeddings, the loss calculated based on (yy u, §vu) would be
used to optimize the node embeddings of nodes v, u and their neighboring nodes (i.e., the nodes involved in
calculating hf,L)7 h&L)). The link state of (v,u) could be encoded into the node embeddings of these nodes,
which would enable those node embeddings to remember the relationships between corresponding nodes.
After being trained with sufficient positive and negative link samples, the node embedding of each node
could know which nodes (through their node embeddings) in the graph are more likely to be or not to be
connected to that node.

If node embeddings are not used in Algorithm 2, link samples will only supervise the optimization of the
weights that are shared across multiple nodes. The states of link samples could not be effectively preserved
by the model since these shared weights might learn a common pattern for different nodes rather than unique



to a node. By comparison, each node embedding is unique to that node and could learn the link information
specific to that node. In this respect, trainable node embeddings could enhance the expressive power of the
GNN-based link prediction model.

In Remark 4, the requirement of the model training is supervised by positive and negative links is indispens-
able. Without this prerequisite, the link state between two nodes could not be encoded into node embeddings.
Additionally, negative link samples can allow the embeddings of two distant nodes and their neighbors to
see each other during the optimization of the GNN-based model.

Finding 5. Following Remark 4, the denser the graph, the more the enhancement by node embeddings.

Analysis. In GNN-based link prediction models like Algorithm 2, node embeddings in a dense graph could
be better learned for link prediction than those in a sparse graph. Our explanation is as follows. In a dense
graph, a node often has a lot of neighboring nodes, thereby providing numerous opportunities for that node
to meet other nodes and encode link relationships of that node with these other nodes into its embedding
during the GNN training. In contrast, a sparse graph typically contains only a limited number of neighbors
for each node. For example, in the case where a node v has only one neighboring node w, the optimization of
the embedding of node v in a GNN would mainly rely on its neighbor w. As a result, the learned embedding
of node v would lack sufficient information to identify the relationships between node v and the majority of
the other nodes in the sparse graph because node v rarely or never sees them during the training process.

Finding 5 indicates that the graph degree significantly influences the effectiveness of trainable node em-
beddings in GNN-based link prediction models. Interestingly, prior studies [54] have also highlighted the
sensitivity of heuristic methods to the graph degree. This underscores the necessity of considering the graph
degree when selecting link prediction methods, as their efficacy may vary depending on it. Investigating the
influence of different graph degrees on link prediction methods represents a compelling direction for further
research.

7 GNNs in Learning non-NCN-dependent Structural Information

In Section 5, we present that GNNs cannot completely learn the structural information related to the
number of common neighbors between two target nodes. When it comes to the question of what non-NCN-
dependent pair-specific structural information can be learned via GNNs, it poses a significant challenge. This
is due to the potential presence of diverse types of non-NCN-dependent information. Unlike NCN-dependent
information directly related to the number of common neighbors, non-NCN-dependent information tends to
be abstract and difficult to express in rigorous mathematical terms. For example, our review in Section
3.2 identifies only three non-NCN-dependent link heuristics. In this work, we leave the exploration of this
question as a future research endeavor. Nevertheless, by comparing Algorithm 1 and Algorithm 2, we have
the following insight.

Remark 6. The learning styles of SimRank in Algorithm 1, and the GNN-based link prediction model with
node embeddings in Algorithm 2, exhibit certain similarities.'

Analysis. Comparing Algorithms 1 and 2, several similarities emerge. Firstly, similarity scores in Line 3 of
Algorithm 1 and node embeddings in Line 3 of Algorithm 2 both need to be initialized and can be dynamically
trained. Secondly, the updating computations of both algorithms (i.e., Line 5 of Algorithm 1 and Line 6
of Algorithm 2) involve neighboring nodes. Moreover, both the learned results (i.e., s;; in Algorithm 1 and
Jv,u in Algorithm 2) describe the existence likelihood of a link between two nodes. However, compared to
Algorithm 2 where the trainable parameters include node embeddings, model weights, etc., the expressive
power of SimRank is limited. In SimRank, only the similarity scores between every two nodes can be
optimized, with each score always taking the form of a scalar.

1For Remark 6, we do not compare the performance of Algorithm 1 and Algorithm 2 due to the difficulty of SimRank
in computation. For example, the basic memory requirement of SimRank is 415G and 2.42T on ogbl-collab and ogbl-ppa,
respectively. Besides, SimRank produces 0 at Hits@20 on ogbl-ddi.



Remark 6 implies that although NCN-dependent structural information cannot be effectively learned via
GNNs (Remark 3), other types of information (e.g., the information captured by SimRank) might be learned
through GNNs.

8 Limitation Analysis of Existing Methods

In this section, we first present a brief survey of existing link prediction methods and then identify their
possible limitations.

8.1 A Survey of Link Prediction Methods

8.1.1 Heuristic Methods

As outlined in Section 3, traditional link heuristics are usually defined based on the number of common
neighbors or paths between two nodes [43]. Their effectiveness in link prediction has been confirmed in
real-world tasks [43, 31]. However, many link heuristics are designed for specific graph applications and
their performance may vary on different graphs [31]. Also, the expressiveness of these methods is limited
compared to graph representation learning [74].

8.1.2 Graph Neural Networks

GNNs have proven their effectiveness in various graph applications [39, 22, 71, 27]. A number of GNN
models have been proposed [29, 68, 83]. GCN [29] learns node representations by summing the normalized
representations from the first-order neighbors. GraphSAGE [19] samples and aggregates representations from
local neighborhoods. GAT [61] introduces an attention-based GNN architecture. JKNet [68] adds a pooling
layer following the last GNN layer and each GNN layer has a residual connection to this layer. Cluster-
GCN [10] proposes an efficient algorithm for training deep GCN on large graphs. LRGA [48] incorporates a
Low-Rank global attention module to GNNs. Several works such as Mixhop [1] and DEGNN [37] propose
techniques to leverage high-hop neighbors. ID-GNN [72] embeds each node by considering its identity. These
GNNs have demonstrated promising link prediction performance.

8.1.3 Non-GNN-based Node Embedding Methods

A family of node embedding methods is those built with matrix factorization [30]. MF [44] is a pioneer work
employing matrix factorization in link prediction. FSSDNMF [8] proposes a link prediction model based on
non-negative matrix factorization. In general, such methods mainly rely on the adjacency matrix and tend
to encounter scalability issues when employed on large graphs.

Another family of node embedding methods is those based on relative distance encoding. The similarity of
nodes in the embedding space reflects the semantic similarity of nodes in the graph [47]. Such methods would
learn more similar embeddings for two close nodes than two distant nodes. Following word embedding [45],
methods such as Deepwalk [47], Node2vec [17], and NodePiece [14] learn node embeddings by treating the
nodes as words and treating the sequences of nodes generated based on links as sentences. UniNet [69]
improves the efficiency of such methods using the Metropolis Hastings sampling technique [11]. Inspired by
subword tokenization [53], NodePiece [14] explores parameter-efficient node embeddings.

8.1.4 SEAL-type Methods

SEAL-type methods have shown superior performance among existing link prediction approaches [21, 36, 36].
SEAL and its subsequent works [74, 37, 60, 70, 59] address the link prediction problem by classifying the
subgraphs that are extracted specifically for candidate links. SEAL [74] extracts a local enclosing subgraph
for each candidate link and uses a GNN [75] to classify these subgraphs for link prediction. Grail [60] is
developed for inductive link prediction. It is similar to SEAL but it replaces SortPooling [75] with MEAN-
pooling. DEGNN [37] proposes a distance encoding GNN. Cai et al. [6] transform the enclosing subgraph
into a corresponding line graph and address the link prediction task with the node classification problem in

10



its line graph. Pan et al.[46] follow the subgraph strategy in SEAL while designing a new pooling mechanism
called WalkPool. SUREL [70] proposes an algorithmic technique to improve the computational efficiency of
subgraph generation in SEAL. SIEG [3] incorporates the structural information learned from the enclosing
subgraphs into the GNN for link prediction, which fuses topological structures and node features to take full
advantage of graph information for link prediction.

8.1.5 Methods Specific for Link Prediction

Various link prediction-specific methods have been introduced [77, 27]. Wang et al. [63] present PLNLP
by jointly using the representations learned by a GNN, distance encoding, etc. Neo-GNN [73] weighted
aggregates the link prediction scores obtained by heuristics and a GNN. NBFNet [82] generalizes traditional
path-based link heuristics into a path formulation. Singh et al. [56] show that adding a set of edges to
the graph as a pre-processing step can improve the performance of link prediction models. PermGNN
[50] optimizes the neighborhood aggregator directly by link samples. Zhao et al. [78] study counterfactual
questions about link existence by causal inference. RelpNet [64] aggregates edge features along the structural
interactions between two target nodes. Guo et al. [18] propose cross-model distillation techniques for link
prediction. Shang et al. [55] propose a negative link sampling method PbTRM based on a policy-based
training method. Li et al. [35] study the integration of large language models (LLMs) and prompt learning
techniques with graphs, enhancing graph transfer capabilities across diverse tasks and domains.

8.2 Limitation Analysis

We provide two basic insights into the application of GNNs in link prediction. Firstly, we show that
aggregation-based GNNs inherently lack the ability to learn NCN-dependent structural information for
link prediction (Remark 3). Secondly, we demonstrate that node embeddings can boost the performance of
GNN-based link prediction models on dense graphs (Remark 4 and Finding 5). These can serve as effective
avenues to identify and interpret the limitations of existing link prediction methods. To illustrate this, we
present two case studies.

Subgraph preparation Subgraph classification

i The entire __ Extracting the subgraph __ Labeling i _, Node-wise _»-_bRepresentation_’-_'A
: representations for (v, u) Y v

graph "~ specific for (v,u) nodes ¥ )" "representations U J"" for(vu) L J "ovu

Figure 3: The algorithm flow of SEAL-type link prediction methods.

Case study 1. Can SEAL effectively learn NCN-dependent structural information? SEAL-type
methods have achieved the best performance on several link prediction datasets [74, 37, 60, 70]. SEAL [74]
has proven that most link heuristics between two nodes can be computed approximately within an enclosing
subgraph extracted specifically for that two nodes. As shown in Fig. 3, most SEAL-type methods employ
GNNss for graph representation learning, with the expectation that from such enclosing subgraphs, the GNN
can learn the structural information equivalent to link heuristics including CN, AA, Katz, etc. However,
whether this expectation holds true has not been thoroughly investigated in existing works. Herein we
present a rough analysis to examine this issue.

First, the GNNs used in SEAL-type methods, e.g., DGCNN [75] in SEAL [74], R-GCN [52] in GraiL. [60],
still belong to the type of aggregation-based GNNs. According to Remark 3, these GNNs inherently cannot
effectively learn NCN-dependent structural information.

Furthermore, we have noticed that SEAL-type methods typically use a labeling technique [76] to add labeling
features to each node in the enclosing subgraph. The labeling features of each node describe the relationship
of that node to the target two nodes. Fig. 4 illustrates such a labeling method, where the labeling features
of a node are the shortest path distances from the node to the target pair of nodes. The work [76] points out
that the labeling features can help the GNN learn the structural information about the number of common
neighbors. Their explanation is as follows. As shown in Fig. 4, for node v and wu, in the first iteration of
the neighborhood aggregation of a GNN, only the common neighbors between node v and u will receive the
labeling messages from both v and w; then in the second iteration, the common neighbors will pass such
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13) 1,2)
Positive link

(1,4) 13
Negative link

Figure 4: Node labeling in SEAL-type methods. The left is a subgraph specific for a positive link sample
and the right is a negative one. The labeling features are based on the SPDs from every node (here only
show the first-order neighbors of node v or w) to the target pair of nodes. For example, on the left, the node
with the labeling (1, 10) indicates that the SPD from this node to node v and u is 1 and 10, respectively.

messages back to both v and u, which can encode the number of common neighbors into the representations
of node v, w.

However, the aforementioned explanation raises questions regarding its validity. In the second iteration, apart
from the common neighbors, the non-common neighbors of node v also pass their messages back to v. The
messages from all neighbors of v are then aggregated through a set-based pooling (e.g., MEAN or attention-
based pooling as shown in Eq. 2). Such an aggregated result for node v would wash out the distinguishable
labels’ information. We present an example to illustrate this. As shown in Fig. 4, if the pooling method in
a GNN is MEAN, then the aggregation of the labeling features of the neighbors of node v would be equal
to that of node w, i.e., MEAN({10,3,2,1}) = MEAN({4,6,4,3,3}). This means that the distinct labeling
features of the neighbors of a node are not effectively kept in the aggregated result. In other words, the
aggregated results for node v and w in the positive and negative link samples become indistinguishable.
Note that attention-based pooling in GNNs like GAT [61] also suffers from the above limitation for the same
reason as the analysis of Remark 2. The same goes for node u. It should be noted that our example is merely
for illustrative purposes. In practice, a GNN layer contains a series of complicated operations such as linear
and non-linear transformations, dropout, residual connection, and others. The structural information in the
labeling features could be partially kept in the learned representations.

Although SEAL-type methods cannot effectively learn structural information related to the number of com-
mon neighbors, we highlight that these methods are powerful for link prediction. Such methods transform
the pair-specific link prediction problem into a graph-level classification task. Compared to models like Al-
gorithm 2 that only combine the representations of two target nodes, SEAL-type methods take advantage of
the representations of not only two target nodes but also their neighboring nodes in the enclosing subgraph,
enabling the model to consider more information of the surrounding environment of the candidate link.

Case study 2. NBFNet lacks the algorithmic ability to leverage node embeddings. NBFNet [82]
is a model specifically developed for link prediction. Differently from GNN-based link prediction methods
like Algorithm 2 and SEAL-type methods, NBFNet generalizes traditional link heuristics such as Katz
index [26], Personalized PageRank [33] into a general formulation and approximates such formulation using
a special network. Unlike aggregation-based GNNs that propagate and aggregate node-wise representations,
NBFNet is designed to train edge-wise representations. The model architecture of NBFNet makes it hardly
consider node-wise information. This would make NBFNet lack the algorithmic ability to train powerful
node embeddings and may lead to non-competitive link prediction performance on dense graphs, considering
the strong performance of the GNN only using node embeddings on dense graphs as shown in Fig. 2.

8.3 Further analysis of experimental results

We expand our limitation analysis of existing link prediction methods by examining their experimental
performance on four OGB benchmark datasets. The results are presented in Table 4 and Fig. 5. In the
interest of brevity, our analysis focuses on several main types of methods.

First, as shown in Fig. 5, the performance of heuristic methods is not stable across the four datasets. For
example, RA performs best on ogbl-ppa but second worst on ogbl-ddi. These results are consistent with
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Table 4: Results on OGB link prediction datasets. Higher scores indicate better performance, with the best
results highlighted in bold. Herein, "HE" stands for Heuristic Encoding, "X" represents node attributes, and
"NE" denotes Node Embedding.

ogbl-ddi ogbl-collab ogbl-ppa ogbl-citation2
Hits@20 (%) Hits@50 (%) Hits@100 (%) MRR (%)
MF [44] 13.68 £4.75  38.86+0.49 32.29+0.94 51.86 £ 8.43
FSSDNMF (8] 14.62 £2.64 37.95+3.25 34.15+1.16 54.71 £ 8.73
DeepWalk [47] 26.42+6.10  50.37+£0.34 28.88 +1.63 60.11 £0.23
Node2vec [17] 23.26 +£2.09  48.88 +£0.54 22.26 + 0.83 61.41 +0.11
NodePiece [14] 24.154+3.04  47.88 £0.41 22.85+0.94 61.52 +2.91
GraphSAGE [19] 83.90 +4.74  48.10 +£0.81 16.55 £+ 2.40 82.60 +0.36
GAT [61] 95.38+0.94  52.26 £0.85 51.33 £ 2.16 83.17 £ 0.54
Neo-GNN [73] 75.72+3.42  55.31 £0.53 49.13 + 0.60 87.26 = 1.84
PLNLP [63] 90.88 +3.13  52.924+0.98 32.38 & 2.58 84.92 £0.29
NBFNet [82] 18.14 £2.12  51.15+1.38 23.96 +2.03 74.91 +£2.37
SEAL [74] 30.56 £3.86  54.71+£0.79 48.80 £ 4.56 87.67 £0.32
DEGNN [37] 26.63 +6.42  53.74+0.45 36.48 £5.38 60.30 £ 0.81
SIEG [3] 31.95+£3.93  55.35£0.52 53.35 +1.39 89.87 £ 0.10
HE 21.95+0.08  53.03+0.29 49.22 £+ 0.06 81.91 £ 0.05
GCN(X) 12.21 £3.16  50.76 £+ 1.08 12.23 £0.47 80.60 £ 0.04
GCN(NE) 95.49+0.73 50.174+0.56 63.54+1.21 81.50 + 2.01
GCN(X+NE) 94.42 £0.63  53.08 £ 0.46 60.68 £ 3.52 83.85 £ 0.03
GCN(X)+HE 2578 +£5.38 56.11+0.64 49.68 +0.39 88.63 £ 0.05
GCN(NE)+HE 91.11 +£3.60  54.21 +£0.07 61.02 + 2.51 85.57 £0.19
GCN(X+NE)+HE 89.65+2.32  55.70 £0.24 59.94 4+ 4.62 86.31 +0.12

the research of [31] which indicates that many link heuristics are designed for specific applications and may
perform well only on those specific graphs. Moreover, the unstable performance of every single heuristic
confirms the need of combining multiple heuristics in link prediction, as shown in our Algorithm 2.

We also report the heuristic encoding results (Fig. 6) obtained through Algorithm 2 when only employing
heuristic encoding. We find that it is not always true that the more the heuristics used, the better the
performance of HE. In contrast, encoding a certain number of heuristics can yield the best performance,
whereas encoding too many heuristics would pose an optimization challenge.

The node embedding methods based on relative distance encoding (DeepWalk [47], NodePiece [14]) perform
slightly better than those based on matrix factorization (MF [44], FSSDNMF [8]). Nevertheless, all these
methods fall short compared to other methods. This could be attributed to the limitations of such methods,
e.g., reliance solely on the adjacency matrix or unsupervised learning without link samples. This also
underscores the critical role of link samples in supervising the training of node embeddings for link prediction.

Fig. 5 also presents the results of MLP and general GNNs (GCN [29], GAT [61] and JKNet [68]) that
use node embeddings only. MLP(NE) performs much worse than GNNs, demonstrating the significance of
neighborhood aggregation of GNNs in training node embeddings, considering that MLP updates each node’s
representation independently of other nodes. Furthermore, GCN(NE) and GAT(NE) perform comparably,
indicating that the expressiveness of GCN is sufficient for learning node embedding. The similar performance
of GCN and GAT empirically supports our analyses in Remark 2 and 3, where we point out that the attention
mechanism (e.g., GAT) cannot address the inherent issue of GNNs in learning structural information related
to the number of each node’s neighbors and of common neighbors between two nodes.

In Fig. 5, SEAL-type methods show state-of-the-art performance. Especially, SIEG [3] achieves the best
results on two sparse graphs, i.e., ogbl-collab and ogbl-citation2 with graph degrees of 8 and 21, respectively.
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CN+ 41.71 CN+ 74.28
JAA 48.5 JA 71.32
AA 4 5242 AA 75.94
RA 1 5236 RA 76.03
Katz 4 2 Katz 4 74.67
HE(CN+AA+Katz) 2550 53.03 HE(SPD+AA+JA+RA) 150 81.91
MF = 38 MF 1 .
FSSDNMEF — 3795 FSSDNMEF 54.71
DeepWalk = 50.37 DeepWalk = 60.11
NodePiece A =~ 47.88 NodePiece A — 61.52
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GCN; NE;< = 50.17 GCN(NE) =—— 81.5
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Ours: GCN(X) + HE 56.11 Ours: GCN(X) + HE 88.63
30 35 40 45 50 55 60 65 50 60 70 80 90
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DeepWalk 1 — 28.88 DeepWalk 26.42
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DEGNN - =—— 3648 DEGNN A 26.63
NBFNet — 23. NBFNet — 18.14
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Ours: GCN(NE) 63.54  Ours: GCN(NE) 95.49
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Hits@100 (ogbl-ppa, Degree = 73)

Heuristic methods
SEAL-type methods

Figure 5: Results of different methods for link prediction on four OGB datasets. For MLP and general GNNs,
we present their results obtained by utilizing node embeddings, considering the dominant performance of

node embeddings as shown in Fig. 2.

However, they perform worse than general GNNs with node embeddings (GCN(NE) [29], GAT(NE) [61]
and JKNet(NE) [68]) on two dense graphs, i.e., ogbl-ppa and ogbl-ddi. This discrepancy in the performance
of SEAL-type methods could be attributed to the algorithmic challenge of training node embeddings using
subgraphs. Unlike general GNNs, the algorithm of SEAL-type methods limits each node to perceive other
nodes within the subgraph rather than the entire graph, thereby restricting the information flow between

General node embedding methods
Other methods specific for link prediction

Hits@20 (ogbl-ddi, Degree = 500)

MLP and GNNs with node embeddings
s Our results

nodes and potentially reducing the efficiency of learning node embeddings.

Besides, Fig. 5 shows two link prediction-specific methods, namely NBFNet [82] and Neo-GNN [73]. NBFNet
underperforms on four datasets, which aligns with the limitations identified in Section 8.2. Neo-GNN predicts
link likelihood by combining the scores obtained by heuristic methods and the result produced by a GNN.
It performs on par with the state-of-the-art SEAL-type methods on two sparse graphs (ogbl-collab and

ogbl-citation2).

Lastly, our GNN(X)+HE based on Algorithm 2 performs better than SEAL-type methods on ogbl-collab,
supporting our limitation analysis of SEAL-type methods in Section 8.2, i.e., such methods could not effec-

tively learn the information equivalent to NCN-dependent heuristics.

It should be noted that our focus does not lie in developing solutions to these limitations of the existing
methods, as this goes beyond the scope of our main goal. Nevertheless, these identified issues could pave

the way for future research.
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of NCN-dependent heuristics. We can find that the best HE is often achieved by encoding a select number

Figure 6: Results of HE (Heuristic Encoding) through Algorithm 2, where we encode various combinations
of heuristics rather than all heuristics.

Implication for Practical Applications

9

This study carries significant implications for real-world link prediction applications. A particular emphasis

is the selection of appropriate solutions tailored to the graph degree.
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For link prediction on sparse graphs, the performance of various methods in our experiments highlights the
important role of NCN-dependent information. Approaches that can leverage such information, such as
SEAL-type methods and Neo-GNN, generally outperform those that cannot. In practical scenarios, both
SEAL-type methods and GNNs with heuristic encoding could yield satisfactory performance. Additionally,
traditional machine learning models like MLP incorporating multiple heuristic encodings serve as viable
alternatives, which could achieve comparable performance to the top-performing methods, while offering
faster processing times. This is particularly advantageous for tasks such as recommender systems that
demand rapid model response.

For link prediction on dense graphs, the contribution of node embeddings becomes dominant. Simple GNNs
like GCN[29] with the incorporation of trainable node embeddings can outperform most existing methods,
rendering such a solution an optimal choice. However, this does not mean that the model using node embed-
dings will certainly perform better than that only using node features, especially in practical applications
where careful feature engineering guided by domain knowledge is conducted. Besides, the use of trainable
node embeddings remains limitations in the inductive setting [60], where new nodes are added to the graph,
and the model together with all node embeddings may need to be retrained. In such cases, the methods that
do not involve the training of node embeddings may offer more practical suitability.

10 Limitations

This paper primarily explores several fundamental issues in link prediction methods, particularly in GNNs.
It does not seek to introduce novel model architectures. Some analyses in this paper are provided in the
form of examples and may lack rigorous mathematical proofs.

11 Conclusion

Link prediction stands as a pivotal task within the realm of graph applications. Our exploration into this
domain reveals noteworthy variations in the performance of various link prediction methods across different
graphs, with a significant dependence on graph degrees. Notably, on dense graphs, we observe that straight-
forward GNNs, like GCN, exhibit superior link prediction performance compared to many models that are
developed specifically for link prediction. In contrast, on sparse graphs, the simple common-neighbor method
often outshines GNN-based approaches. Understanding and interpreting these performance fluctuations is
imperative, serving as a compass for refining existing methodologies and establishing a foundation for the
development of more effective link prediction algorithms.

In addition, this work brings suggestions to practitioners in link prediction. Specifically, on sparse graphs,
either SEAL-type methods or GNNs plus heuristic encoding can yield satisfactory performance. On dense
graphs, GNN with node embeddings is an ideal choice in the transductive setting. For inductive learning,
methods that do not involve the training of node embeddings may be more suitable.
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